
More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

Hossein Zakerinia 1 Amin Behjati 2 Christoph H. Lampert 1

Abstract
We introduce a new framework for studying meta-
learning methods using PAC-Bayesian theory. Its
main advantage over previous work is that it al-
lows for more flexibility in how the transfer of
knowledge between tasks is realized. For previous
approaches, this could only happen indirectly, by
means of learning prior distributions over models.
In contrast, the new generalization bounds that we
prove express the process of meta-learning much
more directly as learning the learning algorithm
that should be used for future tasks. The flexibil-
ity of our framework makes it suitable to analyze
a wide range of meta-learning mechanisms and
even design new mechanisms. Other than our the-
oretical contributions we also show empirically
that our framework improves the prediction qual-
ity in practical meta-learning mechanisms.

1. Introduction
Machine learning systems have remarkable success in solv-
ing complex tasks when they are trained on large amounts
of data. However, their success is still limited when only
little data is available for a task. One reason for this is that
common machine learning algorithms, such as minimizing
training loss through gradient-based optimization, are very
generic. Tailored to be applicable across a wide range of
data sources and target tasks, the underlying models need
to have many degrees of freedom, and they require a lot
of training data to adjust these suitably. In contrast to this,
natural learning systems can learn new tasks from little task-
specific data. They achieve this by transferring and reusing
information from their past experience to new tasks, instead
of learning a new model from scratch every time.

Meta-learning (also called learning-to-learn) is a principled
way of also giving machine learning systems the ability to

1Institute of Science and Technology Austria (ISTA) 2Sharif
University of Technology. Correspondence to: Hossein Zakerinia
<Hossein.Zakerinia@ist.ac.at>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

share knowledge between related learning tasks (Schmidhu-
ber, 1987; Thrun & Pratt, 1998). Instead of learning individ-
ual models for each task, a meta-learner learns a mechanism,
a learning algorithm, that sets the model parameters given a
(usually small) amount of training data.

In practice, there are numerous possibilities to realize this
step. Model-based approaches to meta-learning learn proto-
typical models which can efficiently be adjusted (e.g. fine-
tuned) to specific tasks (Finn et al., 2017; Nichol et al.,
2018). Relatedly, regularization-based approaches learn
regularization terms that prevent future tasks from overfit-
ting even if trained on little data (Denevi et al., 2019). Hy-
pernetwork-based approaches learn secondary networks that
output the weights of task-specific models (Zhao et al., 2020;
Scott et al., 2024). Representation-based approaches learn
(often low-dimensional) feature representations in which
learning can be performed with less training data than in the
original input space (Maurer, 2009; Maurer et al., 2016; Lee
et al., 2019). Optimization-based approaches learn the steps
or (hyper)parameters of an optimization procedure (Hochre-
iter et al., 2001; Ravi & Larochelle, 2017; Li et al., 2017).

All meta-learning methods strive for generalization between
previously seen tasks and future ones. Unfortunately, most
of the above methods are only understood in terms of their
empirical performance on example tasks, but they lack theo-
retical guarantees on their generalization abilities.

Meta-learning theory studies the theoretical properties of
meta-learning method. In particular, it aims at providing
quantitative generalization guarantees for them, in the form
of high-probability upper bounds on the quality of models
learned on future tasks, even before data for these tasks
is available. Historically, the first attempts to do so had
the form of classical PAC guarantees, which were data-
independent and had to be derived individually for each
method (Baxter, 2000; Maurer, 2009). However, starting
with Pentina & Lampert (2014), most recent works exploit
PAC-Bayesian theory, which proved to be more flexible
and powerful. Not only does it allow deriving bounds that
can be instantiated for different meta-learning methods, but
the generalization guarantees are also data-dependent, and
interpreting them as learning objectives can inspire new
meta-learning methods (Amit & Meir, 2018; Rothfuss et al.,
2021). Unfortunately, existing theoretical results still apply

1

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

only to a small number of actual meta-learning methods,
namely those in which the knowledge transfers from pre-
vious to future tasks can be expressed as a shift of prior
distributions over models. Of the ones we mention above,
that includes methods based on learning a model prototype
or a regularization term, but not the more flexible ones based
on learning representations, optimizers, or hypernetworks.

Our main contribution in this work is the introduction
of new form of PAC-Bayesian generalization bounds
that provides theoretical guarantees for a much broader
class of meta-learning methods than previous ones. In
particular, this includes all types of methods listed above.
Specifically, the transfer of knowledge from previous to fu-
ture tasks is modeled not indirectly, using distributions over
models priors, but directly, using distributions over learning
algorithms. This viewpoint reflects the learning-to-learn
aspect of meta-learning much better than previous ones, as
it allows the meta-learner to directly select which learning
algorithms are meant to be executed on future tasks. In con-
trast, the prior-based transfer of previous bounds allows only
an indirect influence by means of expressing a preference
of some models over others.

Besides our theoretical contributions, we also report on ex-
periments in two standard benchmark settings: we demon-
strate that using our generalization bound as a learning objec-
tive yields a meta-learning algorithm of improved empirical
performance compared to previous methods based on prior-
based transfer, and we show that even in the case where
knowledge transfer can actually be expressed as model pri-
ors, our bound is numerically tighter than previous ones.

2. Background
There are many ways how the sharing of information be-
tween learning tasks can be formalized. In this work, we
adopt the meta-learning setting first proposed in Baxter
(2000) under the name of learning to learn. We call a tuple
t = (D,S) a task, where D is a data distribution over a sam-
ple space Z , and S = {z1, . . . , zm} is a dataset sampled
i.i.d. according to this distribution. A meta-learning method
(or meta-learner) has access to the training sets, S1, . . . , Sn

of a number of training tasks, t1, . . . , tn, which themselves
are i.i.d. sampled from an unknown distribution, τ , over
a task environment. Let F be a hypothesis set of possible
models, and ℓ : Z ×F → [0, 1] a loss function. For any set
X , we denote by M(X) the set of probability distributions
over X , and by P(X) the power set of X , where for our
purposes, only subsets of finite size matter.

The goal of meta-learning is to output (in some parameter-
ized form) a learning algorithm, A : P(Z) → F , i.e., a
mapping from the set of datasets to the set of models, with
the goal to make the risk (expected loss) as small as possible

in expectation when applying the algorithm A to a future
task, i.e. minimize

E
(D,S)∼τ

R(A(S)) for R(f) = E
z∼D

ℓ(z, f). (1)

Our main tool for analyzing such meta-learning methods
theoretically will be PAC-Bayesian learning theory. Before
we apply this in the meta-learning setting, we remind the
reader of its main concepts in the standard setting.

2.1. PAC-Bayesian Learning

Classical PAC-Bayesian bounds (McAllester, 1998; Maurer,
2004) quantify the generalization properties of stochastic
models. A stochastic model is parameterized by a distri-
bution, Q ∈ M(F), over the model space. For any input
z ∈ Z it makes a stochastic predictions by sampling f ∼ Q
and outputting f(z). We extend the loss function to this as

ℓ(z,Q) := E
f∼Q

ℓ(z, f). (2)

Now, let t = (D,S) be the given task. The PAC-Bayesian
framework provides an upper bound on the expected risk of
a (stochastic) model, Q,

R(Q) = E
z∼D

ℓ(z,Q) (3)

in terms of its empirical risk

R̂(Q) =
1

|S|
∑
z∈S

ℓ(z,Q), (4)

and some complexity terms.

For example, from Maurer (2004) it follows that for any
fixed δ > 0 and any fixed prior distribution over models
P ∈ M(F), with probability at least 1−δ over the sampling
of the training dataset, S, it holds that for all Q ∈ M(F),

R(Q) ≤ R̂(Q) +

√
KL(Q∥P) + log(2

√
m

δ)

2m
, (5)

where KL denotes the Kullback-Leibler divergence. In
words, the stochastic model Q is guaranteed to generalize
well, if it is chosen sufficiently close to the prior, P .

Since their introduction by McAllester (1998), many similar
bounds have been derived that mostly differ the way they
compare empirical and expected error, the specific form
of the complexity term, and with further assumptions they
make. See, , e.g., Guedj (2019); Alquier (2024); Hellström
et al. (2023) for surveys. However, the bounds have in
common that the size of the complexity term is mostly
determined by the KL divergence between the posterior
distribution Q and a fixed data-independent prior P , like
it does in Equation (5). The bounds also have in common

2

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

that they hold uniformly with respect to Q. This means
that one can use the right-hand side of the inequality as a
training objective, and the guarantees will still hold for the
(stochastic) model resulting from minimizing it.

2.2. PAC-Bayesian Meta-Learning

PAC-Bayesian bounds for meta-learning were pioneered by
Pentina & Lampert (2014). They assumed a fixed learning
procedure that outputs a posterior distribution over models,
Q(S, P) ∈ M(F), depending on the training data, S, as
well as on a prior distribution, P ∈ M(F). A canonical ex-
ample of such a procedure would be to return the stochastic
model that minimizes the right hand side of (5).

For any prior, P , the expected risk on a new task,

R(P) = E
(S,D)∼τ

E
z∼D

ℓ(z,Q(S, P)), (6)

provides a measure how suitable this choice of prior is for
future tasks. However, (6) cannot be computed, because
it depends on unobserved quantities. Under Baxter’s as-
sumptions that the available training tasks are sampled from
the same task environment as future tasks, the empirical
multi-task risk,

R̂(P) =
1

n

n∑
i=1

1

|Si|
∑
z∈Si

ℓ(z,Q(Si, P)), (7)

can serve as empirical proxy for R(P). The difference
between (6) and (7) can be bounded with PAC-Bayesian
techniques, as long as the prior is not simply chosen in a
deterministic way, but by means of specifying its posterior
distribution, Q ∈ M(M(F)), called the hyper-posterior.
Overall, one obtains guarantees that R(Q) = EP∼Q R(P)

is bounded by R̂(Q) = EP∼Q R̂(P) and some complexity
terms that are increasing functions of KL(Q∥P), where
P ∈ M(M(F)) is a data-independent hyper-prior, and of
KL(A(Si, P)∥P) in expectation over P ∼ Q.

Numerous later works improved and extended these PAC-
Bayesian meta-learning bounds: Amit & Meir (2018) de-
signed an optimization algorithm based on this setup for
neural networks, Liu et al. (2021) proved bounds with a
different form, Guan & Lu (2022) and Riou et al. (2023)
proved fast rate bounds for this setup, Friedman & Meir
(2023) proved bounds based on data-dependent PAC-Bayes
bounds, and Rezazadeh (2022) provided a general frame-
work for proving several different form bounds. Rothfuss
et al. (2021; 2023) generalized the setup to unbounded loss
functions, and developed a new algorithm for estimating
optimal hyper-posteriors. Ding et al. (2021); Tian & Yu
(2023) studied this setup for few-shot meta-learning, and
Farid & Majumdar (2021) studied the connection between
PAC-Bayes and uniform stability in this setup.

Table 1. Notations
P ∈ M(F) Prior distribution
Q ∈ M(F) Posterior distribution
π ∈ M(A) Meta-Prior over algorithms
ρ ∈ M(A) Meta-Posterior over algorithms

P(A) ∈ M(M(F)) Hyper-Prior over priors
Q(A) ∈ M(M(F)) Hyper-Posterior over priors

While these works constitute substantial progress, all of
them share a common limitation that they inherited from
the setup originally defined in Pentina & Lampert (2014):
they only apply to meta-learning methods that are ex-
pressible as a single learning strategy parameterized by
a prior distribution over models. However, many prac-
tical meta-learning algorithms do not follow this pattern,
thereby preventing the existing PAC-Bayesian frameworks
from studying the generalization ability of these algorithms.

One exception is Pentina & Lampert (2015), which pro-
vided a bound over transformation operators between tasks,
but this situation applies only under rather restrictive as-
sumptions. Another one is the recent Scott et al. (2024),
which proved a related PAC-Bayesian bound in the con-
text of personalized federated learning. However, the result
provides only rather weak guarantees, because it assumes
fixed prior distributions that have to be chosen without any
knowledge about the task environment instead of benefit-
ing from environment-dependent priors as the works above.
Moreover, Nguyen et al. (2022) provided a bound in an al-
ternative meta-learning framework that uses both validation
and training data, which also assumes fixed priors.

As an alternative framework, information-theoretic bounds
have been derived (Chen et al., 2021; Hellström & Durisi,
2022; Hellström et al., 2023). These, however, typically
provide bounds in expectation rather than with high proba-
bility over the training tasks, and they are harder to compute
than the PAC-Bayesian ones. Additionally, these works use
distribution-dependent priors while the works in the PAC-
Bayesian framework use data-dependent priors (through a
hyper-posterior). In Section 3.1, we describe the role of
hyper-posteriors in more detail.

In this work, we introduce a new form of PAC-Bayesian
meta-learning bounds that overcomes the limitation of
previous works. It works in a more general setup that
applies to any set of learning algorithms as well as allowing
for algorithm-specific hyper-posteriors.

3. Main Results
In this section, we state and discuss our main result: a gen-
eralization bound that holds for any meta-learning method
that is expressible as a way to choose a learning algorithm

3

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

for future tasks.

Formally, let A = {A : P(Z) → M(F)} be a set of
stochastic learning algorithms that take as input a dataset
and output a posterior distribution over models. Note that
this algorithm set does not have to be homogeneous. For
example, A, could contain different architectures of neu-
ral networks, which are initialized in different ways and
adjusted to the training data by different optimizers, or deci-
sion trees with different construction rules, or support vector
machines with different kernels, or prototype-based classi-
fiers with different distance measures, or all of the above
together.

Given a set of training datasets, S1, . . . , Sn, the meta-learner
outputs a posterior distribution over the algorithms, ρ ∈
M(A). We call ρ the meta-posterior (distribution), and we
define its risk on future tasks as

R(ρ) = E
A∼ρ

E
(S,D)∼τ

E
z∼D

ℓ(z,A(S)). (8)

If this value is small then the meta-learner has done a good
job at identifying learning algorithms that work well on fu-
ture tasks. As such, Equation (8) describes the actual quan-
tity of interest. However, it is not a computable value. There-
fore, we introduce the empirical risk of the meta-posterior,
ρ, on the n training tasks as

R̂(ρ) = E
A∼ρ

1

n

n∑
i=1

1

|Si|
∑
z∈Si

ℓ(z,A(Si)). (9)

Our main results, Theorems 3.1 and 3.2 below, provide
upper bounds on R(ρ) in terms of R̂(ρ) and suitable com-
plexity terms.

Before stating them, we introduce one additional source of
flexibility that our framework possesses. Remember that
in the classical setting of Section 2.2, one fixed hyper-prior
distribution over priors was given, and the meta-learner was
meant to learn one hyper-posterior distribution over priors.
In our setting, especially if the algorithm set is heteroge-
neous, it stands to reason that different algorithms might
benefit from different choices of prior distributions. To
express this, let P : A → M(M(F)) now be a fixed data-
independent mapping of algorithms to hyper-priors, i.e. for
each algorithm, A, one hyper-prior, P(A) ∈ M(M(F)),
is associated in a data-independent way. Analogously, de-
note by Q : A → M(M(F)) a mapping of algorithms to
hyper-posteriors. As part of the meta-learning process, the
meta-learner constructs Q by specifying a hyper-posterior
distribution, Q(A) ∈ M(M(F)), for any learning algo-
rithm A ∈ A.

We now state our first main result: a generalization bound
for R(ρ) in terms of R̂(ρ) that holds with high probability
uniformly for all possible choices of ρ and Q.

Theorem 3.1. For any fixed meta-prior π, fixed hyper-prior
mapping P and any δ > 0, with probability at least 1− δ
over the sampling of the training tasks, for all distributions
ρ ∈ M(A) over algorithms, and for all hyper-posterior
mappings Q : A → M(M(F)) it holds

R(ρ) ≤ R̂(ρ) +

√
KL(ρ∥π) + log(4

√
n

δ)

2n
(10)

+

√
KL(ρ||π) + EA∼ρ[C1(A,Q,P)] + log(8mn

δ) + 1

2mn
,

with

C1(A,Q,P) =KL(Q(A)∥P(A))

+ E
P∼Q(A)

n∑
i=1

KL(A(Si)||P).
(11)

Our second main result is a tightened variant of Theorem 3.1
that holds in the special case that all algorithms share the
same hyper-prior, i.e. P is constant.

Theorem 3.2. For any fixed meta-prior π, fixed hyper-prior
P and any δ > 0 with probability at least 1 − δ over the
sampling of the datasets, for all distributions ρ ∈ M(A)
over algorithms, and for all hyper-posterior functions Q :
A → M(M(F)) it holds

R(ρ) ≤ R̂(ρ) +

√
KL(ρ||π) + log(4

√
n

δ)

2n
(12)

+ E
A∼ρ

√
C2(A,Q,P) + log(8mn

δ) + 1

2mn
(13)

C2(A,Q,P) = KL(Q(A)∥P) (14)

+ E
P∼Q(A)

n∑
i=1

KL(A(Si)||P)

We provide proof sketches for both theorems in Section 4.
For complete proofs, see Appendix A.

3.1. Discussion

In this section, we discuss the properties of the bounds and
explain the role and benefits of different terms. We also
highlight the differences between our general setup with the
more narrow setups of previous works and explain how our
algorithm applies to existing meta-learning methods.

Complexity terms As it is common for PAC-Bayesian
meta-learning, the bounds (10) and (13) each contain two

4

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

complexity terms, which reflect the two types of general-
ization required for meta-learning guarantees: task-level
generalization, i.e. generalization from the observed tasks
to future tasks, and within-task generalization for all training
tasks (also called multi-task generalization). In the follow-
ing, we first discuss (10) in detail and afterwards discuss
how (13) differs from it.

The first complexity term of (10) expresses the aspect of
task-level generalization: it contains the KL-divergence
between the data-dependent meta-posterior and the data-
independent meta-prior over algorithms. As such, it reflects
directly how much the choice of learning algorithm is in-
fluenced by the data. In addition, it contains an additional
logarithmic term that is small for all practical choices of n
and δ. Both terms are divided by 2n, meaning that the first
complexity term decreases with the number of training tasks
and vanishes (only) for n → ∞. It is not affected by the
number of training samples per task, m. Such a behavior
makes sense: the uncertainty about the task environment, i.e.
what kind of tasks will appear in the future, is reduced with
each additional training task, but having more data points
from the tasks available does not provide new information
about this aspect.

The second complexity term of Equation (10) contains the
same KL-divergence term as well as two additional ones: in
simplified form (ignoring the expectations over algorithms),
the first term relates the algorithm’s hyper-posterior, Q(A),
to its hyper-prior, P(A). This term reflects the amount by
which the meta-learner’s choice of priors depends on the ob-
served data. However, the denominator for this complexity
term is 2nm instead of 2n for the first term, indicating that
the hyper-posterior can be adjusted rather flexibly without
increasing the size of this term too much. The final KL-
term relates each task’s predicted models, A(Si), and its
respective prior distributions, P . The sum of these n terms
is divided by 2nm, making the term decrease with m and
vanish for m → ∞. Once again, a term of this type makes
sense. It reflects the average uncertainty about the true risk
for models learned from finite data of each training task.
When the number of samples, m, per task grows, the uncer-
tainty about each task is reduced. When just the number, n,
of training tasks grows, however, the amount of data per task
remains the same, so no reduction of the average per-task
uncertainty can be expected. The remaining terms in the
numerator depend only logarithmically on this number and
δ and are negligible in most practical settings.

More precisely, Equation (10) contains the expectations of
these terms over the actually stochastic choice of algorithm
and prior distribution.

Hyper-posteriors A basic PAC-Bayes bound with a fixed
prior would result in separate and independent complex-
ity terms for each task, independent of the environment,

and will not take into account the relation between training
tasks. Instead, we introduce algorithm-dependent hyper-
posteriors, from which we sample priors, and are learned
specifically for each learning algorithm, shared between all
the tasks. Therefore, the n complexity terms for each A be-
come EP∼Q(A)

∑n
i=1 KL(A(Si)||P) with the additional

cost of KL(Q(A)∥P(A)), which improves n terms at the
cost of one extra term.

In this formulation, Q(A) can be seen as a similarity mea-
sure for the output of the algorithm. The complexity mea-
sure is small if for the outputs of the algorithm for n tasks,
there is a good hyper-posterior to generate priors close to all
posteriors. Note that we can learn different hyper-posteriors
for different algorithms, and capture these similarities specif-
ically for the outputs of each algorithm.

Note that the hyper-posterior is a mathematical notion, and
the bound holds for all hyper-posteriors at the same time
(with high probability). Its role is to help better capture the
relations between tasks when using a specific algorithm. For
a future task, only the meta-posterior would apply and the
role of the hyper-posterior by default is implicit.

Difference between the theorems The bound (13) dif-
fers from bound (10) most in the fact that the term KL(ρ∥π)
does not appear in the second term, and ρ only appears in
the second term as the distribution over algorithms (when
we take the expectation of algorithms in EA∼ρ). The expec-
tation is also moved outside of the square root, which makes
the bound tighter (Jensen’s inequality). We attribute the dif-
ferences mainly to the fact that for an algorithm-independent
hyper-prior, some steps in the proof can be performed in
a tighter way. Generally, both bounds agree in their main
behavior with respect to the number of training tasks and
samples.

Comparison with previous works The setting of Sec-
tion 3 is a strict generalization of the setup from previous
works where the meta-learner only learned priors. In fact,
the latter setting can be recovered from ours as follows: let
Q(S, P) be the fixed learning rule of a prior-based meta-
learning method. We then define a family of algorithms
as A = {Q(·, P) : P ∈ M(F)}. With each element of
A uniquely determined by a prior P , choosing a distribu-
tion of algorithms is equivalent to choosing a distribution
over priors. Now, by setting Q(A) = Q(P) = δP and
P(A) = P(P) = δP , Theorem 3.1 is applicable. In Sec-
tion 5.1 we compare the resulting generalization bound
numerically to prior ones in this setting.

Similarly, we can recover the bounds of Scott et al. (2024),
which transfer algorithms but only allow for a single fixed
choice of prior: for any A ∈ A we set Q(A) = δP0

and
P(A) = δP0 , where P0 is the fixed prior. Again, Theorem
3.2 is now applicable. This construction also shows that

5

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

our result not only recovers the bound of Scott et al. (2024)
but improves over it. The reason is that Theorem 3.2 holds
uniformly over all (potentially data-dependent) choices of
Q, of which the construction described above is simply a
single data-independent choice.

Recovering common meta-learning methods As dis-
cussed in the introduction, previous works on meta-learning
that rely on transferring priors over models are not ap-
plicable to hypernetwork-based, representation-based, or
optimization-based meta-learning methods because these
require different parametrizations of their algorithm sets.

In our framework, expressing these methods is straight-
forward. For the hypernetwork-based methods (Zhao
et al., 2020; Scott et al., 2024), the set of algorithms is
parametrized by the set of hypernetwork weights. Conse-
quently, learning the algorithm means training the hyper-
network. For representation-based methods (Maurer, 2009;
Maurer et al., 2016; Lee et al., 2019) parametrizing each
algorithm is a feature extractor, such as a linear projection
or a convolutional network. For optimization-based meta-
learning (Hochreiter et al., 2001; Ravi & Larochelle, 2017;
Li et al., 2017), the algorithm set can contain all hyperparam-
eters to be learned, or the set of all considered optimization
procedures, e.g. in the form of the weights of a recurrent
network. In all cases, our bound can directly be applicable.
In fact, based on our bound one might even improve such
methods by suggesting appropriate (meta-)regularization
term.

Another observation is that our framework also allows com-
bining different approaches. For example, the algorithm set
could be parametrized by the starting point of an optimiza-
tion step (e.g. the initialization of a network), as well as by a
regularization term. The result is a hybrid of methods based
on model prototypes and on methods based on learning a
regularizer. Prior works were applicable to study either of
these approaches individually, but not their combination.
Nevertheless, we provide an experimental demonstration
that such a hybrid approach can be beneficial in Section 5.

4. Proof Sketch
We provide the proof sketch of Theorem 3.1. The full proof
and the proof of Theorem 3.2 are available in Appendix A.

For the proof we first define an intermediate objective that
represents the true risk of the training tasks,

R̃(ρ) = E
A∼ρ

1

n

n∑
i=1

E
z∼Di

ℓ(z,A(Si)). (15)

The proof is then divided into two parts. First, we bound
the difference of the true risks between training tasks and
future tasks R(ρ)−R̃(ρ). Second, we bound the difference

between the true risk and empirical risk of training tasks
R̃(ρ) − R̂(ρ). The final result follows by combining the
two bounds.

Part I To bound R(ρ) − R̃(ρ) we use standard PAC-
Bayesian arguments, specifically the following lemma:
Lemma 4.1. For all δ > 0 it holds with probability at least
1 − δ

2 over the sampling of tasks for all meta-posteriors
ρ ∈ M(A):

R(ρ)− R̃(ρ) ≤

√
KL(ρ||π) + log(4

√
n

δ)

2n
. (16)

This lemma is an application of applying the standard PAC-
Bayesian bounds Maurer (2004); Pérez-Ortiz et al. (2021).
For details, see Appendix A.

Part II We define the following two functions which
produce distributions over A × M(F) × F⊗n, i.e. they
assigns joint probabilities to tuples, (A,P, f1, ..., fn), which
contain an algorithm, a prior over models, and n models.

Posterior Q(ρ,Q): given as input a meta-posterior ρ over
algorithms and a hyper-posterior mapping Q as input, it
outputs the distribution over A ×M(F) × F⊗n with the
following generating process: i) sample an algorithm A ∼ ρ,
ii) sample a prior P ∼ Q(A), iii) for each task, i = 1, . . . , n,
sample a model fi ∼ A(Si).

Prior P(π,P): given as input a meta-prior π over algo-
rithms and a hyper-prior mapping P as input, it outputs the
distribution over A×M(F)×F⊗n with the following gen-
erating process: i) sample an algorithm A ∼ π, ii) sample a
prior P ∼ P(A), iii) for each task, i = 1, . . . , n, sample a
model fi ∼ P .

Note that the inputs to Q(ρ,Q) are data-dependent and will
be learned from data. In contrast, the input to P(π,P) are
data-independent and need to be fixed before seeing the
data.

With these definitions, we state the following key lemma:
Lemma 4.2. For any fixed meta-prior π, fixed hyper-prior
function P , any δ > 0 and any λ > 0, it holds with probabil-
ity at least 1− δ

2 over the sampling of the training datasets
that for all meta-posteriors ρ ∈ M(A) over algorithms, and
for all hyper-posterior functions Q : A → M(M(F)):

R̃(ρ)− R̂(ρ) ≤ 1

λ
(KL(Q(ρ,Q)∥P(π,P)))

+
1

λ
log(

2

δ
) +

λ

8nm

(17)

Proof. First for any task i and any model fi we define:

∆i(fi) = E
z∼Di

ℓ(z, fi)−
1

|Si|
∑
z∈Si

ℓ(z, fi). (18)

6

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

By this definition and the definitions of R̃ and R̂ we have:

E
(A,P,f1,...,fn)∼Q(ρ,Q)

[1
n

n∑
i=1

∆i(fi)
]
= R̃(ρ)− R̂(ρ)

(19)

Using this equation and the change of measure inequal-
ity (Seldin et al., 2012) between the two distributions
Q(ρ,Q) and P(π,P), for any λ > 0, any ρ and any Q,
we have:

R̃(ρ)− R̂(ρ)− 1

λ
KL(Q(ρ,Q)||P(π,P))

≤ 1

λ
log E

(A,P,f1,...,fn)∼P(π,P)

n∏
i=1

e
λ
n∆i(fi)

(20)

It remains to bound the right-hand of (20). Given that π
and P are data-independent, standard tools (in particular
Hoeffding’s lemma and Markov’s inequality) allow us to
prove an upper bound that holds in high probability with
respect to the randomness of training datasets, from which
the statement in the lemma follows. Detailed steps are
provided in Appendix A.

The following lemma provides a split of the KL-term from
Lemma 4.2.
Lemma 4.3. For the posterior and prior defined above we
have:

KL(Q(ρ,Q)||P(π,P)) = KL(ρ∥π) (21)

+ E
A∼ρ

[
KL(Q(A)∥P(A)) + E

P∼Q(A)

n∑
i=1

KL(A(Si)||P)

]

The proof makes use of the explicit construction of P(π,P)
and Q(ρ,Q). It can be found in Appendix A.

Proof of Theorem 3.1 To get tight guarantees, we need
to choose the value of λ in Lemma 4.2 an optimal way
dependent on the data. As the statement of the Lemma is
not uniform in λ, we do so approximately by allowing a
fixed set of values in the range {1, ..., 4mn} and applying a
union-bound argument for values in this set. The theorem
then follows by combining the result with Lemma 4.1 and
using Lemma 4.3.

Proof sketch of Theorem 3.2 The proof is similar to
the proof of Theorem 3.1. For the first part, we use the
same Lemma 4.1. For the second part, we use the fact that
we have the same data-independent prior for all algorithms.
Due to this fact, we can remove ρ in the posterior function
and prove a generalization bound that holds uniformly for
all algorithms applied to the datasets. Therefore we can
bound the multi-task generalization of all meta-posteriors ρ
without the term KL(ρ∥π), and the result is Theorem 3.2.
For the detailed proof, please see Appendix A.

5. Experimental Demonstration
While our main contribution in this work is theoretical, We
also report on two experimental studies that allow us to
better relate our results to prior work.

5.1. Numerical Evaluations of the Bound

In this section, we numerically compare the tightness of our
bound to those from prior work, as far as this is possible.
We adopt the same scenario as Rothfuss et al. (2023), in
which the goal is to improve the learning of linear classifiers
by means of meta-learning a distribution over priors.

In this experiment, each task is a binary classification
task, which has a task parameter w∗ and given an input
x ∼ U([−1, 1]d) outputs y = 1(w∗⊤x ≤ 0). The task
environment is the set of vectors w∗ ∈ Rd with task dis-
tribution τ = N (w∗|µT , σ

2
T · Id) for µT = 10 · 1 and

σT = 3. The model set consists of linear classifiers,
F = {1(w⊤x ≤ 0) : w ∈ Rd}, and the priors and poste-
riors are Gaussian distributions over their weight vectors.
Specifically, the priors have the form N (w|µP , σ

2
P · Id)

with σP = 10, from which the posteriors are learned by
minimizing a PAC-Bayes bound with the logistic regression
loss. The meta-learner learns a Gaussian hyper-posterior
over the mean of the priors (µP), based on the hyper-prior
P(µP) = N (µP |0, σ2

P ·Id) with σP = 20. For background
information on the experimental setting, please see the orig-
inal reference Rothfuss et al. (2023).

In Figure 1 we plot the numeric values of the right-hand side
of our bound (13), i.e. empirical loss plus the complexity
terms, in the setting of d = 2, m = 5, and different values
of n. We also plot the corresponding values for the bounds
from Pentina & Lampert (2014); Amit & Meir (2018); Roth-
fuss et al. (2021); Rezazadeh (2022); Guan & Lu (2022),
as well as the actual quantities of interest, the meta-test
loss, and the meta-training loss. One can see that our bound
has the smallest value, i.e. is the tightest. It becomes non-
vacuous already for n = 10 tasks, while the other bounds
are still vacuous for n < 20.

We would like to emphasize that this analysis compares the
tightness of the bounds just in the setting of prior-based
meta-learning, because this is the only setting in which pre-
vious works can provide a guarantee. The main advantage
of our result, however, is its applicability to many more set-
tings, where a numeric comparison is not possible, because
previous works are not applicable.

5.2. Learning Initialization as well as Regularization

In Section 3.1 we argued that hybrid meta-learning scenar-
ios can be beneficial, for example, learning the initialization
of a network as well as a regularization term for its opti-

7

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

101 102 103

number of tasks

0.0

0.5

1.0

1.5

2.0

2.5

cla
ss

ifi
ca

tio
n

er
ro

r

bound (A. & M, 2018)
bound (R. 2022)
vacuousness border
meta-test error
meta-train error

bound (P. & L., 2014)
bound (pacoh)
kl bound (G. & L. 2022)
Catoni bound (G. & L. 2022)
Our bound

Figure 1. Numeric values of different meta-learning bounds (em-
pirical loss plus complexity terms) for the binary classification task
described in Section 5.1. Values below 1 are called non-vacuous.

mization. As empirical evidence for this setting, we report
on the standard experiments in the literature suggested by
Amit & Meir (2018), in which a stochastic neural network is
learned for two exemplary meta-learning scenarios, shuffled
pixel and permuted labels. Both are image classification
tasks based on the MNIST dataset (LeCun & Cortes, 1998).
In the former, tasks differ from each other by different per-
mutations of the input pixels at a fixed subset of locations.
In the latter, task differ from each other by different permu-
tations of the label space. In these experiments, there are
10 training tasks with 600 samples per task. We evaluate
the methods on 20 tasks with 100 samples per task. For
experimental details see Appendix B.

Previous works used this setting as a benchmark for PAC-
Bayesian meta-learning bounds in the following way: the
learning rule, Q(S, P), consists of first initializing a stochas-
tic network at the mean of the prior, P , and then training the
network by minimizing the right-hand side of a PAC-Bayes
bound using prior P , where the KL-divergence between
the prior and the learned model acts as a regularizer towards
the prior mean. This description shows that the prior is used
in two different ways, for initialization and as regularizer,
even though it is not a priori clear why the best choice for
these two quantities would be to make them identical.

In our new framework the roles of initialization and regu-
larization can easily be separated, thereby allowing us to
assess the above question quantitatively. To explore this, we
use a simple formalization, in which each algorithm consists
of two distributions (P0, P1) over models. For learning a
new task, the stochastic neural network is initialized from
P0, and then trained by minimizing a PAC-Bayes bound
with P1 as prior using gradient descent. Formally, for each

Table 2. Comparison between our mechanism with prior-based
mechanisms. The separation of initialization and regularization
improves the performance for permuted labels (PL), and achieves
similar performance for the shuffled pixels (SP).

Meta-Learning PAC Bayes Bounds: Test Error (%)
Bound SP PL

Independent learning 28.9 ± 1.7 19.6 ± 1.5
(Amit & Meir, 2018) 9.9 ± 0.9 13.7 ± 3.5
(Rezazadeh, 2022) 11.2 ± 1.0 90.1 ± 5.6
(Guan & Lu, 2022) 20.5 ± 1.1 89.9 ± 0.5

Ours 9.9 ± 1.1 7.9 ± 1.7

algorithm, we have Q(A) = P(A) = δP1
, and (ρ0, ρ1) as

meta-posterior, and (π0, π1) as meta-prior, where ρ0, π0 are
distributions over P0 and ρ1, π1 are distributions over P1.

For simplicity, we work with Gaussian distributions, and we
learn their mean and variance by the re-parametrization trick
of Kingma et al. (2015). The optimization is performed as
in Amit & Meir (2018): one approximately minimizes the
meta-learning bound by optimizing for the hyper-posterior,
ρ and for separate task posteriors, Q1, . . . , Qn, for a fixed
number of epochs (originally 200). For our setup, we use
the same implementation, but with the difference that we
have a meta-posterior over two distributions. For the first
100 epoch we set them equal, mirroring the prior work. Af-
terwards, however, fix the meta-posterior over P0, initialize
Q1, ..., Qn again by sampling from this distribution, and
continue the optimization for another 100 epochs. Note
that this results in the same amount of computation as the
previous methods, but now split into first learn the network
initialization, and then the regularization term conditioned
on the learned initialization.

We compare our results with the prior-based bounds of Amit
& Meir (2018); Rezazadeh (2022); Guan & Lu (2022), as
well as independent learning. The experimental results are
shown in Table 2. One can see that for the permuted label
setting, having different parameters reduces the test error.
This shows that the previous setups were indeed subopti-
mal, and it thereby confirms the benefits of out framework’s
added flexibility. In the shuffled pixel setting, the added
flexibility did not yield any benefits, as the system learned
almost identical parameters for the initialization and the
regularization term. Consequently, the results of our frame-
work are essentially the same as for previous ones. For more
discussion on the results we refer the reader to Appendix B.

6. Conclusion
We presented a new framework for the theoretical analy-
sis of meta-learning (or learning-to-learn) methods. Where
previous approaches were limited to settings that can be

8

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

formulated as learning a prior distribution over models, our
new approach takes a more direct approach and formulates
the knowledge transfer as learning a preference for learning
algorithms. Our main contributions are two PAC-Bayesian
generalization bounds that are applicable to essentially all
existing transfer mechanisms, including model prototypes,
regularization, representation learning, hypernetworks, and
the transfer of optimization methods or hyperparameters, or
combinations thereof. We believe our approach will prove
useful to put more practical meta-learning methods onto
solid theoretical foundation, and ideally to inspire improve-
ment, such as new forms of regularization, especially for
the low-data regime.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Alquier, P. User-friendly introduction to PAC-Bayes bounds.

Foundations and Trends in Machine Learning, 17(2):174–
303, 2024.

Amit, R. and Meir, R. Meta-learning by adjusting priors
based on extended PAC-Bayes theory. In International
Conference on Machine Learning (ICML), 2018.

Baxter, J. A model of inductive bias learning. Journal
of Artificial Intelligence Research (JAIR), 12:149–198,
2000.

Chen, Q., Shui, C., and Marchand, M. Generalization
bounds for meta-learning: An information-theoretic anal-
ysis. In Conference on Neural Information Processing
Systems (NeurIPS), 2021.

Denevi, G., Ciliberto, C., Grazzi, R., and Pontil, M.
Learning-to-learn stochastic gradient descent with biased
regularization. In International Conference on Machine
Learning (ICML), 2019.

Ding, N., Chen, X., Levinboim, T., Goodman, S., and Sori-
cut, R. Bridging the gap between practice and PAC-Bayes
theory in few-shot meta-learning. In Conference on Neu-
ral Information Processing Systems (NeurIPS), 2021.

Farid, A. and Majumdar, A. Generalization bounds for meta-
learning via PAC-Bayes and uniform stability. Conference
on Neural Information Processing Systems (NeurIPS),
2021.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning (ICML), 2017.

Friedman, L. and Meir, R. Adaptive meta-learning via data-
dependent PAC-Bayes bounds. In Conference on Lifelong
Learning Agents (CoLLAs), 2023.

Glorot, X. and Bengio, Y. Understanding the difficulty of
training deep feedforward neural networks. In Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), 2010.

Guan, J. and Lu, Z. Fast-rate PAC-Bayesian generalization
bounds for meta-learning. In International Conference
on Machine Learning (ICML), 2022.

Guedj, B. A primer on PAC-Bayesian learning. arXiv
preprint arXiv:1901.05353, 2019.

Hellström, F. and Durisi, G. Evaluated CMI bounds for meta
learning: Tightness and expressiveness. In Conference on
Neural Information Processing Systems (NeurIPS), 2022.

Hellström, F., Durisi, G., Guedj, B., and Raginsky, M. Gen-
eralization bounds: Perspectives from information theory
and PAC-Bayes. arXiv preprint arXiv:2309.04381, 2023.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning
to learn using gradient descent. In International Confer-
ence on Artificial Neural Networks (ICANN), 2001.

Kingma, D. P., Salimans, T., and Welling, M. Varia-
tional dropout and the local reparameterization trick. In
Conference on Neural Information Processing Systems
(NeurIPS), 2015.

LeCun, Y. and Cortes, C. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 1998.

Lee, K., Maji, S., Ravichandran, A., and Soatto, S. Meta-
learning with differentiable convex optimization. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

Li, Z., Zhou, F., Chen, F., and Li, H. Meta-SGD: Learning
to learn quickly for few-shot learning. arXiv preprint
arXiv:1707.09835, 2017.

Liu, T., Lu, J., Yan, Z., and Zhang, G. PAC-Bayes bounds for
meta-learning with data-dependent prior. arXiv preprint
arXiv:2102.03748, 2021.

Maurer, A. A note on the PAC Bayesian theorem. arXiv
preprint arXiv:cs.LG/0411099, 2004.

Maurer, A. Transfer bounds for linear feature learning.
Machine Learning, 75(3):327–350, 2009.

9

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

Maurer, A., Pontil, M., and Romera-Paredes, B. The benefit
of multitask representation learning. Journal of Machine
Learning Research (JMLR), 17(81):1–32, 2016.

McAllester, D. A. Some PAC-Bayesian theorems. In Confer-
ence on Computational Learning Theory (COLT), 1998.

Nguyen, C., Do, T.-T., and Carneiro, G. PAC-Bayes meta-
learning with implicit task-specific posteriors. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 45(1):841–851, 2022.

Nichol, A., Achiam, J., and Schulman, J. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Pentina, A. and Lampert, C. H. A PAC-Bayesian bound
for lifelong learning. In International Conference on
Machine Learning (ICML), 2014.

Pentina, A. and Lampert, C. H. Lifelong learning with
non-iid tasks. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2015.

Pérez-Ortiz, M., Rivasplata, O., Shawe-Taylor, J., and
Szepesvári, C. Tighter risk certificates for neural net-
works. The Journal of Machine Learning Research, 22
(1):10326–10365, 2021.

Ravi, S. and Larochelle, H. Optimization as a model for few-
shot learning. In International Conference on Learning
Representations (ICLR), 2017.

Rezazadeh, A. A unified view on PAC-Bayes bounds for
meta-learning. In International Conference on Machine
Learning (ICML), 2022.

Riou, C., Alquier, P., and Chérief-Abdellatif, B.-E. Bayes
meets Bernstein at the meta level: an analysis of fast
rates in meta-learning with PAC-Bayes. arXiv preprint
arXiv:2302.11709, 2023.

Rothfuss, J., Fortuin, V., Josifoski, M., and Krause,
A. PACOH: Bayes-optimal meta-learning with PAC-
guarantees. In International Conference on Machine
Learning (ICML), 2021.

Rothfuss, J., Josifoski, M., Fortuin, V., and Krause, A. Scal-
able PAC-Bayesian Meta-Learning via the PAC-Optimal
Hyper-Posterior: From Theory to Practice. Journal of
Machine Learning Research (JMLR), 2023.

Schmidhuber, J. Evolutionary principles in self-referential
learning, 1987.

Scott, J., Zakerinia, H., and Lampert, C. H. PeFLL: Per-
sonalized Federated Learning by Learning to Learn. In
International Conference on Learning Representations
(ICLR), 2024.

Seldin, Y., Laviolette, F., Cesa-Bianchi, N., Shawe-Taylor,
J., and Auer, P. PAC-Bayesian inequalities for martin-
gales. IEEE Transactions on Information Theory, 58(12):
7086–7093, 2012.

Thrun, S. and Pratt, L. (eds.). Learning to Learn. Kluwer
Academic Press, 1998.

Tian, P. and Yu, H. Can we improve meta-learning
model in few-shot learning by aligning data distributions?
Knowledge-Based Systems, 277:110800, 2023.

Zhao, D., Kobayashi, S., Sacramento, J., and von Oswald, J.
Meta-learning via hypernetworks. In NeurIPS Workshop
on Meta-Learning (MetaLearn), 2020.

10

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

A. Proofs
In this section, we provide the proofs of the results in the main body of the paper.

A.1. Proof of Theorem 3.1.

For the convenience of the reader we restate Theorem 3.1 here and then prove it.

Theorem A.1. For any fixed meta-prior π ∈ M(A), fixed hyper-prior mapping P : A → M(M(F)) and any δ > 0,
it holds with probability at least 1 − δ over the sampling of the training tasks, that for all meta-posterior distributions
ρ ∈ M(A) over algorithms, and for all hyper-posterior mappings Q : A → M(M(F)) it holds

R(ρ) ≤ R̂(ρ) +

√
KL(ρ∥π) + log(4

√
n

δ)

2n
+

√
KL(ρ||π) + EA∼ρ[C1(A,Q,P)] + log(8mn

δ) + 1

2mn
, (22)

with

C1(A,Q,P) =KL(Q(A)∥P(A)) + E
P∼Q(A)

n∑
i=1

KL(A(Si)||P). (23)

The beginning of the proof coincides with the steps of the sketch in Section 4, while the later part provides additional details.
As a reminder, we repeat the definitions of our main objects of interest: the risk of a meta-posterior, ρ ∈ M(A),

R(ρ) = E
A∼ρ

E
(S,D)∼τ

E
z∼D

ℓ(z,A(S)), (24)

its empirical analog,

R̂(ρ) = E
A∼ρ

1

n

n∑
i=1

1

|Si|
∑
z∈Si

ℓ(z,A(Si)) (25)

as well as the intermediate objective, which represents the true risk of the training tasks:

R̃(ρ) = E
A∼ρ

1

n

n∑
i=1

E
z∼Di

ℓ(z,A(Si)). (26)

We divide the proof into two parts. First, we bound the difference of the true risks between training tasks and future tasks
R(ρ) − R̃(ρ). For the second part, we bound the difference between the true risk and empirical risk of training tasks
R̃(ρ)− R̂(ρ), and by combining the two bounds we obtain the final result.

Part I For the first part we can use classical PAC-Bayes arguments, because R(ρ) and R̃(ρ) differ only in the fact that
one is an empirical average with respect to the tasks while the other it is expectation. Consequently, one obtains:

Lemma A.2. For all δ > 0 it holds with probability at least 1− δ
2 over the sampling of tasks that for all meta-posteriors

ρ ∈ M(A):

R(ρ)− R̃(ρ) ≤

√
KL(ρ||π) + log(4

√
n

δ)

2n
. (27)

Proof. For each algorithm A and task T = (D,S) we define the loss as ltask(A, T) = Ez∼D ℓ(z,A(S)). For this loss, R̃(A)
is the empirical risk, and R(A) is the true risk. Applying the standard PAC-Bayes bounds (Maurer, 2004; Pérez-Ortiz et al.,
2021) to this setting results in this lemma.

Part II We define the following two functions that produce distributions over A×M(F)×F⊗n, i.e. they assigns joint
probabilities to tuples, (A,P, f1, ..., fn), which contain a algorithm, a prior over models, and n models.

11

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

• Posterior Q(ρ,Q): given as input a meta-posterior ρ over algorithms and a hyper-posterior mapping Q as input, it
outputs the distribution over A×M(F)×F⊗n with the following generating process: i) sample an algorithm A ∼ ρ,
ii) sample a prior P ∼ Q(A), iii) for each task, i = 1, . . . , n, sample a model fi ∼ A(Si).

• Prior P(π,P): given as input a meta-prior π over algorithms and a hyper-prior mapping P as input, it outputs the
distribution over A×M(F)×F⊗n with the following generating process: i) sample an algorithm A ∼ π, ii) sample
a prior P ∼ P(A), iii) for each task, i = 1, . . . , n, sample a model fi ∼ P .

Note that the inputs to Q(ρ,Q) are data-dependent and will be learned using the data. In contrast, the input to P(π,P) are
data-independent and need to be fixed before seeing the data. With these definitions, we state the following key lemma:

Lemma A.3. For any fixed meta-prior π ∈ M(A), fixed hyper-prior mapping P : A → M(M(F)), any δ > 0, and
any λ > 0, it holds with probability at least 1− δ

2 over the sampling of the training datasets that for all meta-posteriors
ρ ∈ M(A) over algorithms, and for all hyper-posterior functions Q : A → M(M(F)):

R̃(ρ)− R̂(ρ) ≤ 1

λ
KL

(
Q(ρ,Q)∥P(π,P)

)
+

1

λ
log(

2

δ
) +

λ

8nm
. (28)

Proof. First for any task i and any model fi we define:

∆i(fi) = E
z∼Di

ℓ(z, fi)−
1

|Si|
∑
z∈Si

ℓ(z, fi). (29)

By this definition and the definitions of R̃ and R̂ we have:

E
(A,P,f1,...,fn)∼Q(ρ,Q)

[1
n

n∑
i=1

∆i(fi)
]
= R̃(ρ)− R̂(ρ) (30)

Using this equation and the change of measure inequality (Seldin et al., 2012) between the two distributions Q(ρ,Q) and
P(π,P), for any λ > 0, any ρ ∈ M(A) and any Q, we have:

R̃(ρ)− R̂(ρ)− 1

λ
KL(Q(ρ,Q)||P(π,P)) ≤ 1

λ
log E

(A,P,f1,f2,...,fn)∼P(π,P)

n∏
i=1

e
λ
n∆i(fi) (31)

where the second inequality is due to the change of measure inequality (Seldin et al., 2012).

By the construction of P(π,P), we have

E
S1,...,Sn

E
(A,P,f1,f2,...,fn)∼P(π,P)

n∏
i=1

e
λ
n∆i(fi) = E

S1,...,Sn

E
A∼π

E
P∼P(A)

E
f1∼P

. . . E
fn∼P

n∏
i=1

e
λ
n∆i(fi), (32)

and, because it is independent of S1, . . . , Sn, we can rewrite this as

= E
A∼π

E
P∼P(A)

E
S1

E
f1∼P

e
λ
n∆1(f1) . . . E

Sn

E
fn∼P

e
λ
n∆n(fn). (33)

= E
A∼π

E
P∼P(A)

n∏
i=1

E
Si

E
fi∼P

e
λ
n∆i(fi) (34)

Each ∆i(fi) is a bounded random variable with support in an interval of size 1. By Hoeffding’s lemma we have

E
Si

E
fi∼P

e
λ
n∆i(fi) ≤ e

λ2

8n2m . (35)

Therefore, by combining (34) and (35) we have:

E
S1,...,Sn

E
(A,P,f1,f2,...,fn)∼P(π,P)

n∏
i=1

e
λ
n∆i(fi) ≤ e

λ2

8nm . (36)

12

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

By Markov’s inequality, for any ϵ > 0 we have

PS1,...,Sn

(
E

(A,P,f1,f2,...,fn)∼P(π,P)

n∏
i=1

e
λ
n∆i(fi) ≥ eϵ

)
≤ e

λ2

8nm−ϵ (37)

Hence by combining (31) and (37) we get for any ϵ:

PS1,...,Sn

(
∃ρ,Q : R̃(ρ)− R̂(ρ)− 1

λ
KL(Q(ρ,Q)||P(π,P)) ≥ 1

λ
ϵ
)
≤ e

λ2

8nm−ϵ, (38)

or, equivalently, it holds for any δ > 0 with probability at least 1− δ
2 :

∀ρ,Q : R̃(ρ)− R̂(ρ) ≤ 1

λ
KL(Q(ρ,Q)||P(π,P)) +

1

λ
log(

2

δ
) +

λ

8nm
. (39)

The following lemma splits the KL term of (39) into more interpretable quantities.

Lemma A.4. For the posterior, Q(ρ,Q), and prior, P(π,P), defined above it holds:

KL(Q(ρ,Q)||P(π,P)) = KL(ρ∥π) + E
A∼ρ

[
KL(Q(A)∥P(A)) + E

P∼Q(A)

n∑
i=1

KL(A(Si)||P)
]
. (40)

Proof.

KL(Q(ρ,Q)||P(π,P)) = E
A∼ρ

[
E

P∼Q(A)

[
E

fi∼A(Si)
ln

ρ(A)Q(A)(P)
∏n

i=1 A(Si)(fi)

π(A)P(A)(P)
∏n

i=1 P (fi)

]]
(41)

= E
A∼ρ

[
ln

ρ(A)

π(A)

]
+ E

A∼ρ

[
E

P∼Q(A)

[
ln

Q(A)(P)

P(A)(P)

]
+ E

P∼Q(A)

[n∑
i=1

E
fi∼A(Si)

ln
A(Si)(fi)

P (fi)

]]
(42)

= KL(ρ∥π) + E
A∼ρ

[
KL(Q(A)∥P(A)) + E

P∼Q(A)

n∑
i=1

KL(A(Si)||P)

]
. (43)

Part III We now combine the above parts to prove Theorem 3.1.

Proof. To get tight guarantees, we need to choose the value of λ in Lemma A.3 an optimal data-dependent way, but the
statement of the Lemma holds only for individual values of λ. Therefore, we first create an version of inequality (28) by
instantiating it for each λ ∈ Λ with Λ = {1, . . . , 4mn}, and then applying a union-bound. It follows that

PS1,...,Sn

(
∀ρ,Q, λ ∈ Λ : R̃(ρ)− R̂(ρ) ≤ 1

λ

[
KL

(
Q(ρ,Q)||P(π,P)

)
+

1

λ
log(

8mn

δ
)
]
+

λ

8nm

)
≥ 1− δ

2
(44)

Note that for real-valued λ > 1, it holds that ⌊λ⌋ ≤ λ and 1
⌊λ⌋ ≤ 1

λ−1 . Thereby, we can allow real-valued λ and obtain

PS1,...,Sn

(
∀ρ,Q, λ ∈ (1, 4mn] : R̃(ρ)− R̂(ρ) ≤ 1

λ− 1

[
KL

(
Q(ρ,Q)||P(π,P)

)
+ log(

8mn

δ
)
]
+

λ

8mn︸ ︷︷ ︸
=:Γ(λ)

)
≥ 1− δ

2

(45)

13

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

For any choice of ρ,Q, let λ∗ =
√
8mn(KL(Q(ρ,Q)||P(π,P)) + log(8mn

δ)) + 1. If λ∗ > 4mn, that implies√
KL(Q(ρ,Q)||P(π,P)) + log(8mn

δ) + 1

2mn
> 1. (46)

Otherwise, λ∗ ∈ (1, 4mn], so inequality (45) holds, and we have

Γ(λ∗) <

√
KL(Q(ρ,Q)||P(π,P)) + log(8mn

δ) + 1

2mn
. (47)

Therefore,

PS1,...,Sn

(
∀ρ,Q : R̃(ρ)− R̂(ρ) ≤

√
KL(Q(ρ,Q)||P(π,P)) + log(8mn

δ) + 1

2mn

)
≥ 1− δ

2
. (48)

In combination with Lemma A.4, with probability at least 1− δ
2 it holds for all ρ ∈ M(A),Q : A → M(F):

R̃(ρ)− R̂(ρ) ≤

√
KL(ρ||π) + EA∼ρ[C1(A,Q,P)] + log(8mn

δ) + 1

2mn
. (49)

where C1(A,Q,P) is defined as in (23). Combining (49) and Lemma A.2 by a union bound concludes the proof.

A.2. Proof of Theorem 3.2.

We now restate and prove Theorem 3.2.

Theorem A.5. For any fixed meta-prior π ∈ M(A), any fixed hyper-prior P ∈ M(M(F)) and any δ > 0, it holds
with probability at least 1− δ over the sampling of the datasets, that for all meta-posterior distributions ρ ∈ M(A) over
algorithms, and for all hyper-posterior functions Q : A → M(M(F)) we have

R(ρ) ≤ R̂(ρ) +

√
KL(ρ||π) + log(4

√
n

δ)

2n
+ E

A∼ρ

√
C2(A,Q,P) + log(8mn

δ) + 1

2mn
, (50)

with

C2(A,Q,P) = KL(Q(A)∥P) + E
P∼Q(A)

n∑
i=1

KL(A(Si)||P). (51)

The three-step proof largely follows that of Theorem 3.1, except for some differences that emerge because the constant
hyper-prior allows some arguments to hold (with high probability over the datasets) uniformly for all algorithms at the same
time.

Part I We bound the different R(ρ) and R̃(ρ) the same way as in Lemma A.2.

Part II We define the following two functions that produce distributions over M(F) × F⊗n, i.e. they assign joint
probabilities to tuples, (P, f1, ..., fn) that contain a prior over models and n models.

• Posterior Q(A,Q(A)): given as input an algorithm A ∈ A and a hyper-posterior mapping Q : A → M(F) as input,
it outputs the distribution over M(F)×F⊗n with the following generating process: i) sample a prior P ∼ Q(A), ii)
for each task, i = 1, . . . , n, sample a model fi ∼ A(Si).

• Prior P(P): given a hyper-prior P ∈ M(F) as input, it outputs the distribution over M(F)×F⊗n with the following
generating process: i) sample a prior P ∼ P(A), ii) for each task, i = 1, . . . , n, sample a model fi ∼ P .

14

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

Lemma A.6. For any fixed meta-prior π ∈ M(A), fixed hyper-prior P ∈ M(M(F)), any δ > 0, and any λ > 0, it
holds with probability 1− δ

2 over the sampling of datasets from training tasks that for all algorithms A ∈ A and for all
hyper-posterior functions Q : A → M(M(F)):

R̃(A)− R̂(A) ≤ 1

λ
KL

(
Q(A,Q(A))∥P(P)

)
+

1

λ
log(

2

δ
) +

λ

8nm
, (52)

where

R̃(A) =
1

n

n∑
i=1

E
z∼Di

ℓ(z,A(Si)), and R̂(A) =
1

n

n∑
i=1

1

|Si|
∑
z∈Si

ℓ(z,A(Si)). (53)

Proof. First for any task i and any model fi we define:

∆i(fi) = E
z∼Di

ℓ(z, fi)−
1

|Si|
∑
z∈Si

ℓ(z, fi) (54)

By this definition and the definitions of R̃ and R̂ we have:

E
(P,f1,f2,...,fn)∼Q(A,Q(A))

[1
n

n∑
i=1

∆i(fi)
]
= R̃(A)− R̂(A) (55)

Using this equation and the change of measure inequality (Seldin et al., 2012) between the two distributions Q(A,Q(A))
and P(P), for any λ > 0, any A ∈ A and any Q : A → M(M(F)), we have:

R̃(A)− R̂(A)− 1

λ
KL

(
Q(A,Q(A))||P(P)

)
≤ 1

λ
log E

(P,f1,f2,...,fn)∼P(P)

n∏
i=1

e
λ
n∆i(fi) (56)

Because P(P) is independent of S1, ..., Sn, we have

E
S1,...,Sn

E
(P,f1,f2,...,fn)∼P(π,P)

n∏
i=1

e
λ
n∆i(fi) = E

S1,...,Sn

E
P∼P

E
f1∼P

. . . E
fn∼P

n∏
i=1

e
λ
n∆i(fi) (57)

= E
P∼P

E
S1

E
f1∼P

e
λ
n∆1(f1) . . . E

Sn

E
fn∼P

e
λ
n∆n(fn) (58)

= E
P∼P

n∏
i=1

E
Si

E
fi∼P

e
λ
n∆i(fi) (59)

Each ∆i(fi) is a bounded random variable with support in an interval of size 1. By Hoeffding’s lemma we have

E
Si

E
fi∼P

e
λ
n∆i(fi) ≤ e

λ2

8n2m . (60)

Therefore by combining (59) and (60) we have:

E
S1,...,Sn

E
(P,f1,f2,...,fn)∼P(P)

n∏
i=1

e
λ
n∆i(fi) ≤ e

λ2

8nm . (61)

By Markov’s inequality, for any ϵ > 0 we have

PS1,...,Sn

(
E

(P,f1,f2,...,fn)∼P(P)

n∏
i=1

e
λ
n∆i(fi) ≥ eϵ

)
≤ e

λ2

8nm−ϵ (62)

15

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

Hence by combining (56) and (62) we get

PS1,...,Sn

(
∃A,Q : R̃(A)− R̂(A)− 1

λ
KL(Q(A,Q(A))||P(P)) ≥ 1

λ
ϵ
)
≤ e

λ2

8nm−ϵ, (63)

or, equivalently, it holds for any δ > 0 with probability at least 1− δ
2 :

∀A,Q : R̃(A)− R̂(A) ≤ 1

λ
KL(Q(A,Q(A))||P(P)) +

1

λ
log(

2

δ
) +

λ

8nm
(64)

The following lemma splits the KL term of (64) into more interpretable quantities.

Lemma A.7. For the posterior, Q(A,Q(A)), and prior, P(P), defined above it holds:

KL
(
Q(A,Q(A))||P(P)

)
= KL(Q(A)∥P) + E

P∼Q(A)

n∑
i=1

KL(A(Si)||P) (65)

Proof.

KL(Q(A,Q(A))||P(P)) = E
P∼Q(A)

[
E

fi∼A(Si)
ln

Q(A)(P)
∏n

i=1 A(Si)(fi)

P(P)
∏n

i=1 P (fi)

]
(66)

= E
P∼Q(A)

[
ln

Q(A)(P)

P(P)

]
+ E

P∼Q(A)

[n∑
i=1

E
fi∼A(Si)

ln
A(Si)(fi)

P (fi)

]]
(67)

= KL(Q(A)∥P) + E
P∼Q(A)

n∑
i=1

KL(A(Si)||P) (68)

Part III We now finish the proof of Theorem 3.2 by combining the above results.

Proof. By applying a union bound for all the values of λ ∈ Λ with Λ = {1, . . . , 4mn} we obtain that

PS1,...,Sn

(
∀A,Q : R̃(A)− R̂(A) ≤

√
KL

(
Q(A,Q(A))||P(P)

)
+ log(8mn

δ) + 1

2mn

)
≥ 1− δ

2
. (69)

Because this inequality holds (with high probability over the datasets) for all algorithms at the same time, it also holds in
expectation over algorithms with respect to any distribution. Therefore we have:

PS1,...,Sn

(
∀ρ,Q : E

A∼ρ
[R̃(A)− R̂(A)] ≤ E

A∼ρ

√
KL(Q(A,Q(A))||P(P)) + log(8mn

δ) + 1

2mn

)
≥ 1− δ

2
, (70)

or, equivalently,

PS1,...,Sn

(
∀ρ,Q : R̃(ρ)− R̂(ρ) ≤ E

A∼ρ

√
KL(Q(A,Q(A))||P(P)) + log(8mn

δ) + 1

2mn

)
≥ 1− δ

2
. (71)

In combination with Lemma A.7, with probability at least 1− δ
2 we have for all ρ ∈ M(A),Q : A → M(M(F)):

R̃(ρ)− R̂(ρ) ≤ E
A∼ρ

√
C2(A,Q,P) + log(8mn

δ) + 1

2mn
(72)

where C2(A,Q,P) is defined as in (51). Combining (72) and Lemma A.2 concludes the proof.

16

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

B. Experimental Details
In this section, we provide the details of our experiments.

B.1. Setup

We follow the experimental setup proposed in Amit & Meir (2018) for benchmarking meta-learning methods. The experiment
consists of two types of tasks based on the MNIST dataset (LeCun & Cortes, 1998). In the first one, each task is the MNIST
classification task with a task-specific permutation in the labels. In the second experiment, each task has the MNIST images
as samples, but a task-specific shuffle is applied to a subset of 200 pixels of the input. In both cases, there are 10 training
tasks and 20 test tasks. We use 600 samples per training task and 100 samples per test task. This choice corresponds to a
setup in which independent learning cannot be expected to provide good performance (the number of samples per task is
small), and meta-learning is necessary.

B.2. Meta-learning Algorithm

As discussed in Section 2, the meta-learning mechanism introduced in Amit & Meir (2018) is to learn a hyper-posterior
over priors in the training phase. For a future task, they minimize a PAC-Bayes bound based on this prior. As mentioned in
Section 5 they train a neural network and use the same prior as the initialization point. This setup does not allow learning an
initialization different from the prior used for regularization.

To show the benefits of the additional freedom provided by our framework, we use the same procedure except that we
learn a separate initialization for the network which can differ from the prior used in the objective, as discussed in Sections
3.1 and 5. In the stochastic setting, we learn a meta-posterior ρ over the initialization prior and the regularization prior
in the training phase. For future tasks, we sample the two distributions (P0, P1) from ρ, initialize our stochastic neural
network by P0, and optimize a PAC-Bayes bound with prior P1. Note that the meta learner is free to make use of the added
flexibility by learning P0 different from P1, or to recover the previous setup by learning P0 identical to P1. We do not have
to fear overfitting from the larger set of parameters, because the objective is based on a generalization bound that enforces
appropriate regularization.

We use Gaussians for all distributions, which allows us to compute the complexity terms in closed form. More precisely, let
d be the number of weights in our neural network and we represent the prior and posteriors by their mean µi and the log
variance value log σi for the weight wi. Formally, we represent each ρ as ρ0 × ρ1, which ρi is a distribution over Pi, and
has the form of N (θi, κ

2
ρI2d×2d). We use a fixed parameter for κρ, and we learn the means θi. The meta-priors also have

the same form, i.e. π = π0 × π1 and πi = N (0, κ2
πI2d×2d), with fixed κπ .

To use our generalization bounds for this mechanism, we apply Theorem 3.1 (with δ = 0.1) and we set we Q(P0, P1) =
P(P0, P1) = δP1

. The result is a bound

R(ρ) ≤ R̂(ρ) +

√
KL(ρ∥π) + log(4

√
n

δ)

2n
+

√
KL(ρ∥π) + E(P0,P1)∼ρ

∑n
i=1 KL(A(Si)||P1)] + log(8mn

δ) + 1

2mn
(73)

in which KL(ρ∥π) has the following form:

KL(ρ∥π) = 4dκρ + ∥θ0∥2 + ∥θ1∥2

2κπ
− 2d+ 4d log(

κπ

κρ
) (74)

Training phase. In the training phase, we optimize the right-hand side of (73) to find the meta-posterior ρ. As in Amit &
Meir (2018) we use the Monte Carlo method to approximate the values for calculating the expectation terms, and use the
re-parametrization trick (Kingma et al., 2015) to optimize the expected value of the KL(A(Si)||P1) terms.

To find ρ we follow the optimization procedure defined in Amit & Meir (2018). For each task i, we assign a stochastic neural
network Qi, initiated in the following way: The mean of each weight is initiated randomly with the Glorot method (Glorot
& Bengio, 2010), and the log-variance of each weight is initiated randomly from N (−10, 0.12).

In their original optimization procedure Amit & Meir (2018) optimize their objective for 200 epochs to find the hyper-
posterior. Because our meta-distribution has two parts: one for initialization and one for regularization, we add the following
change to this procedure: In the first 100 epochs, we assume ρ0 and ρ1 are equal and we minimize the bound to find ρ0 = ρ1

17

More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms

and posteriors Qis. After 100 epochs, we fix ρ0, initialize the Qis by sampling from ρ0 (Since ρ0 is supposed to be the
meta-distribution over initialization prior) and optimize the bound for ρ1 and the Qis for another 100 epochs.

Future tasks. For a future task Tnew with its training dataset Snew we learn its posterior as follows: we sample the
initialization prior from ρ0 to initiate a stochastic neural network Qnew. Then, similar to previous works, we optimize the
following PAC-Bayesian bound with the prior P1 sampled from ρ1 for 100 epochs.

R̂(Qnew) +

√
KL(Qnew||P1) + log(8mδ) + 1

2m
(75)

We use Monte Carlo sampling to approximate the expectations.

B.3. Implementation and Numeric Results

Our implementation is based on the code of Amit & Meir (2018), except that we fixed a bug in their computation of
the KL-divergences, which was also present in later works derived from it. Furthermore, we corrected an issue with
how the gradients of the objective in Rezazadeh (2022) were computed. All experiments were done with the corrected
implementation.1

We use the same network architectures as proposed Amit & Meir (2018): a small ConvNet with two convolutional layers
and one fully-connected layer for the permuted labels task, and a three-layer fully-connected network for the shuffled pixels
task. For further details on the architecture, see the original reference. We used the Adam optimizer with a learning rate
of 10−3 and the number of Monte Carlo iterations was 1 in all experiments. For the fixed parameters of the minimization
objective, we put δ = 0.1, and for the variances of meta-prior π and meta-posterior ρ, we set κπ = 102 and κρ = 10−3.
Moreover, the batch size is 128 and the used loss function is Cross-Entropy loss.

The experimental results are shown in the Table 2. We compare our results with the following prior-based works: The
(MLAP-M) bound of Amit & Meir (2018), The Classic bound of Rezazadeh (2022), and the kl-bound of Guan & Lu
(2022). The results confirm that the extra flexibility of our framework can be beneficial. Specifically, in the permuted labels
experiment, having a different initialization and regularization helps a lot. In the shuffled pixel setting, the flexibility does
not help and we get the same performance as the previous methods. A noteworthy feature of Table 2 is the high error
of Rezazadeh (2022) and Guan & Lu (2022) in the permuted labels task. These are a consequence of the fact that the
complexity terms in their bounds are very big in low-data regime that we are interested in (where meta-learning is meant
to help). As a result, the optimization mainly attempt as reducing the complexity terms, which leads to underfitting and
classification performance as good as a random guess (≈ 90% error). The same problem occurs for the Catoni-type bound
in Guan & Lu (2022) for both experimental settings, so we do not report its results.

Comparison of our bounds with and without different initialization and regularization: We present an ablation study
in Table 3. To see if the added flexibility of our setting is indeed responsible for the improved results rather than the different
objective compared to prior work, we compare our results with the case that the two distributions are equal when we use
the distribution learned for the regularization for the initialization as well. As one can see, using different distributions for
initialization and regularization reduce the error in the permuted labels task, but for shuffled pixels they stay the same.

Bound Shuffled Pixel Permuted Label
initialization identical to prior (ρ0 = ρ1) 10.1 ± 1.3 15.5 ± 4.3

initialization can differ from prior 9.9 ± 1.1 7.9 ± 1.7

Table 3. The ablation study to confirm that the gained performance is due to separate initialization and regularization. We compare our
method with the case if we use the distributions in the end of our training procedure both as the initialization and regularization. As one
can see, having different distributions leads to better performance in one of the tasks.

1https://github.com/hzakerinia/Flexible-PAC-Bayes-Meta-Learning/

18

https://github.com/hzakerinia/Flexible-PAC-Bayes-Meta-Learning/
https://github.com/hzakerinia/Flexible-PAC-Bayes-Meta-Learning/

