
Published as a workshop paper at ICLR 2020

GENERATIVE ODE MODELING WITH
KNOWN UNKNOWNS

Ori Linial
Faculty of Electrical Engineering
Technion Institute of Technology
Haifa, Israel
linial04@campus.technion.ac.il

Danny Eyten
Faculty of Medicine
Technion Institute of Technology
Haifa, Israel
Pediatric critical care unit
Rambam Medical Center
Haifa, Israel
danny.eytan@technion.ac.il

Uri Shalit
Faculty of Industrial Engineering and Management
Technion Institute of Technology
Haifa, Israel
urishalit@technion.ac.il

ABSTRACT

In several crucial applications, domain knowledge is encoded by a system of
ordinary differential equations (ODE). A motivating example is intensive care unit
patients: The dynamics of some vital physiological variables such as heart rate,
blood pressure and arterial compliance can be approximately described by a known
system of ODEs. Typically, some of the ODE variables are directly observed while
some are unobserved, and in addition many other variables are observed but not
modeled by the ODE, for example body temperature. Importantly, the unobserved
ODE variables are “known-unknowns”: We know they exist and their functional
dynamics, but cannot measure them directly, nor do we know the function tying
them to all observed measurements. Estimating these known-unknowns is often
highly valuable to physicians. Under this scenario we wish to: (i) learn the static
parameters of the ODE generating each observed time-series (ii) infer the dynamic
sequence of all ODE variables including the known-unknowns, and (iii) extrapolate
the future of the ODE variables and the observations of the time-series. We address
this task with a variational autoencoder incorporating the known ODE function,
called GOKU-net for Generative ODE modeling with Known Unknowns.

1 INTRODUCTION

Many scientific fields use the language of ordinary differential equations to describe important
phenomena. These include microbiology, ecology, medicine, epidemiology and finance, to name but
a few. Typically, an ODE model of the form dz(t)

dt = fθf (z(t)) is derived from first principles and
mechanistic understanding, where z(t) are time-varying variables and θf are static parameters, or
degrees of freedom, of the ODE model f . Once a model fθf is specified, the values θ̂if and possibly
ẑ(t) are found that best fit an observed dataset. These estimated values are often of great interest: in
ecology these might correspond to the carrying capacity of a species, whereas in medicine they might
represent the cardiovascular dynamics of a patient in the course of critical illness. Predictions based
on extrapolating the estimated models into the future are also widely used, for example predicting
how a patient’s state will evolve or respond to specific interventions.

Usually the assumption is that the dynamic variables z(t) are directly observed, possibly with some
independent noise. At most, an assumption is made that the observations, which we denote hereafter
as x(t), are a known, fixed mapping of the unobserved z(t). This assumption however is not always

1

Published as a workshop paper at ICLR 2020

realistic: in the case of critically-ill patients for example, while some physiological variables are
directly observed such as arterial blood pressure, others that are key determinants of the dynamical
system such as cardiac contractility (the heart’s ability to squeeze blood), stroke volume, or systemic
vascular resistance are not only unobserved but also have a non-trivial mapping to the observed
variables. Moreover, estimating the trajectory of these variables is of great clinical importance both
diagnostically and in tailoring treatments aimed at their modification.

This work addresses the scenario where, on the one hand we have the mechanistic understanding
needed to define the dynamic variables z and a corresponding ODE model fθf , but on the other hand
we cannot assume that we have a good model for how the variables z tie in to the observations x. In
such a scenario, z and θf take on the role of known-unknowns: variables with a concrete meaning,
which we do not know and wish to infer from data. We propose a variational autoencoder framework
called GOKU-net, standing for Generative ODE Known-Unknown net. This is a VAE architecture
with the known differential equation f at its heart, and with an added component that allows us on
the one hand to effectively use standard VAE conditional-Gaussian parameterizations, yet still obtain
estimates of the known-unknown quantities which correspond to their natural physical range.

2 TASK DEFINITION

We consider a setting where we are given N observed trajectories Xi = (xi0, ..., x
i
T−1), i = 1, . . . N ,

each describing a time evolving phenomena observed at times t = 0, . . . T − 1. We assume each of
these time sequences was generated by a noisy unknown emission process g from underlying latent
trajectories Zi = (zi0, ..., z

i
T−1). The dynamics of the latent variables Zi are governed by an ODE

with known functional form f and unknown static parameters θif . Note that the latent trajectories
share the same functional form but have different ODE parameters across the samples i = 1, . . . , N :

dzi(t)

dt
= fθif (zi(t)) (1)

xit = g(zi(t)) + εit, εit ∼ N (0, σxI). (2)

Given a training set {Xi}Ni=1, and a new test sequence X ′ =
(
x′0, . . . , x

′
T−1

)
, our task is three-fold:

(i) Estimate the static parameters θf for X ′, (ii) Estimate the latent states z′0, . . . , z
′
T−1 corresponding

to the times of the observations X ′, and (iii) Extrapolate z′t and x′t for a set of future times t > T − 1.

Consider the pixel-pendulum experiment we report in Section 4.1: The latent state parameter Z is
the pendulum’s angle and angular velocity; and the ODE system f is the classic pendulum equation,
see Eq. (7). We take the parameter θf to be a single number, the pendulum’s length. Finally, we
assume our observations X are frames in a video of the pendulum, as shown in Fig. 2b. That means
the emission function g is the function that takes as input the angle of the pendulum and generates a
28× 28 pixel image. The image is always scaled so that the length cannot be inferred from a single
image. The task here is, given a previously unseen video, to infer the pendulum’s length, the sequence
of angles and velocities, and to extrapolate the video into the future of the sequence.

3 MODEL AND METHOD

Given N observed trajectories Xi = (xi0, ..., x
i
T−1), i = 1, . . . N , our main idea is based on explicit

reconstruction of the latent trajectory Z, and the corresponding ODE parameters θf , in a variational
autoencoder approach (Rezende et al., 2014; Kingma & Welling, 2013). As usual, that implies
learning both an inference function (encoder) and an emission function (decoder). The inference
function takes an observed sequence Xi as input, and has two components: The first infers the
ODE parameters θ̂if , and the second infers the initial t = 0 latent state ẑi0. We next use the known
ODE functional form f , the inferred ODE parameters θ̂if and the inferred initial state ẑi0 to obtain an
estimated trajectory Ẑi by a numerical ODE solver. We then use Ẑi as input to a learned emission
function ĝ, obtaining a reconstructed signal X̂i. We estimate the log-likelihood of the reconstructed
signal, and use stochastic backpropagation through the ODE solver in order to update the parameters
of the inference network and emission model. Extrapolating the latent trajectory using the ODE
solver lets us make estimates of Xi arbitrarily far forwards or backwards in time. Figure 1 illustrates
the proposed model. Implementation details in the appendix.

2

Published as a workshop paper at ICLR 2020

Figure 1: GOKU-net model. An observed signal X(t) is taken as input by a bi-directional LSTM to
produce ẑ0 and θ̂f . The ODE solver uses these values together with the given ODE function f to
produce the latent signal Ẑ. Then reconstruct X̂ using an emission network ĝ. The ODE solver can
integrate ẑt arbitrarily far forward in time, enabling the extrapolation of X for any t = T + τ .

3.1 GROUNDING LOSS FOR UNDER-IDENTIFIED SYSTEMS

In some of our experiments we found that while reconstruction loss on X was small, the inferred
latent Z and θf were far from the ground truth. This can happen because of under-identification:
different sets of θf , z0 can give rise to the same X̂ by way of different emission models. We overcome
this limitation by assuming we have a sparse set of observations from the latent space Z grounding
our signal (Vani et al., 2017). This might be justified in some cases by assuming that observing the
true latent Z is possible but difficult or expensive, thus not performed regularly. As we will see in
Section 4 below, even as little as 1% of the latent data is often enough to ground the latent signals
and parameters. We used these observations only during training, assuming such observations are not
available to our model during test time, see appendix for more details.

4 EXPERIMENTS

In this section we analyze how GOKU-net can be used for observed signal extrapolation and ODE
parameter identification in two domains: an OpenAI Gym video simulator of a pendulum (Brockman
et al., 2016; Greydanus et al., 2019); and a model of the cardiovascular system based on Zenker et al.
(2007). We added the classic Lotka-Volterra system (Lotka, 1910) with added non-linear emission
function in the appendix. In each case we train the model on a set of sequences with varying ODE
parameters (θf) and initial conditions (z0), and test on unseen sequences with parameters and initial
conditions sampled from the same distribution as the train. We evaluate GOKU-net, and relevant
baselines across three grounding conditions: no access to grounding latent states Z (denoted 0%), and
access to randomly sampled 1% and 5% of the latent Z. The grounding observations are available
only during training, except for the direct-inference (DI) baseline which must use them at test time
too. In the appendix we give the full details of the baselines and architectures used for each dataset.

4.1 SINGLE PENDULUM FROM PIXELS

Our second task is a model of a friction-less pendulum from an observed sequence of frames. The
pendulum’s ODE has a single parameter which is the pendulum’s length l, and the ODE state is
zt = (θ(t), ω(t)) (angle and angular velocity). Data set details in the appendix.

4.1.1 EVALUATION AND RESULTS

We present a comparison between our method and the baselines on the pixel-pendulum data set.
Fig. 2a shows how the extrapolation error of the observed signals evolves over time, starting from
time t = 50. In Fig. 2b we demonstrate how GOKU-net extrapolates on a single, randomly selected,
signal when compared to the best performing baseline, the LSTM. The latent signals identification
error and the ODE parameters identification error for different grounding mask rates in terms of L1

error is shown in Table 4 in the appendix.

3

Published as a workshop paper at ICLR 2020

In terms of identification, GOKU-net performs much better than the baselines. We see that even
with no latent samples (0%) GOKU-net identifies the parameter θf quite well, though it still does
not identify Z in this case. When performing extrapolation, we see in Figure 2a that GOKU-net
extrapolates much better than all baselines, even with no samples from the latent Z. This includes
HNN (Greydanus et al., 2019) which has difficulty with the fact that the ODE parameter is not
constant. GOKU-net also outperforms the L-ODE+ baseline, where we aid Latent ODE by giving it
access to some latent space information.

We also experimented with data generated by and ODE system that is different from the one given as
input to GOKU-net (named unknown unknowns). We did this by adding friction to the observed data,
while GOKU is still given with the friction-less ODE. More details in the appendix.

50 60 70 80 90 100
t

0.00

0.05

0.10

0.15

L1
 e

rro
r

GOKU 1%
GOKU 0%
L-ODE
HNN
L-ODE+ 5%
LSTM

(a)

Ground Truth

GOKU

LSTM

0 50 100 150 200
t

0.5

0.0
An

gl
e

Pendulum Angle
GOKU
LSTM
GT

(b)

Figure 2: Pixel pendulum results. (a) shows the mean extrapolation error for observations X over
time steps after end of input sequence. Percentages in legend are percent grounding observation in
training. (b) shows a comparison of the pendulum’s predicted dynamics for GOKU-net that is trained
with mask rate = 1%. The above 3 figures are examples of each method’s predicted frames every 30
time steps and the below figure is the predicted pendulum’s angle per time step.

4.2 CARDIOVASCULAR SYSTEM

Our last experiment uses the cardiovascular system (CVS) model suggested by Zenker et al. (2007).
This ODE system is more involved than the ones above. The system is a simplified mechanistic
model of the cardiovascular system. In this system we wish to find the ODE parameters: θCV S =
(Iexternal, RTPRMod

) since these are known-unknowns that describe recognized clinical conditions:
Iexternal < 0 tells us that a patient is currently losing blood, and RTPRMod

> 0 tells us that their
total peripheral resistance is getting lower, which is a condition of distributive shock as can be seen
in sepsis for example. Both conditions can lead to an observed drop in blood-pressure. Discerning
the relative contribution of each of the two to such a drop is very important clinically as often
the underlying causes are not immediately clear and the choice of correct treatment relies on their
accurate estimation. The ODE state is zt = (SV (t), Pa(t), Pv(t), S(t)). The observed state is the
patient’s vital signs and defined to be: xt = (Pa(t), Pv(t), fHR(t)). Note that some of the observed
variables are the same as some of the latent variables, though with added noise as we explain now.
More details, and data set details in the appendix.

4.2.1 EVALUATION AND RESULTS

In addition to identification and extrapolation, we attempt to classify each Xi series according to
the sign of the inferred Iexternal and RTPRMod

. These correspond to one of four possible clinical
conditions: (1) Healthy (both non-negative), (2) Hemorrhagic shock (Iexternal < 0, RTPRMod

≥ 0),
(3) Distributive shock (Iexternal ≥ 0, RTPRMod

< 0) and (4) Combined shock (Iexternal < 0,
RTPRMod

< 0). We compare this with the following: cluster the observations using K-means with
K = 4, and assign each cluster to the most common true clinical condition.

Table 1 shows results on all the above tasks. We see in Table 1 that without any access to the latent
space, GOKU-net successfully classifies which of the four clinical conditions the signal corresponds
to, and extrapolates much better than the LSTM baseline. In this scenario, using Z as we do for the

4

Published as a workshop paper at ICLR 2020

Method Iexternal RTPRMod Class. X extrap.

GOKU-0% 24 ± 2 3 ± .0 0% 29 ± 1
K-Means n/a n/a 13% n/a

LSTM n/a n/a n/a 90 ± 2
DI-5% 1 ± .0 0 ± .0 0% 11 ± 10

GOKU-5% 26 ± 4 3 ± .0 0 26 ± 1

Table 1: CVS parameter identification and extrapolation error (×10−3), and classification error of
clinical conditions. See text for K-means method. L-ODE and L-ODE+ failed and not shown.

grounding error is not realistic: measuring stroke-volume SV (t) is a very hard task, and measuring
S(t) is impossible because it has no measurable meaning (it is a control signal). Nonetheless we
add the grounding baselines for comparison, noting that DI with mask rate lower than 5% failed
completely in reconstructing X .

5 ACKNOWLEDGMENTS

We wish to thank Neta Ravid for her help with the CVS model, and Guy Tennenholtz and Hagai
Rossman for their useful comments on the manuscript.

REFERENCES

Mauricio Alvarez, David Luengo, and Neil D Lawrence. Latent force models. In Artificial Intelligence
and Statistics, pp. 9–16, 2009.

David Barber and Yali Wang. Gaussian processes for bayesian estimation in ordinary differential
equations. In International conference on machine learning, pp. 1485–1493, 2014.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym. arXiv preprint arXiv:1606.01540, 2016.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differen-
tial equations. In Advances in neural information processing systems, pp. 6571–6583, 2018.

Li-Fang Cheng, Bianca Dumitrascu, Michael Zhang, Corey Chivers, Michael Draugelis, Kai Li,
and Barbara E Engelhardt. Patient-specific effects of medication using latent force models with
gaussian processes. arXiv preprint arXiv:1906.00226, 2019.

Frank Dondelinger, Dirk Husmeier, Simon Rogers, and Maurizio Filippone. ODE parameter inference
using adaptive gradient matching with gaussian processes. In Artificial intelligence and statistics,
pp. 216–228, 2013.

Javier González, Ivan Vujačić, and Ernst Wit. Reproducing kernel hilbert space based estimation of
systems of ordinary differential equations. Pattern Recognition Letters, 45:26–32, 2014.

Nico S Gorbach, Stefan Bauer, and Joachim M Buhmann. Scalable variational inference for dynamical
systems. In Advances in Neural Information Processing Systems, pp. 4806–4815, 2017.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In Advances
in Neural Information Processing Systems, pp. 15353–15363, 2019.

Markus Heinonen, Cagatay Yildiz, Henrik Mannerström, Jukka Intosalmi, and Harri Lähdesmäki.
Learning unknown ODE models with Gaussian processes. In International Conference on Machine
Learning, pp. 1959–1968, 2018.

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence tagging. arXiv
preprint arXiv:1508.01991, 2015.

5

Published as a workshop paper at ICLR 2020

Andrew H Jazwinski. Stochastic processes and filtering theory. Courier Corporation, 2007.

Simon J Julier and Jeffrey K Uhlmann. New extension of the Kalman filter to nonlinear systems. In
Signal processing, sensor fusion, and target recognition VI, volume 3068, pp. 182–193. Interna-
tional Society for Optics and Photonics, 1997.

Rudolf Emil Kalman et al. Contributions to the theory of optimal control. Bol. soc. mat. mexicana, 5
(2):102–119, 1960.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Rahul G Krishnan, Uri Shalit, and David Sontag. Structured inference networks for nonlinear state
space models. In Thirty-first aaai conference on artificial intelligence, 2017.

Alfred J Lotka. Contribution to the theory of periodic reactions. The Journal of Physical Chemistry,
14(3):271–274, 1910.

Ðord̄e Miladinović, Muhammad Waleed Gondal, Bernhard Schölkopf, Joachim M Buhmann, and
Stefan Bauer. Disentangled state space representations. arXiv preprint arXiv:1906.03255, 2019.

Said Ouala, Duong Nguyen, Lucas Drumetz, Bertrand Chapron, Ananda Pascual, Fabrice Collard,
Lucile Gaultier, and Ronan Fablet. Learning latent dynamics for partially-observed chaotic systems.
arXiv preprint arXiv:1907.02452, 2019.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International Conference on Machine
Learning, pp. 1278–1286, 2014.

Hossein Soleimani, Adarsh Subbaswamy, and Suchi Saria. Treatment-response models for counter-
factual reasoning with continuous-time, continuous-valued interventions. In 33rd Conference on
Uncertainty in Artificial Intelligence, UAI 2017. AUAI Press Corvallis, 2017.

Ankit Vani, Yacine Jernite, and David Sontag. Grounded recurrent neural networks. arXiv preprint
arXiv:1705.08557, 2017.

Eric A Wan and Rudolph Van Der Merwe. The unscented Kalman filter for nonlinear estimation.
In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and
Control Symposium (Cat. No. 00EX373), pp. 153–158. Ieee, 2000.

Philippe Wenk, Alkis Gotovos, Stefan Bauer, Nico Gorbach, Andreas Krause, and Joachim M
Buhmann. Fast Gaussian process based gradient matching for parameter identification in systems
of nonlinear ODEs. arXiv preprint arXiv:1804.04378, 2018.

Philippe Wenk, Gabriele Abbati, Stefan Bauer, Michael A Osborne, Andreas Krause, and Bernhard
Schölkopf. Odin: ODE-informed regression for parameter and state inference in time-continuous
dynamical systems. arXiv preprint arXiv:1902.06278, 2019.

Sven Zenker, Jonathan Rubin, and Gilles Clermont. From inverse problems in mathematical physiol-
ogy to quantitative differential diagnoses. PLoS computational biology, 3(11), 2007.

6

Published as a workshop paper at ICLR 2020

A RELATED WORK

We divide existing work into several categories. First, work on parameter identification in dynamical
systems which assumes both the ODE function f and the emission function g are known. Second,
work on latent state sequence modeling. This work does not assume any known dynamics or emission
model. Finally, there is recent work tying together machine learning models and physical models
in a task-specific way. We summed up the differences between some of these methods and ours in
Table 2.

Methods for parameter identification ODE parameter identification has been the subject of many
decades of research across many scientific communities. For example, classic work on state-space
models, including methods such as the Kalman filter (Kalman et al., 1960) and its non-linear
extensions (Jazwinski, 2007; Julier & Uhlmann, 1997; Wan & Van Der Merwe, 2000) can learn the
parameters of a dynamic system from observations; however, they are limited to the case where the
emission function g is known. Moreover, they usually perform inference on each sequence separately.
Many machine learning methods have been proposed for this task, for example using reproducing
kernel Hilbert space methods (González et al., 2014) and Gaussian Processes (Dondelinger et al.,
2013; Barber & Wang, 2014; Gorbach et al., 2017), Fast Gaussian Process Based Gradient Matching
(FGPGP, Wenk et al. (2018)) and recent follow up work (Wenk et al., 2019). In general these methods
assume that the given signal is a the latent signal with independent additive noise.

Sequence modeling Methods for extrapolation of a given signal, assuming there is some unknown
but arbitrary latent sequence have been proposed in LSTM Graves (2013), Deep Markov Models (Kr-
ishnan et al., 2017), Latent-ODE (Chen et al., 2018), NbedDyn (Ouala et al., 2019) the Disentangled
State Space Model (DSSM, Miladinović et al. (2019)), and using Gaussian Processeses (Heinonen
et al., 2018), among many others. These methods do not infer the ODE parameters as they do not learn
any intrinsically meaningful latent space. They also do not exploit the prior information embedded in
the mechanistic knowledge underlying the derivation of the ODE system f . Of the above methods,
DSSM has been shown to learn a latent space which might under the right circumstances correspond
to meaningful parameters, but that is not guaranteed, nor is it the goal of the method. In the healthcare
regime, Cheng et al. (2019) proposed a method for learning a sequence which includes a dynamic
system in the form of a latent force model (Alvarez et al., 2009); this approach builds on learning
to fit general basis functions to describe the observed dynamics, and does not take as input an ODE
system derived from prior mechanistic understanding.

Machine learning with mechanistic components Closer in spirit to our work is the work by
Greydanus et al. (2019) on Hamiltonian neural networks. In their model the latent space can be
interpreted in the form of learning a conserved physical quantity (Hamiltonian). Although related
to our work, we note that not all ODE systems could be easily written as a Hamiltonian system,
and not all of them have easily identified conserved quantities. Specifically, the systems we are
interested in and that motivate our research do not usually have a Hamiltonian representation. In
the field of learning for healthcare, Soleimani et al. (2017) show how a specific ODE model, the
linear time-invariant impulse-response model, can be used in conjunction with latent-space models
to estimate how a patient’s measurements would react to interventions. This model brings together
mechanistic modeling in terms of response to impulse treatments, along with data-driven modeling
using Gaussian processes. It does not learn emission functions from Z, and focuses on the specific
ODE model relevant to the task they address.

B MODEL

B.1 GENERATIVE MODEL

Using the relationships between latent and observed variables given in Eqs. equation 1 and equation 2,
we define a generative model over the set of ODE parameters θf , the latent states Z, and the
observations X . Note that while we assume the true ODE function f is given to us, we estimate the
emission by a learned function ĝ.

An important issue we must address is that in standard VAEs the prior distributions of the latent
vectors z0 and θf are set to be a zero-mean unit-variance Gaussian. However, in our case the latent
space corresponds to specific variables with physical constraints: for example, the variable for blood

7

Published as a workshop paper at ICLR 2020

Method ODE function Emission
function

θf and Z
identification

X extrapo-
lation

LSTM (Graves, 2013) not required learned 7 3
Latent-ODE (Chen et al., 2018) not required learned 7 3
HNN (Greydanus et al., 2019) can be used learned 7 3
DSSM (Miladinović et al., 2019) not required learned 7 3
NbedDyn (Ouala et al., 2019) not required partially given 7 3
ODIN (Wenk et al., 2019) required given 3 7
UKF (Wan & Van Der Merwe, 2000) required given 3 3
GOKU-net required learned 3 3

Table 2: Related Work: for each method we indicate whether it requires the ODE function f as
input; whether it assumes the emission function g is known or can it learn it; and whether it allows
identification of the “known-unknown” static parameters θf and dynamic variables Z; and whether it
allows for extrapolating the observed signal X .

volume has a limited set of realistic values. We overcome this by defining arbitrary latent vectors z̃0
and θ̃f with standard Gaussian priors, and add deterministic transformations hz and hθf such that:

z̃0 ∼ N (0, I), z0 = hz(z̃0), (3)

θ̃f ∼ N (0, I), θf = hθ(θ̃f). (4)

We then have zt, t > 0 and X generated following Eqs. equation 1 and equation 2. With the
above generative model, we have the following factorized joint distribution over latent and observed
variables:

p(X,Z, θf , z̃0, θ̃f) =

p(z̃0)p(θf)p(z0|z̃0)p(θf |θ̃f)

T−1∏
t=1

p(xt|zt)p(zt|zt−1, θf).

This follows due to the conditional independence: for t′ 6= t: xt ⊥⊥ (zt′ , θf , θ̃f , z̃0)|zt and for
t′ 6= t− 1: zt ⊥⊥ (X, θ̃f , z̃0, zt′)|zt−1, θf . The probabilities p(z0|z̃0) and p(θf |θ̃f) are deterministic,
meaning they are Dirac functions with the peak defined by Eqs. (3) and (4). The transition distribution
p(zt|zt−1, θf) is also a Dirac function with the peak defined by Eq. (1). Finally, the emission
distribution p(xt|zt) is defined by Eq. (2).

B.2 INFERENCE

We define the following joint posterior distribution over the unobserved random variables Z, θf , z̃0
and θ̃f , conditioned on a sequence of observations X:

q(Z, θf , z̃0, θ̃f |X) =

q(z̃0|X)q(θ̃f |X)q(z0|z̃0)q(θf |θ̃f)

T−1∏
t=1

q(zt|zt−1, θf).

The inference network conditionals q(zt|zt−1, θf), q(z0|z̃0) and q(θf |θ̃f) are deterministic and
mirror the generative model as defined in Eqs. (1), (3) and (4), respectively. For the posterior
probabilities q(z̃0|X) and q(θ̃f |X) we use conditional normal distributions as follows:

q(z̃0|X) = N (µz̃0 , σz̃0), [µz̃0 , σz̃0] = φencz̃0 (X),

q(θ̃f |X) = N (µθ̃f , σθ̃f), [µθ̃f , σθ̃f] = φenc
θ̃f

(X),

where φencz̃0
and φenc

θ̃f
are learned neural networks.

8

Published as a workshop paper at ICLR 2020

B.3 OBJECTIVE

We define our objective function using the evidence lower-bound (ELBO) variational objective
proposed by Kingma & Welling (2013); Rezende et al. (2014):

L(X) = Eq(Z,θf ,θ̃f ,z̃0|X)

[
log p(X|Z, θf , z̃0, θ̃f)

]
−KL

[
q(Z, θf , z̃0, θ̃f |X)||p(Z, θf , z̃0, θ̃f)

]
.

(5)

Since for all t′ 6= t we have xt ⊥⊥ (xt′ , zt′ , θf , z̃0, θ̃f)|zt, the first term of equation 5 decomposes as:

Eq(Z,θf ,θ̃f ,z̃0|X)

[
log p(X|Z, θf , z̃0, θ̃f)

]
=

T−1∑
t=0

Eq(zt|X) [log p(xt|zt)] .

The KL term decomposes into the following sum of KL terms:

KL
[
q(Z, θf , z̃0, θ̃f |X)||p(Z, θf , z̃0, θ̃f)

]
= KL

[
q(θ̃f |X)||p(θ̃f)

]
+KL

[
q(z̃0|X)||p(z̃0)

]
.

The full derivation of the objective and the above decompositions are given in Appendix B.6.

B.4 GROUNDING LOSS

As discussed in Section 3.1 we added sparse observations of the latent signal to ground the latent
signal to its correct values. To this end, we added the following term to the objective function, with
an adjustable hyper parameter:

Lground =

T−1∑
t=0

M(t) · ‖ẑt − zobserved
t ‖22 (6)

where M(t) ∈ {0, 1} indicates for which time points the latent variables are observed. ẑt is the latent
vector predicted by the model and zobservedt is the observed samples of the latent vectors.

B.5 IMPLEMENTATION

We model [ĝ, hz, hθf , φ
enc
z̃0
, φenc
θ̃f

] as neural networks: ĝ, hz and hθf as fully connected neural
networks; φencz̃0

as an RNN which going over the observed X backwards in time to predict z0; and
φenc
θ̃f

as a bi-directional LSTM (Huang et al., 2015) with fully connected networks from X into θ̃f .
We use bi-directional LSTM for θf identification since θf is time invariant.

In order to perform stochastic backpropagation, we must calculate the gradient through the ODE
defined by f and θf . We do this by using the Latent-ODE implementation (Chen et al., 2018) for the
ODE solver with the adjoint method, set to use the Runge-Kutta-4 numerical integration method.

B.6 OBJECTIVE FUNCTION

Derivation of the likelihood term in the objective (left term in Eq. (5)):

Eq(Z,θf ,θ̃f ,z̃0|X)

[
log p(X|Z, θf , z̃0, θ̃f)

]
= Eq(Z,θf ,θ̃f ,z̃0|X)

[
T−1∏
t=0

log p(xi|zi)

]

=

T−1∑
t=0

Eq(Z,θf ,θ̃f ,z̃0|X) [log p(xi|zi)]

=

T−1∑
t=0

Eq(zi|xi) [log p(xi|zi)] .

This follows since for t′ 6= t: xt ⊥⊥ (zt′ , θf , θ̃f , z̃0)|zt.

9

Published as a workshop paper at ICLR 2020

Before decomposing the KL term, we note that the conditionals p(z0|z̃0) and p(θf |θ̃f) are determin-
istic, meaning they are Dirac functions with the peak defined by Eqs. (3) and (4). The transition
distribution p(zt|zt−1, θf) is also a Dirac function with the peak defined by Eq. (1) as stated in
Section 3.

Therefore, The KL term from Eq. (5) can be written as:

KL
[
q(Z, θf , z̃0, θ̃f |X)||p(Z, θf , z̃0, θ̃f)

]
=∫

Z

∫
θf

∫
z̃0

∫
θ̃f

q(z̃0|X)q(θ̃f |X)q(z0|z̃0)q(θf |θ̃f)

T−1∏
t=1

q(zt|zt−1, θf)·

· log

[
p(z̃0)p(θ̃f)p(z0|z̃0)p(θf |θ̃f)

∏T−1
t=1 p(zt|zt−1, θf)

q(z̃0|X)q(θ̃f |X)q(z0|z̃0)q(θf |θ̃f)
∏T−1
t=1 q(zt|zt−1, θf)

]
.

The KL term we got, decomposes into the sum of 3 terms:

(i) The first term:∫
Z

∫
θf

∫
z̃0

∫
θ̃f

q(z̃0|X)q(θ̃f |X)q(z0|z̃0)q(θf |θ̃f)

T−1∏
t=1

q(zt|zt−1, θf) log

[
p(z̃0)����p(z0|z̃0)

q(z̃0|X)����q(z0|z̃0)

]
=

∫
θ̃f

q(θ̃f |X) log

[
p(z̃0)

q(z̃0|X)

] ∫
Z

∫
θf

∫
z̃0

q(z̃0|X)q(z0|z̃0)q(θf |θ̃f)

T−1∏
t=1

q(zt|zt−1, θf) =

KL (q(z̃0|X)||p(z̃0)) ,

where p(z0|z̃0) = q(z0|z̃0) by construction since both are determined exactly by Eq. (3).
(ii) In the same way, we get:∫

Z

∫
θf

∫
z̃0

∫
θ̃f

q(z̃0|X)q(θ̃f |X)q(z0|z̃0)q(θf |θ̃f)

T−1∏
t=1

q(zt|zt−1, θf) log

[
p(θ̃f)p(θf |θ̃f)

q(θ̃f |X)q(θf |θ̃f)

]
=

KL
(
q(θ̃f |X)||p(θ̃f)

)
,

where p(θf |θ̃f) = q(θf |θ̃f) by construction since both are determined exactly by Eq. (4).
(iii) The last term:∫

Z

∫
θf

∫
z̃0

∫
θ̃f

q(z̃0|X)q(θ̃f |X)q(z0|z̃0)q(θf |θ̃f)

T−1∏
t=1

q(zt|zt−1, θf) log

[∏T−1
t=1 p(zt|zt−1, θf)∏T−1
t=1 q(zt|zt−1, θf)

]
= 0,

where p(zt|zt−1, θf) = q(zt|zt−1, θf) by construction since both are determined exactly by
the ODE system f . Thus the logarithmic term equals 0.

C ALGORITHMS

The algorithms below give the training procedure for a single iteration and a batch of size 1. The
extension to larger batch sizes is straightforward. The notations forXi, Zi andM i are time sequences
of length T for the observed signal, the observed latent signal and the grounding mask indicator (Eq.
equation 6) respectively.

At inference time, we are given the signals Xi, Zi,M i of length T , but extrapolate to time T + τ .
Meaning, the ODE-solver for-loop is from time t = 1 to t = T + τ , and the resulting sequences X̂i

and Ẑi are of length T + τ .

Algorithm 1 gives the training procedure for GOKU-net.

Algorithm 2 gives the training procedure for the Direct Identification (DI) baseline described in
Section 4. In it, we first learn the parameters θ̂if and the initial state of the ODE ẑ0 of every signal

10

Published as a workshop paper at ICLR 2020

in the train and test sets. We then evaluate Ẑi for the train set, and use these to learn the emission
function ĝ, using the given train set signals Xi. In some cases, learning ẑi0 was too difficult for the
baseline so we tried a different approach. We used the learned parameters θ̂if , the given ODE function
f and the first observed latent vector zit′ (meaning the mask M i(t′) = 1 and M i(t < t′) = 0), and
used the ODE solver to calculate ẑi0 backwards in time.

To address the unknown-unknowns task, we tested two algorithms: Algorithms 3 and 4. These
algorithms are very similar to Algorithm 1, with the changes highlighted in blue. The main changes
are that these methods also include an abstract part to the latent vectors which model the Unknown
Unknowns part of the ODE. Algorithm 3 models the abstract part as a different trajectory with a
different ODE which is modeled as a neural network such that Ẑi = Zi,ODE + Zi,abs. Algorithm 4
models the abstract part inside the ODE function itself. I.e., the ODE is changed to be: dzt

dt =
fODE(zt, θf) + fabs(zt).

Algorithm Algorithm 5, describing the Latent-ODE+ (L-ODE+) baseline, follows the algorithm in
Chen et al. (2018) while also grounding a set number of latent space dimensions to the observed one
Z. We denoted the first D dimensions of the latent sequence of T time steps as ẐiD ∈ RT×D, where
D is the ODE dimension. The changes with respect toe Chen et al. (2018) are colored in blue.

Algorithm 1 GOKU-net
Input:

1. sequence Xi = (x0, ..., xT−1)
2. ODE function f
3. observed latent sequence Zi with mask M i

4. ODE solver
5. hyper-parameters λ1 and λ2

initialize the neural nets φencz̃0 , φenc
θ̃f

, hz , hθ and ĝ.

[µz̃0 , σz̃0] = φencz̃0 (Xi), z̃0 ∼ N (µz̃0 , σz̃0), ẑ0 = hz(z̃0)

[µθ̃f , σθ̃f] = φenc
θ̃f

(Xi), θ̃f ∼ N (µθ̃f , σθ̃f), θ̂f = hz(θ̃f)

for t = 1, ..., T − 1 do
ẑt = ODEsolver(f, θ̂f , ẑt−1)

end for
X̂i = ĝ(Ẑi)

ll_loss = Llikelihood(Xi, X̂i); {see first term in Eq. (5)}
kl_loss = Lkl(µz̃0 , σz̃0 , µθ̃f , σθ̃f); {see second term in Eq. (5)}

grouding_loss = Lground(Zi,M i, Ẑi); {see Eq. (6)}
loss = ll_loss + λ1 kl_loss + λ2 grouding_loss
backpropagate(loss)

11

Published as a workshop paper at ICLR 2020

Algorithm 2 Direct Identification (DI)
Input:

1. ODE function f
2. ODE solver
3. train and test sets of observed signals Xi, Zi and M i.

for train and test sets do
Initialize θ̂f , ẑ0
for t = 1, ..., T − 1 do
ẑt = ODEsolver(f, θ̂f , ẑt−1)

end for
loss = ||Zi − Ẑi||2
θ̂f := θ̂f + λ ∂loss

∂θ̂f
{backpropagate loss through the ODE solver}

ẑ0 := ẑ0 + λ ∂loss
∂ẑ0

end for
for train set do
X̂i = ĝ(Ẑi)

generative_loss = ||X − X̂i||2
backpropogate(generative_loss)

end for

Algorithm 3 GOKU with Unknown Unknowns - Z version
Input:

1. sequence Xi = (x0, ..., xT−1)
2. ODE function f
3. observed latent sequence Zi with mask M i

4. ODE solver
initialize the neural nets fabs , φencz̃0 , φenc

θ̃f
, hz , hθ and ĝ.

[µz̃0 , σz̃0] = φencz̃0 (Xi), z̃0 ∼ N (µz̃0 , σz̃0), z0 = hODEz (z̃0)

[µθ̃f , σθ̃f] = φenc
θ̃f

(Xi), θ̃f ∼ N (µθ̃f , σθ̃f), θ̂f = hODEz (θ̃f)

zabs0 = φabs(z0||θ̂f)
for t = 1, ..., T − 1 do
zODEt = ODEsolver(f, θ̂f , zt−1)
zabst = ODEsolver(fabs, z

abs
t−1)

end for
Ẑi = Zi,ODE + Zi,abs

X̂i = ĝ(Ẑi)

loss = Llikelihood(Xi, X̂i) + λ1Lkl(µz̃0 , σz̃0 , µθ̃f , σθ̃f) + λ2Lground(Zi,M i, Ẑi) {see Eqs. (5)
and (6)}
backpropagate(loss)

Algorithm 4 GOKU with Unknown Unknowns - f version
Input:

1. sequence Xi = (x0, ..., xT−1)
2. ODE function f
3. observed latent sequence Zi with mask M i

4. ODE solver
initialize the neural nets fabs , φencz̃0 , φenc

θ̃f
, hz , hθ and ĝ.

[µz̃0 , σz̃0] = φencz̃0 (Xi), z̃0 ∼ N (µz̃0 , σz̃0), z0 = hODEz (z̃0)

[µθ̃f , σθ̃f] = φenc
θ̃f

(Xi), θ̃f ∼ N (µθ̃f , σθ̃f), θ̂f = hODEz (θ̃f)

for t = 1, ..., T − 1 do
zODEt = ODEsolver(f+ fabs , θ̂f , zt−1)

end for
X̂i = ĝ(Ẑi)

loss = Llikelihood(Xi, X̂i) + λ1Lkl(µz̃0 , σz̃0 , µθ̃f , σθ̃f) + λ2Lground(Zi,M i, Ẑi) {see Eqs. (5)
and (6)}
backpropagate(loss)

12

Published as a workshop paper at ICLR 2020

Algorithm 5 Grounded Latent ODE (L-ODE+)
Input:

1. sequence Xi = (x0, ..., xT−1)
2. observed latent sequence Zi with mask M i

3. ODE solver
4. true ODE dim D

initialize the neural nets fabs, φenc and ĝ.
[µz0 , σz0] = φenc(Xi), ẑ0 ∼ N (µz0 , σz0)
for t = 1, ..., T − 1 do
ẑODEt = ODEsolver(fabs, ẑt−1)

end for
X̂i = ĝ(Ẑi)

ll_loss = Llikelihood(Xi, X̂i)
kl_loss = Lkl(µz0 , σz0)
ẐiD = ({ẑ0}D−1

d=0 , ..., {ẑT−1}D−1
d=0) {see text for explanation}

grounding_loss = Lground(Zi,M i, ẐiD) {see Eq. (6)}
loss = ll_loss + λ1 kl_loss + λ2 grouding_loss
backpropagate(loss)

13

Published as a workshop paper at ICLR 2020

D EXPERIMENTS

In this section we provide details for the experiments section. We start by describing the baselines
we used, and then provide dataset details for three domains: the two described in the text (single
pendulum and cardiovascular system) and the Lotka-Volterra domain. Each dataset was randomly
divided into train and test sets (90%, 10%).

D.1 BASELINES

Direct identification (DI) Separately for each sparse sequence Zobserved we infer θf and z0 by
setting the loss function to be Eq. (6), and using gradient decent through an ODE solver; details
in the appendix. Since this method does not use the observations X , we assume, only for the DI
baseline, that sparse Z observations are also available for the test set. In order to obtain estimates for
the observations X under this baseline, we construct a training set where the instances are the (Ẑ, θ̂f)
inferred for each training sequence, and the labels are the corresponding observations X . We then
learn a function ĝ predicting X from (Ẑ, θ̂f).

Data-driven For data-driven baselines with no input from mechanistic models we use (i) LSTM
(Graves, 2013) and (ii) Latent-ODE (Chen et al., 2018), originally called Neural-ODE; we denote
it L-ODE. These methods can only be used to extrapolate the given signal X for future time steps,
since their latent space has no meaningful interpretation.

Data-driven with grounding Since in some of our experiments we assume sparse access to true
latent Z in training, we created an extension of L-ODE (Chen et al., 2018) to this scenario. Assume
z(t) ∈ Rk. We designate k of the latent dimensions of the L-ODE model and ground them to the
available Zobserved with the same loss term equation 6 as the DI baseline and GOKU-net. We call this
baseline L-ODE+.

D.2 LOTKA-VOLTERRA

This domain was not described in the text and is brought here. The classic predator-prey model
known as the Lotka-Volterra equations (LV), initially introduced by Lotka (1910) can be described
mathematically as the following ODE:

żprey(t) = αzprey(t)− βzprey(t)zpredator(t)

żpredator(t) = −γzpredator(t) + δzprey(t)zpredator(t).

The ODE parameters we wish to infer are therefore θLV = (α, β, γ, δ), and the ODE state we wish
to infer is zt = (zprey(t), zpredator(t)).

Data Set We generated 10,000 sequences each of 100 time points with time step of ∆t = 0.05.
The four ODE parameters were uniformly sampled from θLV ∼ U [1, 2]4, and initial ODE conditions
uniformly sampled from z0 ∼ U [1.5, 3]2. We then generated a sequence of 4-dimensional observa-
tions xt using a non-linear, deterministic, and time-independent emission function g. The function
g was created by randomly setting the weights of a neural network with 10-units hidden layer and
ReLU activation function (the network’s weights were initialized using PyTorch’s default weight
initialization). The observations were additionally corrupted with white Gaussian noise with standard
deviation of σx = 0.01. Our test set had sequences of length 400 each, where the first 100 time points
were the test input, and the additional 300 time points were used only for evaluating the signals’
extrapolation.

Evaluation and results The LV ODE parameters have some invariance. The stationary point of
the LV ODE is known to be (αβ ,

γ
δ). We evaluate the error in estimating the stationary point over the

test set:

ELVθf =
1

Ntest

Ntest∑
i=1

√(
αi
βi
− α̂i

β̂i

)2

+

(
γi
δi
− γ̂i

δ̂i

)2

.

We present the results in Table 3, and the X extrapolation results in Fig. 3. We see that in terms of
identification, GOKU-net very clearly outperforms the baselines. However, it requires at least a small

14

Published as a workshop paper at ICLR 2020

number of Z samples, and without them identification performance suffers. In terms of extrapolation
GOKU-net also outperforms the baselines by a large margin. The data-driven approaches LSTM
and L-ODE deteriorate quickly as the extrapolation goes further in time. The direct identification
method completely failed in learning the mapping from Z to X: even though it had the correct neural
network structure for g, it failed to learn good network weights. GOKU-net can use its access to the
underlying ODE structure to extrapolates much more gracefully. This is true even when it has no
access to the latent Z.

100 150 200 250 300 350 400
t

0.00

0.25

0.50

0.75

1.00
L1

 e
rro

r
GOKU 1%
GOKU 0%
DI 1%
Latent ODE
LODE+ 5%
LSTM

Figure 3: LV: mean extrapolation error for observations X over time steps after end of input sequence.
Percentages in legend are percent grounding observation in training.

Method 5% 1% 0%

GOKU-net 0.044 ± .001 0.047 ± .001 3.287 ± .025
DI 0.006 ± .001 0.192 ± .006 n/a

(a) θf identification using ELVθf

Method 5% 1% 0%

GOKU-net 0.068 ± .001 0.077 ± .001 5.158 ± .046
DI 0.033 ± .001 1.609 ± .020 n/a
L-ODE+ 0.548 ± .008 0.769 ± .008 n/a

(b) Z identification

Method 5% 1% 0%

GOKU-net 0.097 ± .003 0.094 ± .003 0.187 ± .005
DI 0.119 ± .002 0.644 ± .004 n/a
LSTM n/a n/a 0.485 ± .006
L-ODE n/a n/a 0.567 ± .004
L-ODE+ 0.541 ± .005 0.552 ± .005 n/a

(c) X extrapolation

Table 3: Mean error across test samples of the Lotka-Volterra experiment, L1 for Z and X , and
ELVθf for θf . 5%, 1% and 0% indicate how many of the Z latent states were observed. DI is direct
identification, L-ODE denotes Latent ODE (Chen et al., 2018), and L-ODE+ is the grounded version
described in D.1. n/a are cases where the noted method is not applicable for the input. Methods not
presented cannot perform the given task.

Algorithms implementation details In GOKU we first use an MLP with ReLU activation and
200 hidden units which results in a vector of dimension 64. For φencz̃0

we used an RNN with hidden
dimension of 64 followed by a linear transformation to µz̃0 and another linear transformation to
σz̃0 , both with dimension of 64. φenc

θ̃f
is very similar to φencz̃0

with the small change of using a
bi-directional LSTM instead of RNN. For the h function we used an MLP, with 200 hidden units and

15

Published as a workshop paper at ICLR 2020

ReLU activation. The final layer followed by a Softplus activation so that the θLV and z0 would be
physically feasible. The emission function we used is an MLP with ReLU activation and 200 hidden
units. In Latent ODE, We used the same layers for the input to RNN network as GOKU, followed by
an RNN which then transforms linearly to µz0 and σz0 with dimension 4. The ODE function fabs
is modeled as a neural network of sizes 4→ 200→ 200→ 4 with ReLU activation. The emission
function is the same as GOKU. In LSTM, We used an LSTM with 4 layers and a hidden size of 128,
followed by the same emiision function as GOKU. In DI we used the same emission function as in
GOKU.

D.3 SINGLE PENDULUM FROM PIXELS

Our second task is a model of a friction-less pendulum from an observed sequence of frames. We
describe pendulums as non-linear oscillators obeying the following ODE:

dθ(t)

dt
= ω(t),

dω(t)

dt
= −g

l
sin θ(t). (7)

We set the gravitational constant g to 10. The ODE has a single parameter which is the pendulum’s
length l, and the ODE state is zt = (θ(t), ω(t)). This task is more challenging than the Lotka-Volterra
one above, because of the complex emission function we used, as we explain next.

Data Set We followed Greydanus et al. (2019) and used the Pendulum-v0 environment from
OpenAI Gym (Brockman et al., 2016). For training we simulated 500 sequences of 50 time points,
with time steps of ∆t = 0.05. We generated the data as in Greydanus et al. (2019), with one important
change: the ODE parameter l was uniformly sampled, l ∼ U [1, 2] instead of being constant, making
the task much harder. As in Greydanus et al. (2019), we pre-processed the observed data such that
each frame is of size 28× 28. Each test set sequence is 100 time steps long, where the first 50 time
steps are given as input, and the following 50 were used only for evaluating the signals extrapolation.

Evaluation and results In addition to the results given in Section 4.1, We give here the identifica-
tion of θ̂if and Ẑ. Table 4 shows the identification error for both tasks.

Algorithms implementation details For all algorithms we used an input-to-rnn network and
emission function exactly as suggested in Greydanus et al. (2019), composed of four fully-connected
layers with ReLU activations and residual connections. The output of the input-to-rnn net dimension
is 32.

In GOKU, The RNN and LSTM are implemented as in the LV experiment with output of dimension
16, followed by a linear transformation to µz0 and σz0 of dimension 16 as well. The h functions are
implemented as in the LV, except that hz output is linear without the softplus activation. In Latent
ODE, The networks are implemented as in the LV experiment with the small change that the latent
dimension is 16. In LSTM, We used an LSTM with 4 layers and a hidden size of 16, followed by the
same emission function as GOKU. In HNN, We used the code provided by Greydanus et al. (2019).
The only change made is that l is uniformly sampled instead of being constant.

Method 5% 1% 0%

GOKU-net 0.021 ± .005 0.028 ± .008 0.096 ± .009
DI 0.077 ± .029 0.511 ± .044 n/a

(a) θf identification

Method 5% 1% 0%

GOKU-net 0.072 ± .005 0.241 ± .016 2.417 ± .134
DI 0.092 ± .023 0.742 ± 0.076 n/a
L-ODE+ 0.276 ± 0.013 0.840 ± 0.047 n/a

(b) Z identification

Table 4: Pixel-pendulum mean L1 error across test samples with standard error of the mean of the
pixel-pendulum experiment. Details as in Table 3. X extrapolation given in Figure 2a

16

Published as a workshop paper at ICLR 2020

D.4 PIXEL PENDULUM WITH UNKNOWN UNKNOWNS

In this experiment we aimed to show how GOKU can be modified to handle unknown unknowns in
the ODE: We are given an ODE system that only partially describes the system that created the data.
Specifically in this scenario, the pixel-pendulum data is created with a friction model:

dθ(t)

dt
= ω(t),

dω(t)

dt
= −g

l
sin θ(t)− b

m
ω(t),

and we are only given with the friction-less ODE system in Eq. (7). We testes two models: the first one
models the abstract latent trajectory Zi,abs and then evaluates Ẑ = Zi,ODE + Zi,abs (Algorithm 3)
and the second one models the time derivatives of the unknown part, making the ODE functional
form as:

dzt
dt

= fODE(zt, θf) + fabs(zt),

where fabs is modeled as a neural network (Algorithm 4).

Data set We created this data set in the same way as in the friction-less pixel-pendulum experiment.
Here we set l ∼ U [1, 2] as in the non-friction experiment, and we set in addition m = 1, b = 0.7. We
tested this task with grounding mask rate = 5%.

Algorithm implementation details For GOKU-UU-Z (Algorithm 3) we modeled the φabs net as
a fully connected network with 200 hidden units and ReLU activation. The network is fed with a
32-dimension concatenated vector of z̃0 and θ̃f , and outputs a vector of size 2. The network’s output
is fed to an ODE solver with fabs as the ODE, where fabs is modeled as a fully connected network
with 2 → 200 → 200 → 2 layers and ReLU activations. We then calculate the combined latent
signal by:

Ẑi = Zi,ODE + Zi,abs,

where Zi,ODE is the result of the known ODE, and Zi,abs is the result of the added unknown-
unknowns model. For GOKU-UU-f (Algorithm 4), we only added a neural network that models
Algorithm 4, which is implemented as a fully connected network with 2→ 200→ 200→ 2 layers
and ReLU activations.

Results In Fig. 4 we show the X extrapolation error for future times for the two algorithms we
test here: GOKU-UU-f and GOKU-UU-z (see appendix algorithms section for more details), and
compare them to the baselines. To demonstrate the extrapolation of X , we randomly selected one test
sample and show the pendulum’s predicted angle for future times. In Fig. 5 we compare GOKU-UU-f
and GOKU-UU-z and observe how GOKU-UU-f had near perfect results, where GOKU-UU-z
could not learn the friction model. In Fig. 6 we compare GOKU-UU-f (which was much better
than GOKU-UU-z) to the baselines for the same sample. In Fig. 7 we demonstrate that the fabs of
GOKU-UU-f learned only the friction part. We also tested if GOKU-UU methods could provide θf
and Z identification, we summed the results in Table 5.

These results show that using GOKU-net with the unknown-unknowns-f modification can successfully
identify the ODE parameters and variables, and extrapolate the observed signal, although it does not
observe the full ODE functional form.

Method θf identification Z identification

GOKU-UU-f 0.057 ± .004 0.019 ± .002
GOKU-UU-z 0.140 ± .016 0.601 ± .041
GOKU 0.047 ± .005 0.359 ± .022
L-ODE+ n/a 0.101 ± .010

Table 5: θf and Z identification for the pixel pendulum with friction task

17

Published as a workshop paper at ICLR 2020

50 100 150 200
t

0.00

0.05

0.10

0.15

0.20

L1
 e

rro
r

GOKU-UU-f
GOKU-UU-z
GOKU
LSTM
L-ODE
L-ODE+

Figure 4: Pixel pendulum with friction - mean extrapolation error for observations X over time steps
after end of input sequence.

0 50 100 150 200
t

0.4

0.2

0.0

0.2

0.4

An
gl

e

GOKU-UU-f
GOKU-UU-z
gt

Figure 5: Pixel pendulum with friction predicted angle example. Comparing the two GOKU with
unknown unknowns methods (GOKU-UU-f and GOKU-UU-z)

D.5 CARDIOVASCULAR SYSTEM

Our last experiment uses the cardiovascular system (CVS) model suggested by Zenker et al. (2007)
as stated in the Section 4.2. This ODE system is more involved than the ones above. The system
is a simplified mechanistic model of the cardiovascular system: It is a multi-compartment model
comprising the heart, the venous and the arterial subsystems together with a reflex loop component
representing the nervous system control of blood pressure. Although it is far from comprehensive,
this model can capture the prototypical behaviour of the cardiovascular system and its responses
to pathological insults such as internal bleeding or septic shock that manifests as a reduction in
peripheral vascular resistance. We implemented here a slightly modified version of the original
Zenker ODE, using the following system:

dSV (t)

dt
= Iexternal

dPa(t)

dt
=

1

Ca

(
Pa(t)− Pv(t)
RTPR(S)

− SV · fHR(S)

)

18

Published as a workshop paper at ICLR 2020

0 50 100 150 200
t

0.4

0.2

0.0

0.2

0.4

An
gl

e

GOKU-UU-f
GOKU
LSTM
L-ODE
L-ODE+
gt

Figure 6: Pixel pendulum with friction predicted angle example. Comparing GOKU-UU-f (which
was much better than GOKU-UU-z) with the baselines.

0 50 100 150 200
t

0.4

0.2

0.0

0.2

0.4

An
gl

e

GOKU-UU-f
GOKU-UU-f-zeroed
gt

Figure 7: Pixel pendulum with friction predicted angle example. Here we demonstrate that zeroing
the fabs part of GOKU-UU-f, results in a friction-less signal.

dPv(t)

dt
=

1

Cv

(
−Ca

dPa(t)

dt
+ Iexternal

)
dS(t)

dt
=

1

τBaro

(
1− 1

1 + e−kwidth(Pa(t)−Paset)
−S
)
,

where RTPR(S) = S(t)(RTPRMax
− RTPRMin

) + RTPRMin
+ RTPRMod

, and fHR(S) =
S(t)(fHRMax

− fHRMin
) + fHRMin

. In this model the variables have a directly interpretable
mechanistic meaning: SV , Pa, Pv, S are respectively cardiac stroke volume (the amount of blood
ejected by the heart), arterial blood pressure, venous blood pressure and autonomic barorelfex tone
(the reflex responsible for adapting to perturbations in blood pressure, keeping homeostasis).

In this system we wish to find the ODE parameters: θCV S =(Iexternal, RTPRMod
) since these are

known-unknowns that describe recognized clinical conditions: Iexternal < 0 tells us that a patient
is currently losing blood, and RTPRMod

> 0 tells us that their total peripheral resistance is getting
lower, which is a condition of distributive shock as can be seen in sepsis for example. Both conditions
can lead to an observed drop in blood-pressure. Discerning the relative contribution of each of the two
to such a drop is very important clinically as often the underlying causes are not immediately clear
and the choice of correct treatment relies on their accurate estimation. For clarity, in this example we

19

Published as a workshop paper at ICLR 2020

consider the rest of the model parameters as known, setting them to the values stated in Zenker et al.
(2007). The ODE state is zt = (SV (t), Pa(t), Pv(t), S(t)). The observed state is the patient’s vital
signs and defined to be: xt = (Pa(t), Pv(t), fHR(t)). Note that some of the observed variables are
the same as some of the latent variables, though with added noise as we explain now.

Data Set We simulated 1000 sequences of length 400, with time steps of ∆t = 1. The parameter
Iexternal was randomly sampled to be either −2 or 0, and the parameter RTPRMod

was randomly
sampled to be either 0.5 or 0. Initial ODE states uniformly sampled from SV (0) ∼ U [90, 100],
Pa(0) ∼ U [75, 85], Pv ∼ [3, 7] and S ∼ [0.15, 0.25], where the intervals were set to the values given
in Zenker et al. (2007). The observations were additionally corrupted with white Gaussian noise with
standard deviation of σx = 5 for Pa, σx = 0.5 for Pv and σx = 0.05 for fHR (standard deviation
matches scale of the observed signal).

Algorithms implementation details For all algorithms we used an input-to-rnn network of 2 fully
connected layers with ReLU activation and 64 hidden units, and output with dimension of 64.

In GOKU, The RNN and LSTM are implemented as in the LV experiment with output of dimension
64, followed by a linear transformation to µz0 and σz0 of dimension 64 as well. The h functions are
implemented as in the LV, except that their output has a sigmoid activation layer, to bound them to a
physically feasible solution. The emission function is a takes Pa and Pv from the latent trajectories,
and a fully connected 4→ 200→ 1 network with ReLU activation layer to compute fHR. In Latent
ODE the emission function is a fully connected 4→ 200→ 3 network with ReLU activation layer.
In LSTM, we used the same network as in the LV experiment.

20

	Introduction
	Task definition
	Model and method
	Grounding loss for under-identified systems

	Experiments
	Single Pendulum From Pixels
	Evaluation and results

	Cardiovascular System
	Evaluation and results

	Acknowledgments
	Related work
	Model
	Generative model
	Inference
	Objective
	Grounding Loss
	Implementation
	Objective function

	algorithms
	experiments
	Baselines
	Lotka-Volterra
	Single Pendulum From Pixels
	Pixel Pendulum with Unknown Unknowns
	Cardiovascular System

