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Abstract: Reinforcement learning in partially observable domains is challenging
due to the lack of observable state information. Thankfully, learning offline in a
simulator with such state information is often possible. In particular, we propose
a method for partially observable reinforcement learning that uses a fully observ-
able policy (which we call a state expert) during offline training to improve online
performance. Based on Soft Actor-Critic (SAC), our agent balances performing
actions similar to the state expert and getting high returns under partial observ-
ability. Our approach can leverage the fully-observable policy for exploration and
parts of the domain that are fully observable while still being able to learn un-
der partial observability. On six robotics domains, our method outperforms pure
imitation, pure reinforcement learning, the sequential or parallel combination of
both types, and a recent state-of-the-art method in the same setting. A successful
policy transfer to a physical robot in a manipulation task from pixels shows our
approach’s practicality in learning interesting policies under partial observability.
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1 Introduction

State
ExpertOptimal

Goal: Reach a matching
object on the right with
one object on the left

Figure 1: To reach the
correct goal object, a
state expert takes the
red path directly, while
a partially observable
agent must first take the
green path to identify
the correct goal object,
then take the red path.

Many real-world robotics control problems feature some degree of par-
tial observability, but policy learning in this setting remains a significant
challenge in robotics [1]. While there are many reinforcement learn-
ing methods that address partial observability in theory [2, 3, 4, 5], their
performance remains questionable in practice in interesting partially ob-
servable (PO) domains which require long-term memorization and active
information gathering [6, 7]. In contrast, the setting of fully observable
(FO) control has featured the success of many powerful reinforcement
learning (RL) algorithms (e.g., [8, 9, 10, 11]). Unfortunately, full ob-
servability only holds for a small portion of realistic robotics problems.

In this work, we attempt to leverage good fully observable policies (state
experts) available only during offline training to help train PO policies
that can execute online. We rely on the setting of offline training and
online execution, a successful RL framework where an agent can use
“privileged” information such as the state [12, 13, 14, 15] or the belief
about the state [6] during offline training, e.g., from simulators, to effi-
ciently learn PO policies that are later can be deployed without the access
to the privileged information anymore. In this work, the privileged in-
formation is not just the state itself but also the state expert. Our setting
can be illustrated in a navigation task (Figure 1), which requires an agent to navigate to an unknown
goal object on the right, identifiable by an object on the left side. While the optimal behavior under
partial observability is to first navigate leftwards to identify the goal object, the state expert is able to
move to the goal object directly. Despite being sup-optimal from the PO perspective, the state expert
can provide experience during training leading to the goal object, which is potentially useful for both
exploration and as a part of the policy needed in the PO case after the goal object is identified.
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In this work, we propose to perform a form of cross-observability soft imitation learning (COSIL),
i.e., softly projecting the behavior of the FO agent into a PO agent which still tries to maximize its
own performance. FO experts are generally easier to obtain than PO ones, which often require more
impractical computations, e.g., some sufficient statistics of the entire history like the belief states,
which requires the true environment dynamics [16]. The resulting COSIL agent balances behaviors
that imitate the FO agent with behaviors that are necessary for PO optimality. Experimental results
on six robotics domains show that our proposed COSIL method performs significantly better than
pure imitation learning, pure reinforcement learning, the sequential or parallel combination of the
two types of learning, and other state-of-the-art methods in the same setting. Moreover, a policy
with pixel observations learned in simulation is transferred successfully to a physical robot, showing
COSIL’s ability to learn policies that can handle the complexities of the real world. Additional details
can be seen at our project website https://sites.google.com/view/cosil-corl22.

2 Related Work

Imitation learning methods such as behavioral cloning (BC) [17] and DAgger [18] perform pol-
icy learning by minimizing a supervised loss between the expert’s actions and the agent’s. These
agents are trained on a dataset of encountered states and expert actions and are utilized successfully
in tasks like autonomous flight [19, 20] or self-driving [21]. Several methods combine reinforce-
ment learning and imitation learning (often from limited expert demonstrations), e.g., DQfD [22],
DDPGfD [23], and GAIL [24]. However, these methods are designed for Markov decision processes
(MDP), i.e., both the expert and the student can observe the environment state. Closest to our work
are ADVISOR [25] and Asymmetric DAgger (A2D) [15], which leverage FO experts during train-
ing for PO tasks. A2D operates in a setting requiring a differentiable and modifiable state expert,
jointly trained from scratch (using the environment states) with the student agent, while we assume
a given, fixed state expert. In the same setting as ours, ADVISOR adaptively changes the weighting
per state between the imitation loss and the reinforcement learning loss (see the appendix for a brief
description of ADVISOR). However, it also requires training an additional PO actor to mimic the
state expert to compute the weighting. Therefore, both ADVISOR and A2D must wait until the
additional actor (ADVISOR) and the state expert (A2D) are properly trained before utilizing them
to better train the main agent. In contrast, our method can utilize the state expert immediately.

3 Background

In this section, we introduce the background topics required to understand our contributions, i.e.,
partially observable Markov decision processes, and the Soft Actor-Critic algorithm.

3.1 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) [26] is defined by a tuple
(S,A,Ω, p0, T,R,O, γ), where S, A, and Ω are the state space, the action space, and the ob-
servation space, respectively. The initial state is sampled according to the starting state dis-
tribution p0(s), and the next states are sampled according to the stochastic transition function
Pr(s′ | s, a) = T (s, a, s′). The agent does not observe the states but rather receives observations
sampled from the observation function Pr(o | a, s′) = O(s′, a, o). In order to act optimally, a PO
agent must, in general, condition its actions on the entire action-observation history ht = (a<t, o≤t),
i.e., all the observable information it has seen so far [27]. Denoting the space of histories as H, the
goal is to find a history policy π : H → ∆(A) which maximizes the expected γ-discounted return
Jπ = E [

∑∞
t=0 γ

tR(st, at)].

Although our work focuses on PO control, it also involves FO agents modeled as a state policy
µ : S → ∆(A). To differentiate them clearly, we denote history policies as π and state policies as µ.

3.2 Soft Actor-Critic

Soft Actor-Critic (SAC) [10, 28] addresses the FO maximum-entropy control problem, i.e., the prob-
lem of finding a policy µ which solves a given FO control problem while maintaining a high action-
entropy when possible. SAC does this by extending the standard RL objective with a weighted
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entropy term,

Jµ = E

[ ∞∑
t=0

γt (R(st, at) + αH(µ(st))

]
, (1)

where H(µ(s)) = Ea∼µ(s) [− logµ(a | s)] is the entropy of policy µ at the given state s, and α > 0
is a trade-off coefficient which determines the relative importance between the RL objective and the
entropy-maximization objective. The entropy term can be interpreted as a supplementary pseudo-
reward given to the agent, which is high for high-entropy policies and low for low-entropy policies.
Therefore, the agent will seek not only to maximize the entropy of the policy in the visited states but
also to visit states associated with a high-entropy policy.

In practice, SAC is an off-policy learning algorithm that employs a replay buffer containing past
transitions D = {(s, a, r, s′)i}Ni=0. SAC trains a parametric policy model µθ : S → ∆A, and a
parametric value model Qφ : S ×A → R. The policy model is trained by maximizing

Jµ(θ) = Es∼D,a∼µθ [Qφ(s, a)− α logµθ(a | s)] , (2)

while the value model is trained to minimize

JQ(φ) =
1

2
Es,a∼D

[(
R(s, a) + γEs′|s,a [V (s′)]−Qφ(s, a)

)2]
, (3)

V (s) = Ea∼µθ(s)

[
Qφ̄(s, a)− α logµθ(a | s)

]
, (4)

where Qφ̄ is a frozen target model that is updated at a slower pace than Qφ to improve stability.

Hyperparameter α plays a central role in SAC, determining how much high-entropy states are
preferred to pure rewards. Choosing a reasonable α can be difficult since it is not directly inter-
pretable, and a good value depends dynamically on the current policy’s expected returns and entropy.
Haarnoja et al. [28] proposed to automatically adjust α by minimizing its own objective,

Jα(α) = αEs∼D,a∼µθ(s) [− logµθ(s)]− αH̄ , (5)

where H̄ is a given target entropy. In practice, Equation (5) modulates α such that it is increased if
the current policy entropy is lower than the target entropy and vice versa. In contrast to choosing a
value of α, choosing a value of H̄ is much simpler since it is broadly interpretable as the logarithm
of the number of actions that we want the max-entropy policy to consider in an average state.

3.3 Soft Actor-Critic for Partially Observable Control

Although primarily designed for FO control problems and state policies µ, SAC can be easily
adapted to handle PO control problems and history policies π, like most (if not all) model-free
learning algorithms. Two main changes need to take place for SAC: First, all appearances of a state
s in the equations and models of SAC must be replaced with a respective history h. This also im-
plies the use of a recurrent neural network component in the overall architecture of policy and value
models, e.g., an LSTM [29] or a GRU [30]. Second, the replay buffer must be structured in order to
contain and extract (truncated) episodes rather than individual transitions.

4 Cross-Observability Soft Imitation Learning

SAC is based on the premise of max-entropy control and is designed to find policies that solve
the control task while pertaining to high entropy. This is achieved by extending the standard RL
objective with an entropy component which not only pushes the policy model to be more stochastic
for any given state but also acts as a pseudo-reward that pushes the policy to visit future states where
the policy can be more stochastic. Inspired by this dual effect, we aim to employ a similar technique
to exploit FO expert knowledge to train a PO agent.

Consider an offline training scenario where an FO expert µ is available, e.g., obtained via a planning
procedure, a pre-trained model, or a model trained jointly with the PO agent. We propose formu-
lating a pseudo-reward for the PO agent π based on the expected similarity with the FO agent µ,
expressed as the following cross-observability soft imitation learning (COSIL) objective,

Jπ = E

[ ∞∑
t=0

γt (R(st, at)− αD(µ(st), π(ht))

]
, (6)
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where D(µ(s), π(h)) is some divergence measure between the action-distributions of µ and π, e.g.,
the KL divergence D(µ(s), π(h)) = Ea∼µ(s) [logµ(a | s)− log π(a | h)], or the total variation
divergence D(µ(s), π(h)) = maxa|µ(a|s)− π(a|h)|, among other options.

Minimizing the divergence D(µ(s), π(h)) can be interpreted as a form of cross-observability imi-
tation learning, which tries to project FO behaviors as PO behaviors. On its own, such a form of
imitation learning is known to be sub-optimal, e.g., it is not generally possible to replicate the be-
havior of µ with π. Further, FO behaviors are known to be, in general, sub-optimal for PO control,
e.g., PO agents might need to engage in information-gathering behaviors which an FO agent would
not exhibit. An agent π which strictly minimizes the divergence D would incur an optimality gap
between its resulting performance and the true optimal performance (see the appendix).

Despite these issues, we argue that applying a trade-off between the pure RL objective and the
imitation learning objective in a soft fashion, i.e., using the divergence D as a pseudo-reward can be
quite beneficial. We are directly inspired by SAC, which applies a similar trade-off between the pure
RL and the max-entropy objectives to establish itself as a state-of-the-art model-free RL algorithm.
In SAC too, the max-entropy objective alone is insufficient and inadequate when considered alone
and only becomes beneficial when combined with task rewards as a pseudo-reward. Additionally, the
FO expert µ is likely to be a good source of exploratory behavior even for the PO task. The actions
chosen by µ are undoubtedly related to the overall task, and it is likely beneficial for the PO agent to
explore them thoroughly. Second, there are many PO tasks where the agent can and/or must reach
low state uncertainty to solve the tasks. Under such low state uncertainty situations, the optimal PO
and FO behaviors overlap strongly, if not perfectly (as long as the state uncertainty is maintained low
enough). In such situations, the optimality gap becomes low, and the cross-observability imitation
learning task becomes beneficial. Finally, because the soft-imitation task is encoded as a pseudo-
reward, the PO agent is generally pushed to achieve situations where there is low state uncertainty,
which tends to be very beneficial for PO agents.

Similar to Equation (5), we formulate a minimization objective for α,

Jα(α) = αD̄ − αEh,s∼D [D(µ(s), π(h))] , (7)

which modulates α dynamically in order to maintain an expected divergence of D̄. Like the target
entropy H̄ in SAC, D̄ is an important hyperparameter that indicates how different the policies π and
µ are allowed to be on average. The semantics of D̄ depend on the choice of divergence function
D(π(h), µ(s)), and good values of D̄ are likely to be domain-dependent. In practice, we perform a
grid search to find the best value. Please see the appendix for the detailed algorithm.

5 Experiments

We perform experiments on a diverse set of robot and navigation domains with discrete (D) and
continuous action spaces (C), proprioceptive and pixel observations. We focus on the setting where
the state experts are given during training, i.e., the setting of ADVISOR [25].

5.1 Domains

Below, we only briefly describe the domains and the behavior of the state experts; see the appendix
for more details.

(D) Bumps-1D. [6] Two movable homogeneous bumps rest on a table, with a robotics finger mov-
ing horizontally above them (Figure 2a). When an episode starts, the positions of all entities are
randomized, but the left-right order between the bumps is maintained. The agent must push the
rightmost bump (blue) to the right without disturbing the left bump (red). There are four action
combinations: move left or right, each with a compliant or stiff finger. The agent does not know
which bump is rightmost – it must infer using the history of the finger’s deflected angles and posi-
tions while touching both bumps with a compliant finger before pushing right the blue bump with a
stiff finger.

(D) Bumps-2D. [6] The same finger is now constrained to move in a plane above two bumps of
different sizes (Figure 2b). It must reach the bigger bump (red) and stay there to get the only non-
zero reward. However, it is unaware of which bump is bigger and, therefore, must make contact with
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(a) Bumps-1D (b) Bumps-2D (c) Mini-Memory (d) Car-Flag (e) LunarLander

X

Z
Y

G

(f) Block-Picking

Figure 2: Our experimental domains. The first three domains have discrete actions and the last three
feature continuous actions. Block-Picking is the only domain with pixel observations.

both bumps at least once, inferring the bumps’ relative sizes from the angular displacement of the
finger. The state expert, however, knows the position of the bigger bump and can go there directly.

(D) Minigrid-Memory. [31] An agent (red triangle) must go to a matching object located on the
right side with an object (a ball or a key) located in a small room on the left side (Figure 2c). The
grid layout, the matching object type, and the agent’s starting position are randomized per episode.
The agent might start in a cell where it cannot see the object; therefore, an optimal agent must first
gather information by going/turning left into the small room to see the object. We chose the biggest
version of this environment [31] with a size of 17.

(C) Car-Flag. [32] A car must reach the green flag, which can be on either the left or right side.
The agent normally can only observe the car’s position and velocity, but if it is near the blue flag, it
can also observe the green flag’s side (left/right). The optimal policy will be navigating to the green
flag only after visiting the blue flag to find the right side. In contrast, the optimal state expert will
always go left or right towards the green flag, whose position is known to the expert.

(C) LunarLander-P, LunarLander-V. We consider two versions of the classic LunarLander en-
vironment [33] where the agent only observes subsets of the full state (see the appendix for more
details). During training, the expert, on the other hand, can observe the full state. Masking parts of
the state to turn MDPs into POMDPs is common in previous work [34, 3, 35, 5]. However, these do-
mains do not explicitly require active information gathering because the missing information (e.g.,
velocities) can be inferred only by memorizing short observation histories (e.g., positions).

(C) Block-Picking. Two homogeneous blocks rest on a table. The red block is fixed to the table
and cannot be moved. In contrast, the blue one is movable, and the agent will accomplish the task
if it picks the blue block. The agent takes in a top-down colorless depth image; therefore, it must
gather information by trying to move both blocks to check for movability. The state expert knows
the poses of the movable block during training and can always perform a successful pick. This task
is particularly challenging if learning from scratch because the exploration is hard, the reward is
sparse, the action space is continuous, and it can potentially be long-horizon.

5.2 Baselines

We compare COSIL against a diverse set of pure imitation learning agents, pure reinforcement learn-
ing agents (general and specialized for POMDPs, on-policy, and off-policy), and the combination of
both types in several ways. If not described explicitly, all of these agents are memory-based.

ADVISOR. ADV-On is the original on-policy ADVISOR [25] that is built off PPO [9]. For a fair
comparison with COSIL (off-policy), we implemented an off-policy version of ADVISOR (ADV-
Off) using SAC for continuous action spaces [10, 28] and discrete action spaces [36].

DAgger [18] is chosen to represent imitation learning methods instead of a naive behavioral cloning
agent, because DAgger often performs better.

TD3 refers to a recurrent version of TD3 [37] for domains with continuous action spaces, imple-
mented in [34].

SAC refers to two recurrent versions of SAC for continuous actions [10, 28] and for discrete ac-
tions [36], followed the implementation by [34].

BC2SAC is pre-trained with behavioral cloning for pBC% of the total training timesteps before being
trained with SAC.
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Bumps-1D

Bumps-2D

Car-Flag

Minigrid-Memory

LunarLander-P

Block-Picking

Figure 3: Learning curves of all methods (4 seeds with the shaded areas denoting 1 standard devia-
tion). Note that all agents (except Random and State Expert) are memory-based agents.

BC+SAC is trained using a weighted combination of behavioral cloning loss LBC and RL losses
LRL, i.e., the agent is trained by optimizing L = wBCLBC + (1− wBC)LRL.

VRM is a state-of-the-art off-policy model-based agent [3] for POMDPs with continuous action
spaces by combining a recurrent variational dynamic model and a SAC agent.

Random, State Expert. While a random agent takes actions randomly, a state expert is either
trained with full state access or is hand-coded using the domain knowledge.

Additional Baselines include recurrent PPO [9] implemented in [38], an on-policy POMDP special-
ized method - DPFRL [2], and a non-recurrent SAC (Markovian SAC [34]) that uses observations
instead of histories. We report the performance of these baselines in the appendix.

5.3 Experiments

Metrics. Depending on each domain, we record either the success rates or the returns of evaluation
agents averaged over ten episodes. For SAC-based agents, we turn off exploration during evaluation.
The reported results are averages over four seeds with shaded areas denoting one standard deviation
with optional smoothing if needed. For Random and State Expert, their performances are averaged
over 100 episodes and visualized as horizontal lines.

Results. The performance of agents is shown in Figure 3 (the performance in LunarLander-V
is similar to LunarLander-P and is reported in the appendix). Overall, COSIL (green) is compa-
rable to ADV-Off in Bumps-1D, LunarLander-P, Block-Picking but considerably better in the
remaining three domains, which we argue have larger optimality gaps. DAgger performs quite well
in LunarLander-P, suggesting that this domain’s optimality gap is small. This is expected for this
domain because the partially observable angular velocities of the vehicle can be inferred from a
few recent fully observable angles. Our agent can also perform well in this domain, signifying the
ability to work in domains with a small optimality gap. Other baselines that do not use the state
expert struggle to learn efficiently, especially in Block-Picking, where random exploration will
have a minuscule chance of picking the correct object. This explains the complete failures of naive
baselines such as SAC or TD3, and highlights the advantage of exploiting the state expert for better
exploration. BC2SAC performs poorly across all domains. This way, reinforcement learning often
unlearns imitation learning policies when optimizing RL losses. The poor performance is illustrated
by sudden drops whenever reinforcement learning starts. BC+SAC does not seem to perform well
either, often not significantly better than DAgger. A fixed static combination like BC+SAC can be
sub-optimal because the optimal PO policy can sometimes act vastly differently from the FO expert.
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b)a) c)

Figure 4: Additional results: a) COSIL in MiniGrid-Crossing; Performance of COSIL in
Car-Flag when: b) linearly/exponentially decaying α, varying α ∈ {0.0, 0.3, 0.6.0.9}; c) vary-
ing D̄ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1}.

For instance, the PO agent often must act to gather more information about the state. In contrast, the
state expert hardly has to do that, given its full knowledge of the state. Therefore, it is difficult for
BC+SAC to behave optimally by fixing the weights between BC and RL loss. In fact, this observa-
tion has indeed motivated ADVISOR, which adaptively changes the weights between the BC loss
and the PPO [9] loss for each state (see the appendix for more details).

Training & Hyperparameter Tuning. All agents are trained using complete episodes (truncated if
too long). On-policy agents (i.e., DPFRL, PPO, and ADV-On) use 5-10x more samples than other
off-policy agents to train. We perform a grid search over relevant hyperparameters of each method
(see the appendix for more details), then select the best combinations to report.

5.4 Additional Experiments

Performance in Domains with Small Optimality Gap. When the optimality gap is small,
e.g., when the state expert is nearly optimal under both full and partial observability, the best
learning strategy is to purely mimic the state expert. We demonstrate this point in a variant of
MiniGrid-Crossing [31] with a grid size of 25 and 10 crossings (see the appendix for details
about the domain). This domain has a very small optimality gap: the paths that lead to a goal cell of
an optimal PO agent (which only observes a local area around it) and a state agent (which observes
the whole grid world) are quite similar. Figure 4a shows that both COSIL (with D̄ = 0) and ADV-
Off are outperformed by behavioral cloning as expected. In the case of COSIL, by setting D̄ = 0,
α will be increased to penalize the agent heavily if it behaves differently from the state expert (see
Equation (6)), gradually morphing COSIL into behaving like BC.

Not adapting α over time. In Figure 4b, we illustrate the performance of COSIL in Car-Flag
without adapting α to reach the target divergence D̄. We investigated reducing α : 1 → 0 lin-
early/exponentially over time or keeping it fixed at different values in {0.0, 0.3, 0.6, 0.9}. The figure
shows that adapting α is superior to other ways of modulating α in this domain. However, similar
to SAC, there is no hard constraint that α must be always adapted.

Performance with varying D̄. We investigate the sensitivity of COSIL in Car-Flag when varying
D̄ from 1.1 to 0.5 with a step of 0.1. Figure 4c shows COSIL is stable with half of the tested range.

5.5 Real Robot Experiments

We transfer the policies learned in simulation in Block-Picking to a Universal Robot UR5 arm
mounted with a Robotiq 2F-85 gripper (Figure 5). We use two cameras: one Occipital Structure
Sensor (Cam 1) and one Microsoft Azure Kinect camera (Cam 2), and combine their point clouds to
create a depth image by using an orthographic projection at the gripper’s position. To better transfer,
during training, we add uniform noise to the positions and the yaw angle of the two blocks and add
Perlin noise [39, 40] to the simulated depth images. We pick the best policies in the simulation of
ADV-Off and COSIL, roll out ten episodes for each, and count the number of successful picks.

During the deployment, when the agent manipulates the supposedly immovable block, we temporar-
ily disabled the movements along x, y, g axes (see coordinates in Figure 2f) so that the agent will
manipulate the other block after a while trying to move the earlier block without observing any
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movements. The disabling is necessary because when the agent observes that the immovable block
is movable, it will persistently manipulate that block. The temporal blocking allows us to avoid heav-
ily gluing the immovable block to the table. However, it also leads to cases that the agents never see
during training (the agents desire to move the gripper, but nothing moves due to the blocking), but
both COSIL and ADV-Off seem to generalize well.

Workspace

Depth Camera 1

UR5

Depth Camera 2

Combine Point 
Clouds

Orthographic
Projection

Figure 5: Experimental robot setup.

Method Simulation Real-world

ADV-Off 9/10 6/10
COSIL 9/10 8/10

Table 1: Result of transferring policies learned in
simulation to the real world in Block-Picking.

Table 1 shows the performance comparison of pick successes between COSIL and ADV-Off. The
results show that our COSIL policy learned in simulation can actually perform well in the real world,
in a PO task that would be very challenging to learn without the aid from a state expert during
training. Empirically, our policies are more robust to rotational and translational misalignment of
the two blocks (see videos on our project website), leading to more successful picks. However,
similar success rates are expected with a bigger sample size, given their similar performance in
simulation.

6 Limitations

Figure 6: An example when
COSIL can be less perfor-
mant than SAC.

COSIL can bias exploration negatively if the state expert is heavily
sub-optimal under partial observability, being equal to giving very
poor demonstrations. In this case, it is doubtful that any method can
utilize FO experts to aid in learning optimal PO policies. To illustrate,
we modify Bumps-2D such that staying on top of the bigger bump
without visiting the smaller bump in the past will be penalized heavily
(-100). Previously, such behavior of the state expert did not incur any
penalty. Moreover, to maintain Markovian rewards (e.g., the reward
only depends on the last state and action), we add a flag indicating
whether the smaller bump was visited to the observation. Figure 6
shows that both COSIL and ADV-Off are outperformed by SAC, with
ADV-Off failing to learn completely. For COSIL, setting a high value
of D̄ might alleviate the situation as COSIL will become closer to a
normal SAC agent.

Another limitation is the requirement of constant access to expert actions at every state during offline
training, which might be impractical. One potential fix is using our method with a variant of SAC
that learns from limited demonstrations, such as one proposed by Liu et al. [41]. Another possible
direction for addressing this issue is to use a method proposed by Gangwani et al. [35] with limited
demonstration trajectories given by a state expert instead of a POMDP expert.

7 Conclusion

This paper tackles POMDPs in robotics from an unconventional angle: leveraging fully observable
policies during offline training to better train partially observable policies that later can be deployed
online. We introduce cross-observability soft imitation learning, which balances achieving high
PO performance with acting similarly to the FO expert. With COSIL, the PO agent can exploit
the FO expert for targeted exploration and information-gathering during offline training. COSIL
outperforms the state-of-the-art method in the same setting in several robotics domains. COSIL
also performs better than other conventional approaches and can learn policies that are successfully
transferred to a physical robot.
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