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ABSTRACT

Reconstructing dynamic 3D models from clinical videos is crucial for medical
applications such as surgical visualization, robot-assisted surgery, and medical
training. However, the clinical environment presents unique challenges, including
limited surface textures, inconsistent lighting, and the need for expert-level medi-
cal knowledge, making it difficult for non-experts to directly apply existing tech-
niques. To address these challenges, we present GaussianClin, a novel approach
that enhances 3D modeling capabilities in dynamic clinical videos by leveraging
multimodal feature-based Gaussian splatting (GS). By embedding trained multi-
modal feature fields into the radiance field, GaussianClin integrates general med-
ical knowledge and improves the performance of GS in tasks like 3D tissue vi-
sualization, real-time object enhancement, clinical instrument and organ segmen-
tation, and medical visual question answering. To effectively capture temporal
dynamics and tissue deformations, we further introduce a spatiotemporal graph
distillation, which significantly improves handling deformable tissues compared
to standard GS methods. Experimental results demonstrate that GaussianClin en-
ables clinical 3D expert models to leverage massive pre-trained 2D multimodal
foundation models, paving the way for advancements in robot-assisted surgery.

1 INTRODUCTION

High-quality reconstruction of surgical videos is becoming increasingly important in modern
medicine. It not only provides precise anatomical information for surgical planning but also aids
surgeons in making accurate decisions during real-time navigation and offers immersive, realistic
virtual environments for medical training. In the field of surgical scene reconstruction, traditional
methods such as structured light and SLAM (Fuentes-Pacheco et al., 2015; Kazerouni et al., 2022)
have been widely used. However, these techniques often struggle with the complex geometries of
soft tissues and the dynamic nature of surgical environments, leading to inaccuracies and incom-
plete reconstructions. While volumetric reconstruction approaches have shown potential, they still
face challenges in capturing the full complexity of surgical scenes, particularly when dealing with
deformable tissues and inconsistent lighting conditions. These limitations have spurred the develop-
ment of more advanced reconstruction techniques that aim to meet the increasing demands for both
precision and real-time performance.

In recent years, Neural Radiance Fields (NeRF) (Mildenhall et al., 2021; Gao et al., 2022), which
model 3D scenes by learning the volumetric radiance and density from multiple 2D images, have
emerged as a powerful technique for reconstructing surgical scenes. For example, EndoNeRF (Wang
et al., 2022) represents dynamic scenes as canonical fields with a time-dependent displacement field,
effectively capturing the subtle nuances of deformable tissues. However, NeRF-based methods re-
quire repeatedly querying the radiance field at multiple points and rays to render each view, which
significantly limits their rendering speed and poses challenges for real-time intraoperative applica-
tions. To address these limitations, 4D Gaussian Splatting (4DGS) techniques have been widely
adopted in surgical reconstruction. 4DGS represents the scene as an optimizable Gaussian model
initialized from motion structure techniques. Recent advancements, such as Gaussian SLAM (Yugay
et al., 2023), GS-SLAM (Yan et al., 2024), and SGS-SLAM (Li et al., 2024b), have extended 4DGS
to optimize camera poses and propose SLAM strategies for rapidly reconstructing 3D scenes from
2D videos. Among these, various Gaussian-based methods, such as SurgicalGaussian (Xie et al.,
2024), have shown particular promise for real-time reconstruction of deformable tissues in mini-
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Figure 1: Enhancing 3D Gaussian Splatting for Dynamic Surgical Scene Reconstruction. The
framework integrates multimodal feature fields from pre-trained 2D foundation models into 3D ren-
dering, improving 3D Gaussian Splatting for clinical and surgical videos. The top row shows a ren-
dered surgical image, feature field, and Gaussian splatting. The bottom row demonstrates promptless
segmentation, promptable segmentation, and language-guided editing. These tools enhance tissue
visualization and instrument manipulation for robot-assisted surgery.

mally invasive surgical environments. These technological advancements open up new possibilities
for more precise and real-time surgical planning, navigation, and training, significantly enhancing
the overall quality of medical procedures and education.

Despite significant advancements in surgical scene reconstruction techniques (Liu et al., 2024b;
Yang et al., 2024), a key challenge persists in making the results both comprehensible and func-
tional for practical medical use. Unlike the intuitive nature of natural scene reconstruction, medical
reconstructions—while often technically successful—are difficult for non-professionals to interpret,
as they require specialized medical expertise to understand the complex anatomical structures and
dynamic surgical environments (Rodrı́guez et al., 2022; Liu et al., 2024a). For instance, interpreting
tissue deformations caused by physiological processes or the interactions between surgical instru-
ments and tissues requires a deep understanding of human anatomy and surgical procedures (Wang
et al., 2022; Zha et al., 2023). This difficulty in interpretation is further compounded by the fact that
current 4D Gaussian models struggle to support critical surgery-related downstream tasks, such as
real-time scene editing, semantic understanding, and automatic surgical report generation, which are
essential for improving surgical efficiency and decision-making (Mahmoud et al., 2017). As a result,
these limitations not only hinder the accessibility of reconstruction outputs but also restrict broader
potential in advancing surgical automation, preoperative planning, and postoperative evaluation.

Secondly, surgical environments typically present limited surface textures and inconsistent lighting
conditions (Batlle et al., 2023; Yang et al., 2023), which further complicate the reconstruction pro-
cess. Traditional reconstruction methods struggle to achieve sufficient rendering quality in areas
with smooth tissue surfaces or complex reflections, affecting the overall accuracy and reliability
of the reconstruction. This challenge is particularly pronounced in endoscopic surgeries, where
surgeons frequently adjust camera positions to track specific tissues and improve visibility, mak-
ing it difficult to capture precise camera trajectories. Additionally, the dynamic nature of surgical
scenes—such as tissue deformations caused by physiological processes and interactions with sur-
gical instruments—further increases the complexity of the reconstruction task (Liu et al., 2024b).
These limitations highlight the urgent need for innovative approaches to improve reconstruction
quality. Therefore, we propose a novel framework that not only enhances reconstruction quality but
also improves the accessibility and applicability of these models across various clinical scenarios,
particularly under low-light and complex surgical conditions. Such a framework will pave the way
for advancements in robot-assisted surgery and medical image processing, while providing precise
and reliable tools for preoperative planning, intraoperative navigation, and postoperative evaluation.
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To address the above-mentioned challenges, we propose GaussianClin, an innovative framework
which enhances the dynamic performance of Gaussian splatting by integrating multimodal feature
fields from pre-trained 2D foundation models into the 3D rendering process. By embedding these
trained feature fields into the Gaussian radiance field, GaussianClin injects semantically rich medi-
cal knowledge, enabling GS to perform tasks such as 3D tissue visualization, object enhancement,
scene understanding, and language-guided interactions. Given the gap between 2D foundation mod-
els and 3D Gaussian radiance fields, further widened by the temporal dynamics and tissue deforma-
tions in clinical videos, we introduce a spatiotemporal graph distillation mechanism to effectively
embed these features into the dynamic field. Experimental results demonstrate that GaussianClin en-
ables clinical 3D expert models to leverage large-scale pre-trained 2D multimodal foundation mod-
els and improves rendering quality in clinical scenarios, especially under challenging conditions like
low lighting and occlusion, paving the way for advancements in robot-assisted surgery. In summary,
our key contributions are as follows:

• We introduce GaussianClin, which enhances dynamic Gaussian Splatting by embedding
foundation model feature fields, addressing challenges in rendering quality and semantic
understanding in surgical scene reconstruction.

• We propose a spatiotemporal graph distillation mechanism that better captures temporal
dynamics and tissue deformations, improving the handling of deformable tissues compared
to traditional GS methods.

• We demonstrate that GaussianClin supports real-time tasks such as rapid segmentation,
language-guided editing, and medical visual question answering, expanding its utility in
surgical applications.

• Our method achieves real-time rendering with high image quality, significantly accelerating
both training and rendering speeds, enabling advanced intraoperative applications in robot-
assisted minimally invasive surgery.

2 RELATED WORK

2.1 3D SCENE RECONSTRUCTION FROM STATIC SURGICAL VIDEOS

Reconstructing 3D scenes from 2D images is crucial in many fields, especially in surgical settings.
Traditional methods like Structure-from-Motion (SfM), as in COLMAP (Schönberger & Frahm,
2016), and SLAM-based approaches (Zhou & Jagadeesan, 2019; Song et al., 2017; Zhou & Jayen-
der, 2021) have been used in endoscopic reconstruction, utilizing depth and color data to create 3D
point clouds. However, these methods often struggle in dynamic surgical environments due to their
assumption of scene stability. Recent innovations, such as Gaussian Splatting (Kerbl et al., 2023;
Bao et al., 2024), represent scenes as optimizable Gaussian entities initialized from SfM data, of-
fering faster and more accurate 3D reconstructions. Extensions like Gaussian-SLAM (Yugay et al.,
2023), GS-SLAM (Yan et al., 2024), and SGS-SLAM (Li et al., 2024b) further enhance these meth-
ods, while specialized adaptations like EndoGSLAM (Wang et al., 2024) address challenges such as
reflections, occlusions, and tissue deformations. These advancements are paving the way for more
precise 3D reconstructions in surgical applications, potentially transforming surgical planning and
intraoperative navigation.

2.2 4D SCENE RECONSTRUCTION FROM DYNAMIC SURGICAL VIDEOS

Reconstructing dynamic surgical scenes is more complex than static ones due to tissue deformations
from physiological processes (e.g., respiration, heartbeat) and interactions with surgical instruments,
which complicate camera pose estimation. Methods like RoDyNeRF (Liu et al., 2023) optimize
static and dynamic radiance fields, while Free SurGS (Guo et al., 2024) improves pose estimation
by minimizing projection and optical flow loss. Despite progress, real-time performance and preci-
sion remain challenging, which is critical for robot-assisted minimally invasive surgery, supporting
3D models for preoperative planning, AR/VR training, and intraoperative guidance. NeRF-based
models, such as EndoNeRF (Wang et al., 2022), capture deformations through time-variant neural
displacement fields. Innovations like HexPlane and 3D Gaussian Splatting have improved training
efficiency and rendering quality, with extensions like EndoGaussian (Liu et al., 2024b), Endo-GS,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

opacity
expertise information instilling, opacity

Parallel N-dimensional 

Gaussian Rasterizer

Projection

Ray

(a) Dynamic Gaussian Splatting

𝝁: mean    𝐪: rotation

c :SH 𝜶: opacity 

𝒔 :scale 𝐟: feature 

Deformable 

Field

t

∆𝝁
∆𝒒
∆𝒔

Neural voxels

Teacher model Student model

Cross frame graph construct

(d) Promptable Scene 
Representation 

Render image

Render feature

Ground-truth image

ℒ𝑟𝑔𝑏

ℒ𝑓

Expertise feature

(b) Spatiotemporal Graph Distillation

What is this image about?

D
o
w

n
stream

 task

This image is about a laparoscopic

cholecystectomy, which is a surgical procedure to

remove the gallbladder. The image shows the

gallbladder being removed using a laparoscope,

which is a thin, flexible tube with a camera and

light at the end, allowing the surgeon to visualize

the area and perform the procedure with

minimal invasiveness.

Visual Question Answering

Feature field Segment all

Promptable Segment

E
n

co
d

er

(c)Expertise information instilling

Foundation model

Figure 2: Overview of the proposed GaussianClin. The framework extends Dynamic Gaussian
Splatting by integrating semantic features, enabling versatile downstream real-time clinical tasks
such as segmentation, language-guided editing, and medical visual question answering. (a) Dynamic
Gaussian Splatting projects neural voxels with deformable fields into a 3D scene. (b) Spatiotemporal
Graph Distillation leverages cross-frame information to enhance feature alignment. (c) Expertise
information instilling incorporates foundation model priors to improve feature extraction. (d) The
final promptable scene representation supports versatile downstream functions.

and DeformGS (Duisterhof et al., 2024) enhancing flexibility and reducing training time. However,
medical scene reconstruction remains challenging due to the inherently low surface textures of soft
tissues, which provide few reliable visual features for tracking and pose estimation. Additionally,
inconsistent lighting conditions in surgical environments, caused by moving instruments and endo-
scopes, further complicate the process, often requiring the expertise of professionals to correctly
interpret and adjust the models.

2.3 FEATURE FIELD DISTILLATION FROM FOUNDATION MODELS

Feature field distillation extends 2D visual features into 3D space, enhancing 3D reconstruction.
Recent methods, such as NeRF-DFF (Kobayashi et al., 2022), distill 2D feature similarities into 3D,
while approaches like SA3D and GaussianGrouping (Ye et al., 2023) refine 3D masks and align 2D
masks from foundation models like CLIP (Radford et al., 2021) and SAM (Kirillov et al., 2023) for
improved open-vocabulary 3D segmentation. Building on these, our approach enables 3D Gaussian
splatting on arbitrary-dimension semantic features via 2D foundation model distillation, improving
rendering quality and supporting real-time applications like segmentation, language-guided editing,
and medical visual question answering. Prior work, including Semantic NeRF (Zhi et al., 2021)
and Panoptic Lifting (Siddiqui et al., 2023), has shown that integrating noisy 2D labels into 3D can
yield accurate 3D segmentation. Advancements like Distilled Feature Fields (Shen et al., 2023),
LERF (Kerr et al., 2023), and Neural Feature Fusion Fields (Tschernezki et al., 2022) embed pixel-
aligned feature vectors for enhanced 3D understanding. However, significant challenges remain in
efficiently lifting 2D models into 3D, particularly given limited 3D supervision data and the high
computational demands of optimizing neural radiance fields from scratch for each individual scene.

3 METHOD

We present GaussianClin, an innovative framework that enhances dynamic Gaussian Splatting (GS)
for clinical video reconstruction by integrating multimodal feature-based rendering and feature field
distillation. Our approach addresses two critical challenges in clinical environments: limited ren-
dering quality due to minimal surface textures and photometric inconsistencies, and the need for
advanced semantic understanding. GaussianClin embeds trained multimodal feature fields from

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

pre-trained 2D foundation models into the Gaussian radiance field, enabling the simultaneous rep-
resentation of both radiance and semantic-rich feature fields. This integration allows for improved
performance in various clinical tasks, including 3D tissue visualization, real-time object enhance-
ment, clinical instrument and organ segmentation, and medical visual question answering. The
Figure 2 present the architecture of GaussianClin.

3.1 DYNAMIC GAUSSIAN SPLATTING

Gaussian Splatting (Kerbl et al., 2023) utilizes a set of dense Gaussians to represent 3D data and
achieve real-time rendering of scenes. Each Gaussian Θ is defined by its center µ ∈ R3, covariance
matrix Σ ∈ R3×3 (decomposed into a scaling factor s ∈ R3 and a rotation quaternion q ∈ R4),
opacity σ ∈ R, and SH coefficients α ∈ RC for colors and view-dependent appearance. The
Gaussian function is expressed as:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ), (1)

For static scenes, the attributes of the i-th Gaussian are defined as Θi = xi, qi, si, αi, ci. The
rendering process follows the differentiable 3D Gaussian splatting framework, where the color C of
a pixel is computed using volumetric rendering:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (2)

where N = overlap(M,µ, q, s) is the set of 3D Gaussians overlapping the given pixel, deter-
mined by the view matrix M = [R, T ]. To handle dynamic scenes, the framework is extended
by integrating temporal information (Wu et al., 2023). A spatial-temporal feature field E and an
MLP decoder D model the deformation of each Gaussian over time. Given the Gaussian center
µ = (x, y, z) and a query time t, the deformation in position, rotation, and scaling is computed, and
the Gaussian parameters are then updated:

∆µ,∆q,∆s = D(E(µ, t)), µ′, q′, s′ = µ+∆µ, q +∆q, s+∆s. (3)

For dynamic scenes, the rendering process applies volumetric rendering to these dynamically up-
dated Gaussians, allowing for real-time adaptation of the scene representation to account for move-
ments and changes in the environment:

C ′ =
∑
i∈N ′

ciαi

i−1∏
j=1

(1− αj), (4)

where N ′ = overlap(M,µ′, q′, s′) is the set of updated dynamic Gaussians overlapping the given
pixel.

3.2 DYNAMIC FEATURE FIELD FOR 4D GAUSSIANS

Building upon the basic Gaussian Splatting, we incorporate semantic features into the dynamic 3D
representation. Each Gaussian Θi now includes a semantic feature vector fi ∈ RN , where N is the
latent dimension. These features, derived from 2D foundation models like SAM, CLIP-LSeg, and
LLAVA-Med, capture semantic information crucial for tasks such as 3D segmentation, language-
guided editing, and medical visual question answering. Given a view matrix M = [R, T ], we
extend the rendering process to handle high-dimensional feature maps. The semantic feature value
F of a pixel is computed using volumetric rendering:

F =
∑
i∈N

fiαi

i−1∏
j=1

(1− αj), (5)

where N = overlap(M,µ, q, s) is the set of Gaussians overlapping the given pixel. This integra-
tion enables simultaneous rendering of RGB images and semantic maps in 3D space, with semantic
features optimized alongside geometric and appearance attributes.

Spatiotemporal Feature Rendering For dynamic scenes, each Gaussian is extended to include a
semantic feature vector fi ∈ RN and a temporal component t, capturing spatial, semantic, and
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temporal dynamics. We leverage multiple foundation models such as SAM (Kirillov et al., 2023),
LLAVA-Med (Li et al., 2024a), etc. to extract multi-modal features, which are distilled into the
dynamic Gaussian representation. This unified spatiotemporal framework enables simultaneous
rendering of RGB images, semantic maps, and temporal evolution in dynamic space, enhancing
real-time dynamic 3D tasks while maintaining high rendering quality and temporal consistency.

Given the previously introduced view matrix M = [R, T ] and a newly incorporated timestamp t, our
rendering process extends differentiable Gaussian splatting to accommodate both high-dimensional
feature maps and temporal dynamics. Our dynamic Gaussian splatting framework transforms the
original 3D Gaussians G into time-dependent 3D Gaussians G′(t), preserving the efficacy of differ-
ential splatting as outlined in (Wang et al., 2019). Upon projecting these dynamic Gaussians onto
the 2D image plane, we compute the semantic feature value F ′ and color C ′ for each pixel using
volumetric rendering, which inherently accounts for temporal variations:

C ′ =
∑
i∈N ′

ciαi

i−1∏
j=1

(1− αj), F ′ =
∑
i∈N ′

fiαi

i−1∏
j=1

(1− αj), (6)

where N ′ is the set of 4D Gaussians overlapping the given pixel N ′ = overlap(M,µ′, q′, s′),
and ci, fi, and αi are time-dependent color, feature, and opacity values respectively. Effectively,
by conditioning the model on time, we reshape semantic and spatial representations at each frame,
enabling real-time handling of dynamic tasks like object tracking, motion segmentation, and tem-
poral language-guided editing. Next, we introduce how the model is supervised by a sequence of
”teacher” feature maps F (t) from pre-trained 2D foundation models, allowing it to learn high-level
spatiotemporal semantic features. This temporal supervision ensures consistent high-quality render-
ing across time-varying scenes, accurately capturing both appearance and motion.

3.3 INSTILLING 2D KNOWLEDGE VIA SPATIOTEMPORAL GRAPH DISTILLATION

To address the unique challenges of clinical videos, including rapid camera motion and complex
tissue deformations, we introduce a spatiotemporal graph distillation mechanism. This approach
is based on the insight that while 2D dynamics in the video might be complex, the underlying 3D
motion is often low-dimensional and composed of simpler units of rigid motion.

Spatiotemporal Feature Graph Our Spatiotemporal graph distillation process fuses information
across frames, creating a globally coherent representation of both scene geometry and motion. We
define similarity measures for spatial and temporal components with enhanced expressiveness. At
the spatial interaction level, we focus on capturing relationships between different regions within
a single frame. The main goal is to identify and fuse information from spatially analogous areas
across the image plane, which helps in constructing a coherent global representation of the surgical
scene. We define a spatial similarity function based on feature representations of spatial regions. At
the temporal coherence level, we extend the graph-guided distillation to capture temporal dynamics
between frames. This step ensures that the motion trajectories across frames are aligned, allowing
us to leverage temporal consistency to improve the overall representation. The temporal similarity
function is defined similarly to the spatial one, but it operates across time, as follows:

Sim(si, sj) = [WsF (si)]
T [WsF (sj)], Gs(i, j) = Top-K(Sim(si, sj)). (7)

Here, si and sj represent spatial regions within a frame, F (si) and F (sj) are their feature embed-
dings, and Ws is a learnable transformation matrix that projects these features into a shared space.
The spatial similarity Sim(si, sj) is computed as the inner product of the transformed features. To
construct the spatial graph Gs, we retain only the top-K most similar spatial pairs for each region,
ensuring that the graph remains sparse and computationally efficient.

To guide the learning process, we introduce a loss function that encourages high similarity between
spatially and temporally related regions or frames. Our distillation loss Ls integrates spatiotemporal
similarity losses:

Ls =
∑

(i,j)∈Gs

(1− Sim(si, sj))
2 (8)

where λs and λt are weighting factors that balance the contributions of the spatial and temporal
losses. The term (1− Sim) ensures that the loss is minimized when the similarity is close to 1 (i.e.,
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perfect similarity), encouraging spatially and temporally related regions or frames to have similar
feature embeddings.

By combining these spatial interactions and temporal coherences graphs, our model effectively cap-
tures both spatial coherence within frames and temporal consistency across frames, leading to a
more robust and holistic understanding of the surgical video. The photometric loss is defined as:

Lrgb = (1− λ)L1(I, Î) + λLD-SSIM(I, Î), (9)

combining L1 loss and structural similarity index (SSIM) to ensure both pixel-level accuracy and
perceptual consistency. The feature loss is computed as:

Lf = ∥Ft(I)− Fs(Î)∥1, (10)

where Ft(I) is the feature map from a 2D foundation model applied to the ground truth image I ,
and Fs(Î) is the feature map produced by our model for the rendered image Î . Bilinear interpolation
is applied to Fs(Î) to ensure matching resolution with Ft(I).

Overall Optimization Finally, our GaussianClin framework employs a multi-objective optimiza-
tion strategy to build a robust 4D representation of surgical scenes. The overall loss function com-
bines photometric and semantic consistency:

Ltotal = Lrgb + λfLf + λsLs, (11)

where λf , λs, and λt are hyperparameters that balance the contributions of the feature loss, spa-
tial distillation loss, and temporal distillation loss, respectively. These hyperparameters are tuned
to optimize the trade-off between photometric accuracy, semantic consistency, and spatiotemporal
coherence in the reconstructed dynamic surgical scene representation.

3.4 PROMPTABLE SCENE REPRESENTATION WITH VERSATILE FEATURE RENDERING

Our approach leverages foundation models as a base layer of knowledge and capabilities adaptable to
various tasks. Through our feature field distillation technique, we create practical 3D representations
from these foundation models’ features. We focus primarily on the Segment Anything Model (SAM)
(Kirillov et al., 2023) and its variants, including SAM2 and Grounded SAM, as well as LLaVA-Med
for medical visual question answering. These models enable zero-shot or few-shot capabilities in
various medical imaging tasks without requiring task-specific training. Our teacher-student distilla-
tion framework extends these 2D capabilities—prompted by points, boxes, or text—into 3D space,
creating refined feature fields that preserve the versatility of the original models.

Our method for promptable explicit scene representation operates as follows: Given a 3D Gaussian
x from a set of N ordered Gaussians that overlap with a target pixel, denoted as xi ∈ X where
X = {x1, . . . , xN}, we compute the activation score of a prompt τ on the 3D Gaussian x using the
cosine similarity between the query q(τ) in the feature space and the semantic feature f(x) of the
Gaussian. The similarity score s is given by:

s =
f(x) · q(τ)

||f(x)|| · ||q(τ)||
, (12)

If we have a set T of potential labels, such as a text label set for semantic segmentation or a point
set representing possible pixels for a point-prompt, the probability of a prompt τ corresponding to
the 3D Gaussian x is obtained via a softmax function:

p(τ |x) = softmax(s) =
exp (s)∑

sj∈T exp (sj)
. (13)

We leverage these computed probabilities to filter out Gaussians with low probability scores. This
selective filtering enables various operations, such as extraction, deletion, or appearance modifica-
tion, by updating the color c(x) and opacity α(x) values accordingly. With the updated color set
{ci}ni=1 and opacity set {αi}ni=1, where n is smaller than N , point-based α-blending can be applied
to render the edited radiance field from any novel viewpoint. This framework for promptable explicit
scene representation facilitates several advanced functionalities.

By integrating advanced 2D models, our framework enables real-time, zero-shot semantic segmenta-
tion without task-specific training. This approach excels in complex surgical environments, rapidly
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Table 1: Novel view rendering results on EndoNeRF (Wang et al., 2022), Endovis17 (Allan et al.,
2019) and Endovis18 (Allan et al., 2020) datasets.

Metrics EndoNERF cutting EndoNERF pulling Endovis17 Endovis18

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR↑ SSIM ↑ LPIPS ↓ PSNR↑ SSIM ↑ LPIPS ↓
Base 3DNERF 23.02 0.7930 0.3531 22.09 0.8106 0.3878 10.53 0.5448 0.4569 18.26 0.7716 0.3530
Base 4DNERF 31.35 0.8913 0.1327 28.90 0.8573 0.1704 17.41 0.7472 0.3515 18.89 0.8028 0.3562
NeRF-DFF 23.27 0.7117 0.4559 27.45 0.8326 0.2383 16.14 0.6464 0.3567 19.08 0.7857 0.3379
Base 3DGS 22.79 0.7889 0.3857 21.03 0.8027 0.4313 18.74 0.7913 0.4125 18.93 0.7965 0.5231
Base 4DGS 34.10 0.9299 0.1209 28.94 0.8847 0.1433 19.12 0.7947 0.4028 19.06 0.8002 0.5173
Feature DS 22.84 0.7909 0.3811 21.07 0.8027 0.4241 19.21 0.7959 0.4087 19.13 0.7981 0.5198

GaussianClin 35.31 0.9424 0.0928 29.41 0.8887 0.0945 20.26 0.8205 0.3649 19.69 0.8120 0.4849

identifying diverse tissues, instruments, and anatomical structures, even those unseen during train-
ing. The system supports language-guided editing, allowing surgeons to modify 3D scenes with
natural language commands, enhancing surgical planning and guidance. Furthermore, Med-LLM
integration enables medical visual question answering, allowing professionals to query the 3D scene
using natural language. These features advance real-time decision-making and precision in surg-
eries, making the dynamic Gaussian splatting framework highly effective for medical applications.
Additional task instructions are detailed in Appendix B.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION

Our evaluation utilizes four diverse datasets: EndoNeRF, EndoVis18, EndoVis17, and EndoVis
Conversations, each presenting unique challenges in surgical scene understanding. These datasets
cover in-vivo prostatectomy, robotic instrument segmentation, depth estimation, tracking, and visual
question-answering tasks, providing a robust foundation for assessing our method across various
surgical contexts. We employ comprehensive metrics to evaluate performance, including PSNR,
SSIM, and LPIPS for image quality; GPT-4 Score, accuracy, F-score, and mIoU for semantic under-
standing; and training time, inference speed, and GPU memory usage for efficiency. This holistic
approach enables thorough comparisons with state-of-the-art methods and identifies areas for im-
provement in our 4D surgical scene reconstruction framework. Detailed implementation information
is available in Appendix A.

4.2 IMPROVED RENDERING QUALITY

Our method leverages semantic features to empower models to comprehend unseen labels by map-
ping semantically close medical concepts to similar regions in the embedding space. This advance-
ment notably promotes scalability in information acquisition and scene understanding, facilitating a
profound comprehension of intricate surgical scenes. We distill multimodal features for this novel
view semantic segmentation task in surgical environments. Our experiments demonstrate the im-
provement of incorporating semantic features over naive 3D and 4D Gaussian Splatting methods. As
shown in Table 1, our GaussianClin surpasses baseline 3D and 4D Gaussian models in performance
metrics across all datasets: EndoNeRF cutting, EndoNeRF pulling, Endovis17, and Endovis18.

In our comparison with NeRF-DFF using these datasets, we address the potential trade-off between
the quality of the semantic feature map and RGB images. Our model demonstrates higher accuracy
across all metrics, including PSNR, SSIM, and LPIPS. For instance, on the EndoNeRF cutting
dataset, our method achieves a PSNR of 35.31, SSIM of 0.9424, and LPIPS of 0.0928, significantly
outperforming NeRF-DFF and other baselines. Notably, our approach yields better visual quality on
novel views and semantic segmentation masks for both synthetic and real surgical scenes compared
to NeRF-DFF and other baseline methods. This improvement in rendering quality, coupled with
the enhanced semantic understanding, paves the way for more accurate and detailed surgical scene
reconstruction and analysis.
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Table 2: Segmentation results (Ground SAM) for rendered images from novel viewpoints.

Metrics EndoNERF cutting EndoNERF pulling Endovis17

IOU↑ DICE ↑ FPS↑ IOU↑ DICE ↑ FPS ↑ IOU ↑ DICE ↑ FPS↑
NeRF-DFF 0.8258 0.0218 41 0.1543 0.0050 52 0.1961 0.1256 35
FeatureDS 0.9668 0.8993 98 0.9136 0.5422 85 0.5732 0.6644 110
GaussianClin 0.9945 0.9613 125 0.9449 0.9483 138 0.9963 0.7573 115

Q1: What type of procedure is being depicted in this image?
A1:

NeRF-DFF: This appears to be an open heart surgery.
FeatureDS: This looks like a laparoscopic gallbladder removal.
Ours: The image shows a robot-assisted surgery being performed 
on kidney. 
GT: The image shows a robot-assisted minimally invasive surgery 
being performed on isolated porcine kidney. 

Q2: What is the state of the prograsp forceps?
A2:

NeRF-DFF: The prograsp forceps are closed and not in use.
FeatureDS: The prograsp forceps are cutting tissue.
Ours: The ProGrasp forceps are being used to retract tissue.
GT: The prograsp forcep is engaged in retraction. Rendered novel views

NeRF-DFF

FeatureDS

Ours

Figure 3: Quantitative results of Medical Visual Question Answering (VQA): Compared to
NeRF-DFF and Feature DS, our approach yields precise and comprehensive responses.

4.3 MEDICAL VISUAL QUESTION ANSWERING

As shown in Fig 3, our method addresses the limited class diversity in medical datasets by leveraging
advanced semantic features to map unseen labels to similar embedding regions, enhancing scalabil-
ity and understanding of complex surgical scenes. Results in Tab. 3 show significant improvements
in both segmentation accuracy and rendering speed compared to existing methods like NeRF-DFF
and FeatureDS across multiple datasets. For example, on EndoNERF cutting, our method achieves
an IOU of 0.9945 and DICE score of 0.9613, far surpassing NeRF-DFF.

4.4 NOVEL VIEW SEMANTIC SEGMENTATION

Our method addresses the limitation of fewer classes in medical datasets by leveraging advanced
semantic features, enabling models to comprehend unseen labels by mapping semantically close
medical concepts to similar regions in the embedding space. This promotes scalability in infor-
mation acquisition and facilitates a profound comprehension of intricate surgical scenes, ultimately
enhancing the model’s adaptability to diverse medical scenarios.

We distill multimodal features for novel view semantic segmentation tasks in surgical environments.
As shown in Table 2, our GaussianClin substantially outperforms NeRF-DFF and FeatureDS across
all datasets, demonstrating significantly higher accuracy in IOU and DICE scores. Notably, our
approach achieves superior rendering speeds, more than doubling the frame rate per second com-
pared to NeRF-DFF while maintaining state-of-the-art segmentation performance. This improve-
ment in both segmentation accuracy and rendering speed, along with our method’s ability to gener-
alize across different surgical scenarios, demonstrates its potential for enhancing various aspects of
computer-assisted surgery, including real-time guidance, automated surgical workflow analysis, and
advanced training simulations.

4.5 LANGUAGE-GUIDED EDITING

Figure 4 showcases our novel view editing results, demonstrating successful extraction and dele-
tion of surgical instruments based on language inputs. Our approach provides cleaner extractions
with minimal artifacts. The model’s ability to selectively edit specific elements while preserving
surrounding structures demonstrates its potential for enhancing surgical visualization and decision-
making. This functionality opens new possibilities for interactive surgical planning, intraoperative

9
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Table 3: Visual Question Answering (VQA)
results by distilling Med-LLaVa: We use the
GPT-4 score to measure the answering perfor-
mance and FPS for efficiency.

Metrics Endovis17-C Endovis18-C

GPT-4 score ↑ FPS↑ GPT-4 score↑ FPS ↑
NeRF-DFF 76.89 42 74.57 69
Feature DS 80.12 88 78.15 78
GaussianClin 82.97 123 81.25 114

Table 4: Ablation study for key components
of GaussianClin on EndoNeRF .

Metrics Image Feature

PSNR↑ SSIM↑ LPIPS↓ PSNR↑

No Dynamics 22.84 0.7909 0.3811 23.89
No Feature 34.05 0.9269 0.1209 -
No Graph 34.65 0.9336 0.1002 27.46
Full Model 35.31 0.9424 0.0928 28.65

guidance, and advanced medical education tools, leveraging a comprehensive understanding of 3D
surgical environments from any viewpoint.

Rendered Image Editing: Delete Rendered Image Editing: Delete

Figure 4: Editing Results on EndoNeRF : With the text of ”Delete tools”, indicating our method’s
ability to accurately remove surgical instruments from rendered feature.

Novel View Image Novel View Feature Point Box No Prompt

Fe
at

ur
e 

G
S

O
ur

s

Figure 5: Comparison of Novel View Segmentation results with Feature GS: Feature GS ap-
proach exhibits lower reconstruction quality and less precise segmentation masks. Our method
achieves higher-quality masks, providing more detailed rendering.

4.6 PROMPTABLE SEMANTIC SEGMENTATION FROM ANY VIEW

We conduct promptable semantic segmentation from novel views on the EndoNeRF (Wang et al.,
2022). Experimental results are shown in Fig 5. we use PCA-based feature visualization (Pedregosa
et al., 2011) to demonstrate that our high-quality segmentation masks result from superior feature
rendering. We can observe that in comparison to Feature GS, GaussianClin exhibits superior ren-
dering quality, enhanced segmentation detail, and an improved feature map.

5 CONCLUSION

In this work, we introduced GaussianClin, an innovative approach that addresses the challenges
of reconstructing dynamic 3D models in clinical environments. By leveraging multimodal feature-
based Gaussian splatting and incorporating spatiotemporal graph distillation, GaussianClin effec-
tively captures complex tissue deformations and enhances tasks such as 3D tissue visualization and
medical instrument segmentation. The integration of general medical knowledge from pre-trained
foundation models further improves performance in real-time applications like medical visual ques-
tion answering. Our experimental results demonstrate the robustness and practicality of Gaussian-
Clin in clinical settings, highlighting its potential to significantly advance robot-assisted surgery.
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Yifan Wang, Felice Serena, Shihao Wu, Cengiz Öztireli, and Olga Sorkine-Hornung. Differentiable
surface splatting for point-based geometry processing. ACM Transactions on Graphics (TOG),
38(6):1–14, 2019.

Yuehao Wang, Yonghao Long, Siu Hin Fan, and Qi Dou. Neural rendering for stereo 3d recon-
struction of deformable tissues in robotic surgery. In International conference on medical image
computing and computer-assisted intervention, pp. 431–441. Springer, 2022.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian,
and Wang Xinggang. 4d gaussian splatting for real-time dynamic scene rendering. arXiv preprint
arXiv:2310.08528, 2023.

Weixing Xie, Junfeng Yao, Xianpeng Cao, Qiqin Lin, Zerui Tang, Xiao Dong, and Xiaohu Guo.
Surgicalgaussian: Deformable 3d gaussians for high-fidelity surgical scene reconstruction. arXiv
preprint arXiv:2407.05023, 2024.

Chi Yan, Delin Qu, Dan Xu, Bin Zhao, Zhigang Wang, Dong Wang, and Xuelong Li. Gs-slam:
Dense visual slam with 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19595–19604, 2024.

Chen Yang, Kailing Wang, Yuehao Wang, Xiaokang Yang, and Wei Shen. Neural lerplane represen-
tations for fast 4d reconstruction of deformable tissues. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pp. 46–56. Springer, 2023.

Shuojue Yang, Qian Li, Daiyun Shen, Bingchen Gong, Qi Dou, and Yueming Jin. Deform3dgs:
Flexible deformation for fast surgical scene reconstruction with gaussian splatting. arXiv preprint
arXiv:2405.17835, 2024.

Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit
anything in 3d scenes. arXiv preprint arXiv:2312.00732, 2023.

Vladimir Yugay, Yue Li, Theo Gevers, and Martin R Oswald. Gaussian-slam: Photo-realistic dense
slam with gaussian splatting. arXiv preprint arXiv:2312.10070, 2023.

Ruyi Zha, Xuelian Cheng, Hongdong Li, Mehrtash Harandi, and Zongyuan Ge. Endosurf: Neural
surface reconstruction of deformable tissues with stereo endoscope videos. In International Con-
ference on Medical Image Computing and Computer-Assisted Intervention, pp. 13–23. Springer,
2023.

Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J Davison. In-place scene la-
belling and understanding with implicit scene representation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15838–15847, 2021.

Haoyin Zhou and Jayender Jagadeesan. Real-time dense reconstruction of tissue surface from stereo
optical video. IEEE transactions on medical imaging, 39(2):400–412, 2019.

Haoyin Zhou and Jagadeesan Jayender. Emdq-slam: Real-time high-resolution reconstruction of
soft tissue surface from stereo laparoscopy videos. In MICCAI, pp. 331–340. Springer, 2021.

A IMPLEMENTATION DETAILS

Our implementation is tailored to address the specific challenges presented by each dataset. For the
EndoNeRF dataset, which features complex tissue deformations and tool occlusions, we initialize
by randomly sampling 0.1% of points to reduce redundancy. We employ Adam as the optimizer
with an initial learning rate of 1.6 × 10-3. Our training strategy involves a warmup phase to optimize
Canonical Gaussians for 1k iterations, followed by optimization of the entire framework for 3k
iterations. For the EndoVis18 and EndoVis17 datasets, which focus on instrument segmentation
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and tracking, we adapt our model to handle the temporal aspects of the data. We split the frame
data of each scene into 7:1 training and testing sets. For the EndoVis Conversations dataset, which
incorporates visual question-answering tasks, we set the epoch to 20, batch size to 16, and learning
rate to 1 × 10-5. This setting allows our model to effectively learn the relationship between visual
features and textual queries. All experiments are conducted on a single RTX 4090 GPU. The training
process for each dataset takes approximately 2 hours. We also evaluate a high-quality version in our
experiments, where we optimize all basis parameters for each Gaussian attribute.

B DOWNSTREAM TASKS FOR VERIFYING THE SCALABILITY AND WIDE
APPLICABILITY OF GaussianClin

Real-time Semantic Segmentation By seamlessly integrating advanced foundation model priors
such as Segment Anything Model (SAM) and CLIP-LSeg into our innovative 4D feature fields, we
have unlocked the capability for real-time, zero-shot semantic segmentation. This groundbreak-
ing approach transcends traditional segmentation methods by eliminating the need for task-specific
training or predefined categories. Instead, it offers a flexible, domain-agnostic segmentation frame-
work that can adapt to a wide array of scenarios using open-set text labels or feature queries. This
versatility is particularly crucial in complex surgical environments, where the diversity of tissue
types, instruments, and anatomical structures poses significant challenges for conventional segmen-
tation techniques. Our method’s ability to rapidly identify and delineate various elements within
a surgical scene, even those not encountered during training, represents a significant leap forward
in intraoperative imaging and computer-assisted surgery. By providing instant, accurate segmenta-
tion of both familiar and novel objects, our system enhances surgical precision, facilitates real-time
decision-making, and potentially improves patient outcomes across a broad spectrum of surgical
procedures.

Language-guided Editing Our framework revolutionizes the interaction with 3D surgical scenes
by introducing intuitive, language-guided editing capabilities. This advanced functionality allows
users to manipulate complex 3D environments using natural language commands, bridging the gap
between human intent and computational action. For instance, surgeons or medical professionals
can input directives such as ”Remove the surgical tool on the right,” ”Highlight the tumor area,” or
”Isolate the blood vessels near the incision site.” The system interprets these natural language inputs
and translates them into precise, context-aware modifications of the 3D scene. This capability is
particularly transformative for surgical planning and training scenarios, where it enables rapid pro-
totyping of surgical approaches and interactive exploration of anatomical structures. By allowing
users to dynamically alter the virtual surgical environment through simple verbal or textual com-
mands, our system enhances the potential for highly realistic and responsive surgical simulations.
This not only accelerates the learning curve for trainee surgeons but also provides experienced prac-
titioners with a powerful tool for preoperative planning and intraoperative guidance. Moreover, the
language-guided editing feature opens up new possibilities for collaborative surgical planning, en-
abling multiple specialists to easily communicate and visualize complex procedural steps, thereby
fostering more comprehensive and efficient surgical strategies.

Medical Visual Question Answering (VQA) Our approach extends beyond static scene under-
standing to enable dynamic interaction through medical VQA, allowing medical professionals to
query the 3D reconstructed surgical scene using natural language questions and receive informative
responses based on the scene’s content and dynamics. This capability combines 4D semantic fea-
tures with advanced natural language processing techniques, encoding questions and matching them
against relevant features in the scene. By enabling these advanced semantic interactions, our method
bridges the gap between 3D reconstruction and high-level understanding, paving the way for more
intelligent and interactive surgical assistance systems. This promptable explicit scene representa-
tion opens new possibilities for human-computer interaction in medical contexts, supporting tasks
from surgical planning to intraoperative guidance and post-operative analysis, thereby enhancing the
overall efficacy and utility of our 4D Gaussian splatting framework in medical applications.
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