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Abstract
Establishing causal relationships between actions
and outcomes is fundamental for accountable
multi-agent decision-making. However, interpret-
ing and quantifying agents’ contributions to such
relationships pose significant challenges. These
challenges are particularly prominent in the con-
text of multi-agent sequential decision-making,
where the causal effect of an agent’s action on the
outcome depends on how other agents respond
to that action. In this paper, our objective is to
present a systematic approach for attributing the
causal effects of agents’ actions to the influence
they exert on other agents. Focusing on multi-
agent Markov decision processes, we introduce
agent-specific effects (ASE), a novel causal quan-
tity that measures the effect of an agent’s action on
the outcome that propagates through other agents.
We then turn to the counterfactual counterpart of
ASE (cf-ASE), provide a sufficient set of condi-
tions for identifying cf-ASE, and propose a practi-
cal sampling-based algorithm for estimating it. Fi-
nally, we experimentally evaluate the utility of cf-
ASE through a simulation-based testbed, which
includes a sepsis management environment.

1. Introduction
Conducting post-hoc analysis on decisions and identifying
their causal contributions to the realized outcome represents
a cornerstone of accountable decision making. Such analy-
sis can be particularly crucial in safety-critical applications,
where accountability is paramount. Often, these applications
involve multiple decision makers or agents, who interact
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over a period of time, and make decisions or actions that are
interdependent. This, in turn, implies that the impact of an
agent’s action on the outcome depends on how other agents
respond to that action in subsequent periods. Thus, the inter-
dependence between the agents’ actions poses challenges in
quantifying their causal contributions to the outcome, since
their effects are interleaved rather than isolated.

To illustrate these challenges, consider a canonical problem
setting where accountability is paramount: the sepsis treat-
ment problem (Komorowski et al., 2018). In a multi-agent
variant of this problem, a clinician and an AI agent decide
on a series of treatments for an ICU patient over a period of
time. For example, the AI can function as the primary deci-
sion maker, suggesting treatments that can be overridden by
the clinician, who assumes a supervisory role. A simplified,
one-shot decision making instance of this problem setting
is depicted in Fig. 1 (left) through a causal graph. In this
setting, the AI agent starts by observing the patient state S0

and suggesting treatment A0. Subsequently, the clinician
observes both S0 and A0, and decides whether to override
the AI’s treatment or not. If the clinician overrides the AI,
the patient outcome Y is determined by S0 and the alterna-
tive treatment H0 suggested by the clinician. Otherwise, Y
is determined by state S0 and the AI’s treatment A0.
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A0

SA
0

H0

Y S0

A0

Treatment E

SA
0

H0

Y

Figure 1. The figure illustrates the sepsis treatment problem setting
over 1 time-step. Squares denote agents’ actions, A for AI and H
for clinician. Circles S are patient states, while SA include both
S and A, i.e., SA = (S,A). Y is the outcome. Edges that are
striked through represent deactivated edges. Exogenous arrows
(magenta) represent interventions on A0 that fix its value to the
action indicated. The graph on the right depicts a path-specific
effect of treatment E on Y .

Given the causal graph, we can utilize standard causal con-
cepts to quantify the impact of the agents’ actions on the
outcome Y . Arguably, the most straightforward way of
doing so would be through the notion of total counterfac-

1



Agent-Specific Effects: A Causal Effect Propagation Analysis in Multi-Agent MDPs

tual effects. Given, for example, a scenario where the AI
suggests treatment C and an undesirable outcome is real-
ized, the total counterfactual effect can be used to measure
the impact that an alternative treatment E would have on
the outcome. Evaluating this effect involves intervening on
the AI’s action, setting it to treatment E, and measuring
the probability that the undesirable outcome would have
been avoided. However, this analysis may be misleading
for assessing the accountability of the AI, as it is unclear
to what degree its action affects the outcome through the
clinician. It is possible that treatment E yields a high total
counterfactual effect on the outcome, because it triggers
a different response from the clinician, rather than being
genuinely better for the patient than treatment C.

To quantify the effect of the AI’s action that propagates
through the clinician, we can utilize the concept of path-
specific effects (Pearl, 2001). In particular, we can measure
the total counterfactual effect of treatment E on outcome Y
in a modified model where the edge between SA

0 and Y in
Fig. 1 (right) is deactivated. The latter can be interpreted as
if the outcome will be realized based on the factual action
of the AI, i.e., treatment C, and the action taken by the
clinician, who sees the alternative action, i.e., treatment E.

A natural generalization to multiple time steps is depicted in
Fig. 2. To ensure that action A1 of the AI is the same as the
factual one, and hence that the AI’s response in the next time-
step does not affect the counterfactual outcome, we could
additionally deactivate the edge between S1 and A1. While
intuitively appealing, this effect does not capture higher-
order dependencies between the agents’ actions. Namely,
the clinician’s policy depends on the AI’s policy, so by fixing
the AI’s subsequent actions to the ones originally taken, we
inadvertently remove such a dependency from the analysis.
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Figure 2. The causal graph depicts a path-specific effect of treat-
ment E on outcome Y in the sepsis treatment problem setting over
2 time-steps. It aims to capture the counterfactual effect of E that
propagates through the clinician. A cyan colored node signifies
that the node is set to the action that the agent took in the factual
scenario, i.e., under treatment C.

Our objective is to capture these dependencies through a
novel causal notion termed agent-specific effects. At a high
level, we contend that the clinician should behave as if the
AI’s actions are not fixed, but rather responsive to the clini-
cian’s decisions. However, the effect should be measured
using the factual actions of the AI. We show that analyzing
this effect necessitates counterfactual reasoning across three

distinct scenarios, and hence it cannot be expressed through
path-specific effects. Our contributions are as follows.

Agent-Specific Effects. (Section 3) Focusing on multi-
agent Markov decision processes (MMDPs), we introduce
(counterfactual) agent-specific effects, a novel causal quan-
tity that measures the effect of an agent’s action on the
MMDP outcome through a selected subset of agents. To
enable counterfactual reasoning we represent MMDPs by
structural causal models (Section 2).

Identifiability. (Section 4) We delve into the identifiability
of agent-specific effects, acknowledging their general non-
identifiability. To overcome this challenge, we consider an
existing causal property, which we refer to as noise mono-
tonicity. We show that assuming noise monotonicity suffices
for the identification of counterfactual agent-specific effects.
Notably, compared to closely related identifiability results
(Lu et al., 2020; Nasr-Esfahany et al., 2023), ours does not
rely on the assumption of model bijectiveness, and hence
is more general. Lastly, we show that noise monotonicity
does not reduce the expressivity of distributions, and that it
strictly implies monotonicity (Pearl, 1999) in binary models.

Algorithm. (Section 5) We propose a practical sampling-
based algorithm for the estimation of counterfactual agent-
specific effects. We show that this algorithm outputs unbi-
ased estimates provided that noise monotonicity holds.

Connections to PSE. (Section 3 and 6) We discuss in detail
the importance of agent-specific effects and their conceptual
benefits relative to path-specific effects. We introduce a gen-
eralized notion of the latter, which allows us to establish a
formal connection between agent- and path-specific effects.

Experiments. (Section 7) We conduct extensive experi-
ments on two test-beds, Graph and Sepsis, evaluating the
robustness and practicality of our approach.1 Our results in-
dicate that the effect of an agent’s action on the outcome can
be frequently and to a great extent attributed to the behavior
of other agents in the system. This deduction is supported
by our analysis of agent-specific effects. Remarkably, our
analysis yields valuable insights, even in scenarios where
our theoretical assumptions do not hold, such as revealing
aspects of the clinician’s trust in the AI.

1.1. Related Work

This paper is related to works on mediation or path analysis
with a single (Pearl, 2001; Zhang & Bareinboim, 2018b;a)
or multiple (Daniel et al., 2015; Steen et al., 2017; Avin
et al., 2005; Singal et al., 2021; Chiappa, 2019) mediators.
Unlike this line of work, we do not study the effect of an
exposure variable (in our case action) on a response variable

1Code to reproduce our experiments is available at
https://github.com/stelios30/agent-specific-effects.git.
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(in our case outcome) that propagates through some variable
or path in a general causal model. Instead, we focus on
MMDPs, and aim to quantify and reason about effects that
propagate through a subset of decision-making agents, who
control multiple sequentially dependent actions.

Our work also relates to the area of causal contributions,
which studies the problem of attributing to multiple causes
a contribution to a target effect (Jung et al., 2022), e.g., to
explain the effect of different model features on predictions
(Heskes et al., 2020). Even though we do not develop here
such attribution methods, we view this as a natural next step.

Close to our work are also papers that look into the problem
of measuring the influence between actions in multi-agent
decision making systems (Jaques et al., 2019; Pieroth et al.,
2022). The main distinction between this type of works and
ours is that we care about the influence of an action on the
outcome through the actions of other agents, rather than
merely the influence of one action on an other.

From a technical point of view, this paper is close to works
which combine SCMs with sequential decision making
frameworks similar to MMDPs, e.g., MDPs (Tsirtsis &
Rodriguez, 2024), POMDPs (Buesing et al., 2018) and Dec-
POMDPs (Triantafyllou & Radanovic, 2023).

Furthermore, the multi-agent variant of the sepsis treatment
setting we consider in this paper, presented in Sections 1 and
7, is aligned with the extensive literature on human-in-the-
loop (HITL) decision making. HITL calls for human experts
to monitor the AI’s decisions during training (Saunders et al.,
2018) and/or execution (Lynn, 2019), in order to ensure
safety (Xu et al., 2022) and public trust (Beil et al., 2019).
Within healthcare, clinicians are tasked with overseeing
the decision-making process and intervene by overriding
the AI’s decisions, whenever necessary (Liu et al., 2022).
Support for human oversight has been also recognized by
the European Union as one of the main requirements for
trustworthy AI (European Commission, 2019).

Finally, this paper is related to works that utilize causal tools
to study accountability or related concepts in decision mak-
ing. We consider works on responsibility in multi-agent one-
shot (Chockler & Halpern, 2004) or sequential (Triantafyl-
lou et al., 2022) decision making, as well as works that focus
on explainability (Madumal et al., 2020), incentives (Everitt
et al., 2021; Farquhar et al., 2022), harm (Richens et al.,
2022), manipulation (Carroll et al., 2023) and intention
(Halpern & Kleiman-Weiner, 2018). Our view is that agent-
specific effects can be integrated into all aforementioned
works enhancing their causal reasoning, e.g., by modifying
current responsibility attribution methods to account for ac-
tual causes whose effects propagate through other agents, or
by defining agent-specific counterfactual harm to measure
the harm caused by an action through a set of agents.

More related work can be found in Appendix F.

2. Framework and Preliminaries
In this section, we introduce and establish a connection
between the two main parts of our formal framework, Struc-
tural Causal Models (SCMs) (Pearl, 2009) and Multi-Agent
Markov Decision Processes (MMDPs) (Boutilier, 1996).

2.1. Graphs

We begin by introducing some necessary graph notation.
For a directed graph G, we denote with V(G) and E(G)

the sets of vertices and edges in G. With EV i

+ (G) or Ei
+(G)

for short, we denote the set of outgoing edges of node V i

in G. Furthermore, we use Pai(G) to denote the parent
set of V i in G. We call graph g an edge-subgraph of G if
V(g) = V(G) and E(g) ⊆ E(G). We also denote with g
the edge-subgraph of G with E(g) = E(G)\E(g).

2.2. Structural Causal Models

An SCM M is a tuple ⟨U,V,F , P (u)⟩, where: U is a set
of unobservable noise variables with joint probability distri-
bution P (u); V is a set of observable random variables; F
is a collection of functions. Each random variable V i ∈ V
corresponds to one noise variable U i ∈ U and one function
f i ∈ F . The value of V i is determined by the structural
equation V i := f i(PAi, U i), where PAi ⊆ V\V i. More-
over, SCM M induces a causal graph G, where V consti-
tutes the set of nodes V(G), and for every node V i ∈ V(G)
set PAi constitutes its parent set Pai(G).

Interventions. An intervention on variable X ∈ V in SCM
M describes the process of modifying the structural equa-
tion which determines the value of X in M . We consider
two types of interventions, hard interventions and natural
interventions. A hard intervention do(X := x) fixes the
value of X in M to a constant x ∈ dom{X}.2 The new
SCM that is derived from performing do(X := x) in M is
denoted by Mdo(X:=x), and is identical to M except that
function fX is replaced by the constant function.

Now, let Z ∈ V. We denote with Zdo(X:=x) or Zx for short,
the random variable which, for some noise u ∼ P (u),
takes the value that Z would take in Mdo(X:=x). A natural
intervention do(Z := Zx) replaces the function fZ of M
with Zx. The derived SCM is denoted by Mdo(Z:=Zx).

Hard and natural interventions on a set of variables W ⊆ V,
instead of a singleton, are defined in a similar way.

Distributions. Joint distribution P (V)M is referred to as
the observational distribution of M . Furthermore, distri-
butions of the form P (Yx)M and of the form P (Yx|v)M ,

2dom{X} here denotes the domain of variable X .
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where v ∈ dom{V} and v(X) ̸= x,3 are referred to as
interventional and counterfactual distributions, respectively.
Subscript M here implies that the probability distribution is
defined over SCM M . Note that we may drop this subscript
when the underlying SCM is assumed or obvious.

Identifiability. Identifying whether or not an interventional
or counterfactual distribution over SCM M can be uniquely
estimated from the causal graph and observational distribu-
tion of M is a fundamental challenge in causality. Formally,
a distribution P (·)M is identifiable if P (·)M1

= P (·)M2

for any two SCMs M1 and M2, s.t. (a) the causal graphs
induced by M1 and M2 are identical to that of M , and (b)
the observational distributions of M1 and M2 agree with
M ’s. Otherwise, we say that P (·)M is non-identifiable.

Effects. The total causal effect of intervention do(X := x)
on Y = y, relative to reference value x∗, is defined as

TCEx,x∗(y)M = P (yx)M − P (yx∗)M ,

where P (yx)M is short for P (Yx = y)M .

Given a realization v of V, the total counterfactual effect
of intervention do(X := x) on Y = y is defined as4

TCFEx(y|v)M = P (yx|v)M − P (y|v)M .

Assumptions. Throughout this paper, we assume SCMs
to be recursive, i.e., their causal graphs are acyclic. We
further make the exogeneity assumption: noise variables
are mutually independent, P (u) =

∏
ui∈u P (ui). We also

assume that the domains of observable variables are finite
and discrete, and that noise variables take numerical values.

2.3. Multi-Agent Markov Decision Processes

An MMDP is a tuple ⟨S, {1, ..., n},A, T, h, σ⟩, where: S is
the state space; {1, ..., n} is the set of agents; A = ×n

i=1Ai

is the joint action space, with Ai being the action space of
agent i; T : S×A×S → [0, 1] is the transitions probability
function; h is the finite time horizon; σ is the initial state
distribution.5 For example, if the agents take joint action a
in state s, then the environment transitions to state s′ with
probability equal to T (s′|s,a). We denote with πi the policy
of agent i and with π the agents’ joint policy. As such, the
probability of agent i taking action ai in state s is given
by πi(ai|s). Furthermore, we call trajectory a realization τ
of the MMDP, i.e., τ consists of a sequence of state-joint
action pairs {(st,at)}t∈{0,...,h−1} and a final state sh.

Next, we describe how to model an MMDP coupled with
a joint policy π as an SCM M , henceforth called MMDP-
SCM. First, we define the set of observable variables V to

3v(X) here denotes the value of variable X in v.
4We consider x∗ here to be v(X), but it could also be anything.
5For ease of notation, rewards are considered part of the state.

include all state and action variables of the MMDP. To each
such variable, we assign a noise variable U and a function
f . We then formulate the structural equations of M as

S0 = fS0(US0); St = fSt(St−1,At−1, U
St);

Ai,t = fAi,t(St, UAi,t). (1)

The causal graph of M is included in Appendix B.6 Note
that (Buesing et al., 2018) shows that such parameterization
of a partially observable MDP to an SCM is always possible.
Their result can be directly extended to MMDPs.

3. Formalizing Agent-Specific Effects
In this section, we introduce the notion of agent-specific ef-
fects (ASE) and its counterfactual counterpart (cf-ASE). For
a given MMDP-SCM M , the purpose of ASE and cf-ASE
is to quantify the total causal and counterfactual effect, re-
spectively, of an action Ai,t = ai,t on a response variable Y ,
only through a selected set of agents, also called the effect
agents. To that end, our definitions consider three alterna-
tive worlds. In the first world, action ai,t is fixed. In the
second world, a reference a∗i,t (for ASE) or realized τ(Ai,t)
(for cf-ASE) action is fixed instead. In the third world, the
reference or realized action is fixed, and additionally for
every time-step t′ > t the effect agents are forced to take
the actions that they would naturally take in the first world,
while all other agents, also called the non-effect agents, are
forced to take the actions that they would naturally take in
the second world. Note that response variable Y can be any
state variable in M that chronologically succeeds Ai,t. We
formally define ASE and cf-ASE based on the language of
natural interventions as follows.7

Definition 3.1 (ASE). Given an MMDP-SCM M and a non-
empty subset of agents N in M , the N-specific effect of
intervention do(Ai,t := ai,t) on Y = y, relative to reference
action a∗i,t, is defined as

ASEN
ai,t,a∗

i,t
(y)M = P (ya∗

i,t
)Mdo(I) − P (ya∗

i,t
)M ,

where I = {Z := Za∗
i,t
|Z ∈ {Ai′,t′}i′ /∈N,t′>t} ∪ {Z :=

Zai,t |Z ∈ {Ai′,t′}i′∈N,t′>t}.
Definition 3.2 (cf-ASE). Given an MMDP-SCM M , a
non-empty subset of agents N in M and a trajectory τ
of M , the counterfactual N-specific effect of intervention

6The causal graph in Appendix B corresponds to the SCM of a
general MMDP with n agents and horizon h. For demonstration
purposes, Fig. 1-3 show causal graphs that correspond to SCMs
of Turn-Based MMDPs – a special case of (simultaneous-moves)
MMDPs (Jia et al., 2019; Sidford et al., 2020).

7We note that our main theoretical and experimental results
are w.r.t. cf-ASE. However, we also provide the definition of ASE
for completeness and in order to enable a direct comparison with
related causal quantities (see Section 6).
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do(Ai,t := ai,t) on Y = y is defined as

cf-ASEN
ai,t

(y|τ)M =P (yτ(Ai,t)|τ ;M)Mdo(I) − P (y|τ)M ,

where I = {Ai′,t′ := τ(Ai′,t′)}i′ /∈N,t′>t ∪ {Z :=
Zai,t |Z ∈ {Ai′,t′}i′∈N,t′>t}.

Going back to the sepsis problem from Section 1, the clini-
cian here takes the role of the effect agent (i′ ∈ N) and the
AI that of the non-effect agent (i′ /∈ N). The (counterfac-
tual) clinician-specific effect of intervention do(A0 := E)
on Y is illustrated in Fig. 3. In this figure, we see that the AI
takes its factual actions, while the clinician takes the actions
that it would naturally take under intervention do(A0 := E).
This should be contrasted with the path-specific effect in
Fig. 2, where the clinician behaves as if the AI agent takes
its factual action in A1. In Appendix C, we provide the
formal expression of Definition 3.2 to this example.

To demonstrate the importance of this distinction, consider
a clinician who does not account for AI’s actions when de-
ciding whether or not to override them, but instead bases its
decisions solely on the patient’s state, e.g., assuming full
control whenever the patient is in critical condition. Under
this behavior, the path-specifics effect in Fig. 2 always eval-
uates to 0. Namely, the intervention on A0 does not impact
the realization of S1: the clinician does not respond to the
AI’s action, while the edge between SA

0 and S1 is deacti-
vated. Hence, the realized states and actions in later periods
are also the same. We deem this to be problematic since we
block the influence that the intervention on A0 may have on
the clinician’s actions in later periods (e.g., H1 in Fig. 2)
through state S1. On the other hand, for the agent-specific
effect in Fig. 3, the clinician acts according to the states
that naturally realize under intervention do(A0 := E), so
this influence is not blocked. For example, if the initial
state is such that the clinician does not decide to override,
the realization of state S1 under intervention do(A0 := E)
could be possibly different than the one in the factual world.

While it suffices to reactivate the edge between SA
0 and S1

in Fig. 2 to obtain a path-specific effect that alleviates the
aforementioned issue, this modified version can lead to a
different type of counter-intuitive results. Namely, in a sce-
nario where the clinician never overrides the AI’s actions,
this measure might have a positive evaluation. Our experi-
ments in Section 7 demonstrate this tendency. In contrast,
the agent-specific effect in Fig. 3 does not have this issue
since we intervene on A0 with do(A0 := C).

Despite these distinctions, we can formalize both ASE and
PSE using a generalized notion of path-specific effects,
which we introduce in Section 6.

S0

A0

Treatment C

SA
0

H0

S1

A1

SA
1

H1

Y

Figure 3. The figure depicts the agent-specific effect of treatment
E on outcome Y in the sepsis problem from the introduction. A
magenta (resp. cyan) colored node signifies that the node is set to
the action that the agent would naturally take under intervention
E (resp. the action that the agent took in the factual scenario, i.e.,
under treatment C).

4. Identifiability Results
Note that P (y|τ)M from Definition 3.2 is 1 if y = τ(Y ),
and 0 otherwise. Thus, P (y|τ)M is identifiable. In contrast,
P (yτ(Ai,t)|τ ;M)Mdo(I) is non-identifiable, since evidence
V = τ is contradictory to intervention do(I) (Shpitser &
Pearl, 2008). Subsequently, cf-ASEN

ai,t
(y|τ)M is also non-

identifiable under our current set of assumptions.

Theorem 4.1 states that ASEN
ai,t,a∗

i,t
(y)M , which is defined

over interventional probabilities instead of counterfactual
ones, is also non-identifiable.8 The proof is based on the
recanting witness criterion (Avin et al., 2005).

Theorem 4.1. Let M be an MMDP-SCM, and N be a non-
empty subset of agents in M . It holds that the N-specific
effect ASEN

ai,t,a∗
i,t
(y)M is non-identifiable if tY > t + 1,

where tY denotes the time-step of variable Y .

To overcome the aforementioned non-identifiability chal-
lenges, we consider the following property, which was first
introduced in (Pearl, 2009) [p. 295] for binary SCMs.

Definition 4.2 (Noise Monotonicity). Given an SCM M
with causal graph G, we say that variable V i ∈ V is noise-
monotonic in M w.r.t. a total ordering ≤i on dom{V i},
if for any pai ∈ dom{Pai(G)} and ui

1, u
i
2 ∼ P (U i) s.t.

ui
1 < ui

2, it holds that f i(pai, ui
1) ≤i f

i(pai, ui
2).

Assuming noise monotonicity means that functions f i of the
underlying SCM, or MMDP-SCM in our case, are mono-
tonic w.r.t. noise variables U i. The next theorem states that
noise monotonicity suffices to render cf-ASE identifiable.9

Theorem 4.3. Let M be an MMDP-SCM, N be a non-
empty subset of agents in M , and τ be a trajectory of M .
The counterfactual N-specific effect cf-ASEN

ai,t
(y|τ)M is

identifiable, if for every variable Z ∈ V there is a total
ordering ≤Z on dom{Z} w.r.t. which Z is noise-monotonic
in M .

8Note that the same non-identifiability results would also hold
even if we had access to interventional data.

9Even though we do not explicitly prove it in this paper, it
follows that the same result also holds for ASE.
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Theorem 4.3 is closely related to Theorem 1 from (Lu et al.,
2020) and Theorem 5.1 from (Nasr-Esfahany et al., 2023),
where they show that under strong noise monotonicity the
counterfactual effect of an action on its subsequent state is
identifiable in the class of bijective causal models. Note that
in contrast to their work, here we assume weak noise mono-
tonicity, which does not imply model bijectiveness, i.e.,
functions f i(pai, ·) are not necessarily invertible. Hence,
our result is more general.

Our proof leverages a novel identification formula, Eq. (2),
that allows us to express counterfactual factors (Correa et al.,
2021) in terms of the observational distribution. As such,
Lemma 4.4 can be utilized for deriving the identification
formula of any counterfactual probability (under exogeneity
and noise monotonicity), and thus is of independent interest.
Appendix H provides a more thorough explanation.

Lemma 4.4. Let M be an SCM with causal graph G, and
≤X be a total ordering on dom{X} for some X ∈ V. If X
is noise-monotonic in M w.r.t.≤X , then for any x1, ..., xk ∈
dom{X} and pa1, ..., pak ∈ dom{PaX(G)} it holds that

P (∧i∈{1,...,k}x
i
pai) = max

(
0, min

i∈{1,...,k}
P (X ≤X xi|pai)

− max
i∈{1,...,k}

P (X <X xi|pai)
)
. (2)

Next, we present novel findings to enhance the characteriza-
tion of noise monotonicity. (Buesing et al., 2018) show how
we can represent any partially observable MDP by an SCM.
In that direction, we show next how to represent any MMDP
by an MMDP-SCM that satisfies noise monotonicity.

Lemma 4.5. Let X = {X1, ..., XN} represent the set
of state and action variables of an MMDP, and P (X) be
the joint distribution induced by the MMDP under a joint
policy π. Additionally, let ≤1, ...,≤N be total orderings
on dom{X1}, ...,dom{XN}, respectively. We can con-
struct an MMDP-SCM M = ⟨U,V,F , P (u)⟩ with causal
graph G, where V = {V 1, ..., V N}, U = {U1, ..., UN},
P (U i) = Uniform[0, 1], and functions in F are defined as

f i(Pai(G), U i) = inf
vi
{P (Xi ≤i v

i|Pai(G))M ≥ U i},

such that P (X) = P (V) and every variable V i ∈ V is
noise-monotonic in M w.r.t. ≤i.

(Oberst & Sontag, 2019) recently proposed another property
for categorical SCMs, counterfactual stability. Interestingly,
they show that their property implies the well-known prop-
erty of monotonicity (Pearl, 1999) in binary SCMs. Note,
that counterfactual stability does not suffice for identifia-
bility. Proposition 4.6 states that noise monotonicity also
implies monotonicity in binary SCMs.

Proposition 4.6. Let M be an SCM consisting of two bi-
nary variables X and Y with Y = fY (X,UY ). If Y is

noise-monotonic in M w.r.t. the numerical ordering, then Y
is monotonic relative to X in M . However, if Y is mono-
tonic relative to X in M , then Y is not necessarily noise-
monotonic in M w.r.t. any total ordering on dom{X}.

5. Algorithm
We now present our algorithm for the estimation of cf-ASE,
which follows a standard methodology for counterfactual in-
ference (Pearl, 2009). Algorithm 1 samples noise variables
from the posterior P (u|τ) (abduction), in order to compute
cf-ASE (prediction) under interventions (action) specified
in Definition 3.2, and finally outputs the average value.

Algorithm 1 Estimates cf-ASEN
ai,t

(y|τ)M
Input: MMDP-SCM M , trajectory τ , effect agents N, ac-
tion variable Ai,t, action ai,t, outcome variable Y , outcome
y, number of posterior samples H

1: h← 0
2: c← 0
3: while h < H do
4: uh ∼ P (u|τ) {Sample noise from the posterior}
5: h← h+ 1
6: τh ∼ P (V|uh)Mdo(Ai,t:=ai,t) {Sample cf trajectory}
7: I(uh)← {Ai′,t′ := τ(Ai′,t′)}i′ /∈N,t′>t∪{Ai′,t′ :=

τh(Ai′,t′)}i′∈N,t′>t

8: yh ∼ P (Y |uh)Mdo(I(uh)) {Sample cf outcome}
9: if yh = y then

10: c← c+ 1
11: end if
12: end while
13: return c

H − 1(τ(Y ) = y)

Theorem 5.1. Let MMDP-SCMs M = ⟨U,V,F , P (u)⟩
and M̂ = ⟨U,V, F̂ , P̂ (u)⟩, s.t. P (V)M = P (V)M̂ and
every variable Z ∈ V is noise-monotonic in both M and
M̂ w.r.t. the same total ordering ≤Z on dom{Z}. It holds
that the output of Algorithm 1, when it takes as input model
M̂ , is an unbiased estimator of cf-ASEN

ai,t
(y|τ)M .

If noise-monotonicity holds, then according to Theorem 5.1,
access to a model M̂ suffices to get an unbiased estimate of
cf-ASEN

ai,t
(y|τ)M . Based on Lemma 4.5, such an MMDP-

SCM always exists, and it can be derived solely from the
observational distribution P (V)M and the total orderings
w.r.t. which variables in M are noise-monotonic.

6. Connection to Path-Specific Effects
Path-specific effects are a well-known causal concept used
to quantify the causal effect of one variable on another along
a specified set of paths in the causal graph (Pearl, 2001).
Definition 6.1 (PSE). Given an SCM M with causal graph
G, and an edge-subgraph g of G (also called the effect
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subgraph), the g-specific effect of intervention do(X := x)
on Y = y, relative to reference value x∗, is defined as

PSEg
x,x∗(y)M = TCEx,x∗(y)Mg

,

where Mg = ⟨U,V,Fg, P (u)⟩ is a modified SCM, which
induces g and is formed as follows. Each function f i

in F is replaced with a new function f i
g in Fg, s.t. for

every pai(g) ∈ dom{Pai(g)} and u ∼ P (u) it holds
f i
g(pa

i(g), ui) = f i(pai(g), pai(g)∗, ui). Here, pai(g)∗

denotes the value of Pai(g)x∗ in M for noise u.

As argued in Section 1, despite also considering natural
interventions, path-specific effects cannot be used to express
agent-specific effects. Intuitively, this is because analyzing
the latter effects requires reasoning across three alternative
worlds, while the definition of the former reasons across
only two. To establish a deeper connection between the two
concepts, we define the notion of fixed path-specific effects
(FPSE) utilizing a similar path-deactivation process as in
Definition 6.1.10 Appendix I includes identifiability results
for FPSE and its counterfactual counterpart.

Definition 6.2 (FPSE). Given an SCM M with causal graph
G, and two edge-subgraphs of G, effect subgraph g and
reference subgraph g∗ such that E(g) ∩ E(g∗) = ∅, the
fixed g-specific effect of intervention do(X := x) on Y = y,
relative to reference value x∗ and g∗, is defined as

FPSEg,g∗

x,x∗(y)M = P (yx∗)Mq
− P (yx∗)M ,

where q is the edge-subgraph of G with E(q) =
E(G)\{E(g),E(g∗)}, and Mq = ⟨U,V,Fq, P (u)⟩ is a
modified SCM, which induces q and is formed as follows.
Each function f i in F is replaced with a new function f i

q

in Fq , s.t. for every pai(q) ∈ dom{Pai(q)} and u ∼ P (u)
it holds f i

q(pa
i(q), ui) = f i(pai(q), pai(g)e, pai(g∗)∗, ui).

Here, pai(g∗)∗ (resp. pai(g)e) denotes the value of
Pai(g∗)x∗ (resp. Pai(g)x) in M for noise u.

Definitions of PSE and FPSE have two main distinctions:
FPSE considers one additional edge-subgraph compared to
PSE, and it computes the counterfactual probability over
its modified model under intervention do(X := x∗) instead
of do(X := x). This additional subgraph allows FPSE to
reason across three alternative words, i.e., one more than
PSE, which is why it can express agent-specific effects.

Lemma 6.3. Let M be an MMDP-SCM with causal graph
G and N be a non-empty subset of agents in M . It holds
that

ASEN
ai,t,a∗

i,t
(y)M = FPSEg,g∗

ai,t,a∗
i,t
(y)M

10We emphasize here that PSE and FPSE are defined over gen-
eral SCMs, while ASE is defined explicitly over MMDP-SCMs.

where g is the edge-subgraph of G with E(g) =⋃
Ai′,t′ :i

′∈N,t′>t E
Ai′,t′
+ (G) and g∗ is the edge-subgraph

of G with E(g∗) =
⋃

Ai′,t′ :i
′ /∈N,t′>t E

Ai′,t′
+ (G).

Furthermore, by “not using” the extra edge-subgraph, FPSE
can express path-specific effects.

Proposition 6.4. Given an SCM M with causal graph G,
and an edge-subgraph g of G, it holds that

PSEg
x,x∗(y)M = FPSEg,g∅

x∗,x(y)M +TCEx,x∗(y)M ,

where g∅ is the edge-subgraph of G with E(g∅) = ∅.

7. Experiments
In this section, we empirically evaluate our approach using
two environments from prior work, Graph (Triantafyllou
et al., 2021) and Sepsis (Oberst & Sontag, 2019), modified to
align with our objectives. We refer the reader to Appendix D
for more details on the experimental setup, and to Appendix
E for additional results related to the Sepsis environment.

7.1. Environments and Experimental Setup

Graph. In this environment, 6 agents move in a graph with 1
initial, 3 terminal and 9 intermediate nodes split into 3 layers.
All nodes of a column are connected (with directed edges)
to all the next column’s nodes. Thus, agents can move on
the graph going up, straight or down. The agents’ goal is
to be equally distributed when reaching the last column.
The policy of each agent i ∈ {1, ..., 6} is parameterized
with a pi = 0.05 · i, which denotes their probability of
taking a random action at any node. With 1− pi probability,
agent i follows a policy that is common among all agents,
and depends on their current positions on the graph. We
implement this environment, such that each action variable
of the underlying MMDP-SCM is noise-monotonic w.r.t. a
predefined total ordering, which is up, down, straight.

Sepsis. In our multi-agent version of Sepsis, AI and clini-
cian have roles similar to those described in Section 1. At
each round, the AI recommends one of eight possible treat-
ments, which is then reviewed and potentially overridden by
the clinician. If the clinician does not override AI’s action,
i.e., takes a no-op action, then the treatment selected by the
AI is applied. Otherwise, a new treatment selected by the
clinician is applied. The agents’ goal is to keep the patient
alive for 20 rounds or achieve an earlier discharge. We learn
the policies of both agents using Policy Iteration (Sutton &
Barto, 2018), and we train them on slightly different transi-
tion probabilities. For the clinician, this gives us their policy
for selecting treatments, so we additionally need to specify
their probability of overriding an action of the AI agent.
Across all states, this is specified by a parameter µ, which
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(c) Sepsis: Through Clinician

0.0 0.2 0.4 0.6 0.8 1.0
Trust Parameter μ

0.00

0.20

0.40

0.60

0.80

1.00

Av
g.

 E
ffe

ct
 V

al
ue

s

(d) Sepsis: Through AI

Figure 4. (Graph) Plots 4a and 4b show the average absolute error of cf-ASE when computed for wrongly estimated agents’ policies and
under violation of noise monotonicity, respectively. (Sepsis) Plots 4c and 4d show average values of cf-ASE and cf-PSE when computing
effects that propagate through the clinician and AI, respectively, while varying trust parameter µ.

intuitively models the level of the clinician’s trust in the AI:
greater values of µ correspond to higher levels of trust.

Setup. For each environment, we generate a set of trajecto-
ries in which agents fail to reach their goal, 500 for Graph
and 100 (per value of µ) for Sepsis. For each trajectory τ ,
we compute the TCFE of all the potential alternative actions
that agents could have taken. Among these actions ai,t, we
retain those that exhibit a TCFE greater than or equal to a
predefined threshold θ (0.75 for Graph and 0.8 for Sepsis).
Formally, we require TCFEai,t(Y = success|τ) ≥ θ. This
process yields a total of 854 selected alternative actions for
Graph and 9197 for Sepsis, which serve as the basis for eval-
uating cf-ASE. Counterfactual effects in our experiments
are computed for 100 counterfactual samples.

7.2. Results

Robustness. We first assess the robustness of cf-ASE in the
presence of uncertainty, using the Graph environment, for
which we know the underlying causal model. Given this
knowledge, we can compute the correct values of cf-ASE,
which we refer to as target values, and we do so for all
854 alternative actions that were selected using the previ-
ously outlined process, covering all possible combinations
of effect-agents (31 combinations in total). With this infor-
mation, we perform two robustness tests.

First, we test the robustness to uncertainty over the observa-
tional distribution of the model, specifically the agents’ poli-
cies. Uncertainty is incorporated in the underlying model by
randomly sampling a probability p̂i ∈ [pi−ϵmax, pi+ϵmax],
which defines i’s (wrongly) estimated policy. Here, ϵmax

is a parameter that we vary. Plot 4a shows the average
absolute difference between the target values and the coun-
terfactual agent-specific effects estimated for different levels
of uncertainty (i.e., ϵmax). Results are grouped by target

value range. We observe that for small estimation errors
(ϵmax ≤ 0.05) we can still obtain good enough estimates of
cf-ASE, especially when the target value is low.

Second, we assess the impact of violating the noise mono-
tonicity assumption on the estimation of cf-ASE, by running
our estimation algorithm with an incorrect total ordering.
Plot 4b shows the average absolute difference between the
target values and the counterfactual agent-specific effects
estimated for different misspecified total orderings. The
results indicate that assuming the wrong total ordering can
have a significant impact on the estimation accuracy of cf-
ASE. Interestingly, when the reverse of the correct total
ordering is assumed, the estimation error is relatively low.

Practicality. Next, we assess the conceptual importance
and practicality of agent-specific effects using the Sepsis en-
vironment. For all selected actions of the AI (resp. clinician)
we compute their counterfactual effect which propagates
through the clinician (resp. AI). In Plots 4c and 4d, we
present the average clinician- and AI-specific effects, as cap-
tured by cf-ASE and the counterfactual counterpart of PSE
(cf-PSE), for different levels of trust. Plots 5a-5d show,
for different values of trust parameter µ, the distribution of
selected alternative actions across value ranges of cf-ASE.

Plots 4c, 4d and 5a-5d suggest that the causal interdependen-
cies between agents’ policies can have a significant impact
on the total counterfactual effect of an action. For instance,
in Plot 5c we can see that even for a large trust level µ = 0.6,
close to 40% of the AI’s actions that admit TCFE greater
than 0.8, also admit a clinician-specific effect (as measured
by cf-ASE) greater than 0.75. This means that the total
counterfactual effect of an action can rather frequently be
attributed to the behavior of other agents in the system.

Plot 4c illustrates that our approach uncovers the following
intuitive pattern: the clinician-specific effect decreases as
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(d) Sepsis: µ = 0.8

Figure 5. (Sepsis) Plots in this figure show the distribution of selected alternative actions (of both the AI and the clinician) across different
ranges of cf-ASE values and for different values of trust parameter µ.

the level of trust increases, ultimately dropping to 0 when
the human fully trusts the choices of the AI. This is an im-
portant finding as it implies that given a set of trajectories,
cf-ASE could provide us with valuable insight about the
clinician’s trust towards the AI. A similar conclusion can be
drawn from Plot 4d, in which cf-ASE demonstrates the fol-
lowing trend: the AI-specific effect increases with µ. This
is expected as it implies that the effect of the clinician’s
actions on the outcome through the AI decreases, as the
latter assumes less agency. Compared to cf-ASE, we ob-
serve that cf-PSE suggests a less prominent pattern for the
clinician-specific effect. Most notably, it can assign posi-
tive value to the effect in cases where the clinician blindly
follows AI’s recommendations. A similar counter-intuitive
result can also be observed for the AI-specific effect when
µ = 0. Given these results, we conclude that cf-ASE is
a more suitable approach than cf-PSE for measuring the
clinician- and AI-specific effects in this setting, as it aligns
better with standard intuition.

Plots 5a-5d showcase the following natural trend for cf-ASE:
the fraction of actions with clinician-specific effect greater
than 0.75 decreases with the level of trust, while the frac-
tion of actions with clinician-specific effect less than 0.25
increases. This is expected as the less the clinician trusts the
AI’s actions, the more often they override them, and hence
the more they tend to affect the outcome. Similarly, the
fraction of actions with AI-specific effect greater than 0.75
increases with the level of trust, while the fraction of actions
with AI-specific effect less than 0.25 decreases. This is also
expected as the less the clinician trusts the AI’s actions the
less agency the AI assumes.

Remark 7.1. In the Sepsis experiments, we do not have
access to the underlying causal model and instead we only
have access to the simulator’s transition probabilities and
the agents’ policies. Thus, for our analysis we assume that
trajectories are generated by an MMDP-SCM with vari-
ables that are noise-monotonic w.r.t. a chosen total ordering.
While this assumption is restrictive, we found that the results

of this section are rather robust to this type of uncertainty,
which is important in practice, where the assumptions we
made in this paper are often violated. Plots for 5 additional
randomly selected total ordering sets, which back up this
claim, can be found in Appendix E.

8. Conclusion
To summarize, in this paper we introduce agent-specific
effects, a novel causal quantity that measures the effect of
an action on the outcome that propagates through a set of
agents. To the best of our knowledge, this is the first work
that looks into this problem in the context of multi-agent
sequential decision making. Our theoretical contributions
include results on the identifiability of this new concept,
a practical algorithm to estimate it, and establishing a for-
mal connection with prior work. In the experiments, we
demonstrate the practical effectiveness of our approach in a
scenario where our theoretical assumptions do not hold.

Future work. Looking forward, we recognize three com-
pelling future directions. First, a natural next step would
be to derive a causal explanation formula akin to (Zhang &
Bareinboim, 2018a), which will decompose the causal effect
of an agent’s action by attributing to each agent and subse-
quent environment state a score reflecting its contribution
to the effect. Second, it would be of practical importance
to explore the identifiability of ASE in the presence of un-
observed confounding. Finally, we plan to investigate the
utility of ASE in other practical settings, where causal effect
propagation analysis is important, e.g., in multi-agent RL.

Impact Statement
Impact on accountable decision making. We believe that
our approach can meaningfully extend auditing methods
for decision-making outcomes. For example, current ap-
proaches on responsibility attribution, counterfactual harm,
etc. focus solely on computing the counterfactual effect of
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an agent’s action on the outcome (see Section 1.1 for refer-
ences). In this work, we aim to further analyze this effect,
by measuring the extent to which it should be attributed to
how other agents would respond to this action, providing a
more granular insight. Thus, modifying existing causal tools
to reason about agent-specific effects could lead to more
informed judgements about accountability in multi-agent
decision making.

Ethical impact. The approach we propose in this paper is
situated in the post-processing phase of decision-making
scenarios. While it does not directly impact human subjects,
we recognize the imperative of conducting more empirical
studies to validate its functionality and integration into ac-
countability measures. We advocate for targeted research,
including a thorough sensitivity analysis of our theoreti-
cal assumptions, in order to ensure the reliability of our
approach. Finally, prior to utilizing ASE in practice, it is im-
portant to ensure that ASE-based explanations or measures
are aligned with human intuitions and norms, which is espe-
cially important for high-stake domains, such as healthcare.
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A1,h−1 An,h−1. . .

Sh

Figure 6. The causal graph of an MMDP-SCM with n agents and horizon h. Exogenous variables are omitted.

A. List of Appendices
In this section, we provide a brief description of the content provided in the appendices of the paper.

• Appendix B provides the causal graph of the MMDP-SCM from Section 2.3.

• Appendix C provides the formal expression of Definition 3.2 to the example shown in Fig. 3.

• Appendix D provides additional details on the experimental setup and implementation.

• Appendix E provides additional experimental results for the Sepsis environment.

• Appendix F provides additional related work.

• Appendix G provides additional background needed for the proofs of our theoretical results.

• Appendix H contains a remark about Lemma 4.4 and counterfactual identification.

• Appendix I provides additional details and theoretical results related to fixed path-specific effects.

– Appendix I.1 contains the proof of Lemma 4.4.

• Appendix J contains the proofs of Theorems 4.1 and 4.3.

• Appendix K contains the proof of Lemma 4.5.

• Appendix L contains the proof of Proposition 4.6.

• Appendix M contains the proof of Theorem 5.1.

• Appendix N contains the proof of Lemma 6.3.

• Appendix O contains the proof of Proposition 6.4.

B. Causal Graph of MMDP-SCM
This section includes the causal graph of the MMDP-SCM described in Section 2.3. The causal graph is shown in Fig. 6.

C. Formal Expression of Definition 3.2 to the Example shown in Fig. 3
In the example illustrated in Fig. 3, the clinician’s actions are set to the values that they would naturally take under
intervention do(A0 := E), i.e., H0 := H0,do(A0:=E) and H1 := H1,do(A0:=E). In the same example, the second action of
the AI agent is set to its factual action, i.e., A1 := τ(A1), where τ here denotes the factual trajectory. These together form
set I from Definition 3.2, i.e., I = {A1 := τ(A1)} ∪ {H0 := H0,do(A0:=E), H1 := H1,do(A0:=E)}. We can then formally
express the counterfactual clinician-specific effect of treatment E on outcome y, in this example, as follows

cf-ASECL
A0:=E(y|τ)M = P (ydo(A0:=C)|τ ;M)Mdo(I) − P (y|τ)M ,

where M denotes the underlying MMDP-SCM.
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Figure 7. Graph environment. The cyan node is the initial node and magenta nodes are the terminal nodes of the graph.
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Figure 8. (a) Probabilities that AI and clinician policies assign to different actions. (b) Observed outcomes across 1000 trajectories
sampled from the simulator for AI, clinician and random policies.

D. Additional Information on Experimental Setup and Implementation
In this section, we provide additional information on the experimental setup and implementation details.

D.1. Experimental Setup

We first provide a more detailed description of the environments and the agents’ policies used in the experiments.

Graph. We consider the graph environment depicted in Fig. 7, in which 6 agents take simultaneous actions. All agents
begin at the left most node, and at each time-step move to nodes of the next column following the directed edges. Thus, each
agent can select to either move up, straight or down, with out-of-bounds moves leading to moving straight. The agents’ goal
in this environment is to be equally distributed when reaching the last column of the graph, i.e., have 2 agents per node.
Agents reach the last column of the graph in 4 time-steps, when also the environment terminates.

At the initial node, all agents take a random action. At all other nodes (except the terminal ones), each agent i ∈
{1, 2, 3, 4, 5, 6} takes a random action with an agent-specific probability pi = 0.05 · i. At a node k that is occupied by a
total number of agents Nk ≤ 2, agent i moves straight with probability 1− pi. Otherwise, i moves straight with probability
(1− pi) · 2

Nk
, and towards a row that has less than 2 agents with probability (1− pi) · Nk−2

Nk
.11

Sepsis. The patient’s state in this environment can be described by 4 vital signs (heart rate, systolic blood pressure, percent
of oxygen saturation and glucose level) as well as an additional diabetes variable present with 20% probability, influencing
the fluctuations of the glucose level. Both agents can select among 8 distinct actions, each of which represents a combination
of applying antibiotics (A), vasopressors (V) and mechanical ventilation (E) treatment options. As mentioned in Section 7,
the clinician can additionally take a no-op action, which means that they do not override the AI’s action at that step. For
more details regarding the simulator we consider in these experiments, we refer the reader to (Oberst & Sontag, 2019).

The clinician’s policy is trained using the simulator’s true transition probabilities. To introduce grounds for action overriding
by the clinician, the AI’s policy is trained using slightly modified transition probabilities. Namely, we increase the probability
of antibiotics effectiveness and decrease the probability of vasopressors effectiveness (compared to the original simulator).
This results in a policy for the AI which recommends treatments with vasopressors more scarcely and those with antibiotics
more abundantly (compared to the clinician’s policy), visualized in Plot 7a. To qualitatively evaluate learned policies, we
sample 1000 trajectories from the simulator and depict the observed rewards in Plot 7b. For both policies we observe similar

11If there are two rows with less than 2 agents where i could move to, then each of these moves has probability (1− pi) · Nk−2
2·Nk

.
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levels of undesirable outcomes, but note that treatments prescribed by the clinician tend to lead to an earlier patient discharge,
compared to those prescribed by the AI, which tend to keep the patient alive, but do not completely cure them until the end
of trajectory.

We note that for a trajectory in which an undesirable outcome is realized, i.e., the patient dies at a time-step t before the
completion of 20 rounds, the outcome Y is the final state of this trajectory. In other words, in our analysis we focus on the
counterfactual probability that the patient would not have died at time t.

D.2. Algorithms for TCFE and cf-PSE

We now present the algorithms we use in our experiments to estimate total counterfactual effects (TCFE) and the coun-
terfactual counterpart of path-specific effects (cf-PSE). Similar to Algorithm 1, Algorithms 2 and 3 follow the standard
abduction-action-prediction methodology for causal inference (Pearl, 2009). Furthermore, similar results to Theorem 5.1
can be derived for the unbiasedness of the two algorithms.

Algorithm 2 Estimates TCFEai,t
(y|τ)M

Input: MMDP-SCM M , trajectory τ , action variable Ai,t, action ai,t, outcome variable Y , outcome y, number of posterior
samples H

1: h← 0
2: c← 0
3: while h < H do
4: uh ∼ P (u|τ) {Sample noise from the posterior}
5: h← h+ 1
6: yh ∼ P (Y |uh)Mdo(Ai,t:=ai,t) {Sample cf outcome}
7: if yh = y then
8: c← c+ 1
9: end if

10: end while
11: return c

H − 1(τ(Y ) = y)

Algorithm 3 Estimates cf-PSEg
ai,t

(y|τ)M
Input: MMDP-SCM M , trajectory τ , effect agents N, action variable Ai,t, action ai,t, outcome variable Y , outcome y,
number of posterior samples H

1: h← 0
2: c← 0
3: while h < H do
4: uh ∼ P (u|τ) {Sample noise from the posterior}
5: h← h+ 1
6: I ← {Ai,t := ai,t} ∪ {Ai′,t′ := τ(Ai′,t′)}i′ /∈N,t′>t

7: yh ∼ P (Y |uh)Mdo(I) {Sample cf outcome}
8: if yh = y then
9: c← c+ 1

10: end if
11: end while
12: return c

H − 1(τ(Y ) = y)

Note that for cf-PSEg
ai,t

(y|τ)M in Algorithm 3, g represents the edge-subgraph of the causal graph of M , G, with

E(g) = E(G)\
⋃

Ai′,t′ :i
′ /∈N,t′>t E

Ai′,t′
− (G), where E

Ai′,t′
− (G) denotes the set of incoming edges of Ai′,t′ in G.

D.3. Compute Architecture and Software Stack

All experiments were run on a 64bit Debian-based machine having 4x12 CPU cores clocked at 3GHz with access to 1.5TB
of DDR3 1600MHz RAM. The software stack relied on Python 3.9.13, with installed standard scientific packages for
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(b) Sepsis: Through AI Ord1
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(c) Sepsis: Through CL Ord2
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(d) Sepsis: Through AI Ord2
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(e) Sepsis: Through CL Ord3
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(f) Sepsis: Through AI Ord3
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(g) Sepsis: Through CL Ord4
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(h) Sepsis: Through AI Ord4
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(i) Sepsis: Through CL Ord5
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Figure 9. Plots in this figure show average values of cf-ASE and cf-PSE when computing effects that propagate through the clinician (CL)
and AI, respectively, while varying trust parameter µ. Results are shown for 5 randomly selected total ordering sets (Ord1-Ord5).

numeric calculations and visualization: NumPy (1.24.3), Pandas (2.0.3), Joblib (1.3.1), Matplotlib (3.7.1) and Seaborn
(0.12.2). For learning agent’s policies in sepsis experiments, we relied on PyMDPToolbox (4.0-b3) library. The experiments
are fully reproducible using the random seed 8854. The total running time of the experiments on the Graph environment is
∼ 2.5 hours and of the experiments on the Sepsis environment is ∼ 7.5 hours.

E. Additional Experimental Results
In this section, we provide additional experimental results for the Sepsis environment. In Plots 9a-9j, we present the average
clinician- and AI-specific effects, as captured by cf-ASE and the counterfactual counterpart of PSE (cf-PSE), for different
levels of trust and across 5 randomly selected total ordering sets. From the plots corresponding to any of these sets of total
orderings, we can draw similar conclusions to the ones we drew from Plots 4c and 4d. Therefore, as also mentioned in
Section 7, these plots support our claim that the results of that section are robust to violations of our theoretical assumptions,
which often happen in practice.
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F. Additional Related Work
The results of Section 4 are in general related to works that study the identifiability of counterfactual effects. For instance,
there are results on the identification of the effect of treatment on the treated (Heckman, 1991; Shpitser & Pearl, 2009)
and the identification of counterfactual path-specific effects (Shpitser & Sherman, 2018). Moreover, (Shpitser & Pearl,
2007) and (Correa et al., 2021) study the identification of arbitrary non-nested and nested counterfactuals, respectively, from
observational and interventional data. Meanwhile, (Zhang & Bareinboim, 2018a) offers insights into the identifiability of
counterfactual direct, indirect and spurious effects across three canonical model settings.

In a broader sense, our work is also related to research papers that study repeated human-AI interactions involving both
stationary (Ghosh et al., 2020; Dimitrakakis et al., 2017) and non-stationary (Radanovic et al., 2019; Nikolaidis et al., 2017)
human policies. We believe that investigating the implications of non-stationary policies on our approach represents an
intriguing research direction.

G. Additional Theoretical Background
In this section, we provide additional background and notation needed for the proofs of our theoretical results.

Additional background on graphs. With EV i

− (G) or Ei
−(G) for short, we denote the set of incoming edges of node V i in

G. Furthermore, we use standard graph notation for relationships such as ancestors, children and descendants, e.g., Ani(G)
denotes the ancestor set of node V i in G. By convention, we also assume that the ancestor and descendant sets of a node
are inclusive, i.e., V i ∈ Ani(G) and V i ∈ Dei(G). We call graph g a node-subgraph of G if V(g) ⊆ V(G) and E(g)
contains all of the edges in E(G) connecting pairs of vertices in V(g).

Counterfactual formulas. We refer to realizations of a counterfactual variable, e.g., Yw = y or simply yw, as atomic
(counterfactual) formulas. Moreover, we call counterfactual formula any conjunction of atomic formulas, e.g., yw ∧ y′w′ .
Let α now be a counterfactual formula defined in an SCM M , we denote with V(α) the set of variables in V that correspond
to an atomic formula in α, e.g., V(yw ∧ y′w′) = {Y }.

Building tools. Our proofs build on the do-calculus rules (Pearl, 2009) [Sec. 3.4], the exclusion and independence restrictions
rules of SCMs (Pearl, 2009) [p. 232], and two axioms of structural counterfactuals: composition and consistency (Pearl,
2009) [Sec. 7.3.1].

Additional SCM notation. For some SCM M , let V′ ⊆ V and u ∼ P (u). We denote with V′(u) the values of V′ in M
given u.

Monotonicity (Pearl, 1999). Finally, we present here for completeness the monotonicity property for binary SCMs.

Definition G.1 (Monotonicity). Given a SCM M consisting of two binary variables X and Y , we say that Y is monotonic
relative to X in M if for any x1, x2 ∈ {0, 1} s.t. E[Y |x1] ≤ E[Y |x2] it holds that P (Yx1

= 1 ∧ Yx2
= 0) = 0.

H. Remark on Lemma 4.4 and Counterfactual Identification
Remark H.1. Let M be an SCM with causal graph G. A counterfactual factor (Correa et al., 2021) is a distribution P (α),
s.t. α is a counterfactual formula in M which consists only of atomic formulas of the form zpaZ , where Z ∈ V, z ∈ dom{Z}
and paZ ∈ dom{PaZ(G)}. Under the exogeneity assumption, counterfactual factor α can be expressed as the product of
probability distributions of the form P (∧i∈{1,...,k}x

i
pai), where x1, ..., xk ∈ dom{X}, pa1, ..., pak ∈ dom{PaX(G)} and

X ∈ V(α). The latter statement is licensed by the independence restrictions rule, and agrees with Theorem 3 of (Correa
et al., 2021). Furthermore, according to Theorem 2 (resp. Lemma 3) of (Correa et al., 2021) any counterfactual (resp.
conditional counterfactual) probability can be factorized as counterfactual factors. Therefore, it follows that Lemma 4.4 can
be utilized for deriving the identification formula of any counterfactual or conditional counterfactual probability under the
exogeneity and noise monotonicity assumptions.

I. Additional Information on Fixed Path-Specific Effects
In this section, we define counterfactual fixed path-specific effects (cf-FPSE), i.e., the counterfactual counterpart of FPSE
from Section 6. Additionally, we show that the property of noise monotonicity suffices to render cf-FPSE identifiable.

Definition I.1 (cf-FPSE). Given an SCM M with causal graph G, a realization v of its observable variables V, and two
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edge-subgraphs of G, effect subgraph g and reference subgraph g∗ such that E(g) ∩E(g∗) = ∅, the counterfactual fixed
g-specific effect of intervention do(X := x) on Y = y, relative to reference subgraph g∗, is defined as

cf-FPSEg,g∗

x (y|v)M = P (yv(X)|v;M)Mq
− P (y|v)M ,

where q is the edge-subgraph of G with E(q) = E(G)\{E(g),E(g∗)}, and Mq = ⟨U,V,Fq, P (u)⟩ is a modified SCM,
which induces q and is formed as follows. Each function f i in F is replaced with a new function f i

q in Fq, s.t. for every
pai(q) ∈ dom{Pai(q)} and u ∼ P (u) it holds f i

q(pa
i(q), ui) = f i(pai(q), pai(g)e, pai(g∗)∗, ui). Here, pai(g∗)∗ (resp.

pai(g)e) denotes the value of Pai(g∗)v(X) (resp. Pai(g)x) in M for noise u.

The next lemma is similar to Lemma 6.3 and shows how to express cf-ASE through cf-FPSE.

Lemma I.2. Let M be an MMDP-SCM with causal graph G, N be a non-empty subset of agents in M , and τ be a trajectory
of M . It holds that

cf-ASEN
ai,t

(y|τ)M = cf-FPSEg,g∗

ai,t
(y|τ)M ,

where g is the edge-subgraph of G with E(g) =
⋃

Ai′,t′ :i
′∈N,t′>t E

Ai′,t′
+ (G) and g∗ is the edge-subgraph of G with

E(g∗) =
⋃

Ai′,t′ :i
′ /∈N,t′>t E

Ai′,t′
+ (G).

Proof. By Definitions 3.2 and I.1, it follows that it suffices to show that P (yτ(Ai,t)|τ ;M)Mdo(I) = P (yτ(Ai,t)|τ ;M)Mq
.

Let tY denote the time-step of variable Y . First, we show that for any noise u ∼ P (u|τ) the value of StY (u) (or equivalently
Y (u)) is the same in Mq as in Mdo(I). To do so, we use induction in the number of time-steps t′.

Base case: By construction of Mq, the value of St+1(u) is the same in Mq as in M . Furthermore, note that the set of
interventions I does not include interventions to variable St+1 or to any of its ancestors. As a result, the value of St+1(u) is
the same in Mdo(I) as in M . We conclude then that the value of St+1(u) is the same in Mq as in Mdo(I).

Induction hypothesis: We make the hypothesis that for some t′ ∈ [t+ 1, tY ) the value of St′(u) is the same in Mq as in
Mdo(I).

Induction step: Under the induction hypothesis, we want to show that the value of St′+1(u) is the same in Mq as in Mdo(I).
For convenience, we slightly abuse our notation and denote as sqt′+1 the value of St′+1(u) in Mq , and as sIt′+1 the value of
St′+1(u) in Mdo(I). From the hypothesis, it holds that the value st′ of St′(u) is the same in Mdo(I) and Mq .

First, we consider the value of St′+1(u) in Mdo(I),

sIt′+1 = fSt′+1(st′ , {Ai′,t′,ai,t
(u)}i′∈N, {τ(Ai′,t′)}i′ /∈N, uSt′+1). (3)

Next, we consider the value of St′+1(u) in Mq ,

sqt′+1 = f
St′+1
q (paSt′+1(q), uSt′+1),

where paSt′+1(q) here denotes the value of PaSt′+1(q) in Mq given u. Note that PaSt′+1(q) = St′ , and since St′(u) = st′

in Mq , we can rewrite the equation of sqt′+1 as

sqt′+1 = f
St′+1
q (st′ , u

St′+1).

Based on the definition of function f
St′+1
q we have that

sqt′+1 = fSt′+1(st′ , pa
St′+1(g)e, paSt′+1(g∗)∗, uSt′+1), (4)
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where paSt′+1(g∗)∗ and paSt′+1(g)e denote the values of PaSt′+1(g∗)τ(Ai,t) and PaSt′+1(g)ai,t
in M given u, respectively.

Since u ∼ P (u|τ) it holds that Z(u) = τ(Z) for every Z ∈ V. By the consistency axiom then we have that for every
V j ∈ PaSt′+1(g∗) it holds V j

τ(Ai,t)
(u) = V j(u) = τ(V j). Moreover, from the definition of subgraph g∗ it follows that

PaSt′+1(g∗) = {Ai′,t′}i′ /∈N. Eq. (4) then can be rewritten as follows

sqt′+1 = fSt′+1(st′ , pa
St′+1(g)e, {τ(Ai′,t′)}i′ /∈N, uSt′+1). (5)

Finally, from the definition of subgraph g it follows that PaSt′+1(g) = {Ai′,t′}i′∈N. Eq. (5) then can be rewritten as follows

sqt′+1 = fSt′+1(st′ , {Ai′,t′,ai,t
(u)}i′∈N, {τ(Ai′,t′)}i′ /∈N, uSt′+1). (6)

From Equations (3) and (6), it follows that sqt′+1 = sIt′+1, and hence the induction step is concluded.

Based on the induction argument above, for every u ∼ P (u|τ) it holds that the value of StY (u) or equivalently the value of
Y (u) is the same in Mq as in Mdo(I), and hence

P (y|u)Mdo(I) = P (y|u)Mq
.

Finally, the distribution of noise variables U is the same in M , Mdo(I) and Mq, and thus we can derive the following
equations ∫

P (y|u)Mdo(I) · P (u|τ ;M)Mdo(I) du =

∫
P (y|u)Mq

· P (u|τ ;M)Mq
du⇒

P (y|τ ;M)Mdo(I) = P (y|τ ;M)Mq
⇒

P (yτ(Ai,t)|τ ;M)Mdo(I) = P (yτ(Ai,t)|τ ;M)Mq
,

where the last step follows from the consistency axiom.

The next result states that that noise monotonicity suffices to render cf-FPSE identifiable.

Lemma I.3. Let M be an SCM with causal graph G, g and g∗ be two edge-subgraphs of G, such that E(g) ∩E(g∗) = ∅,
and q be the edge-subgraph of G with E(q) = E(G)\{E(g),E(g∗)}. Let also v ∈ dom{V} be a realization of the
observable variables in M . The counterfactual fixed g-specific effect of intervention do(X := x) on Y = y, relative
to reference subgraph g∗, is identifiable, if for every variable Z ∈ DeX(G) ∩ AnY (G) there is a total ordering ≤Z on
dom{Z} w.r.t. which Z is noise-monotonic in M .

Appendix I.1 contains the proof of Lemma 4.4. In Appendix I.2, we show two additional results that support the proof of
Lemma I.3. In Appendix I.3, we prove Lemma I.3.

I.1. Proof of Lemma 4.4

Proof. Note that domain dom{X} is finite and discrete, and hence w.l.o.g. we can assume that dom{X} = {x1, ..., xm},
with m ∈ N∗. For simplicity, we additionally assume that domain dom{X} is sorted w.r.t. the total ordering ≤X , i.e.,
xi <X xj for i, j ∈ {1, ..,m} such that i < j.

For every value pai of PaX(G), we define a partition of the domain of noise variable UX into m sets N i
x1 , ..., N i

xm , such
that fX(pai, uX) = xj iff uX ∈ N i

xj .

We next state a number of simple properties that are going to be useful for the rest of this proof. Let xj ∈ dom{X},
pai ∈ dom{PaX(G)} and uX

1 , uX
2 ∼ P (UX), then the following statements hold

P (UX ≤ min(uX
1 , uX

2 )) = min(P (UX ≤ uX
1 ), P (UX ≤ uX

2 )), (7)

P (UX < max(uX
1 , uX

2 )) = max(P (UX < uX
1 ), P (UX < uX

2 )), (8)

P (UX ∈ N i
xj ) = P (UX ∈

[
min
u

(N i
xj ),max

u
(N i

xj )
]
), (9)

19



Agent-Specific Effects: A Causal Effect Propagation Analysis in Multi-Agent MDPs

P (UX ∈ [uX
1 , uX

2 ]) =

{
1− P (UX < uX

1 )− P (UX > uX
2 ) if uX

1 ≤ uX
2

0 otherwise

= max(0, 1− P (UX < uX
1 )− P (UX > uX

2 ))

= max(0, P (UX ≤ uX
2 )− P (UX < uX

1 )). (10)

Eq. (9) follows from noise monotonicity. Moreover, by definition we have

P (UX ∈ N i
xj ) = P (X = xj |pai) = P (Xpai = xj), (11)

P (UX ≤ max
u

(N i
xj )) = P (UX ∈ N i

x1) + ...+ P (UX ∈ N i
xj ) = P (X ≤X xj |pai), (12)

P (UX < min
u

(N i
xj )) = P (UX ∈ N i

x1) + ...+ P (UX ∈ N i
xj−1) = P (X <X xj |pai). (13)

The second step in Eq. (11) is licensed by the exogeneity assumption, while the first steps in Eq. (12) and (13) hold by the
noise monotonicity assumption.

Next, we derive the equation of the lemma by using the above mentioned properties:

P (∧i∈{1,...,k}x
i
pai) = P (UX ∈ ∩i∈{1,...,k}N

i
xi)

= P
(
UX ∈ ∩i∈{1,...,k}

[
min
u

(N i
xi),max

u
(N i

xi)
])

= P
(
UX ∈

[
max

i∈{1,...,k}
(min

u
(N i

xi)), min
i∈{1,...,k}

(max
u

(N i
xi))

])
= max

(
0, P

(
UX ≤ min

i∈{1,...,k}
(max

u
(N i

xi))
)
− P

(
UX < max

i∈{1,...,k}
(min

u
(N i

xi))
))

= max

(
0, min

i∈{1,...,k}

(
P (UX ≤ max

u
(N i

xi))
)
− max

i∈{1,...,k}

(
P (UX < min

u
(N i

xi)
))

= max

(
0, min

i∈{1,...,k}

(
P (X ≤X xi|pai)

)
− max

i∈{1,...,k}

(
P (X <X xi|pai)

))
.

The first step follows from Eq. (11). The second step follows from Eq. (9). The fourth step is licensed by Eq. (10), and the
fifth step by Eq. (7) and (8). Finally, the sixth step holds by Eq. (12) and (13).

I.2. Supporting Lemmas for the Proof of Lemma I.3

Lemma I.4. Let M be an SCM with causal graph G, g be an edge-subgraph of G, and β be a counterfactual formula in
Mg . For any X ∈ V, V i ∈ DeX(g)\X and W ⊆ V it holds that

P (β ∧ vix|w;M)Mg
=

∑
pai(g)∈dom{Pai(g)x}

P (β ∧ vipai(g) ∧ pai(g)x|w;M)Mg
, (14)

where dom{Pai(g)x} is equal to dom{Pai(g)} if X /∈ Pai(g), and equal to the subset of dom{Pai(g)} for which the
value of X is always x, otherwise.

Proof.

P (β ∧ vix|w;M)Mg
=

∑
pai(g)∈dom{Pai(g)x}

P (β ∧ vix,pai(g) ∧ pai(g)x|w;M)Mg

=
∑

pai(g)∈dom{Pai(g)x})

P (β ∧ vipai(g) ∧ pai(g)x|w;M)Mg
.

The first step follows from the composition axiom. If X ∈ Pai(g), then the second step follows from the fact that
x ∧ pai(g) = pai(g), which is implied by the definition of dom{Pai(g)x}. Otherwise, the second step follows from the
exclusion restrictions rule.
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We next introduce Algorithm 4, which iteratively utilizes Lemma I.4 to fully unroll atomic formula yx. Lemma I.5
characterizes the output of the algorithm.

Algorithm 4 Iterative Process of Unrolling yx
Input: g, Y , y, X , x, πg

Output: counterfactual formula α

1: n← 1 {Number of iterations}
2: D1 ← AnY (g)\{X}
3: α1 ← yx
4: while Dn ̸= ∅ do
5: V n ← argmaxV i∈Dn{πg(V

i)}
6: α′ ← α̂ s.t. αn = α̂ ∧ vnx
7: αn+1 ← α′ ∧ vnpan(g) ∧ pan(g)x

8: Dn+1 ← Dn\{V n}
9: n← n+ 1

10: end while
11: α← α|AnY (g)|

12: return α

Lemma I.5. Let M be an SCM with causal graph G. For two variables X,Y ∈ V, let also g be an edge-subgraph
of G, such that it consists only of directed paths from X to some Z ∈ V in G, and Y is part of at least one of those
paths. For the input ⟨g, Y, y,X, x, πg⟩, where πg is a causal ordering of g, it holds that Algorithm 4 terminates after
|AnY (g)| − 1 iterations, and that its output α consists only of atomic formulas of the form vipai(g) – one for each variable
V i ∈ AnY (g)\{X}. Furthermore, the following equation holds

P (β ∧ yx|w;M)Mg =
∑

{vi|V i∈AnY (g)\{X,Y }}

P (β ∧ α|w;M)Mg , (15)

where β is a counterfactual formula in Mg , and w is a realization of W ⊆ V in M .

Proof. We first show that at every iteration n of the algorithm, the atomic formula vnx is indeed part of αn, and subsequently
that the algorithm does terminate without errors after |AnY (g)| − 1 iterations. To do so, we use induction in the number of
iterations n.

Base case: For n = 1, we have that V 1 = Y and α1 = yx. Therefore, the statement holds for the base case n = 1.

Induction hypothesis: For some k ∈ (1, |AnY (g)|], we make the hypothesis that the statement holds for every n < k, i.e.,
we assume that the atomic formula vnx is part of αn for every n ∈ [1, k).

Induction step: Under this hypothesis, we want to prove that vkx is part of αk. Because πg in Step 5 is a causal ordering, it
holds that all variables in Chk(g) ∩AnY (g) must be selected by the algorithm before V k, i.e., prior to iteration k. Let, for
example, m be the first iteration at which a child of V k is selected by the algorithm. Because of the induction hypothesis,
we know that vmx is part of αm. It follows then that vkx becomes part of αm+1 in Step 7 of iteration m. Since vkx cannot be
replaced in the counterfactual formula before V k is selected, i.e., before iteration k, we can conclude then that vkx is indeed
part of αk.

We next show that at every iteration n of the algorithm, the counterfactual formula αn consists of (a) an atomic formula
vipai(g) for each variable V i ∈ D1\Dn, and (b) an atomic formula vix for some of the variables V i ∈ Dn. To do so, we use
induction in the number of iterations n.

(Base case) For n = 1, we have that α1 = yx. Therefore, the statement holds for the base case n = 1.

(Induction hypothesis) For some k ∈ [1, |AnY (g)|), we make the hypothesis that the statement holds for n = k.

(Induction step) Under this hypothesis, we want to show that the statement also holds for n = k + 1. From Step 7 of the
algorithm, we have that αk+1 = α′ ∧ vkpak(g) ∧ pa

k(g)x, where α′ is such that αk = α′ ∧ vkx . From the induction hypothesis
and equation αk = α′ ∧ vkx , it follows that the counterfactual formula α′ ∧ vkpak(g) consists of (a) an atomic formula vipai(g)
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for each variable V i ∈ {V k} ∪D1\Dk, or equivalently V i ∈ D1\Dk+1, and (b) an atomic formula vix for some of the
variables V i ∈ Dk\{V k}, or equivalently V i ∈ Dk+1. Furthermore, because πg in Step 5 is a causal ordering, it has to hold
that none of the variables in Pak(g) can be selected by the algorithm before V k, i.e., prior to iteration k. If X /∈ Pak(g),
then this implies that Pak(g) ⊆ Dk+1, and hence the statement holds true for n = k + 1. If now X ∈ Pak(g), then it
follows that Pak(g)\{X} ⊆ Dk+1, and that xx is part of αk+1. Note, however, that xx does not influence the truth value of
αk+1, since its own truth value is always 1. Hence, xx can be removed from αk+1 without affecting its value. We conclude
then that the statement holds true for n = k + 1 also when X ∈ Pak(g).

Note that α = α|AnY (g)| (Step 11), and that D|AnY (g)| = ∅. It follows from the last induction argument then that outcome
α indeed consists of an atomic formula vipai(g) for each variable V i ∈ AnY (g)\{X}, and nothing else.

Finally, Eq. (15) simply follows from repeatedly applying Lemma I.4.

I.3. Proof of Lemma I.3

Proof. Without loss of generality we assume that every edge in E(g) and E(g∗) is part of some directed path from X to Y
in G. Furthermore, we will use x∗ to denote the factual value v(X). Thus, according to Definition I.1 we can write the
counterfactual fixed g-specific effect as

cf-FPSEg,g∗

x (y|v)M = P (yx∗ |v;M)Mq − P (y|v)M . (16)

To identify the counterfactual fixed g-specific effect, we need to identify P (yx∗ |v;M)Mq
and P (y|v)M . Note that the term

P (y|v)M can be trivially evaluated by comparing y with v(Y ); it is 1 if they are equal, and 0 otherwise.

We now focus on identifying P (yx∗ |v;M)Mq
. Our first step is to express P (yx∗ |v;M)Mq

in terms of probabilities defined
in M instead of Mq. On our second step, we will show that the expression we derived in the first step is identifiable from
the observational distribution of M .

Step 1: We denote with qd and Gd the node-subgraphs of q and G, which contain only the nodes that are parts of directed
paths from X to Y in q and G, respectively. Formally, V(Gd) = DeX(G) ∩AnY (G) and V(qd) = DeX(q) ∩AnY (q).

We next define the modified SCM MGd = ⟨U,V(Gd),FGd , P (u)⟩ which induces Gd as follows. For each variable
V i ∈ V(Gd), function f i in F is replaced with a new function f i

Gd in FGd , such that for every pai(Gd) ∈ dom{Pai(Gd)}
and ui ∼ P (ui) it holds that f i

Gd(pa
i(Gd), ui) = f i(pai(Gd),v(Pai(Gd)), ui). Similarly, we define the modified SCM

Mqd = ⟨U,V(Gd),Fqd , P (u)⟩ which induces qd as follows. For each V i ∈ V(qd), function f i
q in Fq is replaced with a

new function f i
qd in Fqd , such that for every pai(qd) ∈ dom{Pai(qd)} and ui ∼ P (ui) it holds that f i

qd(pa
i(qd), ui) =

f i
q(pa

i(qd),v(Pai(Gd)), ui). Note that Pai(Gd)∩ Pai(g) = ∅ and Pai(Gd)∩ Pai(g∗) = ∅, which follows from the fact
that we assume each edge in E(g) and E(g∗) to be part of some directed path from X to Y in G. Furthermore, by the
definitions of Mq and Mqd it also holds that Pai(qd) ∪ Pai(Gd) ∪ Pai(g) ∩ Pai(g∗) = Pai(G).

Let set S = ∪V i∈V(qd)\{X}Pai(Gd). We can express P (yx∗ |v;M)Mq
as follows

P (yx∗ |v;M)Mq
= P (yx∗,v(S)|v;M)Mq

= P (yx∗ |v;M)M
qd
, (17)

where the first step is licensed by exogeneity. Therefore, from Eq. (17) we have that if P (yx∗ |v;M)M
qd

is identifiable in
M then so is P (yx∗ |v;M)Mq .

Unroll yx∗ in Mqd . Let α be the output of Algorithm 4 for input ⟨qd, Y, y,X, x∗, πqd⟩, where πqd is a causal ordering of qd.
According to Lemma I.5, it holds that

P (yx∗ |v;M)M
qd

=
∑

{vi,d|V i∈V(qd)\{X,Y }}

P (α|v;M)M
qd
, (18)

where counterfactual formula a consists only of atomic formulas of the form vi,d
pai(qd)d

– one for each variable V i ∈
V(qd)\{X}. Here, we use vi,d to denote the value of V i

x∗ in Mqd .
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Express α in MGd . Note that the counterfactual probabilities on the r.h.s. of Eq. (18) are still defined in Mqd instead
of M . To redefine these probabilities in M , we will need to modify α such that all implicit references to functions
f i
qd in Mqd are removed, while its truth value is preserved. Towards that goal, we will first express α in the modified

model MGd . In particular, we begin by replacing each atomic formula vi,d
pai(qd)d

in α with the counterfactual formula

vi,d
pai(qd)d,pai(g)e,pai(g∗)∗

∧ pai(g)ex ∧ pai(g∗)∗x∗ , where vi,e here denotes the value of V i
x in MGd , and vi,∗ denotes the value

of V i
x∗ in MGd . Note also that under this new term, vi,d now denotes the value of V i

x∗,pai(g)e,pai(g∗)∗ in MGd .

Next, we group the terms of the resulting counterfactual formula as follows:

• We denote with α1 the conjunction of all atomic formulas vi,d
pai(qd)d,pai(g)e,pai(g∗)∗

. It holds that V(α1) = V(qd)\{X}.

• We denote with α2 the conjunction of all atomic formulas of the form vi,ex . It holds that V(α2) =
∪V i∈V(qd)\{X}Pai(g)\{X}.12

• We denote with α3 the conjunction of all atomic formulas of the form vi,∗x∗ . It holds that V(α3) =
∪V i∈V(qd)\{X}Pai(g∗)\{X}.13

By replacing α with α1 ∧ α2 ∧ α3 in Eq. (18), we then have that

P (yx∗ |v;M)M
qd

=
∑

{vi,d|V i∈V(α1)\{Y }},
{vi,e|V i∈V(α2)},
{vi,∗|V i∈V(α3)}

P (α1 ∧ α2 ∧ α3|v;M)M
Gd

. (19)

Unroll α2 in MGd . Let αi
2 be the output of Algorithm 4 for input ⟨Gd, V i, vi,e, X, x, πGd⟩, where πGd is a causal ordering

of Gd and V i ∈ V(α2). We denote with α′
2 the conjunction of all such counterfactual formulas. According to Lemma I.5,

we can then rewrite Eq. (19) as follows

P (yx∗ |v;M)M
qd

=
∑

{vi,d|V i∈V(α1)\{Y }},
{vi,e|V i∈V(α′

2)},
{vi,∗|V i∈V(α3)}

P (α1 ∧ α′
2 ∧ α3|v;M)M

Gd
, (20)

where counterfactual formula a′2 consists only of atomic formulas of the form vi,d
pai(Gd)d

– one for each variable V i ∈ V(α′
2),

where V(α′
2) = ∪V i∈V(α2)Ani(Gd)\{X}.

Express α1 ∧ α′
2 ∧ α3 in M . To remove from α1, α′

2 and α3 all implicit references to functions f i
Gd in MGd , while

preserving their truth values

• We replace each atomic formula vi,d
pai(qd)d,pai(g)e,pai(g∗)∗

in α1 with the new atomic formula

vi,d
pai(qd)d,pai(g)e,pai(g∗)∗,v(Pai(Gd))

. We denote with β1 the resulting counterfactual formula. Note that it

holds V(β1) = V(α1).

• We replace each atomic formula vi,e
pai(Gd)d

in α′
2 with the new atomic formula vi,e

pai(Gd)d,v(Pai(Gd))
. We denote with β2

the resulting counterfactual formula. Note that it holds V(β2) = V(α′
2).

• We replace each atomic formula vi,∗x∗ in α3 with the new atomic formula vi,∗
x∗,v(Pai(Gd))

. We denote with β3 the resulting

counterfactual formula. Note that it holds V(β3) = V(α3).

12We consider X /∈ V(α2), because the atomic formula xx has always truth value equal to 1, and hence it can be trivially removed
from any counterfactual formula.

13We consider X /∈ V(α3), because the atomic formula x∗
x∗ has always truth value equal to 1, and hence it can be trivially removed

from any counterfactual formula.
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Note that counterfactual formulas β1, β2 and β3 are all defined under the original model M . Therefore, by replacing
α1 ∧ α′

2 ∧ α3 with β1 ∧ β2 ∧ β3 in Eq. (20), we have that

P (yx∗ |v;M)M
qd

=
∑

{vi,d|V i∈V(β1)\{Y }},
{vi,e|V i∈V(β2)},
{vi,∗|V i∈V(β3)}

P (β1 ∧ β2 ∧ β3|v)M . (21)

This concludes Step 1.

Step 2: By Bayes rule, we can rewrite Eq. (21) as

P (yx∗ |v;M)M
qd

=
1

P (v)M
·

∑
{vi,d|V i∈V(β1)\{Y }},

{vi,e|V i∈V(β2)},
{vi,∗|V i∈V(β3)}

P (β1 ∧ β2 ∧ β3 ∧ v)M . (22)

By consistency axiom, it holds X = v(X)⇒ Vv(X) = V, and since v(X) = x∗, we have that Vx∗ = V. Therefore, we
can rewrite Eq. (22) as follows

P (yx∗ |v;M)M
qd

=
1

P (v)M
·

∑
{vi,d|V i∈V(β1)\{Y }},

{vi,e|V i∈V(β2)},
{vi,∗|V i∈V(β3)}

P (β1 ∧ β2 ∧ β3 ∧ vx∗)M

=
1

P (v)M
·

∑
{vi,d|V i∈V(β1)\{Y }},

{vi,e|V i∈V(β2)}

P (β1 ∧ β2 ∧ vx∗)M . (23)

The second step follows from the fact that if vi,∗ ̸= v(V i), for some variable V i ∈ V(β3), then vi,∗x∗ ∧ v(V i)x∗ always
evaluates to 0.

By composition axiom, for some variable V i ∈ V it holds that Pai(G)x∗ = v(Pai(G)) ⇒ V i
v(Pai(G)),x∗ = V i

x∗ .
Therefore, we can rewrite Eq. (23) as follows

P (yx∗ |v;M)M
qd

=
1

P (v)M
·

∑
{vi,d|V i∈V(β1)\{Y }},

{vi,e|V i∈V(β2)}

P (β1 ∧ β2 ∧ γ)M , (24)

where γ is the conjunction of all atomic formulas v(V i)v(Pai(G)),x∗ .14

By exclusions restrictions rule, if X /∈ Pai(G) it holds that V i
v(Pai(G)),x∗ = V i

v(Pai(G)). Furthermore, if X ∈ Pai(G) it
holds V i

v(Pai(G)),x∗ = V i
v(Pai(G)), since v(X) = x∗. Therefore, we can rewrite Eq. (24) as follows

P (yx∗ |v;M)M
qd

=
1

P (v)M
·

∑
{vi,d|V i∈V(β1)\{Y }},

{vi,e|V i∈V(β2)}

P (β1 ∧ β2 ∧ γ′)M , (25)

where γ′ is the conjunction of all atomic formulas v(V i)v(Pai(G)).

14The order in which the composition axiom is applied here can follow any causal ordering on G.
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Finally, the following equation holds by the independence restrictions rule and the exogeneity assumption.

P (yx∗ |v;M)M
qd

=
1

P (v)M
·

∑
{vi,d|V i∈V(β1)\{Y }},

{vi,e|V i∈V(β2)}∏
{i|V i∈V(β1)∪V(β2)}

P (vi,d
pai(qd)d,pai(g)e,pai(g∗)∗,v(Pai(Gd))

∧

vi,e
pai(Gd)d,v(Pai(Gd))

∧ v(V i)v(Pai(G)))M ·∏
{i|V i∈V(β1)\V(β2)}

P (vi,d
pai(qd)d,pai(g)e,pai(g∗)∗,v(Pai(Gd))

∧

v(V i)v(Pai(G)))M ·∏
{i|V i∈V(β2)\V(β1)}

P (vi,e
pai(Gd)d,v(Pai(Gd))

∧ v(V i)v(Pai(G)))M ·∏
{i|V i∈V\{V(β1)∪V(β2)}}

P (v(V i)|v(Pai(G)))M . (26)

P (v)M can be computed from the observational distribution of M . The same also holds for the conditional probabilities
P (v(V i)|v(Pai(G)))M in the last product of the equation. Regarding the counterfactual probabilities shown on the r.h.s. of
Eq. (26), according to Lemma 4.4, they are also identifiable under the noise monotonicity assumption. We conclude then
that P (yx∗ |v;M)M

qd
is indeed identifiable from the observational distribution of M .

J. Proofs of Theorems 4.1 and 4.3
First, we prove Theorem 4.1.

Proof. Let G be the causal graph of M . First, we are going to prove the result for Y = St+2, i.e., tY = t+ 2. According to
Definition 3.1, we have that

ASEN
ai,t,a∗

i,t
(y)M = P (ya∗

i,t
)Mdo(I) − P (ya∗

i,t
)M ,

where I = {Ai′,t+1 := Ai′,t+1,a∗
i,t
}i′ /∈N ∪ {Ai′,t+1 := Ai′,t+1,ai,t

}i′∈N.

It trivially holds for Y = St+2 that P (ya∗
i,t
)Mdo(I) = P (ya∗

i,t
)Mdo(I′) , where I ′ = {Ai′,t+1 := Ai′,t+1,ai,t

}i′∈N, and hence
it follows

ASEN
ai,t,a∗

i,t
(y)M = P (ya∗

i,t
)Mdo(I′) − P (ya∗

i,t
)M . (27)

Note that the modified SCM Mdo(I′) = ⟨U,V,FI′ , P (u)⟩ is identical to M apart from the functions corresponding to
variables in {Ai′,t+1}i′∈N. In particular, the function f

Aj,t+1

I′ which corresponds to a variable Aj,t+1 ∈ {Ai′,t+1}i′∈N in
Mdo(I′) can be defined as

f
Aj,t+1

I′ (PaAj,t+1(G), UAj,t+1) = Aj,t+1,ai,t

= fAj,t+1(PaAj,t+1(G)ai,t
, UAj,t+1)

= fAj,t+1(St+1,ai,t , U
Aj,t+1). (28)

The second step follows from the exclusion restrictions rule. Consider now the path-specific effect

PSEg
a∗
i,t,ai,t

(y)M = P (ya∗
i,t
)Mg
− P (yai,t

)Mg

= P (ya∗
i,t
)Mg
− P (yai,t

)M ,
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where g is the edge-subgraph of G that does not include the edges from St+1 to nodes in {Ai′,t+1}i′∈N. The second step
holds because the quantity P (yai,t) in the modified model Mg corresponds to P (yai,t) in the original model M .

Based on Definition 6.1, we have that the modified SCM Mg = ⟨U,V,Fg, P (u)⟩ is identical to M apart from the
functions corresponding to variables in {Ai′,t+1}i′∈N. In particular, the function f

Aj,t+1
g which corresponds to a variable

Aj,t+1 ∈ {Ai′,t+1}i′∈N in Mg can be defined as

fAj,t+1
g (PaAj,t+1(g), UAj,t+1) = fAj,t+1(PaAj,t+1(g), PaAj,t+1(g)ai,t , U

Aj,t+1)

= fAj,t+1(St+1,ai,t , U
Aj,t+1). (29)

From Eq. (28) and (29), we can infer that the SCMs Mdo(I′) and Mg are equivalent. Therefore, we can rewrite Eq. (27) as
follows

ASEN
ai,t,a∗

i,t
(y)M = P (ya∗

i,t
)Mg
− P (ya∗

i,t
)M .

Note that quantity P (ya∗
i,t
)M is trivially identifiable (the same holds for P (yai,t)M ). Thus, we can restrict our attention to

the identifiability of P (ya∗
i,t
)Mg

, which we can determine using the recanting witness criterion (Avin et al., 2005).

The subgraph g contains the directed path Ai,t → St+1 → St+2. As such, there is a directed path from Ai,t to St+1 in g, as
well as a directed path from St+1 to Y in g. Furthermore, the directed path Ai,t → St+1 → Aj,t+1 → St+2, where j ∈ N,
does not belong to g. We can conclude then Ai,t, Y and g satisfy the recanting witness criterion, and hence P (ya∗

i,t
)Mg is

non-identifiable. Subsequently, ASEN
ai,t,a∗

i,t
(y)M is also non-identifiable.

Since we cannot identify the agent-specific effect on St+2, it follows that we cannot also identify it on any state variable St′

that causally depends on St+2, i.e., for any t′ > t+ 2.

Next, we prove Theorem 4.3.

Proof. This result follows directly from Lemma I.2 and Lemma I.3.

K. Proof of Lemma 4.5
Proof. We define the domain of each variable V i ∈ V in M as dom{V i} = dom{Xi}. Furthermore, we slightly abuse our
notation to denote the set of variables in X that correspond to the variables V j in Pai(G), X(Pai(G)) = {Xj ∈ X|j :
V j ∈ Pai(G)}.

Observe that function f i(pai(G), U i) is equivalent to the conditional quantile function QXi|X(Pai(G))=pai(G)(U
i), i.e., the

quantile function of random variable Xi when variables in X(Pai(G)) are fixed to their corresponding values in pai(G).
We consider the following equations

P (V i ≤i v
i|Pai(G) = pai(G)) = P (f i(Pai(G), U i) ≤i v

i|Pai(G) = pai(G))

= P (f i(pai(G), U i) ≤i v
i)

= P (QXi|X(Pai(G))=pai(G)(U
i) ≤i v

i)

= P (U i ≤ P (Xi ≤i v
i|X(Pai(G)) = pai(G)))

= P (Xi ≤i v
i|X(Pai(G)) = pai(G)). (30)

The fifth step simply follows from the fact that U i ∼ Uniform[0, 1]. The fourth step holds by the reproduction property of
quantile functions (Kämpke et al., 2015) [Theorem. 2.1], which we restate and prove for our setting next.

Lemma K.1. QXi|X(Pai(G))=pai(G)(u
i) ≤i v

i iff P (Xi ≤i v
i|X(Pai(G)) = pai(G)) ≥ ui.
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Proof.

• P (Xi ≤i v
i|X(Pai(G)) = pai(G)) ≥ ui implies that

QXi|X(Pai(G))=pai(G)(u
i) = inf

xi∈dom{Xi}
{P (Xi ≤i x

i|X(Pai(G)) = pai(G)) ≥ ui} ≤i v
i,

because vi belongs to the set over which the infimum is formed.

• Let xi
inf = infxi∈dom{Xi}{P (Xi ≤i xi|X(Pai(G)) = pai(G)) ≥ ui}. Then, QXi|X(Pai(G))=pai(G)(u

i) ≤i vi

implies that
vi ≥i x

i
inf .

Since the set S = {xi ∈ dom{Xi} : P (Xi ≤i x
i|X(Pai(G)) = pai(G)) ≥ ui} is finite, discrete and non-empty, the

value xi
inf has to belong to S. This means that P (Xi ≤i x

i
inf |X(Pai(G)) = pai(G)) ≥ ui. By monotonicity of the

cumulative distribution function it has to also hold that P (Xi ≤i v
i|X(Pai(G)) = pai(G)) ≥ ui.

From Eq. (30), it follows that the MMDP-SCM M induces the transition probabilities and the initial state distribution of the
MMDP, as well as the agents’ joint policy π. Therefore, joint distributions P (X) and P (V) are indeed equal.

Next, consider two noise values ui
1, u

i
2 ∼ P (U i) such that ui

1 < ui
2. By monotonicity of the cumulative distribution

function, for any pai(G) ∈ dom{Pai(G)}, it holds that

inf
vi∈dom{V i}

{P (Xi ≤i v
i|pai(G)) ≥ ui

1} ≤i inf
vi∈dom{V i}

{P (Xi ≤i v
i|pai(G)) ≥ ui

2}

⇒ f i(pai(G), ui
1) ≤i f

i(pai(G), ui
2).

Hence, variable V i ∈ V is indeed noise-monotonic in M w.r.t. ≤i.

L. Proof of Proposition 4.6
Proof. We prove the first part of this lemma by contradiction. We first assume that Y is noise-monotonic in M w.r.t. the
numerical total ordering ≤. Let there now be two values x1, x2 ∈ {0, 1} such that E[Y |x1] ≤ E[Y |x2] and P (Yx1

=
1 ∧ Yx2

= 0) > 0 (i.e., the monotonicity assumption is violated). This means that there has to be at least one noise
value uY

k such that fY (x1, u
Y
k ) = 1 and fY (x2, u

Y
k ) = 0. Because Y is assumed to be noise-monotonic, for any noise

value uY ≥ uY
k it must hold that fY (x1, u

Y ) = 1, and for any noise value uY < uY
k it must hold that fY (x2, u

Y ) = 0.
Consequently, the following inequality holds

E[Y |x1] =

∫
uY ∼P (UY )

P (uY ) · fY (x1, u
Y ) duY

=

∫
uY ∼P (UY )|uY <uY

k

P (uY ) · fY (x1, u
Y ) duY + 1 +

∫
uY ∼P (UY )|uY >uY

k

P (uY ) · 1 duY

>

∫
uY ∼P (UY )|uY <uY

k

P (uY ) · 0 duY + 0 +

∫
uY ∼P (UY )|uY >uY

k

P (uY ) · fY (x2, u
Y ) duY

=

∫
uY ∼P (UY )

P (uY ) · fY (x2, u
Y ) duY

= E[Y |x2].

Therefore, we have reached a contradiction.
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We prove the second part of this lemma by counterexample. Assume that noise variable UY can only take the three values
{1, 2, 3}, and that function fY is defined as follows

fY (X = 0, UY = 1) = 1, fY (X = 0, UY = 2) = 0, fY (X = 0, UY = 3) = 0,

fY (X = 1, UY = 1) = 1, fY (X = 1, UY = 2) = 0, fY (X = 1, UY = 3) = 1.

It can be easily inferred that in this SCM, variable Y is monotonic relative to X , while it is not noise-monotonic w.r.t. the
numerical total ordering or any other total ordering ≤Y on {0, 1}.

M. Proof of Theorem 5.1
Proof. According to Theorem 4.3 we have that cf-ASEN

ai,t
(y|τ)M = cf-ASEN

ai,t
(y|τ)M̂ . This means that the output of

Algorithm 1 is the same when it takes as input either model M or model M̂ . Therefore, to prove Theorem 5.1 it would
suffice to show that the output of Algorithm 1, when it takes as input MMDP-SCM M , is an unbiased estimator of
cf-ASEN

ai,t
(y|τ)M .

We begin by formally expressing the output of Algorithm 1

O(M, τ,N, Ai,t, ai,t, Y, y,H) =

∑
u∈{u1,...,uH} P (y|u)Mdo(I(u))

H
− P (y|τ)M

=

∑
u∈{u1,...,uH} P (y|u)Mdo(I(u)) − P (y|u)M

H
, (31)

where I(u) is defined as in line 7 of the algorithm. The second step of the equation holds because {u1, ...,uH} ∼ P (u|τ).

By Definition 3.2, we have that

cf-ASEN
ai,t

(y|τ)M = P (yτ(Ai,t)|τ ;M)Mdo(I) − P (y|τ)M ,

where I = {Ai′,t′ := τ(Ai′,t′)}i′ /∈N,t′>t ∪ {Ai′,t′ := Ai′,t′,ai,t
}i′∈N,t′>t.

Note that for any given noise u ∼ P (u|τ), it holds that Ai′,t′,ai,t
(u) = τh(Ai′,t′), where τh ∼ P (V|u)

Mdo(Ai,t:=ai,t) .
Hence, it follows that P (y|u)Mdo(I) = P (y|u)Mdo(I(u)) . We consider next the following equations

Eu∼P (u|τ)[P (y|u)Mdo(I(u)) − P (y|u)M ] =

∫
P (y|u)Mdo(I(u)) · P (u|τ)− P (y|u)M · P (u|τ) du

=

∫
P (y|u)Mdo(I) · P (u|τ)− P (y|u)M · P (u|τ) du

=

∫
P (y|u)Mdo(I) · P (u|τ ;M)Mdo(I) − P (y|u)M · P (u|τ)M du

= P (y|τ ;M)Mdo(I) − P (y|τ)M
= P (yτ(Ai,t)|τ ;M)Mdo(I) − P (y|τ)M
= cf-ASEN

ai,t
(y|τ)M ,

where the third step follows from the fact that the distribution of noise variables U remains the same between M and
Mdo(I). The fifth step follows from the consistency axiom. We conclude then that O(M, τ,N, Ai,t, ai,t, Y, y,H) is indeed
an unbiased estimator of cf-ASEN

ai,t
(y|τ)M .

N. Proof of Lemma 6.3
Proof. By Definitions 3.1 and 6.2, it follows that it suffices to show that P (ya∗

i,t
)Mdo(I) = P (ya∗

i,t
)Mq

.

Let tY denote the time-step of variable Y . First, we show that for any noise u ∼ P (u) the value of StY (u) (or equivalently

Y (u)) is the same in M
do(Ai,t:=a∗

i,t)
q as in Mdo(I∪Ai,t:=a∗

i,t). To do so, we use induction in the number of time-steps t′.
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Base case: By construction of Mq , the value of St+1(u) is the same in M
do(Ai,t:=a∗

i,t)
q as in Mdo(Ai,t:=a∗

i,t). Furthermore,
note that the set of interventions I does not include interventions to variable St+1 or to any of its ancestors. As a result, the
value of St+1(u) is the same in Mdo(I∪Ai,t:=a∗

i,t) as in Mdo(Ai,t:=a∗
i,t). We conclude then that the value of St+1(u) is the

same in M
do(Ai,t:=a∗

i,t)
q as in Mdo(I∪Ai,t:=a∗

i,t).

Induction hypothesis: We make the hypothesis that for some t′ ∈ [t + 1, tY ) the value of St′(u) is the same in

M
do(Ai,t:=a∗

i,t)
q as in Mdo(I∪Ai,t:=a∗

i,t).

Induction step: Under the induction hypothesis, we want to show that the value of St′+1(u) is the same in M
do(Ai,t:=a∗

i,t)
q

as in Mdo(I∪Ai,t:=a∗
i,t). For convenience, we slightly abuse our notation and denote as sqt′+1 the value of St′+1(u) in

M
do(Ai,t:=a∗

i,t)
q , and as sIt′+1 the value of St′+1(u) in Mdo(I∪Ai,t:=a∗

i,t). From the hypothesis, it holds that the value st′ of

St′(u) is the same in M
do(Ai,t:=a∗

i,t)
q as in Mdo(I∪Ai,t:=a∗

i,t).

First, we consider the value of St′+1(u) in Mdo(I∪Ai,t:=a∗
i,t),

sIt′+1 = fSt′+1(st′ , {Ai′,t′,ai,t
(u)}i′∈N, {Ai′,t′,a∗

i,t
(u)}i′ /∈N, uSt′+1). (32)

Next, we consider the value of St′+1(u) in M
do(Ai,t:=a∗

i,t)
q ,

sqt′+1 = f
St′+1
q (paSt′+1(q), uSt′+1),

where paSt′+1(q) here denotes the value of PaSt′+1(q) in M
do(Ai,t:=a∗

i,t)
q given u. Note that PaSt′+1(q) = St′ , and since

St′(u) = st′ in M
do(Ai,t:=a∗

i,t)
q , we can rewrite the equation of sqt′+1 as

sqt′+1 = f
St′+1
q (st′ , u

St′+1).

Based on the definition of function f
St′+1
q we have that

sqt′+1 = fSt′+1(st′ , pa
St′+1(g)e, paSt′+1(g∗)∗, uSt′+1), (33)

where paSt′+1(g∗)∗ and paSt′+1(g)e denote the values of PaSt′+1(g∗)a∗
i,t

and PaSt′+1(g)ai,t
in M given u, respectively.

From the definition of subgraph g∗ it follows that PaSt′+1(g∗) = {Ai′,t′}i′ /∈N. Eq. (33) then can be rewritten as follows

sqt′+1 = fSt′+1(st′ , pa
St′+1(g)e, {Ai′,t′,a∗

i,t
(u)}i′ /∈N, uSt′+1). (34)

Finally, from the definition of subgraph g it follows that PaSt′+1(g) = {Ai′,t′}i′∈N. Eq. (34) then can be rewritten as
follows

sqt′+1 = fSt′+1(st′ , {Ai′,t′,ai,t
(u)}i′∈N, {Ai′,t′,a∗

i,t
(u)}i′ /∈N, uSt′+1). (35)

From Equations (32) and (35), it follows that sqt′+1 = sIt′+1, and hence the induction step is concluded.

Based on the induction argument above, for every u ∼ P (u) it holds that the value of StY (u) or equivalently the value of

Y (u) is the same in M
do(Ai,t:=a∗

i,t)
q as in Mdo(I∪Ai,t:=a∗

i,t), and hence

P (ya∗
i,t
|u)Mdo(I) = P (ya∗

i,t
|u)Mq .

Finally, the distribution of noise variables U is the same in Mdo(I) as in Mq , and thus we can derive the following equations∫
P (ya∗

i,t
|u)Mdo(I) · P (u)Mdo(I) du =

∫
P (ya∗

i,t
|u)Mq · P (u)Mq du⇒

P (ya∗
i,t
)Mdo(I) = P (ya∗

i,t
)Mq

.
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O. Proof of Proposition 6.4
Proof. By Definition 6.1, we have that

PSEg
x,x∗(y)M = P (yx)Mg

− P (yx∗)Mg

= P (yx)Mg
− P (yx∗)M . (36)

The second step holds because the quantity P (yai,t
) in the modified model Mg corresponds to P (yai,t

) in the original model
M . By Definition 6.2, we have that

FPSEg,g∅

x∗,x(y)M = P (yx)Mq
− P (yx)M

= P (yx)Mg
− P (yx)M . (37)

The second step follows from E(g∅) = ∅. From Section 2, we have that

TCEx,x∗(y)M = P (yx)M − P (yx∗)M . (38)

By combining Equations (36), (37) and (38) we get

PSEg
x,x∗(y)M = FPSEg,g∅

x∗,x(y)M + TCEx,x∗(y)M .
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