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ABSTRACT

Posterior sampling, i.e., exponential mechanism to sample from the posterior distribution,
provides ε-pure differential privacy (DP) guarantees and does not suffer from potentially
unbounded privacy breach introduced by (ε, δ)-approximate DP. In practice, however, one
needs to apply approximate sampling methods such as Markov chain Monte Carlo (MCMC),
thus re-introducing the unappealing δ-approximation error into the privacy guarantees. To
bridge this gap, we propose the Approximate SAample Perturbation (abbr. ASAP) algorithm
which perturbs an MCMC sample with noise proportional to its Wasserstein-infinity (W∞)
distance from a reference distribution that satisfies pure DP or pure Gaussian DP (i.e.,
δ = 0). We then leverage the Metropolis-Hastings algorithm to generate the sample and
prove that the algorithm converges in W∞ distance. We show that by combining our new
techniques with a localization step, we obtain the first nearly linear-time algorithm that
achieves the optimal rates in the DP-ERM problem with strongly convex and smooth losses.

1 INTRODUCTION

The strongest form of differential privacy (DP) is ε-pure DP, which provides an inviolable bound of ε ≥ 0 on
an algorithm’s privacy loss. The posterior sampling mechanism associated with the loss functions (Wang
et al., 2015; Dimitrakakis et al., 2017; Gopi et al., 2022) is known to achieve near-optimal privacy-utility
tradeoff for learning under pure DP — in theory. In practice, sampling from a general posterior distribution
is typically either intractable or inefficient. Both issues can be solved by approximating the posterior, e.g.
via MCMC sampling. But of course there is no free lunch: the approximation error introduced by this
approach now degrades the privacy guarantee to the weaker notion of (ε, δ)-approximate DP, under which
we risk a catastrophic privacy breach with some small probability δ. Our paper bridges the gap between
theory and practice — thus alleviating a common growing pain of DP research — by proposing an efficient
MCMC-based algorithm that samples from an approximate posterior while satisfying pure DP.

Recent research has explored various implementations of posterior sampling mechanisms, facing a recurring
challenge: each approach either compromises on DP guarantees or incurs substantial computational costs.
Studies by Wang et al. (2015); Gopi et al. (2022) illustrate that employing approximate posterior sampling
with sampling error solely in terms of the total variation (TV) distance downgrades the DP guarantee to
approximate DP. In contrast, Seeman et al. (2021) samples from the exact posterior with pure DP. But the
associated runtime can be exponentially large due to a rejection sampling scheme that, in the worst-case
scenario, has an exponentially low acceptance rate. This motivates the following question:

Can we obtain pure DP guarantees with an efficient MCMC algorithm?

In this paper, we answer the question in the affirmative by developing the Approximate Sample Perturbation
(ASAP) algorithm.

*Equal contribution.

1



Published as a conference paper at ICLR 2024

1.1 OUR CONTRIBUTIONS

The main results of our paper are threefold.

1. We propose Approximate Sample Perturbation (Algorithm 2), a novel MCMC-type method designed
to maintain pure DP and pure Gaussian DP by perturbing an MCMC sample. Theorem 2 demonstrates
that ASAP maintains these DP guarantees when the MCMC sample distribution closely approximates
the exact posterior, measured in terms of the Wasserstein-infinity (W∞) distance.

2. We establish a novel generic lemma (Lemma 8) that facilitates the conversion of TV distance bounds
to W∞ distance bounds. This transformation enables the maintenance of pure DP guarantees when
employing MCMC samplers with TV distance errors. Notably, this lemma is of independent interest.

3. We introduce the Metropolis adjusted Langevin algorithm (MALA) with constraint (Algorithm 1)
that converges with respect to the W∞ distance. Integrated with a preceding localization step,
detailed in Algorithm 3, it empowers the ASAP framework to achieve optimal rates in nearly linear
time while ensuring pure DP and pure Gaussian DP in the context of the Differential Privacy -
Empirical Risk Minimization (DP-ERM), for strongly convex and smooth losses.

1.2 RELATED WORK

Posterior sampling mechanism, i.e., outputting a sample θ̂ ∼ p(θ) ∝ exp(−γ(F (θ) + 1
2λ||θ||

2
2)) is a popular

method for DP-ERM and private Bayesian learning. It was initially analyzed under pure DP (Mir, 2013;
Dimitrakakis et al., 2017; Wang et al., 2015), then later under approximate DP (Minami et al., 2016), Rényi
DP (Geumlek et al., 2017) and Gaussian DP (Gopi et al., 2022). In each case, it is known that with appropriate
choices of γ, λ parameters, it achieves the optimal rate (Bassily et al., 2014) under each privacy definition.
However, the computational complexity of the MCMC methods has been a major challenge for this problem.
To the best of our knowledge, Bassily et al. (2014); Chourasia et al. (2021); Ryffel et al. (2022); Mangoubi &
Vishnoi (2022) are the only known results that obtain DP guarantees using MCMC methods without having
δ > 0. Bassily et al. (2014)’s sampler (a variant of Applegate & Kannan (1991)) runs in O(n4) and requires
explicit discretization. Chourasia et al. (2021); Ryffel et al. (2022)’s algorithms run in nearly linear time (for
strongly convex DP-ERM) and enjoy pure Rényi DP, but their utility bound is a factor of condition number κ
worse than the statistical limit. Mangoubi & Vishnoi (2022)’s algorithm translates the TV distance guarantee
to infinity-distance (d∞) guarantee by incorporating uniform noise and a membership oracle, while their
focus is on Lipschitz continuous loss. The idea of perturbing distributions to strengthen the DP guarantee
is discussed in Feldman et al. (2018) and its application to Langevin analysis (Altschuler & Talwar, 2023),
where additional noise converts W∞ guarantee to Rényi DP guarantee. Our work is the first that archives the
optimal rate for Strongly-Convex DP-ERM under pure DP and pure Gaussian DP with a nearly linear time
algorithm (for κ = polylog(n)).

DP-ERM can also be solved using other methods that do not require MCMC sampling. However, these meth-
ods either do not achieve optimal rates (output perturbation (Chaudhuri et al., 2011)) or are computationally
less efficient (Noisy SGD (Bassily et al., 2014; Abadi et al., 2016)) or require the model to be (generalized)
linear (e.g., objective perturbation (Chaudhuri et al., 2011; Kifer et al., 2012; Redberg et al., 2023)).

2 PROBLEM SETUP AND PRELIMINARIES

Symbols and notations. Let X be the space of data points, X ∗ := ∪∞n=0Xn be the data space, and D ∈ X ∗

be a dataset with an unspecified number of data points. Let the parameter space U ⊆ Rd and for each x ∈ X
and θ ∈ U , ℓx(θ) denotes the loss function (or negative log-likelihood function). When D = {x1, ..., xn}, we
denote ℓxi(θ) by ℓi(θ) as a short hand. Denote the total loss L =

∑n
i=1 ℓi. For any set S, we denote the set

of all probability distributions as ∆S or PS , so that a mechanismM : X ∗ → ∆U is a randomized algorithm.
We useM(D) to denote the probability distribution as well as the corresponding random variable returned by
the mechanism. For a set S, we denote Diam(S) := supx,y∈S ∥x− y∥2, and ∥S∥ := supx∈S ∥x∥2.
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2.1 DIFFERENTIAL PRIVACY EMPIRICAL RISK MINIMIZATION (DP-ERM)
Empirical risk minimization (ERM) is a classic learning framework which casts the problem of finding a
“good” model into an optimization task. Our goal is to find the parameter θ∗ in the parameter space U ⊆ Rd

which minimizes the empirical risk: θ∗ = argminθ∈U (
∑n

i=1 ℓi(θ)) .

The problem setting of our paper is differentially private empirical risk minimization (DP-ERM): empirical
risk minimization under a privacy constraint.

2.2 DIFFERENTIAL PRIVACY DEFINITIONS

Definition 1 (Differential privacy (Dwork et al., 2006; 2014)). MechanismM satisfies (ε, δ)-DP if for all
neighboring datasets D ≃ D′ and for any measurable set S ⊆ Range(M),

P[M(D) ∈ S] ≤ eεP[M(D′) ∈ S] + δ.

When δ = 0,M satisfies ε-(pure) DP.

Differential privacy (DP) provably bounds the privacy loss of an algorithm. Approximate DP (δ > 0) is a
practical and popular DP variant which allows a “failure” event — where the privacy loss exceeds the bound
— to occur with some probability. Beware: approximate DP does not bound the severity of a privacy breach.
The privacy loss under a failure event could be arbitrarily large. Avoiding this risk requires pure DP (δ = 0),
which provides a deterministic bound on the privacy loss.

In comparison to approximate DP, Gaussian DP is a more “controlled” relaxation of pure DP which does not
have an unbounded failure mode. We can define Gaussian DP via the hockey-stick divergence.

Definition 2 (Hockey-Stick Divergence). The Hockey-Stick Divergence of distributions P,Q is defined as

Hα(P∥Q) := Eo∼Q

[(
dP
dQ (o)− α

)
+

]
where (·)+ := max{0, ·} and dP

dQ denotes the Radon-Nikodym derivative.

Definition 3 (Gaussian Differential Privacy (Dong et al., 2022)). We say that a mechanism M satisfies
µ-Gaussian differential privacy if for any neighboring dataset D,D′,

Heε(M(D)∥M(D′)) ≤ Heε(N (0, 1)∥N (µ, 1)) ∀ε ∈ R.

This definition is equivalent to the dual definition from the hypothesis testing perspective in (Dong et al., 2022,
Definition 2.6). The statement naturally provides a “dominating pair” of distributions, facilitating adaptive
composition, amplification by sampling, and efficient numerical computation (Zhu et al., 2022).

2.3 EXACT POSTERIOR SAMPLING: DP AND UTILITY GUARANTEES

The primary algorithm we consider is a variant of the classical exponential mechanism (EM) known as
posterior sampling. The posterior sampling algorithm instantiates the exponential mechanism by taking the
quality score to be a scaled and regularized log-likelihood function with parameter γ, λ, i.e.,

θ̂ ∼ p(θ) ∝ exp
(
−γ
(∑n

i=1
ℓi(θ) + λ∥θ∥2

))
1(θ ∈ Θ). (1)

This mechanism enjoys pure DP and Gaussian DP for appropriate choices of γ, λ, and domain Θ.

Lemma 4 (GDP of posterior sampling (Gopi et al., 2022, Theorem 4)). Assume the loss function is G-
Lipschitz, posterior sampling mechanism with parameter γ, λ > 0 satisfying γ ≤ µ2λ/G2 satisfies µ-GDP.

Lemma 5 (Pure DP of posterior sampling). Assume the loss function is G-Lipschitz, posterior sampling
mechanism with parameter γ > 0 (any of λ) in a domain Θ satisfies ε-pure DP if γ ≤ ε

G·Diam(Θ) .
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Lemma 5 slightly improves existing analysis (Wang et al., 2015; Dimitrakakis et al., 2017) by the bounded
range analysis (Dong et al., 2020). This approach avoids assumptions on the loss bound, which is potentially
large, in privacy calculations. The proof is provided in Appendix I.4.

We have the following lemma for the utility of posterior sampling.

Lemma 6 (De Klerk & Laurent (2018, Corollary 1)). For a convex function F (θ), and a convex set Θ ⊂ Rd,
θ̂ ∼ p(θ) ∝ exp(−γF (θ)) satisfies that E[F (θ̂)] ≤ minθ∈Θ F (θ) + d

γ .

3 TECHNICAL TOOLS

This section introduces tools that facilitate MCMC sampling for pure DP, including Lemma 8 that converts TV
distance bound to W∞ bound, and Algorithm 1, an MCMC sampler that converges in W∞ distance.

3.1 OVERVIEW: WHY DO WE USE W∞ DISTANCE?
Suppose p∗ is a Gibbs posterior that satisfies pure DP. In practice, MCMC samplers generate an approximate
sample θ̃ from an approximate distribution p̃ with dTV (p̃, p

∗) < ξ, where dTV represents the TV distance.
Notice that this TV distance guarantee does not grant pure DP for sampling from p̃. Instead, it provides only
(ε, δ)-DP with δ = (1 + eε)ξ > 0, as elucidated in Proposition 3 of Wang et al. (2015).

To circumvent this challenge, ASAP (Algorithm 2) adopts a two-part approach to address the privacy of θ̃.
First, we decompose θ̃ into two components:

θ̃ = θ∗ + (θ̃ − θ∗), where θ∗ ∼ p∗.

Note that θ∗ ∼ p∗ satisfies pure DP by existing works Wang et al. (2015). Our aim is to add noise to
(θ̃− θ∗) so the perturbed difference, (θ̃− θ∗) + noise, also maintains pure DP. This allows the leverage of the
composition lemma (Lemma 14) to devise an MCMC sampling methodology that guarantees pure DP.

However, to release (θ̃ − θ∗) with pure DP by appending noise, it is crucial to determine an upper bound on
the sensitivity of this quantity with a certainty of 1. This necessitates bounding the particle-wise distance
∥θ̃ − θ∗∥1 (or ∥θ̃ − θ∗∥2 in Gaussian DP) with a probability of 1. Establishing this sensitivity bound hinges
on the Wasserstein-infinity distance (Definition 7), see Fiure 1 for a visual illustration of W∞.

Therefore, an MCMC sampling approach with W∞ error bounds is essential. We introduce MALA with
constraint, specially designed to guarantee strong W∞ distance convergence.

3.2 TV DISTANCE TO W∞ DISTANCE

Consider two distributions P and Q on the same metric space (Θ,dist). We sample x ∼ P and y ∼ Q.
When distributions P and Q are relatively “close”, the corresponding samples x and y are also expected to
be close. Motivated by the preceding discussion of MCMC for pure DP, a natural question arises: Can we
define a distance for distributions P and Q that guarantees an upper bound for dist(x, y) with probability 1?
Wasserstein-∞ distance answers this by constructing an appropriate coupling ζ∗ between P and Q.

Definition 7. Let Θ ⊆ Rd be a domain equipped with a metric dist. Let P and Q be two probability measures
on Θ. The Wasserstein-infinity distance between P and Q with respect to dist, denoted as W∞(P,Q), is
defined as

W∞(P,Q) := inf
ζ∈Γ(P,Q)

ess sup
(x,y)∈(Θ×Θ,ζ)

dist(x, y) = inf
ζ∈Γ(P,Q)

{c ≥ 0|ζ({(x, y) ∈ Θ2|dist(x, y) ≤ c}) = 1},

where Γ(P,Q) is the set of all couplings of P and Q, i.e., the set of all joint probability distributions ζ
with marginals P and Q respectively. The expression ess sup(x,y)∈(Θ×Θ,ζ) dist(x, y) denotes the essential
supremum of dist(x, y) with respect to measure ζ. It captures the supremum of dist(x, y), excluding sets of
ζ-measure zero.
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Figure 1: Two examples illustrating the couplings of p̃ and p∗. Let ζ∗ be the optimal coupling of W∞(p̃, p∗), and let p̃⊗p∗

denote the independent coupling. In both scenarios, the marginal distributions are p̃ and p∗. Denote ∆ = W∞(p̃, p∗). In
Figure (a), when (θ̃, θ∗) follows the optimal coupling, (θ̃, θ∗) is confined within the band |θ̃ − θ∗| ≤ ∆. Conversely,
Figure (b) shows that when θ̃ and θ∗ are independently sampled, the distance |θ̃ − θ∗| can take relatively large values
with positive probability. Through the appropriate coupling of the distributions p̃ and p∗, particularly via the optimal
coupling ζ∗, we obtain a tight almost-sure bound ∆ on the distance between the two samples θ̃ and θ∗.

Our pursuit of pure DP relies on the W∞ distance. However, typical MCMC samplers offer convergence based
on TV distance, which leads to the weaker approximate (ε, δ)- DP with a δ > 0. To reconcile this discrepancy,
we present a versatile lemma that facilitates the conversion from dTV bound to the W∞ bound.

Lemma 8 (Converting TV distance to W∞ distance). Consider two probability measures, P and Q, both
supported on a bounded closed 2-norm-ball Θ ⊆ Rd. On this domain Θ, suppose that the density of Q is
lower-bounded by a constant pmin. We establish the following results based on the choice of metric for W∞:

1. Suppose W∞ is defined with the 1-norm, i.e., dist(x, y) = ∥x− y∥1.

If dTV (P,Q) < pmin ·
πd/2

2d+1 · Γ(d2 + 1) · dd/2
∆d, then W∞(P,Q) ≤ ∆.

2. Suppose W∞ is defined with the 2-norm, i.e., dist(x, y) = ∥x− y∥2.

If dTV (P,Q) < pmin ·
πd/2

2d+1 · Γ(d2 + 1)
∆d, then W∞(P,Q) ≤ ∆.

In both cases, Γ represents the gamma function.

The results naturally extend to the case where Θ is a bounded open 2-norm ball.

The proof is detailed in Appendix E. This lemma bridges the gap between TV distance and W∞ distance,
enabling the preservation of pure DP guarantees with TV distance-based MCMC samplers.

Conversion from TV distance bound to W∞ bound necessitates extra conditions on the probability measures.
The following lemma establishes a lower bound (denoted as pmin in Lemma 8) for the density of distributions
that are log-concave and log-Lipschitz continuous or smooth. The proof is provided in Appendix I.1.
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Lemma 9. Consider a distribution with density p(θ) = 1
Z e−γJ(θ) supported on a bounded convex domain Θ

with 2-norm diameter R, where Z =
∫
Θ
e−γJ(θ)dθ is the normalization constant.

Assuming that J is convex and G̃-Lipschitz continuous, we establish the following bound on the density:

inf
θ∈Θ

p(θ) ≥ e−γG̃R ·
Γ(d2 + 1)

πd/2(R/2)d
.

Alternatively, if J is convex and β-Lipschitz smooth, the density bound holds for any θ̃ ∈ Θ:

inf
θ∈Θ

p(θ) ≥ e−γ(R∥∇J(θ̃)∥+βR2/2) ·
Γ(d2 + 1)

πd/2(R/2)d
.

3.3 MALA WITH CONSTRAINT

From the previous discussion, the approximate and target distribution should be close in the W∞ distance
to maintain the pure DP. According to Lemma 8, this requirement translates into an exponentially small
TV distance error. Therefore, we utilize MALA, an asymptotically unbiased sampler, which converges
exponentially fast in TV distance accuracy. Lemma 8 also underscores the necessity of sampling within
a bounded set, leading us to discard samples outside our predefined domain as described in Algorithm 1.
To guarantee finite termination of the algorithm, we set a maximum restart number τmax. We provide the
expected runtime, which suggests that the algorithm typically concludes during the early trials.

Notations. Define the objective function J(θ) =
∑n

i=1 ℓi(θ), and its minimizer θ∗ = argminθ∈Rd J(θ).
Let π and p∗ be the unconstrained and constrained Gibbs distribution respectively with density π(θ) ∝
e−γJ(θ), and p∗(θ) ∝ e−γJ(θ)1(θ ∈ Θ). Let κ = β/α be the condition number, where β and α are defined
in Assumption 1 and 2 respectively.

Assumption 1 (Smoothness). Function J is nβ-Lipschitz smooth.

Assumption 2 (Strong-Convexity). Function J is nα-strongly convex.

Assumption 3 (Domain bound). The domain Θ is a convex set such that B(θ∗, R1) ⊂ Θ, for R1 ≥ 8
√

d
γnα .

Theorem 1 (Mixing time in TV-distance). Consider Algorithm 1 with initial distribution p0 ∼
N (0, 1

γnβ I), step size hk = Θ
(
min

{
κ−1/2(γnβ)−1(d lnκ+ ln 1/ξ)−1/2, 1

γnβd

})
, number of itera-

tions K = Θ
(
(d lnκ+ ln 1/ξ)max

{
κ3/2

√
d lnκ+ ln 1/ξ, dκ

})
, and maximum number of restarts

τmax = Θ(ln 1/ξ). Under Assumptions 1, 2, and 3, this algorithm converges to ξ-accuracy in dTV (pout, p
∗),

where pout is the output distribution. The expected number of gradient queries to J is given by:

Θ
(
(d lnκ+ ln 1/ξ)max

{
κ3/2

√
d lnκ+ ln 1/ξ, dκ

})
.

Corollary 10 (Mixing time in W∞ distance). Consider the W∞ distance with respect to the 1-norm. Let the
domain Θ be a ball of radius B. Under the same assumptions and conditions as Theorem 1 with choosing
ln (1/ξ) = Θ(γnβB2+d lnB+d ln d+d ln(1/∆)), Algorithm 1 converges to ∆-accuracy in W∞(pout, p

∗).
The expected number of gradient queries to J is given by:

Θ
((

d ln(κBd) + d ln(1/∆) + γnβB2
)
max

{
κ3/2

√
d ln(κBd) + d ln(1/∆) + γnβB2, dκ

})
.

Each gradient query to the empirical risk J translates to n queries to the individual losses ℓi’s.

The proof of Theorem 1 and Corollary 10 is provided in Appendix F.
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Remark 11. According to the choice of parameters B, γ in Table 2, we have γB2 ∼ O(1/n). We note that
the computation dependence on d is Θ̃(d2), and the number of queries to the individual losses ℓi’s is Θ̃(n).

In comparison, if we employ vanilla rejection sampling (Casella et al., 2004) with a proposal distribution of
N (0, 1

γnβ I), then the convergence time scales as eγn(β−α)R2
1 ≥ e64(κ−1)d, where R1 is defined according to

Assumption 3. This factor scales exponentially with the condition number κ and the dimension d.

Algorithm 1 Metropolis-adjusted Langevin algorithm (MALA) with constraint

1: Input: Stepsizes {hk}, number of (inner-loop) iterations K, objective function J , domain Θ, parameter
γ, maximum number of restarts τmax.

2: for t = 0, 1, 2, . . . , τmax − 1 do
3: Sample θ0 according to distribution p0

4: for k = 0, 1, 2, . . . ,K − 1 do
5: Sample θk+1 ∼ N

(
θk − hkγ∇J(θk), 2hkI

)
6: Sample uk+1 ∼ U [0, 1], denote p(·|θ) as the density of N

(
θ − hkγ∇J(θ), 2hkI

)
7: if

p
(
θk|θk+1

)
π(θk)

p (θk+1|θk)π (θk+1)
< uk+1 then

8: θk+1 ← θk

9: end if
10: end for
11: if θK ∈ Θ then ▷ Accept the sample
12: Return θK and halt
13: end if
14: end for
15: Return an arbitrary θ ∈ Θ

4 MAIN RESULTS: APPROXIMATE SAMPLE PERTURBATION (ASAP)

This section introduces Approximate Sample Perturbation, along with the end-to-end localized ASAP.

4.1 APPROXIMATE SAMPLE PERTURBATION (ASAP)
ASAP (Algorithm 2) is designed to maintain pure DP and pure Gaussian DP by smoothing out an MCMC
sample. Theorem 2 establishes the pure DP and pure GDP guarantee for the ASAP algorithm.

Consider two randomized mechanisms: a reference mechanismM and another mechanism M̃. Assume that
M satisfies pure DP or Gaussian DP, whereas M̃ does not inherently offer these DP guarantees. According
to Theorem 2, if the distributions ofM and M̃ have a bounded disparity in W∞ distance, then it is feasible to
achieve pure DP (or Gaussian DP) by generating samples from M̃ and appending noise scaled in proportion
to the W∞ bound.

Algorithm 2 Approximate SAmple Perturbation (ASAP)

1: Input: Dataset D, reference randomized mechanismM : X ∗ → PU . W∞ error ∆, a black box sampler
M̃ such that W∞(M̃(D),M(D)) ≤ ∆. Privacy parameter ε′ if pure DP (µ′ if Gaussian DP).

2: Run the MCMC sampler: θ̃ ∼ M̃(D).
3: Return θ̂ = θ̃ +N (0, 4∆2

µ′2 Id) if GDP (or θ̂ = θ̃ + Z with Zi
i.i.d.∼ Lap( 2∆ε′ ), i = 1, ..., d if pure DP.)
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Theorem 2 (DP Guarantees for Approximate SAmple Perturbation). LetM,M̃ be randomized algorithms
with output space Θ ⊂ Rd that satisfy the following for any input dataset D:

W∞(M(D),M̃(D)) ≤ ∆.

1. Suppose we define W∞ with the 2-norm. If M satisfies µ-GDP, then the procedure M̃(D) +

N (0, 4∆2

(µ′)2 Id) satisfies
√
µ2 + µ′2-GDP.

2. Suppose we define W∞ with the 1-norm. IfM satisfies ε-DP, then the procedure M̃(D) + Z with
Zi ∼ Lap( 2∆ε′ ) i.i.d. for i = 1, ..., d, satisfies (ε+ ε′)-DP.

The proof is provided in Appendix G. As demonstrated in Section 3.1 and the proof, a W∞ distance guarantee
is essential to obtain pure DP and pure GDP with ASAP. Other weaker distance metrics such as TV distance
and W2 distance are generally insufficient for this purpose. Remarkably, as shown in Lemma 8, when the
domain is a bounded ball and the density is bounded away from zero, we can convert a weak TV distance
bound into a strong W∞ bound. This enables the application of Algorithm 2 across various scenarios.

4.2 LOCALIZED ASAP AND THE END-TO-END GUARANTEES

Lemma 8 suggests that sampling should be conducted within a bounded 2-norm ball. Therefore, before
sampling, we first localize to a bounded ball centered at the initial point θ0, denoted as Θ = B(θ0, B) =
{θ | ∥θ − θ0∥2 ≤ B}. After this localization, we implement the ASAP algorithm within the defined bounded
domain, referring to the approach as “Localized ASAP.”

Algorithm 3 End-to-End Localized ASAP

1: Input: Parameters γ, λ = 0, B as given in Table 2. Wasserstein-infinity error ∆. Dataset D, individual
loss ℓi’s satisfying G-Lipschitz continuity, β-smoothness, and α-strong convexity. Privacy parameter µ′

for GDP (or ε′ for pure DP) for ASAP. Denote J(θ) =
∑n

i=1 ℓi(θ) +
λ
2 ∥θ − θ0∥2.

2: Run the localization Algorithm 4, and assign its output to θ0.
3: Call ASAP (Algorithm 2) with inputs

∆, D, γ, privacy parameter ε′ if pure DP (µ′ if Gaussian DP)

M̃ ← Algorithm 1 on the domain Θ = {θ|∥θ − θ0∥2 ≤ B}, setting hk,K, τmax as per Table 3

M← Reference distribution with density pM(D)(θ) ∝ e−γJ(θ)1{∥θ − θ0∥ ≤ B},

and assign the output to θ̂.
4: Return θ̂.

The computational efficiency of the sampler depends on the choices of B and γ, as well as assumptions on
the loss functions. The quality of the solution from the localized ASAP depends on the initialization θ0, and
the associated choice of B. We instantiate these parameters concretely in Appendix B.

We provide the following privacy, utility, and computational guarantees for the end-to-end Algorithm 3.

Theorem 3 (Guarantees for localized-ASAP). Set θ0, B, γ, λ as Table 2. Let θ̂ be the output of Algorithm 3.
Set the pure DP (or Gaussian DP) parameters for the output perturbation and the ASAP to be ε (or µ). Then

1. θ̂ satisfies 3ε-pure DP (or
√
3µ-Gaussian DP).

2. In pure DP case, the empirical (total) risk satisfies

E[L(θ̂)]− L(θ∗) ≤ O
(
d2G2 (ln d+ lnκ)

αnε2

)
.
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In the Gaussian DP case, the empirical risk satisfies E[L(θ̂)]− L(θ∗) ≤ O
(

G2(d+lnκ)
αnµ2

)
.

3. The expected overall runtime time of the algorithm for pure DP is given by

Θ
(
nd (κ ln(dκ) + lnn)max

{
κ3/2

√
d (κ ln(dκ) + lnn), dκ

}
ln(dκ)

)
.

The expected overall runtime time of the algorithm for Gaussian DP is given by

Θ
(
n (dκ+ d lnn+ κ lnκ)max

{
κ3/2
√
dκ+ d lnn+ κ lnκ, dκ

}
ln(κ)

)
.

The proof is presented in Appendix H.

Remark 12. The suboptimality bound matches the information-theoretic limit for this problem in (Bassily
et al., 2014) up to a constant factor. We enhance the κ dependency in the empirical risk bound from O(κ) to
O(log κ). To our knowledge, this is the first Õ(n) time algorithm (assuming κ = polylog(n)) for DP-ERM
(Lipschitz, smooth, strong convex losses) that achieves the optimal rates under pure DP. The nearest algorithm
is from (Bassily et al., 2014), exhibiting a runtime of O(n4). A nearly linear-time algorithm for DP-SCO in
the smooth and strongly convex setting that achieves optimal rates exists (Feldman et al., 2020). But to the
best of our knowledge, the problem remains open for DP-ERM until this paper.

Remark 13 (Improvement under Gaussian DP). The risk bound for pure DP, combined with the transition
from pure DP to Gaussian DP (as per Lemma 15), inherently provides a DP-ERM learner under Gaussian
DP with a suboptimal risk bound of Õ( d

2G2

αnµ2 ). However, we improve the dimensionality dependence in the

empirical risk bound, from Õ
(
d2
)

to O(d), under Gaussian DP with slightly less runtime.

Comparing to the existing work. Current literature lacks a pure DP or Gaussian DP learner that attains the
optimal rate for strongly convex problems in nearly linear time. The closest approach, Noisy Gradient Descent,
runs in Õ(n) time for strongly convex and smooth problems (with κ log n iterations), but its empirical risk
is suboptimal by a factor of κ log n. An alternative parameter regime that runs Noisy Gradient Descent for
O(n2) iterations (i.e., O(n3) time) achieves the optimal rate (without additional κ or log n dependence),
albeit more slowly and without leveraging the smoothness. Further details are provided in Appendix J.

Other works either operate in a different setting or do not apply to all problems that we consider. For instance,
objective perturbation with approximate minima perturbation (Iyengar et al., 2019) runs in Õ(n) time but is
restricted to generalized linear losses. Feldman et al. (2020) develop a nearly linear time DP learner using a
“privacy amplification by iteration” technique, yet it works under the DP-SCO setting, which is different from
DP-ERM that we consider. The same algorithm for DP-ERM still requires Õ(n2) time. In addition, their
focus was on (ε, δ)-DP. The sampler from (Gopi et al., 2022) (without combined with localization) operates in
Õ(nα log(d/δ)) time, but becomes vacuous when aiming for δ = 0 for pure DP or pure Gaussian DP.

5 CONCLUSION

Our proposed sampler Approximate SAample Perturbation (abbr. ASAP) perturbs an MCMC sample with
noise proportional to its Wasserstein-∞ distance from a reference distribution that satisfies pure DP or pure
Gaussian DP. We show that our sampler obtains the first nearly linear-time end-to-end algorithm that achieves
the optimal rate in the DP-ERM problem with strongly convex and smooth losses. The new techniques we
developed might be of independent interest elsewhere that rely on approximate sampling.

Limitations. While the posterior sampling mechanism is known to achieve optimal rates in the general convex
Lipschitz loss cases under pure DP and pure Gaussian DP (Gopi et al., 2022), a meticulous adaptation of our
method is necessary to attain optimal rates in this scenario with fast computation. It remains an intriguing
open problem to characterize the optimal computational complexity in settings that lack smoothness or strong
convexity.
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A ADDITIONAL PRELIMINARIES

Lemma 14 (Adaptive Composition). Let M1 : X ∗ → ∆Θ1 satisfies ε1-DP (or µ1-GDP) and M2 :
Θ1 ×X ∗ → ∆Θ2 : satisfies ε2-DP (or µ2-GDP) with probability 1 when its first input θ1 ∼M1(D) for any
dataset D ∈ X ∗, thenM1 ×M2 satisfies (ε1 + ε2)-DP (or

√
µ2
1 + µ2

2-GDP).

The composition theorem traditionally requires M2 to satisfy DP (or GDP) for all θ2 ∈ Θ2. What is
stated above is slightly weaker in the sense that we can ignore a measure 0 set. We defer the proof to
Appendix I.3.

Lemma 15 (Conversion between pure DP and GDP). With Φ denoting the cumulative distribution function
of the standard normal, an ε-pure DP mechanism also satisfies µ-GDP with

µ = 2Φ−1

(
eε

1 + eε

)
.

We defer the proof to Appendix I.5.

Definition 16 (Exponential Mechanism McSherry & Talwar (2007)). For a quality score u, the exponential
mechanismMu : X → ∆Θ samples an outcome θ ∈ Θ with probability proportional to exp

(
εu(x,θ)
2∆u

)
, and

is ε-DP, where ∆u is the global sensitivity.

B LOCALIZATION TECHNIQUES

The choice for the algorithm for providing θ0 and the associated B parameter in Algorithm 3 is delicate.
We construct an appropriate algorithm to find θ0 in this section. In particular, we use approximate output
perturbation.

For the general Lipschitz loss setting, output perturbation does not quite work as it does not even achieve
minimax rate. But if individual loss function ℓ satisfies α-strongly convexity, Bassily et al. (2014) showed that
one can obtain a localization using output perturbation that qualifies such that the downstream exponential
mechanism on the localized set is optimal. The key observation is that under strong convexity, the sensitivity
of θ∗ = argminθ

∑n
i=1 ℓi(θ) can be shown to be G/(αn) and output perturbation satisfies pure-DP, also it

satisfies (with high probability)

∥θ0 − θ∗∥ ≤ 2Gd log(·)
αnε

.

This order suffices for the posterior sampling to achieve the optimal rate.

We provide the following Approximate Output Perturbation algorithm, wherein we introduce perturbations to
the approximate optimizer.

Algorithm 4 Approximate Output Perturbation

1: Input: individual losses {ℓi}ni=1 satisfying G-Lipschitz continuity and β-smoothness; strong convexity
parameter α. Privacy parameter µ for GDP (or ε for pure DP).

2: Denote L(θ) :=
∑n

i=1 ℓi(θ), and θ∗ := argminθ L(θ). Set ∆̃ := 2τ
n + 2G

αn .
3: Solve for θopt that satisfies ∥θopt − θ∗∥2 ≤ τ

n . ▷ Instantiation: Gradient Descent or Newton Descent.
4: Output θ0 = θopt +Z, where Zi ∼ Lap(

√
d∆̃
ε ) for ε-pure DP (Zi ∼ N (0, ∆̃2

µ2 ) for µ-GDP).

Remark 17. For step 3, we make the optimization oracle a black-box algorithm that enjoys a linear
convergence rate. Instantiation of the optimization oracle could be the Gradient Descent or the Newton
Descent, which enjoy a linear convergence rate under the assumptions of strong convexity and Lipschitz

14
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smoothness (or c-stable Hessian by the Theorem 2 of Karimireddy et al. (2018)). Note that ∥θ̃ − θ∗∥2 ≤ τ
n is

not a stopping criteria of the optimization algorithm. Instead, it is a property that θ̃ would fulfill under the
stopping criteria the additional assumption on L.

The following lemma provides the bound for the sensitivity of the minimizer θ∗, which helps bound the
sensitivity of the approximate minimizer θ̃.

Lemma 18. Let D ∈ X ∗. Let D′ ∈ X ∗ be a neighbor such that LD′ − LD = ±ℓx for some x ∈ X , then

∥θ∗(D)− θ∗(D′)∥2 ≤
2G

αn
.

With Lemma 18, we can bound the sensitivity of θ̃, thus providing the following differential privacy guarantees.

Lemma 19. Algorithm 4 satisfies ε-differential privacy (or µ-Gaussian DP).

We defer the proofs of Lemma 18 and 19 to Appendix I.2.

C PARAMETERS IN LOCALIZED-ASAP
The choice of γ and λ. Larger γ provides a better utility guarantee but a weaker privacy guarantee. We
choose γ by the following fact so that the posterior sampling mechanism θ ∼ p∗(θ) satisfies ε-pure DP or
µ-GDP.

Fact 1 (Optimal rates for strongly convex problems). The optimal (expected) excess empirical risks for
G-Lipschitz continuous and α-strongly convex (individual) losses is d2G2

αnε2 and dG2

αnµ2 for ε-DP and µ-GDP
respectively. For posterior sampling, choosing

γ =
µ2αn

G2
, λ = 0

yields the optimal rate under µ-GDP. Unfortunately, there are no parameter choices for γ, λ that can yield
the optimal rate under pure-DP, unless Θ is already localized such that it satisfies that Diam(Θ) ≤ dG

αnε .
Then the choice of γ = ε

G·Diam(Θ) works.

The choice of B (the radius of the localized domain). For desirable the utility and computational
guarantees in sampling, we hope that B is large enough such that the mode θ∗ and the mean θ̄ are in the
localized domain Θ, i.e., θ∗ ∈ Θ and θ̄ ∈ Θ, where θ∗ := argminθ∈Rd J(θ), and θ̄ := Eθ∼π(θ)∝e−γJ(θ)θ.

Moreover, Assumption 3 requires B(θ∗, R1) ⊂ Θ for efficient constrained MALA, where R1 ≥ 8
√

d
γαn .

However, by Corollary 20 and the discussion after Theorem 1, we know that an excessively large B should
be avoided. This is because a large B leads to a reduced pmin, which in turn necessitates a greater number
of steps for constrained MALA to achieve the desired accuracy. Also, note that by Fact 1, for ε-pure DP
guarantee, we set γ = ε

2GB , which is dependent of B.

In pure DP case, suppose θ0 is the output of Alogrithm 4, then we have θ0 = θopt + Z, where Zi ∼
Lap(2

√
d
(
τ + G

α

)
/nε), and ∥θopt − θ∗∥2 ≤ τ

n . Therefore we have

∥θ0 − θ∗∥ ≤ ∥θ0 − θopt∥2 + ∥θopt − θ∗∥2 = ∥Z∥2 + ∥θ̃ − θ∗∥2 ≤
2d (G+ τα) ln(d/ρ)

nαε
+

τ

n
,

with probability 1− ρ. In the last inequality, we apply the fact that for Yi
iid∼ Lap(λ), we have

P
(
∥Y ∥2 ≥

√
dλ ln(d/ρ)

)
= P

(
d∑

i=1

Y 2
i ≥ d(λ ln(d/ρ))2

)
≤

d∑
i=1

P (|Yi| ≥ λ ln(d/ρ)) ≤ ρ.
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In order to fulfill the condition B(θ∗, R1) ⊂ Θ, where R1 = 8
√

d
γαn , note that γ = ε

2GB , the following
inequality should hold:

B − 8
√

2dGB
εαn ≥

2d (G+ τα) ln(d/ρ)

nαε
+

τ

n
. (2)

The above inequality is satisfied with B ≥ 8(32dG+(ατ+G)d ln(d/ρ)+τεα)
αnε . For the sake of simplicity, we let τ

be sufficiently small and set B = C1dG ln(d/ρ)
αnε .

In GDP case, similarly, we have θ0 = θopt+Z, where Zi ∼ N (0, 4(τ + G
α )

2/n2µ2), and ∥θopt− θ∗∥2 ≤ τ
n .

Therefore we have

∥θ0 − θ∗∥ ≤ ∥θ0 − θopt∥2 + ∥θopt − θ∗∥2 ≤ ∥Z∥2 +
τ

n
≤

2
√
2(τα+G)(

√
d+

√
ln(1/ρ))

αnµ
+

τ

n
, (3)

with probability 1 − ρ. In the last inequality where we use the tail bound for chi-square distributions by
Lemma 1 in (Laurent & Massart, 2000). Again we need B − R1 ≥ ∥θ0 − θ∗∥, where R1 = 8

√
d

γαn and

γ = µ2αn
G2 . This is satisfied with B ≥ 2

√
2(τα+G)(

√
d+
√

ln(1/ρ))+8G
√
d+ταµ

αnµ . Again, we let τ be sufficiently

small and set B =
C2G(

√
d+
√

ln(1/ρ))

αnµ

Calculation of pmin Lemma 9 implies that the choices of pmin in Algorithm 3 are valid lower bounds of
the density function. We have the following corollary.

Corollary 20. Consider probability with density

p(θ) ∝ exp

(
−γ

(
n∑

i=1

ℓi(θ) +
λ

2
∥θ − θ0∥2

))
1{∥θ − θ0∥ ≤ B}.

1. If ℓi is G-Lipschitz for all i, then minθ p(θ) ≥ e−γ(2nGB+2λB2) Γ(
d
2+1)

πd/2Bd .

2. If ℓi is convex and β-smooth for all i, then for all θ̃ ∈ Θ, we have

min
θ

p(θ) ≥ e−γ(2B∥∇J(θ̃)∥+2(nβ+λ)B2) ·
Γ(d2 + 1)

πd/2Bd
.

Applying Corollary 20, we calculate pmin as follows: Take any θ′ such that ∥θ′− θ0∥2 ≤ B. Compute

pmin ← e−γ min{2nGB+2λB2, 2∥∇Lλ(θ
′)∥B+2(nβ+λ)B2} Γ( d

2+1)

πd/2Bd .

D EXPERIMENTS

D.1 THEORETICAL LOWER BOUNDS

We visualize the excess empirical risks in Figure 2and demonstrate that ε-(pure) DP can outperform (ε, δ)-DP
in theory, especially when the sample size n is large.

D.2 EMPIRICAL RISKS ON REAL DATASETS

Setup. We experiment on two real datasets: Red Wine Quality and White Wine Quality from UCI reposi-
tory (https://archive.ics.uci.edu/dataset/186/wine+quality). The Red Wine Quality
dataset contains 1599 samples with 11 features. We standardize the data and learn a regression task via
ℓi(θ) =

1
2 (x

T
i θ − yi)

2 + α
2 ∥θ∥

2, which is a strongly convex problem under α = 100 and ρ = 0.01. The
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Table 1: Summary of our results for the αn-strong convex DP-ERM problem with G-Lipschitz and β-smooth losses
and that the total loss satisfies αn-strong convexity. The utility measures the expected excess empirical (total) risk. The
polylog(n) factors are ignored from the computation. Observe that we are the first algorithms that achieve the nearly
linear time computation under pure-DP and pure-Gaussian DP while still obtaining the optimal excess empirical risk.

Privacy Excess Empirical risk Computation

NoisyGD (see Appendix J) µ-GDP dG2
/αnµ2 n3

NoisySGD (Bassily et al., 2014) (ε, δ)-DP dG2 log(1/δ)/αnε2 n2

PosteriorSample (Gopi et al., 2022) δ-approx µ-GDP dG2
/αnµ2 n/α

ExponentialMechanism (Bassily et al., 2014) ε-DP d2G2
/αnε2 n4

Localized-PS-ASAP (This paper) µ-GDP dG2
/αnµ2 n/α2 or n/α5/2

Localized-EM-ASAP (This paper) ε-DP d2G2
/αnε2 n/α2 or n/α5/2

Table 2: The choice of γ,B, λ, θ0,∆, ρ when instantiating Algorithm 3 for pure DP or Gaussian DP learning.The
choices of γ ensure the DP and GDP guarantee respectively and the choice of B ensures sufficient localization such
that the sampling Algorithm 1 run in Õ(n) time (condition on the high-prob event that θ∗ is inside the localized set Θ.
Polynomial dependence in d and other parameters are hidden in Õ). For pure-DP, the choice of B has the additional
purpose of achieving the optimal rate for DP-ERM — L(θ̂)−L(θ∗) = O( d

2G2

αnε2
). For GDP, the choice of B only affects

computation. The optimal rate L(θ̂)− L(θ∗) = O( dG2

αnµ2 ) is always attained.

γ B λ θ0 ∆ ρ

ε-Pure DP ε
2GB

C1Gd ln(d/ρ)
αnε 0 Algorithm 4 dG ln(d/ρ)

2n2αε
1
dκ

µ-GDP µ2αn
G2

C2G(
√
d+
√

ln(1/ρ))

αnµ 0 Algorithm 4
√
dG√

2n2αµ
1
dκ
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Figure 2: Excess empirical risks from Table 1 for strongly convex losses. Here d = 11, G = 300, α = 4, ε = 1. Left
n = 1e4. Right n = 1e6.

17



Published as a conference paper at ICLR 2024

Table 3: Choices of step sizes, number of iterations, and maximum number of restarts in Algorithm 1 for pure DP and
Gaussian DP.

Pure Differential Privacy

hk Θ
(

G2 ln(d/ρ)
αβn2ε2 min

{
κ− 1

2 d
1
2 (κ ln(dκ) + lnn)

− 1
2 , 1

})
K Θ

(
d (κ ln(dκ) + lnn)max

{
κ

3
2

√
d (κ ln(dκ) + lnn), dκ

})
τmax Θ (d (κ ln(dκ) + lnn))

Gaussian Differential Privacy

hk Θ
(

G2

αβn2µ2 min
{
κ− 1

2 (dκ+ d lnn+ κ lnκ)
− 1

2 , 1
d

})
K Θ

(
(dκ+ d lnn+ κ lnκ)max

{
κ3/2
√
dκ+ d lnn+ κ lnκ, dκ

})
τmax Θ (dκ+ d lnn+ κ lnκ)

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

10 3

10 2

10 1

100

101

102

103

Ex
ce

ss
 e

m
pi

ric
al

 ri
sk

lower bound (up to a const)
Ours, empirical
Output perturbation, empirical
DP-GD ( = 1/n), empirical

0.1 0.2 0.3 0.4 0.5

10 3

10 2

10 1

100

101

102

103

104

Ex
ce

ss
 e

m
pi

ric
al

 ri
sk

lower bound (up to a const)
Ours, empirical
Output perturbation, empirical
DP-GD, empirical

Figure 3: Excess empirical risks for strongly convex losses on Wine Quality – Red dataset.
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Figure 4: Excess empirical risks for strongly convex losses on Wine Quality – White dataset.
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White Wine Quality dataset contains 4898 samples with 11 features. We standardize the data and learn a
regression task via ℓi =

1
2 (x

T
i θ − yi)

2 + α
2 ∥θ∥

2, which is a strongly convex problem under α = 32 and
ρ = 0.01.

Results. We compare with the theoretical lower bounds in Table 1 (up to a constant), the output perturbation
in Algorithm 4, and DP-GD with per-sample gradient clipping (no need to set the clipping threshold) by Bu
et al. (2022). The experiments are conducted under both ε-DP and µ-GDP. We consistently observe that our
algorithms outperform the existing ones.

E PROOF THE CONVERSION LEMMA 8
E.1 A KEY LEMMA: ANOTHER CHARACTERIZATION OF W∞ DISTANCE

To establish Lemma 8, we commence by furnishing an equivalent characterization for the W∞ distance. We
also demonstrate the attainability of the infimum in Lemma 22. Our exposition begins with the introduction
of the concept of tightness.

Definition 21 (Tightness). A probability measure P on Θ is called tight if for any ϵ > 0, there exists a
compact set K ⊂ Θ, such that

P (Θ \K) ≤ ϵ,

Lemma 22 (Proposition 5 and Proposition 1 of Givens & Shortt (1984)). Let (Θ,dist) be a complete
separable metric space. Let P and Q be two tight probability measures on Θ. The Wasserstein-∞ distance
has the following characterization:

W∞(P,Q) = inf{r > 0 : P (U) ≤ Q(Ur), for all open subsets U ⊂ Θ},

where the r-expansion of U is denoted by Ur := {x ∈ Θ : dist(x, U) ≤ r}.
Furthermore, the infimum in the Definition 7 can be attained, i.e., there exists ζ∗ ∈ Γ(P,Q) such that

W∞(P,Q) = ess sup
(x,y)∈(Θ×Θ,ζ∗)

dist(x, y) = inf
ζ∈Γ(P,Q)

ess sup
(x,y)∈(Θ×Θ,ζ)

dist(x, y).

The proof of this lemma is presented in Givens & Shortt (1984). For completeness, we provide a detailed
proof in Appendix I.6.

E.2 PROOF OF LEMMA 8

Proof of Lemma 8 First note that ∥x− y∥1 ≤
√
d∥x− y∥2, for all x, y. Therefore, it suffices to prove the

lemma when dist is the ℓ2 metric.

Fix ∆ and set ξ = pmin · πd/2

2d+1·Γ(d/2+1)
∆d, so that dTV(P,Q) < ξ.

To prove the result that W∞ ≤ ∆, we use the equivalent definition of W∞ in Lemma 22. By this definition,
to prove W∞(P,Q) ≤ ∆, it suffices to show that

P (A) ≤ Q(A∆), for all open set A ⊆ Θ,

where we re-define A∆ := {x ∈ Rd | dist(x,A) ≤ ∆}. Note that by this definition, A∆ might extend
beyond Θ. However, we still have Q(A∆) = Q(A∆ ∩Θ), since Q is supported on Θ.

Note that if Q(A∆) = 1, it is obvious that P (A) ≤ Q(A∆). When A is an empty set, the proof is trivial. So
we only consider nonempty open set A ⊆ Θ with Q(A∆) < 1.

Note that for an arbitrary open set A ⊆ Θ, we have

P (A) ≤ Q(A) + dTV (P,Q) < Q(A) + ξ.

19



Published as a conference paper at ICLR 2024

Thus to prove P (A) ≤ Q(A∆), it suffices to prove Q(A) + ξ ≤ Q(A∆), i.e., Q(A∆ \A) ≥ ξ.

To prove Q(A∆ \A) ≥ ξ, we construct an ℓ2-ball U ⊂ Rd of radius ∆/2 satisfying the properties:

1. U is contained in the set A∆ \A, i.e., U ⊂ A∆ \A, and

2. Q(U) = Q(U ∩Θ) ≥ ξ

Notice that we only consider nonempty open set A ⊆ Θ with Q(A∆) < 1, we construct U as follows.

Intuition and Overview of the construction of U . The construction of the ball U involves determining
two pivotal points, y∆ and yA, located at the “boundaries” of A∆ and A, respectively. We then define U

as U := Bdist

(
y∆+yA

2 , dist(y∆,yA)
2

)
. Note that by the definition of A∆, dist(y∆, yA) ≥ ∆. To guarantee

Property 1 (i.e., U ⊂ A∆ \A), yA is chosen such that dist(y∆, yA) = ∆. Additionally, to ensure Property 2
(i.e., Q(U) ≥ ξ), since Q(U) = Q(U ∩ Θ), our aim is to maximize the “size” of U ∩ Θ. Therefore, we
specifically require y∆ to belong to Θ, while noting that A∆ might extend beyond Θ. The detailed selection
process of y∆ and yA, and the subsequent construction of U , are presented below.

Existence and Construction of y∆. To find the above discussed y∆ ∈ Θ, we first show that:

If Q(A∆) < 1, then ∂(A∆) ∩Θ ̸= ∅,
where we re-define the boundary of A∆ as ∂(A∆) := {x ∈ R | dist(x,A) = ∆}.
We prove it by contradiction. If instead ∂(A∆) ∩ Θ = ∅, then for all x ∈ Θ, dist(x,A) ̸= ∆. Due to the
continuity of dist and the convexity of Θ, we know that only one of these two statements holds:

• dist(x,A) < ∆, for all x ∈ Θ.

• dist(x,A) > ∆, for all x ∈ Θ.

Since ∅ ̸= A ⊆ Θ, there exist x′ ∈ A ∈ Θ, such that dist(x′, A) = 0. Therefore, the first statement holds.
Thus Θ ⊆ A∆, which contradicts to Q(A∆) < 1.

Therefore, ∂(A∆) ∩ Θ ̸= ∅. Then there exists y∆ ∈ ∂(A∆) ∩ Θ. Thus there exist y∆ ∈ Θ, such that
dist(y∆, A) = ∆.

Construction of yA. Note that by the definition of dist(·, A) and that dist(y∆, A) = ∆, there exist yA ∈ A
(the closure of A), such that dist(y∆, yA) = ∆.

Construction of U . Let y0 = y∆+yA

2 and let U be the closed ball U = B(y0,∆/2) := {x ∈
Rd | dist(x, y0) ≤ ∆/2}. We now prove that U ⊆ A∆ \ A and that Q(U) ≥ ξ, and then the proof is
concluded.

1. To prove U ⊂ A∆ \A, let x ∈ U . We show that x ∈ A∆ and x /∈ A. Since x, y∆, yA ∈ U and U is
a ball with diameter ∆, we have

dist(x, y∆) ≤ ∆, and dist(x, yA) ≤ ∆ (4)

• (x /∈ A). If x ∈ A, since A is an open set and dist(y∆, A) = ∆, we have that dist(x, y∆) > ∆,
which contradicts to (4). Therefore x /∈ A.

• (x ∈ A∆). Note that yA ∈ Ā, thus dist(x,A) ≤ dist(x, yA)
(4)

≤ ∆, implying that x ∈ A∆.

2. To prove Q(U) ≥ ξ, note that we assume the domain Θ to be an ℓ2 ball. Since yA, y∆ ∈ Θ, by
Lemma 24, we know that Vol(U ∩Θ) ≥ 1

2Vol(U). Thus

Q(U) = Q(U ∩Θ) ≥ pminVol(U ∩Θ) ≥ 1

2
pminVol(U) = ξ,
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which completes the proof.

Remark 23. It is worth noting that Lemma 8 and Lemma 24 extend naturally to open balls. The necessary
modifications in the proof involve changing certain inequalities: “≤” becomes “<”, and “>” becomes “≥.”

■

Lemma 24. Suppose θ ∈ Rd, and R > 0. If there exists a ∈ Rd such that a ∈ Bℓ2(θ,R), and that
−a ∈ Bℓ2(θ,R). Then

Vol (Bℓ2(0, ∥a∥2) ∩ Bℓ2(θ,R))

Vol (Bℓ2(0, ∥a∥2))
≥ 1

2
.

Proof Since a,−a ∈ Bℓ2(θ,R), we have

∥a− θ∥22 ≤ R2, and ∥ − a− θ∥22 ≤ R2,

which implies
∥a∥22 − 2⟨a, θ⟩+ ∥θ∥22 ≤ R2, and ∥a∥22 + 2⟨a, θ⟩+ ∥θ∥22 ≤ R2.

Thus, ∥a∥22 + ∥θ∥22 ≤ R2.

Denote S = Bℓ2(0, ∥a∥2)\Bℓ2(θ,R). We first prove that−S := {−x | x ∈ S} ⊆ Bℓ2(θ,R). For an arbitrary
x ∈ S, since x ∈ Bℓ2(0, ∥a∥2), we have ∥x∥2 ≤ ∥a∥2, thus ∥x∥22+∥θ∥22 ≤ ∥a∥22+∥θ∥22 ≤ R2. On the other
hand, since x /∈ Bℓ2(θ,R), we have ∥x−θ∥22 > R2. Thus ∥−x−θ∥22 = 2

(
∥x∥22 + ∥θ∥22

)
−∥x−θ∥22 < R2,

which implies −x ∈ Bℓ2(θ,R). Therefore −S ⊆ Bℓ2(θ,R).

Since S = Bℓ2(0, ∥a∥2) \ Bℓ2(θ,R) and −S ⊆ Bℓ2(θ,R), we know that S ∩ (−S) = ∅. Therefore,

2Vol(S) = Vol(S) + Vol(−S) = Vol (S ∪ (−S)) ≤ Vol (Bℓ2(0, ∥a∥2)) .

Therefore

Vol (Bℓ2(0, ∥a∥2) ∩ Bℓ2(θ,R)) = Vol (Bℓ2(0, ∥a∥2))−Vol(S) ≥ 1

2
Vol (Bℓ2(0, ∥a∥2)) .

■

F PROOFS OF THEOREM 1 AND COROLLARY 10

In this section, we provide the omitted proofs and supplementary facts for the Metropolis-adjusted Langevin
algorithm (MALA) with constraint in Section 3.3.

We first provide the definition of mixing time. Given an error tolerance ξ ∈ (0, 1) and an initial distribution
p0, define the ξ-mixing time in total variation distance as

τ
(
ξ, p0, p∗

)
= min{k | ∥pk − p∗∥TV ≤ ξ}

For simplicity, we denote L = nβ and m = nα in this proof.

Proof of Theorem 1 We separate the proof of Theorem 1 into three parts via splitting of Algorithm 1 into
the inner loop, the outer loop, and the case where the outer loop count reaches the maximum. We note that in
the inner loop, Algorithm 1 is performing the MALA algorithm on the unconstrained space Rd. In the outer
loop, it performs a rejection sampling step that takes in independent samples from MALA and keeps rejecting
samples outside of the domain Θ until one sample falls inside Θ. When the sample keeps falling outside Θ
and the outer loop count reaches the maximum, the algorithm stops by outputting an arbitrary point θ ∈ Θ.
We clarify the notations as follows.
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Notations. Let π and p∗ be the unconstrained and constrained Gibbs distribution respectively with density
π(θ) ∝ e−γJ(θ), and p∗(θ) ∝ e−γJ(θ)1(θ ∈ Θ). Let p̂K be the distribution of the unconstrained MCMC
sample after K inner-loop iterations. Let pK(θ) ∝ p̂K(θ)1 {θ ∈ Θ} be the distribution of the accepted
MCMC sample. Let pout be the output distribution of Algorithm 1. Let pFail be the distribution within domain
Θ, which is the output distribution when none of the τmax trials belong to Θ.

Overview. We first bound the error in the inner loop – the TV distance between the unconstrained MCMC
distribution and the unconstrained Gibbs distribution: dTV(p̂

K , π). Next, we bound the error of the ac-
cepted sample – the TV distance between the constrained MCMC distribution and the target distribution:
dTV(p

K , p∗). Finally, we bound the TV distance between the output distribution and the target distribution:
dTV(pout, p

∗).

For the inner-loop part, we cite the previous results. Consider the MALA algorithm on Rd with a step size of

h = Θ

(
min

{
κ−1/2(γL)−1(lnβ0/ξ)

−1/2,
1

γLd

})
,

and an initial distribution µ0 satisfying β0-warmness assumption that supA⊂Rd

(
µ0(A)
π(A)

)
≤ β0. Then by

Theorem 1 of Dwivedi et al. (2019), we know that the MALA algorithm with the number of iterations

K = Θ

(
ln

(
β0

ξ

)
max

{
κ3/2

√
lnβ0/ξ, dκ

})
,

converges to ξ accuracy in terms of the TV distance: dTV (p̂
K , π) ≤ ξ. By Lemma 8 of Ma et al. (2019), we

also know that on the unconstrained space, the Gaussian distributionN (0, 1
γL I) is (2κ)d/2 warm with respect

to the posterior distribution π with condition number κ. Plugging in this warmness constant, we obtain that

K = Θ
(
(d lnκ+ ln 1/ξ)max

{
κ3/2

√
d lnκ+ ln 1/ξ, dκ

})
,

Next, for the outer-loop (rejection sampling) part, we note that if the unconstrained p̂K and π satisfies
dTV

(
p̂K(θ), π(θ)

)
≤ ξ, then we also obtain a bound for dTV

(
pK(θ), p∗(θ)

)
, the TV distance between

the constrained distributions pK(θ) ∝ p̂K(θ)1 {θ ∈ Θ} and p∗(θ) ∝ π(θ)1 {θ ∈ Θ}. Normalizing the
density gives that p∗(θ) = π(θ)1{θ∈Θ}∫

π(θ)1{θ∈Θ}dθ . Applying the concentration argument above provides the bound:∫
π(θ)1 {θ ∈ Θ}dθ ≥ 1−2 exp

(
−γmR2

1

32d

)
≥ 1

2 , where the last inequality follows by plugging in our choice

22



Published as a conference paper at ICLR 2024

of R1. From the definition of the TV-distance, we know that

dTV

(
pK(θ), p∗(θ)

)
=

∫
θ∈Θ

|pK(θ)− p∗(θ)|dθ

=

∫
θ∈Θ

∣∣∣∣∣ p̂K(θ)∫
θ∈Θ

p̂K(θ)dθ
− p∗(θ)∫

θ∈Θ
π(θ)dθ

∣∣∣∣∣dθ
≤
∫
θ∈Θ

∣∣∣∣∣ p̂K(θ)∫
θ∈Θ

p̂K(θ)dθ
− p̂K(θ)∫

θ∈Θ
π(θ)dθ

∣∣∣∣∣dθ +
∫
θ∈Θ

∣∣∣∣∣ p̂K(θ)∫
θ∈Θ

π(θ)dθ
− p∗(θ)∫

θ∈Θ
π(θ)dθ

∣∣∣∣∣dθ
=

∣∣∣∣∣1−
∫
θ∈Θ

p̂K(θ)dθ∫
θ∈Θ

π(θ)dθ

∣∣∣∣∣+ 1∫
θ∈Θ

π(θ)dθ

∫
θ∈Θ

|p̂K(θ)− π(θ)|dθ

(i)

≤ 2
ξ∫

θ∈Θ
π(θ)dθ

≤ 4ξ,

where (i) follows from the definition of the TV-distance.

Replacing ξ by ξ/8, we have dTV(p
K , p∗) ≤ ξ/2.

Then, we bound the “failure” probability – the probability that the outer-loop count reaches τmax = ln(2/ξ),
while the MCMC sample still falls outside Θ. For the rejection sampling part, we know that for each individual
trial, the rejection probability equals the probability mass outside of Θ. Invoking Lemma 25 below, we obtain
that for θ̂ ∼ π,

P
(∥∥∥θ̂ − Eθ∼p(θ)[θ]

∥∥∥ ≥ r
)
≤ 2e−

r2γm
8d ,

and that for θ∗ being the mode of π, ∥∥Eθ∼p(θ)[θ]− θ∗
∥∥2 ≤ 3

γm
.

On the other hand, B(θ∗, R1) ⊂ Θ. Since R1 ≥ 8
√

d
γm ≥ 2

√
3

γm , we have B(Eθ∼p(θ)[θ], R1/2) ⊂

B(θ∗, R1) ⊂ Θ. Hence, applying the concentration argument above for θ̂ ∼ π,

P
(
θ̂ /∈ Θ

)
≤ 2e−

γmR2
1

32d .

Combining with the definition of the TV distance, we know that for θ̂K ∼ p̂K obtained by running the MALA
algorithm (on Rd) for K steps,

P
(
θ̂K /∈ Θ

)
≤ P

(
θ̂ /∈ Θ

)
+ dTV (p̂

K , π) ≤ 2e−
γmR2

1
32d + ξ.

Hence with τmax independent trials, the probability that none of the τmax trials belong to Θ is

P (None of the τmax trials belong to Θ) =
(
P
(
θ̂K /∈ Θ

))τmax

≤
(
2e−

γmR2
1

32d + ξ

)τmax

≤
(
2e−2 + ξ

)τmax

≤ e−τmax ,
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where we plug in R1 ≥ 8
√

d
γm , and without loss of generality assume ξ < 1/16 < e−1 − 2e−2. Therefore,

by setting τmax = ln(2/ξ), we have P (None of the τmax trials belong to Θ) ≤ ξ/2.

Finally, we bound the TV distance between the output distribution and the target distribution: dTV(pout, p
∗).

Denote the event HFail = {None of the τmax trials belong to Θ}, and let HSuccess = Hc
Fail be its complement.

We know from the above analysis that P(HFail) ≤ ξ/2.

Let θout ∼ pout. Notice that

θout|HSuccess ∼ pK , and θout|HFail ∼ pFail.

We thus have pout = (1− P(HFail))p
K + P(HFail)pFail. Therefore, for

dTV(pout, p
∗) = sup

A
|pout(A)− p∗(A)|

= sup
A

∣∣(1− P(HFail))p
K(A) + P(HFail)pFail(A)− p∗(A)

∣∣
≤ sup

A

∣∣pK(A)− p∗(A)
∣∣+ sup

A

∣∣−P(HFail)p
K(A) + P(HFail)pFail(A)

∣∣
= dTV(p

K , p∗) + P(HFail)dTV (p
K , pFail)

≤ ξ/2 + ξ/2 = ξ,

where we apply dTV(p
K , p∗) ≤ ξ/2, P(HFail) ≤ ξ/2, and dTV (p

K , pFail) ≤ 1 in the last inequality.

Therefore, we prove that dTV(pout, p
∗) ≤ ξ.

At last, we calculate the expected total number of iterations. Let τhalt be the current count of the outer loop
when the algorithm stops. Then τhalt follows the finite geometric distribution with the probability of success
in each trial equals P

(
θ̂K ∈ Θ

)
≥ 1 − 2e−2 − ξ, and the maximum number of trials τmax. Therefore,

E(τhalt) ≤ 1
1−2e−2−ξ ≤

1
1−2e−2−1/8 < 2, when ξ < 1/16 < 1/8.

Therefore, the expected number of total iterations is given by

K · E(τhalt) = Θ
(
(d lnκ+ ln 1/ξ)max

{
κ3/2

√
d lnκ+ ln 1/ξ, dκ

})
,

which completes the proof. ■

The universal constants regarding the number of iterations can be found in the proof of Lemma 7 in Ma et al.
(2019).

Lemma 25. In Rd, if a distribution p is γm-strongly log-concave, then∥∥Eθ∼p(θ)[θ]− θ∗
∥∥ ≤√ 3

γm
,

where θ∗ denotes the mode of the distribution p(θ). We also have that for θ̂ ∼ p,

P
(∥∥∥θ̂ − Eθ∼p(θ)[θ]

∥∥∥ ≥ r
)
≤ 2e−

r2γm
8d .

Proof We prove this Lemma following the proof of Lemma 10 in Mazumdar et al. (2020).

For
∥∥Eθ∼p(θ)[θ]− θ∗

∥∥, we use the fact that p(θ) is γm-strongly log-concave and consequently unimodal,
and that ∥∥Eθ∼p(θ)[θ]− θ∗

∥∥2 ≤ 3

γm
.
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For
∥∥∥θ̂ − Eθ∼p(θ)[θ]

∥∥∥, we note that p(θ) being γm-strongly log-concave implies that the random variable

θ ∼ p is a sub-Gaussian random vector with parameter σ2
v = 1

2γm . Consequently, it is a norm-sub-Gaussian
random variable with constant σ2

n = 4d
γm . Plugging into the definition of norm-sub-Gaussian random variable,

we obtain that for θ̂ ∼ π,

P
(∥∥∥θ̂ − Eθ∼p(θ)[θ]

∥∥∥ ≥ r
)
≤ 2e−

r2γm
8d .

■

Proof of Corollary 10 Applying Lemma 8, to obtain ∆-accuracy in W∞ distance, we want that

ξ < pmin ·
πd/2

2d+1 · Γ(d2 + 1)dd/2
∆d,

where pmin ≤ minθ p
∗(θ) and p∗(θ) ∝ e−γJ(θ)1(θ ∈ Θ) as defined in Section 3.3.

Since θ∗ ∈ Θ by Assumption 3, applying Corollary 20, we obtain that

min
θ

p∗(θ) ≥ e−2γnβB2

·
Γ(d2 + 1)

πd/2Bd
.

We then set

ξ = pmin ·
πd/2

2d+1 · Γ(d2 + 1)dd/2
∆d (pmin = e−2γnβB2 · Γ(

d
2+1)

πd/2Bd )

= e−2γnβB2

· 1

2d+1 · dd/2Bd
∆d

Therefore, we have

ln 1/ξ ∼ O
(
γnβB2 + d log d+ d logB + d log(1/∆)

)
.

Therefore, applying Theorem 1, we obtain that Algorithm 1 converges to ∆-accuracy in W∞(pout, p
∗) with

the following expected number of gradient queries to J :

Θ
((

d ln(κBd) + d ln(1/∆) + γnβB2
)
max

{
κ3/2

√
d ln(κBd) + d ln(1/∆) + γnβB2, dκ

})
.

■

G PROOF OF THEOREM 2
We first provide the following lemma that converts the distance between probability measures to the distance
between random variables.

Lemma 26. Let P,Q be two distributions defined on Θ such that W∞(P,Q) ≤ ∆ under a metric dist :
Θ×Θ→ R+. Let X ∼ P , there exists a random variable Y ∼ Q such that P[dist(X,Y ) ≤ ∆] = 1.

The proof of this lemma is deferred to the end of this section.

Proof of Theorem 2 Let x ∼ M̃(D), by Lemma 26 and the condition on W∞ distance, there is a coupling
ζ such that random variable y ∼M(D), (x, y) ∼ ζ, and dist(x, y) ≤ ∆ with probability 1 (with respect to
ζ). The distribution of x is equivalent to the following two-step procedure
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(1) y ∼M(D)

(2) x ∼ ζ(·|y)
The second step can be further viewed as first sampling u ∼ Uniform([0, 1]) and then mapping u to x
deterministically by a data-dependent function x = g(u) where g is completely determined by ζ(·|y) via the
inverse integral transform. g depends on D and y through ζ.

Define query fu,y(D) = gζ(u) − y and on a neighbor dataset D′, fu,y(D′) = gζ′(u) − y where ζ ′ is the
resulting coupling under D′. With probability 1 under ζ, ∥gζ(u) − y∥ ≤ ∆. Similarly with probability 1,
under ζ ′, ∥gζ′(u)− y∥ ≤ ∆.

By a union bound, with probability 1 (under ζ(·|y)× ζ ′(·|y)), the global sensitivity of this query fu,y satisfies
∥fu,y(D)− fu,y(D

′)∥ ≤ ∥gζ(u)− y∥+ ∥gζ′(u)− y∥ ≤ 2∆.

Recall that ASAP returns x̃ = x+ Z = y + (x− y) + Z. In the above, x− y = fu,y(D). By choosing Z
appropriately as the Gaussian mechanism (or Laplace mechanism) and the adaptive composition theorem (of
GDP and pure-DP), we establish the two stated claims. ■

Proof of Lemma 26 By the attainability of infimum for W∞ stated in Lemma 22 and that W∞(P,Q) ≤ ∆,
we know that there exists a joint distribution ζ(x, y), such that the marginals in x and y follow P and Q
respectively, and that ess sup(x,y)∈(Θ×Θ,ζ) dist(x, y) = W∞(P,Q) ≤ ∆. For given X ∼ P , we define a
conditional distribution ζ(·|x), then taking Y ∼ ζ(·|x) statisfies P[dist(X,Y ) ≤ ∆] = 1.

■

H PROOF OF THEOREM 3
Proof of Theorem 3 We divide the proof into three parts: privacy, accuracy, and computation. We first
present the proof for pure DP case.

Privacy. The privacy analysis follows from the adaptive composition (Lemma 14) of output perturbation
ε-DP and ASAP (2ε-DP, Theorem 2).

Accuracy. Let E denote the event of ∥θ0 − θopt∥1 ≤ 2d(G+τα) ln(d/ρ)
nαε , where θ0, θopt is defined in

Algorithm 4 for pure DP. Then by Lemma 17 of (Chaudhuri et al., 2011), P(E) ≥ 1− ρ. By the choice of B

from (2), we know that under event E, we have B(θ∗, R1) ⊂ Θ, where R1 = 8
√

d
γαn , and thus Assumption 3

holds.

Denote θ̃ the output of MALA with constraint (Algorithm 1), and denote p∗ the exact posterior.

We then divide the risk into two parts

E
[
L(θ̂)

]
− L(θ∗) = E

[
L(θ̂)− L(θ̃)

]
+ E

[
L(θ̃)

]
− L(θ∗). (5)

For the first part, note that θ̂ = θ̃ + Z, where Zi
i.i.d.∼ Lap(∆/ε), i = 1, ..., d, thus we have that

E
[
∥θ̂ − θ̃∥2

] Jensen’s inequality
≤

√
E
[
∥θ̂ − θ̃∥22

]
=

√
E
[∑d

i=1
Z2
i

]
=
√
2d

∆

ε

With the nG-Lipschitz continuity of L, we have

E
[
L(θ̂)− L(θ̃)

]
≤ nGE

[
∥θ̂ − θ̃∥2

]
≤
√
2dnG∆

ε
(6)

For E
[
L(θ̃)

]
− L(θ∗), the second part of the right-hand side of the equation (5), we consider two cases:
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1. Under the event E. By Corollary 10, we have W∞(p̃, p∗) ≤ ∆. Since W∞(p̃, p∗) ≤ ∆, applying
Lemma 22, there exist a coupling of p̃ and p∗, denoted as ζ∗, such that ess sup(x,y)∈(Θ×Θ,ζ)∥x−
y∥1 ≤ ∆, thus ess sup(x,y)∈(Θ×Θ,ζ)∥x−y∥2 ≤ ∆. Take θpost|θ̃ ∼ ζ(·|θ̃), then we know θpost ∼ p∗.

We divide

E
[
L(θ̃)|E

]
− L(θ∗) = E

[
L(θ̃)− L(θpost)|E

]
+ (E [L(θpost)|E]− L(θ∗)) (7)

With the nG-Lipschitz continuity of L, we have

E(θ̃,θpost)∼ζ

[
L(θ̃)− L(θpost)|E

]
≤ nGE(θ̃,θpost)∼ζ

[
∥θ̃ − θpost∥2|E

]
≤ nG∆, (8)

which is dominated by (6). By Lemma 6, we have

E[L(θpost)|E]− L(θ∗) ≤ d

γ
. (9)

2. Under the complementary event Ec. For simplicity, we set τ in Algorithm 4 to be sufficiently small
and exclude this factor. By the nβ-Lipschitz smooth of L and the first-order condition, we have

E
[
L(θ̃)|Ec

]
− L(θ∗) ≤ nβ

2
E
[
∥θ̃ − θ∗∥22|Ec

]
≤ nβ

2
E
[(
∥θ̃ − θ0∥2 + ∥θ0 − θ∗∥2

)2
|Ec

]
≤ nβ

2
E
[
(B + ∥θ0 − θ∗∥1)2 |Ec

]
(10)

By Lemma 27, we have

E
[
∥θ0 − θ∗∥21|Ec

]
≤ O

d(d+ 1)

(√
dG

αnε

)2

+B2 + (d+ 1)B

√
dG

αnε

 ,

and

E [∥θ0 − θ∗∥1|Ec] ≤ O

(
d

√
dG

αnε
+B

)
.

Plugging these into (10), plugging in κ = β/α, we obtain that

E[L(θ̃)|Ec]− L(θ∗) ≤ O
(
d3G2κ

αnε2

)
. (11)

Therefore, adding (6), (8), and (9), as well as adding (6), and (11), respectively, we obtain

E
[
L(θ̂)|E

]
− L(θ∗) ≤

√
2dnG∆

ε
+ nG∆+

d

γ
= O

(
d2G2 ln(d/ρ)

αnε2

)
, and (12)

E
[
L(θ̂)|Ec

]
− L(θ∗) ≤

√
2dnG∆

ε
+O

(
d3G2κ

αnε2

)
= O

(
d2G2 (ln(d/ρ) + dκ)

αnε2

)
, (13)

where we instantiated our choice of γ = ε
GDiam(Θlocal)

with Diam(Θlocal) = 2B = 2CdG log(d/ρ)
αnε , and

∆ = dG log(d/ρ)
2n2αε ≤ d

3
2 G log(d/ρ)

2n2αε .
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With (12) and (13), we have

E
[
L(θ̂)

]
− L(θ∗) = P(E) · E

[
L(θ̂)|E

]
+ (1− P(E)) · E

[
L(θ̂)|Ec

]
− L(θ∗)

≤ O
(
d2G2 ln(d/ρ)

αnε2

)
+ ρ · O

(
d2G2 (ln(d/ρ) + dκ)

αnε2

)
= O

(
d2G2 (ln d+ ln(1/ρ) + ρdκ)

αnε2

)
.

Taking ρ = O (1/(dκ)), we obtain

E
[
L(θ̂)

]
− L(θ∗) = O

(
d2G2 (ln d+ lnκ)

αnε2

)
.

Computation. The optimization oracle (e.g., Newton’s method or Gradient Descent) runs in O(n log n)
time for getting a solution satisfying ∥θ0 − θ∗∥ ≤ 1/n2. For the sampling step, following the proof of
Corollary 10, the expected computation complexity is bounded by

K · ((1− ρ)E [τhalt|E] + ρτmax) .

Applying Corollary 10 with taking proper B = CdG log(d/ρ)
αnε , we have E [τhalt|E] ∼ O(1).

Plugging B, γ as given in Table 2 for pure DP, we obtain

ξ = e−2γnβB2

· 1

2d+1 · dd/2Bd
∆d

= e−
εnβB

G · 1

2d+1 · dd/2Bd
∆d (γ = ε

2GB )

= e−C1κd ln(d/ρ) · 1

2d+1 · dd/2

(
αnε

C1Gd ln(d/ρ)

)d

∆d (B = C1Gd ln(d/ρ)
αnε , κ = β

α )

Therefore, we have

ln 1/ξ ∼ O
(
κd ln(d/ρ) + d ln d+ d ln

(
Gd ln(d/ρ)

αnε

)
+ d ln

1

∆

)
∼ O

(
κd ln(d/ρ) + d ln

(
Gd ln(d/ρ)

αnε∆

))
(κ = β

α > 1, ρ < 1)

Therefore, applying Theorem 1, we obtain that Algorithm 1 converges to ∆-accuracy in W∞(pout, p
∗) with

the following expected number of gradient queries to J :

Θ

(
d

(
lnκ+ κ ln(d/ρ) + ln

(
Gd ln(d/ρ)

αnε∆

))
max

{
κ3/2

√
d

(
κ ln(d/ρ) + ln

(
Gd ln(d/ρ)

αnε∆

))
, dκ

})

∼ Θ

(
d

(
κ ln(d/ρ) + ln

(
G ln(d/ρ)

αnε∆

))
max

{
κ3/2

√
d

(
κ ln(d/ρ) + ln

(
G ln(d/ρ)

αnε∆

))
, dκ

})
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Plugging in ∆ = Gd log(d/ρ)
2n2αε as given in Table 2, we have

K ∼ Θ
(
d (κ ln(d/ρ) + lnn)max

{
κ3/2

√
d (κ ln(d/ρ) + lnn), dκ

})
.

Therefore, the expected total computation complexity is given by

Θ
(
nd (κ ln(d/ρ) + lnn)max

{
κ3/2

√
d (κ ln(d/ρ) + lnn), dκ

}
(1 + ρd (κ ln(d/ρ) + lnn))

)
.

Taking ρ = O (1/(dκ)), assuming (lnn)/κ ≤ O(1), it translates into

Θ
(
nd (κ ln(dκ) + lnn)max

{
κ3/2

√
d (κ ln(dκ) + lnn), dκ

}
ln(dκ)

)
.

Gaussain DP case. The analysis of Gaussian DP closely parallels the proof of pure DP case except for the
slight difference in the accuracy and computation analysis. Here, we present a simplified proof.

Let E denote the event of ∥θ0− θopt∥2 ≤
2
√
2(τα+G)(

√
d+
√

ln(1/ρ))

αnµ , where θ0, θopt is defined in Algorithm 4
for Gaussian DP. Since θ0 = θopt + Z, where Zi ∼ N (0, 4(τ + G

α )
2/n2µ2), applying the tail bound for

chi-square distributions by Lemma 1 of (Laurent & Massart, 2000), we have P(E) ≥ 1− ρ. By the choice of
B from (3), we know that under event E, Assumption 3 holds. For simplicity, we set τ in Algorithm 4 to be
sufficiently small and exclude this factor.

Under this event E, by Lemma 6, similar to the pure DP case, we have

E[L(θ̂)|E]− L(θ∗) ≤ d

γ
+O

(
nG
√
d∆

µ

)
= O

(
dG2

αnµ2

)
,

where we instantiated our choice of γ = µ2αn
G2 , and ∆ =

√
dG√

2n2αµ
.

On the other hand, under Ec, applying Lemma 27 by taking k = d/2, and σ = 8(∆µ )
2, we have

E
[
∥θ0 − θopt∥22|Ec

]
≤ O

(
G2(d+ ln(1/ρ))

(αnµ)2

)
.

Thus by the nβ-Lipschitz smooth of L and the first-order condition, we have

E
[
L(θ̃)|Ec

]
− L(θ∗) ≤ nβ

2
E
[
∥θ̃ − θ∗∥22|Ec

]
≤ nβ

2
E
[(
∥θ̃ − θ0∥2 + ∥θ0 − θ∗∥2

)2
|Ec

]
≤ O

(
κG2(d+ ln(1/ρ))

αnµ2

)
.

(14)

Therefore, by combining the two cases, we have

E[L(θ̂)]− L(θ∗) ≤ O
(
G2 (d+ ρκd+ ρκ ln(1/ρ))

αnµ2

)
.

Taking ρ = O(1/dκ), we obtain that

E[L(θ̂)]− L(θ∗) ≤ O
(
G2(d+ lnκ)

αnµ2

)
.

Applying Lemma 8, taking the B, γ,∆, ρ as Table 2 for Gaussian DP, assuming (lnn)/κ ≤ O(1), the
expected total computation complexity of the Gaussian DP case is given by

Θ
(
n (dκ+ d lnn+ κ lnκ)max

{
κ3/2
√
dκ+ d lnn+ κ lnκ, dκ

}
ln(κ)

)
.

■
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Lemma 27. Let X be a random variable drawn from the Gamma distribution Γ(k, σ), with the density

f(x; k, σ) =
xk−1e−

x
σ

σkΓ(k)
, for x > 0, k > 0, and σ > 0.

Suppose k ≥ 1, then for any a > 0, we have

E(X|X > a) ≤ kσ + a, and E(X2|X > a) ≤ k(k + 1)σ2 + a2 + (k + 1)aσ.

Proof We have

E(X|X > a) =

∫∞
a

xf(x; k, σ)dx∫∞
a

f(x; k, σ)dx
=

∫∞
a

xke−
x
σ dx∫∞

a
xk−1e−

x
σ dx

= σ

∫∞
a/σ

xke−xdx∫∞
a/σ

xk−1e−xdx

= σ
Γ(k + 1, a/σ)

Γ(k, a/σ)
,

where Γ(k, t) is the incomplete gamma function defined as Γ(k, t) =
∫∞
t

xk−1e−xdx.

Applying integral by parts, we have

Γ(k + 1, t) = kΓ(k, t) + tke−t.

We also have, for k ≥ 1,

Γ(k, t) = (k − 1)Γ(k − 1, t) + tk−1e−t ≥ tk−1e−t.

Therefore, for k ≥ 1,
Γ(k + 1, t)

Γ(k, t)
= k +

tke−t

Γ(k, t)
≤ k +

tke−t

tk−1e−t
= k + t.

Taking t = a/σ, we have

E(X|X > a) ≤ σ
Γ(k + 1, a/σ)

Γ(k, a/σ)
≤ kσ + a.

For E(X2|X > a), we have

E(X2|X > a) =

∫∞
a

x2f(x; k, σ)dx∫∞
a

f(x; k, σ)dx
=

∫∞
a

xk+1e−
x
σ dx∫∞

a
xk−1e−

x
σ dx

= σ2

∫∞
a/σ

xk+1e−xdx∫∞
a/σ

xk−1e−xdx

= σ2Γ(k + 2, a/σ)

Γ(k, a/σ)

= σ2 (k + 1)Γ(k + 1, a/σ) + (a/σ)k+1e−a/σ

Γ(k, a/σ)

≤ σ2

(
(k + 1)(k + a/σ) +

(a/σ)k+1e−a/σ

(a/σ)k−1e−a/σ

)
= σ2k(k + 1) + a2 + aσ(k + 1).

■
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I DEFERRED PROOFS OF THE SUPPORTING LEMMAS AND COROLLARIES

I.1 PROOF OF LEMMA 9 AND COROLLARY 20
Proof of Lemma 9 Denote θ∗ as the minimizer of J on Θ. Then

Z =

∫
Θ

e−γJ(θ)dθ ≤ e−γJ(θ∗)

∫
Θ

dθ = e−γJ(θ∗) · π
d/2(R/2)d

Γ(d/2 + 1)
.

On the other hand, by the Lipschitz continuity assumption, J(θ)− J(θ∗) ≤ G · ∥θ − θ∗∥ ≤ GR. Hence

1

Z
e−γJ(θ) ≥ e−γGR · Γ(d/2 + 1)

πd/2(R/2)d
.

If J instead satisfies the β-Lipschitz smoothness and convextiy assumptions, then for all θ̃ ∈ Θ

J(θ)− J(θ∗) = J(θ)− J(θ̃) + J(θ̃)− J(θ∗)

≤ ⟨J(θ̃), θ − θ̃⟩+ β

2
∥θ − θ̃∥2 − ⟨∇J(θ̃), θ∗ − θ̃⟩

= ⟨J(θ̃), θ − θ∗⟩+ β

2
∥θ − θ̃∥2

≤ ∥J(θ̃)∥R+
1

2
βR2

Hence

inf
θ∈Θ

p(θ) ≥ e−γ(R∥∇J(θ̃)∥+βR2/2) ·
Γ(d2 + 1)

πd/2(R/2)d
, ∀β̃ ∈ Θ.

Furthermore, if θ∗ is the global minimizer, i.e.,∇J(θ∗) = 0, then

inf
θ∈Θ

p(θ) ≥ e−γβR2/2 ·
Γ(d2 + 1)

πd/2(R/2)d
, ∀θ̃ ∈ Θ.

■

Proof of Corollary 20 It suffices to invoke Lemma 9 by setting J(θ) :=
∑n

i=1 ℓi(θ) +
λ
2 ∥θ − θ0∥2 and

Θ := {θ|∥θ − θ0∥ ≤ B}, notice that the diameter of Θ is 2B. ■

I.2 PROOF OF LEMMA 18 AND LEMMA 19
Proof of Lemma 18 By the α-strong convexity of LD and first-order optimality conditions for θ∗(D)

LD(θ∗(D′)) ≥ LD(θ∗(D)) + ⟨θ∗(D′)− θ∗(D),∇LD(θ∗(D))⟩+ αn

2
∥θ∗(D)− θ∗(D′)∥2

≥ LD(θ∗(D)) +
αn

2
∥θ∗(D)− θ∗(D′)∥2.

On the other side, by the α-strong convexity of LD′ and first-order optimality conditions for θ∗(D′)

LD′(θ∗(D)) ≥ LD′(θ∗(D′)) + ⟨θ∗(D)− θ∗(D′),∇LD′(θ∗(D′))⟩+ αn

2
∥θ∗(D′)− θ∗(D)∥2

≥ LD′(θ∗(D′)) +
αn

2
∥θ∗(D)− θ∗(D′)∥2.

Add the two inequalities we get
αn∥θ∗(D)− θ∗(D′)∥2 ≤ LD(θ∗(D′))− LD′(θ∗(D′)) + LD′(θ∗(D))− LD(θ∗(D))

≤ |ℓx(θ∗(D′))− ℓx(θ
∗(D))| ≤ G∥θ∗(D)− θ∗(D′)∥.

The proof is complete by dividing both sides by ∥θ∗(D)− θ∗(D′)∥. ■
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Proof of Lemma 19 It suffices to show the sensitivity of θ̃(D) is bounded by ∆̃. Applying Lemma 18,the
sensitivity of θ̃(D) is bounded by

max
D≃D′

||θ̃(D)− θ̃(D′)||2 = max
D≃D′

||θ̃(D)− θ∗(D) + θ∗(D)− θ∗(D′) + θ∗(D′)− θ̃(D′)||2

≤ ||θ̃(D)− θ∗(D)||2 + max
D≃D′

||θ∗(D)− θ∗(D′)||2 + ||θ∗(D′)− θ̃(D′)||2

≤ 2τ

n
+

2G

αn
= ∆̃.

■

I.3 PROOF OF LEMMA 14
Proof of Lemma 14 First, observe that pure-DP (with any ε <∞) by definition implies absolute continuity.
Let µ, ν be the two measures induced by a pure-DP mechanism on dataset D,D′ respectively. DP implies
that for any measurable set S, µ(S) ≤ eεν(S). This inequality implies that if ν(S) = 0 then µ(S) = 0,
which verifies the definition of absolute continuity, i.e., µ≪ ν.

By our assumption, M1 satisfies DP, thus PM1(D) absolutely continuous w.r.t. PM1(D′). Similarly,
M2(o1, D) satisfies DP for all o1 except when o1 belongs to a measure 0 set, thus with probability 1,
PM2(O1,D) is absolutely continuous w.r.t. PM2(O1,D′). It follows that the “density” function (technically,

Radon-Nikodym derivative) dPM1(D)

dPM1(D′)
exists and dPM2(O1,D)

dPM2(O1,D′)
exists almost surely. In addition, by taking

S = { dPM1(D)

dPM1(D′)
> eε} the DP definition, by a proof by contradiction*, we have

PO1∼M1(D′)[
dPM1(D)

dPM1(D′)
(O1) ≤ eε1 ] = 1 (15)

and
PO2∼M2(o1,D′)[

dPM2(o1,D)

dPM2(o1,D′)
(O2) ≤ eε2 ] = 1 (16)

almost surely under o1 ∼M1(D
′).

Let O1 ∼M1(D) and O2 ∼M2(O1, D). Similarly, let Õ1 ∼M1(D
′) and Õ2 ∼M2(Õ2, D

′). Consider
any measurable set S ⊂ Θ1 ×Θ2, by the Lebesgue integral

P[(O1, O2) ∈ S]

=

∫ ∫
1((u1, u2) ∈ S)dPM2(u1,D)(u2)dPM1(D)(u1)

=

∫ ∫
1((u1, u2) ∈ S)

dPM2(u1,D)

dPM2(u1,D′)
(u2) · dPM2(u1,D′)(u2) ·

dPM1(D)

dPM1(D′)
(u1) · dPM1(D′)(u1)

≤
∫ ∫

1((u1, u2) ∈ S)eε2 · dPM2(u1,D′)(u2) · eε1 · dPM1(D′)(u1)

=eε1+ε2P[(Õ1, Õ2) ∈ S].

The inequality above follows from equation 15 and equation 16.

For Gaussian DP, let P1 and Q1 be the probability measures of M1(D) and M1(D
′) respectively, and

P2(·|x = o) and Q2(·|x = o) be the probability measures of M2(o,D) and M2(o,D
′) respectively. Let P

and Q be the probability measures of M(D) and M(D′).

*Assume S is not measure 0. By definition of DP P[M1(D
′) ∈ S] ≤ eεP[M1(D

′) ∈ S] which contradicts with the definition of S unless S has measure 0.
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We first show that P is absolutely continuous w.r.t Q. Noting that by the definition of Gaussian DP and Hockey-
stick divergence, P1 is absolutely continuous w.r.t. Q1 and P2(·|x = o) is continuous w.r.t. Q2(·|x = o) with
probability 1. Then, for arbitrary Q-measureable set A, we have that

P (A) =

∫ ∫
1{(x, y) ∈ A}dP (x, y)

=

∫ ∫
1{(x, y) ∈ A}dP2(y|x)dP1(x)

=

∫ ∫
1{(x, y) ∈ A}dP2(y|x)dP1(x)

=

∫ ∫
1{(x, y) ∈ A} dP2

dQ2
(y|x)dQ2(y|x)

dP1

dQ1
(x)dQ1(x)

=

∫ ∫
1{(x, y) ∈ A} dP2

dQ2
(y|x) dP1

dQ1
(x)dQ(x, y)

So Q(A) = 0 implies P (A) = 0, thus P is absolutely continuous w.r.t Q. Moreover, from the above equity,
we know that the Radon-Nikodym derivative dP

dQ (x, y) = dP2

dQ2
(y|x) · dP1

dQ1
(x).

Since P is absolutely continuous w.r.t Q, their Hockey-stick distance can be defined. We then have for α > 0,

Hα(M(D)∥M(D′))

= Hα(P∥Q)

=

∫ ∫ [
dP

dQ
(x, y)− α

]
+

dQ(x, y)

=

∫ ∫
1

{
dP

dQ
(x, y) ≥ α

}(
dP

dQ
(x, y)− α

)
dQ(x, y)

=

∫ ∫
1

{
dP2

dQ2
(y|x) · dP1

dQ1
(x) ≥ α

}(
dP2

dQ2
(y|x) · dP1

dQ1
(x)− α

)
dQ2(y|x)dQ1(x)

=

∫ ∫
1

{
dP2

dQ2
(y|x) · dP1

dQ1
(x) ≥ α

}
1

{
dP1

dQ1
(x) > 0

}(
dP2

dQ2
(y|x) · dP1

dQ1
(x)− α

)
dQ2(y|x)dQ1(x)

=

∫ ∫
1

{
dP2

dQ2
(y|x) · dP1

dQ1
(x) ≥ α

(
dP1

dQ1
(x)

)−1
}(

dP2

dQ2
(y|x)− α

(
dP1

dQ1
(x)

)−1
)
dQ2(y|x)

· 1
{
dP1

dQ1
(x) > 0

}
dP1

dQ1
(x)dQ1(x)

=

∫
H

α
(

dP1
dQ1

(x)
)−1 (dP2(·|x)∥dQ2(·|x))1

{
dP1

dQ1
(x) > 0

}
dP1

dQ1
(x)dQ1(x)

≤
∫

H
α
(

dP1
dQ1

(x)
)−1 (N (0, 1)∥N (µ2, 1))1

{
dP1

dQ1
(x) > 0

}
dP1

dQ1
(x)dQ1(x)

=

∫ ∫ [
dPN (0,1)

dPN (µ2,1)
(z)− α

(
dP1

dQ1
(x)

)−1
]
+

dPN (µ2,1)(z) 1

{
dP1

dQ1
(x) > 0

}
dP1

dQ1
(x)dQ1(x)

=

∫ ∫ [
dPN (0,1)

dPN (µ2,1)
(z)

dP1

dQ1
(x)− α

]
+

dPN (µ2,1)(z)dQ1(x)

= Hα (P1 ×N(0, 1) ∥ Q1 ×N (µ2, 1))
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Continuing this argument, we have

Hα (P1 ×N(0, 1) ∥ Q1 ×N (µ2, 1))

=

∫ ∫ [
dP1

dQ1
(x)− α ·

dPN (µ2,1)

dPN (0,1)
(z)

]
+

dPN (0,1)

dPN (µ2,1)
(z)dQ1(x)dPN (µ2,1)(z)

=

∫
H

α·
dPN(µ2,1)
dPN(0,1)

(z)
(P1∥Q1)

dPN (0,1)

dPN (µ2,1)
(z)dPN (µ2,1)(z)

≤
∫

H
α·

dPN(µ2,1)
dPN(0,1)

(z)
(N (0, 1)∥N (µ1, 1))

dPN (0,1)

dPN (µ2,1)
(z)dPN (µ2,1)(z)

=

∫ ∫ [
dPN (0,1)

dPN (µ1,1)
(w)− α ·

dPN (µ2,1)

dPN (0,1)
(z)

]
+

dPN (0,1)

dPN (µ2,1)
(z)dPN (µ1,1)(w)dPN (µ2,1)(z)

=

∫ ∫ [
dPN (0,1)

dPN (µ1,1)
(w)

dPN (0,1)

dPN (µ2,1)
(z)− α

]
+

dPN (µ1,1)(w)dPN (µ2,1)(z)

= Hα (N (0, 1)×N(0, 1) ∥ N (µ1, 1)×N (µ2, 1))

By taking s = (µ1w + µ2z)/
√

µ2
1 + µ2

2, t = (µ1w − µ2z)/
√
µ2
1 + µ2

2, we have,

Hα (N (0, 1)×N(0, 1) ∥ N (µ1, 1)×N (µ2, 1))

=

∫ ∫ [
exp(−(w2 + z2))

exp(−((w − µ1)2 + (z − µ2)2))
− α

]
+

1

2π
exp(−((w − µ1)

2 + (z − µ2)
2))dwdz

=

∫ ∫ [
exp(−2(µ1w + µ2z) + µ2

1 + µ2
2)− α

]
+

1

2π
exp(−(w2 + z2 − 2(µ1w + µ2z) + µ2

1 + µ2
2))dwdz

=

∫ ∫ [
exp(−2s

√
µ2
1 + µ2

2 + µ2
1 + µ2

2)− α

]
+

1

2π
exp(−(s2 + t2 − 2s

√
µ2
1 + µ2

2 + µ2
1 + µ2

2))dtds

=

∫ ∫ [
exp(−2s

√
µ2
1 + µ2

2 + µ2
1 + µ2

2)− α

]
+

1√
2π

exp(−(s2 − 2s
√
µ2
1 + µ2

2 + µ2
1 + µ2

2))ds

= Hα

(
N (0, 1) ∥ N (

√
µ2
1 + µ2

2, 1)

)
The proof is completed. ■

I.4 PROOF OF LEMMA 5
Proof of Lemma 5 (Dong et al., 2020) showed that exponential sampling with utility function q(D, θ) that
satisfies a property called bounded range is differentially private even if the sensitivity is not bounded (unlike
the original exponential mechanism).

range(q) := sup
D,D′are neighbors

(max
θ∈Θ
−min

θ∈Θ
)[q(D, θ)− q(D′, θ)].

In our problem, q is the (regularized) sum of loss functions, and the difference in q between two neighbor
datasets created by adding or removing a datapoint is simply the loss of one data point. q(D, θ)− q(D′, θ) =
±ℓ(θ). It is easy to see that the range(q) ≤ GDiam(Θ). By (Dong et al., 2020), we get that choosing
γ ≤ ε

GDiam(Θ) gives ε-DP. ■

I.5 PROOF OF LEMMA 15
Proof Denote

fε,0(x) = max{0, 1− eεx, e−ε(1− x)}, for 0 ≤ x ≤ 1,

34



Published as a conference paper at ICLR 2024

and
Gµ(x) = Φ

(
Φ−1(1− x)− µ

)
, for 0 ≤ x ≤ 1.

By Definition 3, Proposition 3 and Definition 4 of Dong et al. (2022), it suffices to show that

fε,0(x) ≥ Gµ(x), for all 0 ≤ x ≤ 1.

By the concavity of Gµ and the piece-wise linearity of fε,0, it suffices to show that Gµ(x0) ≤ fε,0(x0), with

x0 = 1
1+eε satisfying 1−eεx0 = e−ε(1−x0) = x0. Taking µ = 2Φ−1

(
eε

1+eε

)
, we have Gµ(x0) = fε,0(x0),

which finishes the proof. ■

I.6 PROOF OF LEMMA 22
Proof of Lemma 22 Denote ∥dist(·, ·)∥L∞(Θ2,ζ) = ess sup(x,y)∈(Θ×Θ,ζ) dist(x, y).

To prove the lemma, it suffices to show these two inequalities both hold:

inf
ζ∈Γ(P,Q)

ess sup
(x,y)∈(Θ×Θ,ζ)

dist(x, y) ≤ inf{α > 0 : P (U) ≤ Q(Uα), ∀ open U ⊂ Θ} (17)

inf
ζ∈Γ(P,Q)

ess sup
(x,y)∈(Θ×Θ,ζ)

dist(x, y) ≥ inf{α > 0 : P (U) ≤ Q(Uα), ∀ open U ⊂ Θ} (18)

For the sake of clarity, we denote

WLHS = inf
ζ∈Γ(P,Q)

ess sup
(x,y)∈(Θ×Θ,ζ)

dist(x, y) = inf
ζ∈Γ(P,Q)

∥dist(·, ·)∥L∞(Θ2,ζ), and

WRHS = inf{α > 0 : P (U) ≤ Q(Uα), ∀ open U ⊂ Θ}.

We first prove (17). To prove (17), it suffices to show that for any α > WRHS, the relationship α ≥ WLHS

inherently holds.

In particular, we leverage the following Strassen’s theorem and prove that both constants β and ε can be
driven to zero.

Lemma 28 (Strassen’s Theorem, Strassen (1965)). Suppose that (Θ,dist) is a separable metric space and
α, β > 0. Suppose the laws P and Q are such that, for all open sets U ⊂ Θ,

P (U) ≤ Q(Uα) + β

where Uα = {x ∈ Θ : dist(x, U) ≤ α}.
Then for any ε > 0 there exist a law ζ on Θ×Θ with marginals P and Q, such that

ζ(dist(x, y) > α+ ε) ≤ β + ε. (19)

Take an arbitrary α > WRHS. Our goal is to prove α ≥WLHS. By the definition of infimum, we have

P (U) ≤ Q(Uα), ∀ open U ⊂ Θ,

For arbitrary β, ε, by Strassen’s theorem, (plugging in (19)) there exist ζβ,ε ∈ Γ(P,Q) such that

ζβ,ε (dist(x, y) > α+ ε) ≤ β + ε.

We are going to choose β, ε to be sufficiently small (both go to zero) and take the limits using Prohorov’s
Theorem and Portmanteau theorem.

Taking β = ε = 1
n , by Strassen’s theorem, there exists ζn ∈ Γ(P,Q) such that

ζn

(
dist(x, y) > α+

1

n

)
≤ 2

n
.
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Since P,Q are tight, for any ϵ > 0, there exists two compact sets K1,K2 ⊂ Θ, such that

P (Θ \K1) ≤ ϵ, Q(Θ \K2) ≤ ϵ

Note that ζn ∈ Γ(P,Q), we have (since 1{(x, y) /∈ K1 ×K2} ≤ 1{x /∈ K1}+ 1{y /∈ K2})

ζn ((Θ×Θ) \ (K1 ×K2)) ≤ ζn ((Θ \K1)×Θ) + ζn (Θ× (Θ \K2)) ≤ 2ϵ

thus {ζn}∞n=1 is a tight sequence of probability measures.

Since {ζn}∞n=1 is tight, by Prohorov’s Theorem, there exists a weakly convergent subsequence ζn(k) ⇒ ζ.
We have ζ ∈ Γ(P,Q) because ζ(A × Θ) = limk→∞ ζn(k)(A × Θ) = P (A), and that ζ(Θ × A) =
limk→∞ ζn(k)(Θ×A) = Q(A).

For arbitrary δ > 0, the set {(x, y) ∈ Θ×Θ : dist(x, y) > α+δ} is a open set in Θ×Θ. By the Portmanteau
Theorem,

ζ (dist(x, y) > α+ δ) ≤ lim inf
k→∞

ζn(k) (dist(x, y) > α+ δ)

≤ lim inf
k→∞

ζn(k)

(
dist(x, y) > α+

1

n(k)

)
≤ lim inf

k→∞

(
2

n(k)

)
= 0,

where the first inequality is by Portmanteau Theorem. The second inequality holds because there exist k0
such that δ > 1

n(k0)
. The third inequality holds due to the construction of ζn.

Since δ is arbitrary, (taking δ = 1
n and by Fatou’s Lemma,) we have that

ζ (dist(x, y) > α) = 0. (20)

Therefore, α ≥ ess sup(x,y)∈(Θ×Θ,ζ) dist(x, y) = WLHS. Thus (17) is proved.

Next, we show that (18) holds. Similarly, to prove (17), it suffices to show that for any t > WLHS, the
relationship t ≥WRHS inherently holds.

Take an arbitrary t > WLHS, our goal is then to prove that t ≥ WRHS. By the definition of infimum, there
exists a ζ ∈ Γ(P,Q), such that

ess sup
(x,y)∈(Θ×Θ,ζ)

dist(x, y) < t.

Therefore, ζ
(
{(x, y) ∈ Θ2 : dist(x, y) > t}

)
= 0, which translate into∫

1{dist(x, y) > t}dζ(x, y) = 0. (21)

Thus, we obtain that
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Q(U t) = Q ({y ∈ Θ : dist(y, U) ≤ t})

=

∫
1{x ∈ Θ}1{dist(y, U) ≤ t}dζ(x, y)

≥
∫

1{x ∈ U}1{dist(y, U) ≤ t}dζ(x, y)

=

∫
1{x ∈ U}1{y ∈ Θ}dζ(x, y)−

∫
1{x ∈ U}1{dist(y, U) > t}dζ(x, y)

(If x ∈ U and dist(y, U) > t, then dist(x, y) > t.)

≥
∫

1{x ∈ U}1{y ∈ Θ}dζ(x, y)−
∫

1{dist(x, y) > t}dζ(x, y) (Plug in (21))

=

∫
1{x ∈ U}1{y ∈ Θ}dζ(x, y)

= P (U).

Since Q(U t) ≥ P (U), we have

t ∈ {r > 0 : P (U) ≤ Q(Ur),∀ open U ⊂ Θ}.

Thus
t ≥ inf{α > 0 : P (U) ≤ Q(Uα), ∀ open U ⊂ Θ} = WRHS.

Therefore, (18) holds.

Since (17) and (18) hold, we have

inf
ζ∈Γ(P,Q)

ess sup
(x,y)∈(Θ×Θ,ζ)

dist(x, y) = inf{α > 0 : P (U) ≤ Q(Uα), ∀ open U ⊂ Θ},

which demonstrates the equivalence of the two definitions.

We now prove the attainability of the infimum in Definition 7 by repeating the above construction of ζ in the
first part of our proof. We provide a simplified proof as follows.

The above construction of ζ before (20) tells us that for an arbitrary α > W∞(P,Q), there exists a ζ ∈
Γ(P,Q) such that ζ (dist(x, y) > α) = 0. Taking αm = W∞(P,Q) + 1

m , there exists a sequence {ζm} ⊂
Γ(P,Q) such that ζm

(
dist(x, y) > α+ 1

m

)
= 0. Since {ζm} ⊂ Γ(P,Q), likewise, we obtain that {ζm}

is tight. By Prohorov’s Theorem, there exists a weakly convergent subsequence ζm(k) ⇒ ζ∗. Similarly,
ζ∗ ∈ Γ(P,Q). By the same token, for arbitrary δ > 0, we have

ζ∗ (dist(x, y) > W∞(P,Q) + δ) ≤ lim inf
k→∞

ζm(k) (dist(x, y) > W∞(P,Q) + δ)

≤ lim inf
k→∞

ζm(k)

(
dist(x, y) > W∞(P,Q) +

1

m(k)

)
= 0,

where the first inequality is by the Portmanteau Theorem. The second inequality holds because there exist k0
such that δ > 1

m(k0)
. The third inequality holds due to the construction of ζm.

Since δ is arbitrary, (taking δ = 1
n and by Fatou’s Lemma,) we have that

ζ∗ (dist(x, y) > W∞(P,Q)) = 0.
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That is,
ζ∗ (dist(x, y) ≤W∞(P,Q)) = 1.

Therefore,
W∞(P,Q) ≥ ess sup

(x,y)∈(Θ×Θ,ζ∗)

dist(x, y).

On the other hand, by the definition of W∞, since ζ∗ ∈ Γ(P,Q), we have

W∞(P,Q) ≤ inf
ζ∈Γ(P,Q)

ess sup
(x,y)∈(Θ×Θ,ζ)

dist(x, y) ≤ ess sup
(x,y)∈(Θ×Θ,ζ∗)

dist(x, y).

Therefore, W∞(P,Q) = ess sup(x,y)∈(Θ×Θ,ζ∗) dist(x, y), for ζ∗ ∈ Γ(P,Q), which proves the attainability
of the infimum in the definition of W∞. ■

J FACTS ABOUT NOISY GRADIENT DESCENT

Noisy gradient descent is an alternative algorithm that can be used to obtain pure-DP or pure-Gaussian DP
under the same assumptions we have. While it uses full batch gradients, its analysis relies on the theory
of stochastic gradient descent since the full gradients in each iteration are perturbed by either the Laplace
mechanism or the Gaussian mechanism. We explicitly write out the guarantees of noisy gradient descent in
this section so as to substantiate our discussion related to our computational guarantee of localized-ASAP
with MALA. We focus the discussion on Gaussian DP in the αn-strongly convex setting.

Theorem 4 (Noisy Gradient Descent for Lipschitz and strongly Convex Losses). Assume the loss function
ℓ(θ, (x, y)) is G-Lipschitz for any data point (x, y). Assume

∑
i ℓi(θ) is αn-strongly convex on Θ. Consider

the following (projected) noisy gradient descent algorithm that initializes at θ0 and update the parameter by
T rounds using

θt = ProjΘ(θt−1 − ηt(

n∑
i=1

∇ℓi(θt−1) +N (0,
TG2

2µ2
Id)))

with ηt =
1
λt . Let θ∗λ be the minimizer of the regularized ERM problem and θ∗ to be the minimizer of the

unregularized ERM problem.

1. This algorithm that releases the whole trajectory θ1, ..., θT satisfies satisfies µ-GDP.

2. It also satisfies that

E

[
L

(
T∑

t=1

2t

T (T + 1)
θt

)]
− L(θ∗λ) ≤

4n2G2

αn(T + 1)
+

dG2

2αnµ2
.

3. If T ≥ 8n2µ2

d , then it achieves an excess empirical risk of dG2

αnµ2 .

Proof Observe that the G-Lipschitz loss says that the global sensitivity of the gradient is G. The privacy
analysis follows from the composition of Gaussian mechanism via Gaussian DP for T rounds (Dong et al.,
2022). This releases the entire sequence of parameters. The weighted average of the parameters over time is
post-processing. The second statement follows from Section 3.2 of (Lacoste-Julien et al., 2012) by choosing
the noise level and other parameters appropriately. The last statement is corollary by choosing T to be large.
■

In the above, the excess empirical risk achieves the optimal rates but requires the algorithm to run for O(n2)
iterations. In the smooth case, one can obtain faster convergence but at the cost of the resulting excess
empirical risk.
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Theorem 5 (Noisy Gradient Descent for smooth and strongly convex Losses). Consider the same algorithm
and assume all assumptions from Theorem 4. In addition, assume individual loss functions ℓx are β-smooth.

1. This algorithm that releases the whole trajectory θ1, ..., θT satisfies satisfies µ-GDP.

2. Choose a constant learning rate η ≤ 1
nβ , run for T iterations

E [L (θT )]− L(θ∗λ) ≤
nβ

2
(1− ηαn)TDiam(Θ)2 +

ηnβdTG2

nαµ2

3. Choose η = 1/(nβ) and T = O(βα log n), the excess risk is

E [L (θT )]− L(θ∗λ) ≤ O(
βdG2 log n

nα2µ2
).

Proof From Theorem 5.7 of (Garrigos & Gower, 2023) we can derive the convergence in various regimes. ■

It is not hard to see that there isn’t a good choice of the learning rate parameter η based on the bound above
that can get rid of the additional β logn

α factor.

39


	Introduction
	Our Contributions
	Related Work

	Problem Setup and Preliminaries
	Differential Privacy Empirical Risk Minimization (DP-ERM)
	Differential Privacy Definitions
	Exact Posterior Sampling: DP and Utility Guarantees

	Technical Tools
	Overview: Why do we use W distance?
	TV Distance to W Distance
	MALA with Constraint

	Main Results: Approximate Sample Perturbation (ASAP)
	Approximate Sample Perturbation (ASAP)
	Localized ASAP and the End-to-End Guarantees

	Conclusion
	Appendix
	 Appendix
	Additional Preliminaries
	Localization Techniques
	Parameters in Localized-ASAP
	Experiments
	Theoretical lower bounds
	Empirical Risks on Real Datasets

	Proof the Conversion Lemma 8
	A Key Lemma: Another Characterization of W Distance
	Proof of Lemma 8

	Proofs of Theorem 1 and Corollary 10
	Proof of Theorem 2
	Proof of Theorem 3
	Deferred Proofs of the Supporting Lemmas and Corollaries
	Proof of Lemma 9 and Corollary 20
	Proof of Lemma 18 and Lemma 19
	Proof of Lemma 14
	Proof of Lemma 5
	Proof of Lemma 15
	Proof of Lemma 22

	Facts about Noisy Gradient Descent


