Under review as a conference paper at ICLR 2026

PI-CCA: PROMPT-INVARIANT CCA CERTIFICATES FOR
REPLAY-FREE CONTINUAL MULTIMODAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

When deployed on non-stationary data streams, foundation vision-language models re-
quire continual updates without access to past data. However, naive fine-tuning under-
mines their zero-shot recognition capabilities and prompt robustness. We seek a replay-
free principle that preserves pre-trained cross-modal generalization under domain/prompt-
shifts. We introduce Prompt-Invariant CCA Certificates(P1I-CCA), a geometry-first ap-
proach that summarizes image—text alignment with a compact certificate capturing the
top-k canonical spectrum and subspace. During adaptation, we match this summary us-
ing only mini-batch statistics and induce prompt robustness via averaging over perturba-
tions. Across MTIL, X-TAIL, VLCL, and ConStruct-VL, PI-CCA achieves state-of-the-
art performance among replay-free methods. By optimizing alignment invariants rather
than proxy signals, PI-CCA provides a simple, generator-free, constant-memory path to
continual adaptation with strong zero-shot retention and resilience to prompt/style shifts.

1 INTRODUCTION

Foundation vision—-language models (VLMs) (Radford et al., 2021; |Awais et al., |2025) enable zero-shot
recognition and retrieval across changing domains (Yada et al., [2025; [Patel et al., 2023} |Chan et al., 2025)).
In practice, they must be continually adapted to non-stationary streams without storing past data (pri-
vacy/licensing/cost), while preserving zero-shot transfer and prompt robustness—conditions that standard
fine-tuning often violates. This vision—language continual learning (VL-CL) setting (Zheng et al.| 2023)
presents two core challenges: avoiding catastrophic forgetting of cross-modal alignment (and thus zero-shot
ability) and maintaining robustness to prompt/distribution shifts, typically without task IDs and under tight
memory/parameter budgets (Liu et al.| [2025).

Prior VL-CL research has made notable progress via proxy constraints or architectural mechanisms: dis-
tributional/logit distillation and off-diagonal similarity alignment to stabilize representations (Zheng et al.|
2023 N1 et al.} 2023 [Zhu et al., 2023} |Cui et al., 2024} Liu et al.| 2025} |Gao et al.,[2024), parameter-efficient
or router-based adapters to separate old and new knowledge (Yu et al.l [2024; |Tang et al.| [2024; |Xu et al.|
2024), and (symbolic/synthetic) replay or stream benchmarks to mitigate data unavailability (Yan et al.|
2022} [Lei et al.| 2023 Smith et al., 2023} |[Zhang et al., 2023} |Garg et al., [2024). Yet these proxies leave a
persistent structural weakness: they regularize outcomes (similarities, logits, weights, routes) rather than di-
rectly controlling the alignment object that underlies cross-modal generalization. As a consequence, current
methods can (i) permit slow drift of the alignment geometry that drives zero-shot performance, (ii) depend
on reference corpora, generators, or task metadata that are not always available, and (iii) remain brittle to
prompt/style variation even when average metrics improve. This gap suggests the need for a replay-free
principle that preserves alignment as an invariant, not merely as a byproduct of surrogate objectives.

We ask: Can continual adaptation preserve cross-modal generalization by explicitly maintaining the ge-
ometry of image—text alignment, without storing past data? Our answer is a replay-free, geometry-first
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framework that treats alignment as a first-class invariant and constrains its spectral and subspace structure
with a compact, task-agnostic summary. In parallel, we target robustness to prompt variation through an
invariance mechanism that averages over prompt perturbations at training time.

Our contributions are as follows: (i) Insight. We recast forgetting in VL-CL as alignment-geometry drift
instead of matching proxy quantities. This idea offers a principled route to retain zero-shot transfer un-
der distributional and prompt shifts. (ii) Capability. We provide a replay-free and constant-memory con-
solidation mechanism that is agnostic to downstream objectives and compatible with parameter-efficient
adaptation (e.g., LoRA), while introducing an explicit prompt-robustness component that reduces sensi-
tivity to phrasing. (iii) Performance and Evidence. Across MTIL, X-TAIL, VLCL, and ConStruct-VL,
our approach attains state-of-the-art results among replay-free methods , and we furnish analyses linking
alignment-geometry stability to retention/transfer trends, clarifying why the method is effective.

2 RELATED WORKS

VL-CL. Early multimodal CL studied forgetting and order effects in VQA with linguistically motivated
task sequences (Greco et al.,2019; Jin et al., |2020), and used task-aware gated recurrent models to approach
near-zero forgetting without replay (Del Chiaro et al.l 2020). With CLIP-era VLMs, the focus shifted to
retaining zero-shot ability while learning new domains. Regularization aligns similarity distributions or pa-
rameters (Mod-X (Ni et al., [2023), ZSCL (Zheng et al., [2023)), CTP (Zhu et al., [2023), DKR (Cui et al.,
2024)). Architectural and efficient variants adopt MoE-/adapter-based tuning (Yu et al., 2024} [Tang et al.|
2024) or analytic adapters with training-free fusion for X-TAIL (Xu et al.| |2024). Recent work further con-
solidates via contrastive knowledge (C-CLIP (Liu et al.l 2025)) or stabilizes zero-shot on unlabeled data
(ZAF (Gao et al.,|2024)). Despite progress, these methods act on proxy signals (similarities, logits, param-
eters, routing) and often depend on reference data or teacher ensembles, rather than preserving the canon-
ical cross-modal alignment geometry of the whitened image—text cross-covariance that underpins CLIP’s
retrieval and recognition. PI-CCA instead directly tracks and constrains alignment invariants (canonical
correlations and subspaces) under replay-free streams.

Data-free or replay-light consolidation. When past data cannot be kept, prior work uses symbolic or
synthetic stand-ins: scene-graph prompts for VQA (Lei et al.,|2023)), a data-free benchmark with adversarial
pseudo-replay and layered LoRA (Smith et al., 2023)), negative-text replay and bidirectional momentum for
image/video pretraining (Yan et al.,2022; |Gao et al., [2022), diffusion-synthesized pairs for distillation (Wu
et al.,2025)), questions-only replay for VQACL (Zhang et al.,[2023)), and time-continual pretraining showing
cumulative replay is competitive when feasible (Garg et al.,|2024)). Despite gains, these routes add generators
and pipelines, raise privacy concerns, or are task specific. PI-CCA is replay- and generator-free: a compact
certificate summarizes past alignment and regularizes updates using only mini-batch statistics.

Geometry-aware preservation and prompt robustness.  Representation-similarity measures such as
(SV)CCA/PWCCA and CKA (Raghu et al., 2017;|Morcos et al.,[2018]; [Kornblith et al.,2019; Andrew et al.|
2013)) quantify subspace or spectral shifts but are largely diagnostic in CL. In VL-CL, Mod-X is geometry-
inspired yet matches contrastive off-diagonals rather than canonical spectra/subspaces (Ni et al., |2023);
Proxy-FDA preserves local neighborhoods with proxies (Huang et al., [2025a). Prompt methods (CoOp,
MaPLe) learn (multi-modal) prompts to curb sensitivity (Zhou et al.,2022; [Khattak et al.,[2023)), and prompt-
based CL for VQA adds modality-aware routing (Qian et al.,2023)). Overall, consolidation still targets proxy
signals, not invariants of the whitened cross-modal covariance, leaving brittleness to prompt/style changes.
P1-CCA instead uses a sketched, replay-free CCA certificate: it maintains the canonical spectrum and
subspaces across tasks (via EMA) and attains prompt invariance by averaging text projectors, preserving the
alignment skeleton with constant memory and no past data.
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Figure 1: P1-CCA framework. A stream of tasks is processed without replay. The text/image encoders
ft, fv are adapted via LoRA (backbones frozen), producing embeddings Z;, Z,, that yield mini-batch covari-
ances with an EMA update. The whitened cross-covariance is summarized in the sketch & projectors block
via fixed R /R] to obtain Q.,, Q; € R"*" (from h x k bases). The Prompt perturbations module samples

d~P, forms {@Em)} and their mean Q; to drive the prompt-invariance loss. A compact PI-CCA certificate
(p’{: e Suy St ) constrains training while its text basis S} is refreshed from prompt perturbations. Losses
{Liask, Lspecs Lsub, Lpi } are combined to update only the LoRA parameters ¢,,, ¢;.

3 METHOD

We propose Prompt-Invariant Canonical Correlation Analysis Certificates (P1-CCA), a replay-free con-
tinual learning framework that preserves the cross-modal alignment subspace of a vision—language model.
As illustrated in Fig. [T} the core idea is to summarize the geometry of image—text alignment by a compact
CCA certificate that stores (i) the top-k canonical correlations and (ii) a sketch of the corresponding canon-
ical subspaces. During training on new tasks, we enforce spectral and subspace-angle consistency with the
certificate using only mini-batch statistics, without accessing past data. Prompt invariance is achieved by
averaging the certificate over randomized prompt perturbations.

3.1 PRELIMINARIES AND NOTATION

Let f, : X — R% and f, : W — R% denote the image and text encoders, parameterized with LoORA
adapters(Hu et all 2022): we freeze the backbone weights 6,,, 8, and update only the low-rank adapter
parameters @, ¢; (i.e., 8, = (0,,¢,) and 8; = (0;,¢;)). Given a mini-batch {(xz;,w;)}2 ,, define

centered embeddings Z, = [z,1,...,2, 8] € REX4  Z, =[z,1,...,2, 8] € REX9 where z,; =
folxi) — Z, and 2z ; = fi(w;) — Z; with Z,,, Z, being batch means. Let
S =552 Zo+ I, Zu=g5Z Zi+wl, Zu=g52) Z, (1)

where v,,7: > 0 are ridge shrinkage coefficients ensuring positive definiteness. The whitened cross-
covariance is N o~/
M=%,*%, 5,7 c Rlxd, 2

VU
whose top-k singular value decomposition (SVD) M =~ ﬁk diag(ﬁl:k)f}kT defines the canonical correla-

tions p1.x = (p1 > --+ > pr) and the (whitened) canonical directions U, € RExk Vi, ¢ REXF with
orthonormal columns.
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P{*_ y are orthogonal projectors in the original feature spaces; Sy.) are sketched bases; Q. = S{.}SE}

are sketched Gram projectors; unless stated otherwise, distances are computed in the h-dimensional sketch
space. Economy-size QR decomposition (QR) is used for orth(-).

3.2 THE P1-CCA CERTIFICATE

VLM zero-shot retrieval and open-vocabulary recognition rely on the geometry of cross-modal alignment.
Rather than storing data or distilling past logits, we capture the alignment skeleton by (i) the top-% canonical
correlations (spectral invariants) and (ii) the canonical subspaces (directional invariants).

Let the reference (pre-continual) CCA quantities be p7,, € [0,1]%, Uy € R%>**, and V;* € R**¥ from
Eq.[2] Define the original-space projectors

=Up(Up)"T eRP*M P = V(W) T e R 3)

To make storage constant in d,, d;, we use random orthonormal sketches R, € R4 *h and R, € R*h
with h < d,, d; (e.g., Gaussian orthogonal or subsampled Hadamard transforms). The certificate is

Pi-CCA-Cert := (p},, S}, Sf),  S;=R,U; e R"*F, “4)
where S is a prompt-invariant text sketch defined below. Equivalently, one may store sketched projectors
=S8;(8;)" =R, P;R, and Q; = S;(5F)".

Prompt-invariant certificate via projector averaging. Let § ~ P denote a prompt perturbation (syn-
onym/template vanatlon) For M perturbations {rdm}'" 1, form original-space projectors P} (d,,) =
Vi (6m) Vi (6m) T and their sketches Qf (d,,) = 0m ) R:. Define the average sketched projector

Q= 2_:1 Qi (0m), 5)

and take its top-k eigenvectors:
S; = ecigvecs(Q;) € RM™F, Q; =S:(8)H". (6)
k
Averaging projectors eliminates sign/rotation ambiguity within the canonical subspace (no Procrustes align-

ment needed). By default we maintain a global certificate (one per model) constructed from a diverse anchor
prompt set.

3.3 REPLAY-FREE ALIGNMENT PRESERVATION LOSSES

Given a mini-batch, compute M and its top-k SVD (U;€7 Pk, Vk) Define sketches .§v = RvTﬁk, .§t =
R/V., Q,=5,5T, Q,=25,8,. The total loss is

L= Liasx + M Lspec + A2 Lowp + A3 Eph /\17 >\27 Az > 0. @)
(i) Permutation-stable spectral preservation Lepe.. Directly pairing indices can be unstable under near-

degenerate singular values. We adopt a permutation-invariant metric and an efficient pairing surrogate. Let
sort (-) denote sorting in descending order. Define

k k 2
Espec = H Sorti(ﬁl:k) - p;:k ||§ + f (Z ﬁi - Z p:) ) (8)
=1 =1

sorted pairing (optimal for convex costs)

Ky-Fan-k sum alignment
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where ¢ € [0, 1] balances pa1rw1se and aggregate spectral matching. For exact permutation invariance one
may replace the first term by mingee, Y., (Pr;) — p§)? (solvable by the Hungarian algorithm, O(k?)); we
default to the sorted surrogate for speed. Optionally, polyn0m1a1 spectral moments can be added:
J
o~ o~ L\ 2
Lo = >y (tr((MTM)) = tx((M*TM")) ), ©)
j=1

which depend only on {p} }; we use J <2 in practice.

(ii) Subspace-angle preservation Csub For original-space orthogonal projectors P, Q onto k- dlmensmnal

subspaces, 1||P — Q% = Zf 1 sin® 6; (principal angles 6;). In the h-dimensional sketch space, Q. are
not exact projectors of the original subspaces; we therefore use their Frobenius distance as a surrogate that
preserves order/angles under near-isometric sketches (e.g., Gaussian/SRHT):

* |2 A Ax (|2
Low = 5Qu = Q1|5 + 5[Q: - Q1[I (10)
We further stabilize by spectral clipping: after forming each @Q we project its eigenvalues to [0, 1] and re-
symmetrize.

(iii) Prompt-invariance L;. Sample i.i.d. perturbations 4,, ~ P, compute ‘A/k(m) and @Em)
R/ ‘A/}C(m)f/(m)TRt. We align the mean projector and contract its dispersion:

2
e -o o - zcz,f)

- m
F
(iv) Task loss Li,sk. We use the task’s standard objective (e.g., Information Noise-Contrastive Estimation,
InfoNCE (Oord et al.l 2018)), classification cross-entropy, or detection losses). PI-CCA is agnostic to its
form; gradients from Eq. [/ backpropagate jointly into f,, f:.

Lpi = J]Z(l )

3.4 STREAMING ESTIMATION WITHOUT REPLAY

To stabilize estimates across batches without storing past samples, we maintain exponential moving averages
(EMA) of covariance factors:

20« (1-8)SE V4 85,, =W 1-83) V488, B0« -9l V183, 12)

vt
with € (0, 1). We then form M® = (2{))=1/25{) (x{1)=1/2 and compute its top-k SVD. Ridge 7, V¢
are either fixed or adapted (e.g., Ledoit—Wolf).
Stable whitening and differentiation. We implement 3~'/2 by (i) eigendecomposition with eigenvalue
floor € and symmetric reassembly, or (ii) r-step Newton—Schulz iteration on the normalized covariance, both
are followed by stop-gradient on the inverse square root if needed. Differentiable SVD is realized via Tpow

steps of block power iteration with re-orthogonalization (QR) at each step, gradients are propagated to M
(and hence to 3i,,), not through the certificate.

We maintain streaming EMAs and refresh the certificate every step using a slow EMA to preserve the
alignment skeleton while allowing controlled plasticity:

Pl — (1—a) plp+apry, S, 0rth<(1—a) S +a §U), S}« orth((l o) Sf+a 47 Z S’(m)

where a € (0, 1); orth(-) returns an economy-size QR basis and does not backpropagate gradients.

Full optimization of PI-CCA and certificate-refresh details are deferred to Appendix including the
complete training procedure in Algorithm [I]
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate PI-CCA across four widely used VL-CL tracks: (i) MTIL (multi-domain task-
incremental classification)—the 11-domain suite introduced by ZSCLZheng et al.| (2023); we follow their
standard task orders. (ii) X-TAIL(cross-domain task-agnostic classification)—the task-agnostic protocol
of RAIL(Xu et al.| 2024), where test images come from the union of seen and unseen domains without
any domain hint. (iii) VLCL(continual image—text retrieval)—the eight sequential image—caption tasks
used by C-CLIP(L1u et al 2025) (we report both I2T/T2I). (iv) ConStruct-VL(structured VL concepts,
no replay)(Smith et al., 2023)—the 7-task sequence over VG/VAW for attribute/relationship matching. We
additionally report a time-continual study on a medium-scale split of TiC-YFCC/RedCaps to assess temporal
robustness of alignment. Exact domain list and sample counts are provided in Appendix §A.2]

Evaluation Protocols and Metrics. For MTIL/X-TAIL we report: Average (mean accuracy over steps),
Last (mean accuracy at the final step), and Transfer (mean accuracy on not-yet-seen domains at each step).
For VLCL we report I2T/T2I Recall@K (primary: R@1; R@5/10 in the appendix) per task and the final-
step average across tasks. For ConStruct-VL we report Final Accuracy (FA) and Average Forgetting (AF).
To quantify zero-shot retention, we follow prior work and report the performance drop (PD) on a held-out
zero-shot suite after the final step.

Baselines. = We compare against strong, replay-free SOTAs across categories: (i) Regularization/Dis-
tillation: ZSCL(Zheng et al., |2023)), Mod-X(Ni et al.| [2023), CTP(Zhu et al., [2023), ZAF(Gao et al.|
2024), DKR(Cui et al., 2024), Proxy-FDA(Huang et al.l 2025a). (ii) Parameter-efficient/Architecture:
MoE-Adapters+DDAS(Yu et al. 2024), DIKI(Tang et al., [2024)), C-CLIP(L1u et al.| [2025), LADA(Luo
et al., 2025), ENGINE(Zhou et al. 2025), MG-CLIP(Huang et al. |2025b)), and the analytic adapter of
RAIL(Xu et al.l |2024)) (with X-TAIL). For completeness we also report replay/synthetic-replay references:
CLAP4CLIP(Jha et al., |2024) (small memory) and GIFT(Wu et al., 2025) (diffusion-generated replay).

4.2 MAIN RESULTS

Tables [I] and [2] report our comparisons on

classification-style continual learning (MTIL, Taple 1: Classification tracks. PI-CCA sets a new

X-TAIL), continual image—text retrieval replay-free state of the art on MTIL and X-TAIL. Best,
(VLCL), and structured concept matching

(ConStruct-VL). Across all tracks, P1-CCA
achieves the top performance among replay- medium gray, and light gray, respectively.
free methods. On MTIL, P1-CCA yields

second-best, and third-best cells are shaded in dark gray,

the highest step-averaged and final-step  pgethod MTIL (1) X-TAIL (1)
accuracies while maintaining strong Transfer. Avg Last Transfer Avg Last Transfer
Under the task-agnostic X-TAIL protocol,  Pr-CCA(ours) 768 755 732 68.1 669 64.7
di hot retent; F MG-CLIP (Huang et al.]2025b) 73.6 720 70.0 663 65.1 63.0
£ap and 1mproves zero-snot retention.  For — pr,y, EpA (Huang etal.2025a) 729 715 69.3 654 642 618
VLCL retrieval, PI-CCA outperforms recent  LADA (Luo et al.]2025} 742 730 707 66.8 66.0 633
replay-free approaches and even surpasses ~ DIKI(Tang etal]2034] 749 736 714 67.1 658 63.8
heti 1 hod (GIET) with RAIL (Xu et al.|[2024] 743 729 705 674 662 64.2
a synthetic-replay method (GIFT) without  74F (Gaoetal. 2024} 737 725 719 661 649 63.5
storing or generating data. On ConStruct-  DDAS (Yuetal.[2024) 741 741 706 665 66.1 63.1
) : : : ZSCL (Zheng et al.|[2023} 725 712 69.0 656 643 63.9
VL, PI-CCA attains both the highest Final Mod-X (NT et al.] 2023} 733 721  69.6 658 646 626

Accuracy and the lowest Average Forgetting.
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Method VLCLI2TR@1 () VLCLT2IR@1 (1) ConStruct-VLFA (1)  ConStruct-VL AF (])
PI-CCA (ours) 48.6 + 1.0 374+ 08 752+ 1.3 27402
GIFT' (Wu et al.|[2025) 473+ 12 36.5 £ 0.7 739+ 1.5 334+03
C-CLIP (Liu et al.| 2025} 46.1 + 1.4 357+ 12 724419 39+05
ENGINE (Zhou et al.| 2025} 447 £ 1.1 345+ 16 713+ 1.7 44+02
MG-CLIP (Huang et al.| 2025b) 450+ 1.6 348+ 14 716+ 1.8 42405
Proxy-FDA (Huang et al.|[2025a) 436+ 1.7 338+ 1.1 705+ 1.9 4.6+0.7
DKR (Cui et al.]2024} 452415 352+ 14 71.8+ 1.7 41+£05
ZAF (Gao et al.|[2024) 443+ 14 340+ 13 720+ 1.7 38406
Mod-X (Ni et al.]2023) 440+ 15 342+09 70.9 £ 1.1 45+06

Table 2: Retrieval and structured-concept tracks. Final-step retrieval (VLCL) and ConStruct-VL results.
P1-CCA delivers the highest I2T/T2I R@1 and the best FA/AF pair while remaining replay-free. Best,

second-best, and third-best cells are shaded in dark gray, medium gray, and light gray, respectively. '
denotes synthetic replay.

Variant MTIL Avg (1) MTIL Last (1) VLCL I2T R@1 (1) ConStruct-VL AF (|)
Pi—-CCA (full) 76.8 75.5 48.6 2.7

w/o spectral term (\;=0) 74.3 (2.5) 73.1 24) 46.3 (2.3) 3.8 (1.1

w/o subspace term (A2=0) 74.6 2.2) 73.4 2.1 45.9 2.7) 3912

w/o prompt invariance (A3=0, M =0) 75.3 (1.5) 74.0 (1.5) 47.1 (1.5) 3.3 (0.6)

wi/o certificate EMA (a=0) 75.6 (1.2) 74.1 (1.4) 47.7 (0.9) 3.1 04

w/o covariance EMA (5=0) T4.1 2.7 72.7 (2.8) 46.1 (2.5) 3.7 (1.0)

no spectral moments (J=0) 76.1 (0.7 74.9 (0.6) 48.0 (0.6) 2.9 0.2
Hungarian pairing (exact) 76.7 (0.1) 75.4 (0.1) 48.5 (0.1) 2.8 (0.1)

SRHT sketches (vs. Gaussian) 76.6 (0.2) 75.2 (0.3) 48.4 (0.2) 2.9 (0.2)

Table 3: Single-factor ablations. Performance drops relative to the full Pi-CCA model are shown in blue
for each variant. Removing spectral or subspace terms causes the largest performance degradation.

4.3 ABLATION STUDY AND ANALYSIS

Component-wise ablation. Table [3| removes or alters one component at a time. Removing either the
spectral preservation term (A; = 0) or the subspace-angle term (A2 = 0) causes the largest drops on MTIL
and retrieval, highlighting that both spectrum and directions are necessary to preserve alignment. Disabling
prompt invariance (A3 =0, M = 0) mainly hurts retention while slightly reducing retrieval, consistent with
its role in mitigating prompt sensitivity. Turning off certificate EMA (a = 0) or the streaming covariance
EMA (5 =0) degrades stability, and the latter is more severe. Low-order spectral moments (JJ > 0) provide
small but consistent gains over J = 0. Replacing the sorted surrogate with exact Hungarian pairing yields
nearly identical accuracy , so we keep the faster surrogate by default. Gaussian and SRHT sketches behave
similarly, with a slight edge to Gaussian at our budget. In addition, Appendix §A.3| conducts sensitivity
experiments on the main hyperparameters to verify the robustness of PI-CCA.

Scale and Efficiency. We sweep the certificate capacity over k € {16, 32,48, 64, 80,96, 128} and h €
{128,192, 256, 320, 384} while keeping all other settings fixed. We report MTIL Avg, MTIL Last, VLCL I2T
R@] (all 1), and ConStruct-VL AF (). We also log per-GPU peak memory (GB) and per-step wall-clock
(ms) on A100-80GB with batch B=1024. The 3D Pareto plot in Fig. 2 highlights non-dominated settings
under the joint objectives of low memory, low time, high Avg, and low AF (AF visualized as color). Overall,
Pi—CCA is robust inside a broad Pareto ridge, confirming the “small yet sufficient” certificate hypothesis.
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ConStruct-VL AF (4)

7o 68y § 1700, 2710 1550 1575 16.00 1625 1650 1675 17.00 17.25
17.25 Peak memory (GB) 4

(a) 3D Pareto: peak memory (GB, |), step time (ms, |), (b) 2D Pareto envelope: MTIL Avg (1) versus peak mem-
MTIL Avg (1); color encodes AF (]). Filled markers are  ory (GB, J); the curve traces the efficient frontier.
non-dominated points under (mem, time, AF, —Avg).

Figure 2: Certificate capacity Pareto views. (a) A robust ridge emerges for k € [48, 96], h € [192, 320]; (b)
the 2D envelope shows the same efficient frontier. The configuration (k, k) = (64, 256) lies near the knee.

Geometry — Performance: correlation evidence. We measure two geometry drifts per
setting—subspace-angle drift Dy, = Ele sin® §; and spectral drift D, = ||p1., — p.;/l2—and relate
them to performance drops AAvg (MTIL step-averaged accuracy drop, in percentage points) and AR@ 1
(VLCL I2T R@1 drop, p.p.) relative to the default knee configuration (k, h) = (64, 256) of Pi-CCA. We
sweep realistic perturbations (certificate size, EMAs, invariance strength, whitening, pairing, LoRA capaci-
ty/LR, sketch type). As shown in Fig. [3] larger angle/spectral drifts generally imply larger drops in Avg and
R@1, with D,,, typically the stronger predictor. In addition, §|E| provides a theoretical explanation.

AAvg vs angle drift AAvg vs spectral drift AR@1 vs angle drift AR@1 vs spectral drift

Pearson r=1.00 Pearson r=0.99 Pearson r=1.00 e Pearson r=0.99
Spearman p=1.00 3.5 { Spearman p=1.00 2.0 1 spearman p=1.00 Spearman p=1.00

DAvg (p.p.)
AR@1 (p.p.)
-
o
AR@1 (p.p.)

0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4 0.5 0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4 0.5
Dyng = Ssin?6, Dp=l6-p"I2 Ding = Ssin?6, Do=l6-p"I2

Figure 3: Geometry — performance correlation. Each panel shows scatter, least-squares fit, and 95% CI.
Pearson/Spearman are annotated. Clear positive trends with realistic scatter support that preserving CCA
geometry (angles & spectrum) predicts retention rather than being a coincidental regularizer.

Prompt invariance stress test. We stress L by increasing prompt perturbation strength s € [0, 1] (token-
level synonym swap/back-translation/template jitter ratio), and compare Pi-CCA (with A\3=0.2, M =4) to
an ablated model without invariance (A3=0, M =0). We report VLCLI2T R@1 (1), zero-shot PD (|), and AF
on ConStruct-VL ({) under (i) ID templates (CLIP-style variants) and (ii) OOD templates (Appendix §A.2).

As shown in Fig[d] we find that: (i) Invariance cuts the slope of accuracy decay: at s=1.0, R@1 retains 46.9
(ID) vs. 44.5 without invariance; OOD shows similar gaps. (ii) Forgetting and zero-shot drift (AF/PD) grow
with s, but £, consistently dampens both, especially under OOD styles. (iii) The curves suggest a practical
operating range s < 0.6 where performance remains close to nominal with invariance.
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ID templates: s—» {R@1, PD, AF}

00D templates: s—» {R@1, PD, AF}
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(a) ID templates: s —{R@1, PD, AF}. (b) OOD templates: s »{R@1, PD, AF}.

Figure 4: Prompt invariance stress curves. L,; flattens degradation slopes for both ID and OOD prompts.
At 5=1.0, Pi-CCA improves R@1 by +2.44 p.p. (ID) / +2.51 p.p. (OOD) and reduces AF by ~1.10 (ID) /
0.96 (OOD) vs. no Ly;.

Task-order sensitivity. To examine whether PI-CCA “gets lucky” with task order, we evaluate on 20
independently shuffled MTIL sequences (11 domains; orders listed in Appendix §A.2). We use the configu-
ration (k, h) = (64, 256). Fig. |5|summarizes the across-order distributions, we find: the interquartile ranges
are small, the between-order span (max—min) is modest, supporting that PI-CCA’s retention is robust to
task-order.

Avg across orders (1)

Last across orders (1) AF across orders (1)

3.09
77.44 76.00
7721 75.75 4 . 2.9 o
.
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Figure 5: Task-order sensitivity. Boxplots over 20 random orders for Avg/Last (1) and AF (). Dots show
per-order means (3 seeds). Narrow IQRs indicate low order sensitivity.

5 CONCLUSION

We addressed replay-free continual adaptation of vision—language models by reframing forgetting as
alignment-geometry drift and introduced PI-CCA, which preserves cross-modal generalization via a com-
pact, prompt-invariant certificate of canonical spectra and subspaces. Across standard VL-CL protocols,
directly constraining these invariants maintains zero-shot behavior and reduces forgetting while remaining
compatible with parameter-efficient tuning. Our main takeaway is conceptual: retention improves when op-
timization targets the invariants of image—text alignment itself, and stability of the canonical subspace/spec-
trum reliably predicts downstream performance. Future work will generalize the certificate to multimodal
instruction tuning.
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Ethics Statement This work adheres to the ICLR Code of Ethics. Our study does NOT involve hu-
man subjects, personally identifiable information, or sensitive attributes. We conduct replay-free continual
adaptation on publicly available, widely used vision-language benchmarks (e.g., MTIL, X-TAIL, VLCL,
ConStruct-VL) under their respective licenses, without releasing or reconstructing any private data.

Reproducibility Statement We have organized the paper and supplemental materials to facilitate re-
production. The full experimental protocol, datasets, metrics, baselines, and task orders are specified in
§4.1] with additional implementation and optimization details in Appendix (Algorithm [T) and Ap-
pendix §A.7] (backbones/adapters, hyperparameters, prompt perturbations, hardware, and random seeds).
Our theoretical results are stated with explicit assumptions and complete proofs in the Theory section, en-
abling independent verification. Dataset preprocessing and evaluation scripts are documented in the supple-
mentary; we rely only on publicly available benchmarks listed in §4.1] To ensure exact-step reproducibility,
we report all key hyperparameters, EMA rates, sketch dimensions, and power-iteration settings, and we
provide the task-order permutations used in our sensitivity analyses (Appendix §A.2). Due to ongoing com-
mercial use, we cannot release the code during review. The code package (training, evaluation, and logging)
will be released in the camera-ready version subject to de-identification and removal of any proprietary de-
pendencies. Upon acceptance we will (i) open-source the PI-CCA reference implementation, (ii) upload
configuration files and seed lists reproducing every table/figure, and (iii) include scripts to regenerate all
results from raw datasets.
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A APPENDIX

A.1 SUPPLEMENTARY TECHNICAL DETAILS

Optimization and Certificate Update Algorithm [T] outlines training at task ¢. Each iteration (Lines [4}-

builds M from centered embeddings, extracts (ﬁk, p1.k, Vi) via a differentiable block power iteration,
forms sketches/projectors (Line @, evaluates Lgpec, Lsub, Lpi With the task loss, and updates parameters
(Line[I2)). We maintain streaming EMAs and refresh the certificate every step using a slow EMA to preserve
the alignment skeleton while allowing controlled plasticity (Lines [[4HI3).

Optimization. All experiments use AdamW with weight decay 0.05 and a cosine schedule. We use an
initial learning rate of 1.5 x 10~* for the image-side LoRA parameters and 1.0 x 10~ for the text-side
LoRA parameters, with mixed precision in bf 1oat 16 and gradient clipping at 1.0. The effective batch size
is B = 1024, achieved by gradient accumulation if device memory is limited. For time-continual training
on TiC splits, we warm up only on the first temporal chunk and keep the same maximum learning rate for
all subsequent chunks to follow established practice. Unless otherwise stated, small datasets receive one
to three epochs per task, and large datasets receive about one epoch per task, with early stopping on the
current-task validation set.

Algorithm 1 PI-CCA Training at Task ¢

1: Inputs: dataset D;; encoders f,, f; with params 6., 8;; certificate (p7.., S}, 5’; ); sketches R, R;;
hyperparams (Ala )\23 A37 Ea W1:J,1, &, ﬁa Yo Vts kv ha Ma Tpow)

2: forepoch=1,..., E do

3:  for mini-batch B = {(z;,w;)}2, C D, do

4: Encode & center: Z, < [f,(xi)]i — Zv, Zi<[fe(w;)]i — Z¢

5: Covariances: flm,:ﬁZvTZv +d, Sp= 52 Zi + 1, f]vtzﬁZvTZt

6: Whitened cross-cov.: M — 2;}1/22“2;1/2 (Eq.

7: Top-k SVD : (ﬁk, Pk, ‘7;6) ~ SVDk(]\//.T) via Tpow block power steps with QR re-
orthogonalization

Sketches/projectors: S, =R Uy, S, =R/ V. Q,=5,5],Q,=5,5]
Prompt perturbations: sample {5,,}*_; compute {Q\™}M_, and their mean Q, =

9:
H3,.Qm

10: Losses: Lgpec (Eq.[8) + Lmom (optional, Eq.[9); Law (Eq.[T0); Ly (Eq.
11: Total loss: £ =Lk + A1 Lspec + A2Lsub + AzLpi (Eq.[7)
12: Update params: 6,,, 0, < optimizer_step(Vg, o,L)
. : . (1) (@) () s
13: Streaming EMAs: update 34,3, 3,/ using Eq.|12
14: Certificate refresh: pj,, < (1 — a)p}., + apre;  Sp<orth((1—a)S;+aS,)
15: S;W—orth((l — )8y —&—aﬁzgf:l .§t(m)) (Eq.

16: Output: updated encoders f,, f; and certificate (p7.,, S, S7) at task ¢

v
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Table 4: Datasets and task orders used in our experiments. MTIL and X-TAIL are evaluated with zero task
or domain hints at inference. VLCL follows an eight-dataset order for continual retrieval and additionally
reports zero-shot retention on a held-out suite. ConStruct-VL comprises seven structured concept subsets
built from VG and VAW, and TiC applies chronological splits to probe temporal robustness.

Track

Order Dataset/ Subset

Key stats and notes

(A) MTIL: multi-domain task-incremental classification (default alphabetical order)

MTIL

MTIL
MTIL

MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL
MTIL

1

2
3

[ BN B NIV, NN

9
10
11

FGVC-Aircraft

Caltech101
CIFAR-100

DTD

EuroSAT
Flowers-102
Food-101
MNIST
Oxford-IIIT Pets
Stanford Cars
SUN397

100 classes, 10k images, fine-grained aircraft vari-
ants.

102 categories, 9,146 images, object recognition.
100 classes, 50k train and 10k test images at
32x32.

47 texture categories, 5,640 images.

10 land-use classes, 27k images (RGB option).
102 classes, 8,189 images, fine-grained flowers.
101 classes, 101k images.

10 classes, 60k train and 10k test images.

37 classes, 7,349 images.

196 classes, 16,185 images.

397 scene categories, 108,754 images.

(B) X-TAIL: cross-domain task-agnostic classification

X-TAIL

1-10

Aircraft, Caltech101, DTD, EuroSAT, Flowers,
Food101, MNIST, Pets, Cars, SUN397

Same as MTIL except CIFAR-100 excluded. Test-
time label space is union of seen/unseen domains.

(C) VLCL: continual image-text retrieval

VLCL

VLCL

VLCL
VLCL

VLCL
VLCL
VLCL

VLCL

1

2

8

Flickr30K
COCO Captions

Pets
Lexica

Simpsons
WikiArt

Kream

Sketch

31,783 images with five captions each, Karpathy
splits.

123,287 images with five captions each, 5k
val/test.

Oxford-1IIT Pets in caption form, domain shift.
Al-generated images and prompts, synthetic im-
agery.

Cartoon frames and captions, style shift.

Artwork images with descriptions, art domain.
E-commerce clothing with captions, fashion do-
main.

Sketches paired with text.

(D) ConStruct-VL: structured VL concepts

ConStruct-VL
ConStruct-VL
ConStruct-VL
ConStruct-VL
ConStruct-VL
ConStruct-VL
ConStruct-VL

1

AN AW

7

Relation: spatial
Attribute: size
Attribute: material
Relation: action
Attribute: color
Object state
Attribute: action

Triplets from VG/VAW; size 1k-31k per subset.
Attribute-focused triplets; VG, VAW, VG+VAW.
Attribute triplets; VG and combined sets.
Inter-object action relations.

Color understanding triplets.

State-focused triplets.

Single-object action attributes.

(E) TiC: time-continual pretraining

TiC
TiC
TiC
TiC

1

2
3
4

2016-2017
2018

2019-2020
2021-2022

First temporal chunk of TiC-YFCC/RedCaps.
Second temporal chunk.

Third temporal chunk.

Final temporal chunk.
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A.2 EXPERIMENTAL SETUP (SUPPLEMENTARY)

Backbone & adapters. We adopt CLIP ViT-B/16 from OpenCLIP as the base vision—language model
and keep all pretrained backbone weights frozen during continual adaptation. We equip both the image
and the text encoders with LoRA adapters on every linear projection inside multi-head self-attention (query,
key, value, and output projections) and on both feed-forward layers of the MLP blocks. LoRA weights are
initialized with the standard zero-init scheme so that the initial network is exactly the frozen backbone, and
the adapters gradually inject task-specific updates as training proceeds. The adapter rank is set to r = 16
with scaling @ = 16 and a modest dropout rate of 0.05 applied on adapter outputs. We enable bias terms
in LoRA layers only where present in the corresponding backbone projection, and we do not introduce any
additional layer-norms beyond those of the original CLIP blocks. This keeps the parameter footprint small
and the optimization stable while allowing PI-CCA to steer the representation through a low-dimensional
control surface.

P1-CCA hyperparameters. PI-CCA preserves the alignment skeleton by constraining the spectrum and
the canonical subspaces. We use the top k& = 64 canonical components, which balances fidelity and cost
on ViT-B features, and we form h = 256-dimensional orthonormal sketches for both modalities so that
subspace distances are computed in a near-isometric space. Prompt perturbations are sampled M = 4 times
per mini-batch to estimate the mean projector and its dispersion. We maintain two levels of exponential
moving averages: a certificate EMA with rate = 0.01 that slowly refreshes the stored spectrum and
sketched bases, and a covariance EMA with rate § = (.01 that stabilizes the streaming covariance factors. To
guarantee well-posed whitening, we add ridge shrinkage -y, = v; = 1072 to the batch covariances and apply
an eigenvalue floor of 10~° during the inverse square-root computation. We obtain the top-k singular vectors
of the whitened cross-covariance via a differentiable block power iteration with T}, = 3 steps and QR re-
orthogonalization at each step. The loss composition uses A\; = 1.0 for spectral preservation, Ay = 1.0 for
subspace-angle preservation, and A3 = 0.2 for prompt invariance. We include a Ky—Fan alignment term with
weight £ = 0.1 and low-order spectral moments with J = 2 and weights (w1, w2) = (0.2,0.1) to stabilize
near-degenerate spectra. After each update we re-symmetrize all Gram matrices and clip their eigenvalues
to [0, 1] to keep them close to projectors.

Datasets and orders. Table[]lists the task sequences used in this paper. For MTIL we adopt the 11-domain
suite and follow the alphabetical order by default. X-TAIL uses the same domains except that CIFAR-100 is
removed, and the label space at test time is the union of seen and unseen domains. VLCL follows the eight-
dataset order introduced in recent CLIP-continual benchmarks. ConStruct-VL uses a seven-task sequence
over structured VL concepts that covers attributes, relations, and states. TiC adopts four temporal splits
to probe time-continual robustness. The table records the task index, the dataset or subset name, a short
description, and key cardinalities where applicable.

Hardware and protocol. We run all experiments on eight NVIDIA A100 80 GB GPUs with PyTorch 2.3
and CUDA 12 under NCCL data parallelism. Each configuration is repeated with three different random
seeds, and we report the mean and the standard deviation. PI-CCA never stores or replays past-task samples.
When a baseline explicitly requires reference or wild unlabeled data, we follow its original procedure and
keep these resources strictly outside of PI-CCA.

Prompts and perturbations. For classification-style evaluations we use the standard CLIP class templates
and we ensemble across a small pool of hand-crafted variants. Prompt perturbations are realized by synonym
and template jitters that preserve class semantics while varying phrasing, and these perturbations are used
only inside the projector averaging and the prompt-invariance loss. For retrieval-style evaluations we leave
captions unchanged, and we apply perturbations to the text encoder solely for forming the prompt-invariant
certificate, which prevents any leakage of label or caption content into the training targets.

Out-of-distribution (OOD) prompt templates We evaluate OOD prompts that deviate from CLIP-style
class templates. Below is a non-exhaustive set used in (placeholders in {}):
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% Prompt Templates
3 | Instructional: "Identify the main object: {class}.
4 Provide a brief caption."
5 "Task: detect {class} in the picture and summarize it."
6
7 |Narrative: "I'm looking at a scene where a {class} appears."”
8 "This moment captures a {class} in context."
9
10 | Keywords: "{class}, high detail, natural light, candid, outdoors."
11
12 |Caption: "A candid shot featuring a {class}."
13
4 |Hashtag: "#{class} #dailyshot #photography"
15
16 |Meta: "User: describe an image that includes {class}.
17 Assistant: ..."
18
19 | Translation: English \rightarrow Chinese \rightarrow English variants
20
21 | Template: "Subject={class}; Context=unknown; Describe briefly."

Random task-order seeds and permutations We list the 20 MTIL permutations used in §4.3] Domains:
Aircraft (Air), Caltechl0l (Cal), CIFAR100 (CIF), DTD (DTD), EuroSAT (Eur),
Flowers (Flo), Foodl0Ol (Foo), MNIST (MNI), OxfordPets (Pet), StanfordCars
(Car), SUN397 (SUN).

Table 5: Order seeds (ID — domain sequence). Abbreviations as above.

Order ID Permutation of 11 domains

S-1027 Air, Cal, CIF, DTD, Eur, Flo, Foo, MNI, Pet, Car, SUN
S-1132 Car, Pet, Foo, Eur, DTD, Air, Cal, CIF, SUN, Flo, MNI
S-1219 SUN, Cal, Car, Foo, Pet, Eur, DTD, CIF, Air, Flo, MNI
S-1305 DTD, Eur, Cal, Air, CIF, Flo, SUN, Pet, Foo, Car, MNI
S-1402 Cal, Air, DTD, Pet, Car, SUN, Foo, Eur, CIF, Flo, MNI
S-1508 Foo, Flo, CIF, Eur, Air, SUN, Cal, Car, Pet, DTD, MNI
S-1603 Pet, Car, Air, Cal, CIF, Foo, DTD, Eur, SUN, Flo, MNI
S-1701 Eur, DTD, Foo, Cal, Air, Pet, Car, SUN, CIF, Flo, MNI
S-1806 CIF, DTD, Eur, Car, Pet, Foo, Cal, Air, SUN, Flo, MNI
S-1904 Car, Foo, DTD, Cal, Eur, Air, CIF, Pet, SUN, Flo, MNI
S-2001 Air, EUR, Pet, Foo, Cal, DTD, Car, CIF, SUN, Flo, MNI
S-2107 Flo, Foo, Cal, Air, Car, Pet, Eur, DTD, CIF, SUN, MNI
S-2209 Pet, SUN, Foo, Flo, Cal, Air, Car, DTD, Eur, CIF, MNI
S-2311 CIF, Cal, Air, Foo, DTD, Eur, Pet, Car, Flo, SUN, MNI
S-2415 SUN, Air, Foo, Cal, DTD, Eur, Car, Pet, CIF, Flo, MNI
S-2512 Air, DTD, Flo, Foo, Pet, Cal, Car, Eur, CIF, SUN, MNI

continued on next page
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Order ID Permutation of 11 domains

S-2608 Cal, Foo, Air, Car, DTD, Eur, Pet, CIF, SUN, Flo, MNI
S-2704 Eur, Cal, CIF, Air, Flo, Pet, Car, Foo, DTD, SUN, MNI
S-2809 Foo, Car, Cal, Eur, SUN, DTD, Air, Pet, CIF, Flo, MNI
S-2913 DTD, Air, Cal, Foo, Pet, Car, Eur, CIF, SUN, Flo, MNI

A.3 ADDITIONAL EXPERIMENTS AND RESULTS
A.3.1 HYPERPARAMETER SENSITIVITY.

We summarize the core factors of P1-CC A—alignment geometry (k, h), prompt invariance (M, A3), stream-
ing stability («, ), and spectrum/subspace balancing (A1, A2 )—and report mean-tstd over three seeds on
representative metrics. Trends in Fig. |§| show: (i) a moderate canonical rank and sketch size (k=64, h=256)
best capture the alignment skeleton; (ii) prompt averaging (M) and a small invariance weight (A3) substan-
tially reduce forgetting without hurting retrieval; (iii) small but nonzero EMAs («, 3) are crucial for stable
whitening and certificate refresh; and (iv) balanced spectral/subspace weights (A\;=A2=1) maximize reten-
tion—plasticity trade-offs. Variations around the defaults lead to modest performance changes, indicating
robustness.
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Figure 6: Core hyperparameters. Finer-grained sweeps confirm robustness around the defaults. Geometry
(k, h) and invariance (M, A3) control fidelity and prompt sensitivity, EMAs («, 3) stabilize streaming esti-
mates, balanced losses (A1, A2) maximize retention—plasticity. Changes are modest across a broad range of
values.
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As summarized in Fig [7| whitening is most stable at y=1073, e=10"5 with Tpow=3; exact Hungar-
ian pairing matches the sorted surrogate within noise. Mild global spectrum regularization (£€[0.1,0.2],
J=1~2) slightly lowers AF, and Gaussian sketches edge SRHT by ~ 0.2 R@1. Around r=16, o ,ra=16,
Ddrop=0.05, capacity/optimization changes yield < 0.4-pt shifts. Overall, results confirm strong robustness:
core trends hold across wide ranges without tuning fragility.

Whitening and pairing Whitening and pairing Whitening and pairing Whitening and pairing Global spectrum regularizers and sketches.
———— e — Y I — — 3 e —
=2 7 : 7

AF Score (1)

Pairing strategy
iapter capacity and optimization Adapter capacity and optimization

AF Score (1)

250
[ 1 2 Gaussian SRHT s 16 2 H 16 2 000 005
Moments J Sketch type LoRA rank LoRA scale a_LoRA LoRA dropout p_drop

—&— MTILAvg (1) MTILLast(t) —@— VLCLI2TR@1(1) —- ConStructVLAF (1)

Figure 7: Other hyperparameters. Incremental gains and robustness from whitening, global-spectrum
regularizers, sketch choice, and adapter/optimization knobs; core conclusions remain unchanged.

A.3.2 CERTIFICATE REFRESH STRATEGIES

We compare five strategies over the 11-step MTIL stream: NR (no refresh, a=0), SR-T (slow text-only
refresh, «=0.01), FR-T (fast text-only, ®=0.05), SR-TV (slow text+vision, «=0.01 both), and FR-TV
(fast text+vision, «=0.05 both). We log subspace-angle drift Dy = >, sin? 0; and spectral drift D, =
lp — p*||2 per step, alongside Avg (1) and AF (]). For global vs. local certificates we contrast a single
Global Pi—CCA certificate versus Class-local and Concept-local variants (per-class/per-concept sketches),
comparing accuracy and resource cost. As shown in Fig [8] and [0] SR-T minimizes geometry drift and
delivers the best Avg/AF over steps. FR-T and FR-TV “chase” recent tasks and increase forgetting, while
NR accumulates drift. Global certificates balance performance and cost, class-/concept-local variants add
memory/time and slightly reduce Avg, suggesting unnecessary specialization.

A.3.3 PAIRING STRATEGY BOUNDARY

We compare the sorted surrogate (descending sort of p) against the Hungarian optimal assignment un-
der controllable spectral crowding. We bin runs by the minimum singular-gap 0, = min;(p; —
pi+1) € {0.0005,0.0010,0.0015,0.0025,0.0040, 0.0060, 0.0080, 0.0100,0.0120} and sweep spectral jit-
ter n € {0.00,0.15,0.30,0.45,0.60,0.75,0.90} with 6 replicates per (dmin, 1), then aggregate per dp,in. For
each run we record metric differences(Hungarian — Sorted): AAvg (p.p.), AR@1 (p.p.), and AAF (p.p.).
Figure [10] shows that: (i) Under very small gaps (dmin < 0.004), Hungarian yields tiny but sometimes sig-
nificant improvements. (i) For gaps of practical size (§min, > 0.006), the Sorted and Hungarian algorithms
are statistically indistinguishable, with AAF remaining approximately zero across the board. (iii) the sorted
surrogate is the recommended method, as it is both safe and faster. The Hungarian algorithm only shows an
advantage in contrived scenarios with tightly crowded spectra, offering no meaningful benefit in practical
applications.
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Subspace-angle drift vs. task step

061 = NR —— SRT =—— FRT = SRTV

~Ssina,
=
e

Spectral drift vs. task step

2 4 6 8
Task step

10

76.5

Avg (\%)
o
o
o

75.5 1

| — avg-srRT  — avg-srTv
—— AVg-FRT —— Avg-NR

——————
7

3.6
3.4

32%

—————————————

__________ 3.0
________

_________
_—”

2.8

Task step

(a) Drift vs. step: Dang and D,. Shaded bands: randomized (b) Performance vs. step: Avg (left axis) and AF (right

€1T0r.

axis).

Figure 8: Refresh strategy analysis. Slow text-only refresh (SR-T) yields the lowest drift and the best
Avg/AF trajectory; fast both-sides refresh (FR-TV) and no refresh (NR) accumulate drift and forgetting.

80 A

Avg (\%)
N w B * [ ~
o o o o o o
T T . . :

—
o
L

0

. Avg (1)
A Memory (GB)

r17.5

F15.0

r12.5

F10.0

F7.5

Peak memory (GB)

F5.0

r2.5

- 0.0

Global

Class-local Concept-local

Figure 9: Accuracy vs. cost by certificate granularity. Grouped bars show Avg (left axis) and memory
(right axis; hatched), with step time annotated above bars.

A.3.4 CERTIFICATE GEOMETRY: SKETCHING, INITIALIZATION, AND UPDATE CHOICES

We first study how the CCA certificate behaves under different sketch constructions, initializations, subspace
losses, and update rules.

Sketch randomness and sketch type. Table[6reports MTIL and VLCL performance over 5-10 runs with
different sketch RNG seeds and two sketch families (Gaussian vs. SRHT). The standard deviations are very
small, indicating that Pi—-CCA is robust to sketch randomness and sketch type.

Certificate initialization. Table [7] compares three initialization strategies: a full anchor set, an 80% re-
duced anchor set, and random orthogonal subspaces. Thanks to EMA updates, Pi-CCA converges to a
useful invariant even from weak or random initializations, with only modest gaps in final performance and
geometry drift.

19



Under review as a conference paper at ICLR 2026

Pairing difference heatmap (Hungarian — Sorted)
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Figure 10: Sorted vs. Hungarian under spectral crowding. Heatmap of mean (Hungarian — Sorted, in
p-p.) per dmin bin for AAvg, AR@1, and AAF. Stars mark Holm-Bonferroni—corrected significance: *
p<.05, ** p<.01. Tiny gains appear only when 3, <0.004. For d,,;,, > 0.006, differences vanish.

Table 6: Effect of sketch type and sketch RNG seeds on MTIL and VLCL. Mean and std are over 5-10 runs.

Sketch type  MTIL Avg (1) VLCLI2TR@1 (1) Std (MTIL) Std (VLCL)

Gaussian 76.8 48.6 +0.2 +0.1
SRHT 76.9 48.4 +0.3 +0.2

Subspace loss variant. In Table [8] we compare an explicit principal-angle loss against our sketched-
projector loss. Both achieve nearly identical MTIL and VLCL performance, but the principal-angle loss is
substantially slower, supporting the choice of sketched projectors as a practical surrogate.

Gradient flow through certificate update. Table[J]compares a differentiable variant that backpropagates
through EMA+QR with our default stop-gradient update. The differentiable variant exhibits occasional
instabilities and slightly worse performance, justifying the teacher-style stop-grad design.

A.3.5 SCALING WITH BACKBONE AND ADAPTER CAPACITY

We next study how Pi—~CCA scales when the backbone and adapter capacity are increased.

Backbone size. Table evaluates Pi-CCA on ViT-B/16, ViT-L/14, and ViT-L/14@336. Performance
improves with larger backbones, while the additional time and memory remain moderate and the certificate
size stays fixed.

Adapter configuration. Table [TT] shows that Pi-CCA remains effective under higher LoRA ranks and
when partially or fully finetuning the backbone: the geometry-based losses consistently improve perfor-
mance with modest extra cost.

A.3.6 PROMPT INVARIANCE: PERTURBATION COUNT AND ROBUSTNESS

We now examine the role of the prompt-invariance term, both under random perturbations and adversarial
shifts.
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Table 7: Effect of certificate initialization on MTIL, X-TAIL, and geometry drift.

Initialization MTIL Avg (1) MTIL Last (1) X-TAILR@1 (1) Geometry drift ()
Full anchor set 76.8 75.5 68.1 2.1
Reduced anchor (80% removed) 75.4 74.1 67.6 3.0
Random orthogonal subspaces 75.2 73.9 67.3 35

Table 8: Comparison of subspace loss variants. Relative step time is normalized to our default.

Subspace loss type MTIL Avg (1) VLCLI2TR@1 () Relative step time (x) ({)
Explicit principal-angle loss 76.9 48.7 1.36
Sketched projector loss (ours) 76.8 48.6 1.00

Number of prompt perturbations M. Table|l12|aggregates the effect of M across X-TAIL, VLCL, and
ConStruct-VL. Increasing M from O to 4 improves robustness, while further increases yield marginal gains
but noticeable extra cost.

Adversarial prompt shifts. Table|13|evaluates Pi-CCA with and without the prompt-invariance loss Lp;
under gradient-based adversarial prompt perturbations on X-TAIL. The invariance term substantially reduces
degradation under adversarial prompts, while preserving normal performance.

A.3.7 OVERHEAD, REGULARIZATION BASELINES, AND ANCHOR CONFIGURATION

Overhead and memory footprint. Table[I4]quantifies Pi-CCA’s overhead relative to a LoRA-only base-
line. Time and memory increases are modest, while the certificate storage is tiny compared to typical replay
buffers.

Stronger regularization baselines. To test whether Pi-CCA’s gains come from “more regularization”,
Table [I5] compares Pi-CCA to LoRA with strong generic feature regularizers and to a proxy similarity
alignment baseline. Even under matched tuning budgets, both baselines remain clearly below Pi-CCA.

Anchor set size and diversity. Table [16] ablating the anchor prompt set (single default template, 50%
templates dropped, full set) shows that Pi-CCA is not overly sensitive to anchor diversity: even a minimal
label-derived set recovers most of the gains.

A.3.8 STATISTICAL SIGNIFICANCE AND PER-TASK RESULTS

Paired t-tests. Table [T7] reports two-sided paired t-tests (3 seeds) between Pi—-CCA and the strongest
replay-free baselines on key metrics. All p-values are below 0.05, confirming that Pi-CCA’s improvements
are statistically significant.

Per-task results across benchmarks. To show that improvements are not driven by a single “lucky” task,
Table @ aggregates per-task results across MTIL (11 domains), VLCL (8 datasets), and ConStruct-VL (7
subsets). Pi—-CCA consistently matches or outperforms C—CLIP across all three benchmarks.
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Table 9: Effect of backpropagating through the certificate update.

Certificate update variant MTIL Avg (1) VLCLI2T R@1 (71) Stability
Grad-through EMA + orth 76.0 48.0 occasional spikes
Stop-grad EMA + orth (ours) 76.8 48.6 stable across seeds

Table 10: Scaling Pi—~CCA to larger CLIP backbones. Time is wall-clock seconds per step; memory is peak
GPU usage.

Backbone MTIL Avg (1) VLCLI2TR@1 (1) Time (s/step) () Memory (GB) ({)
ViT-B/16 76.8 48.6 32 16.4
ViT-L/14 78.2 49.1 4.0 24.1
ViT-L/14@336 78.4 49.3 4.2 28.5

A.4 THEORETICAL ANALYSIS

Let f,, f; be the (frozen-backbone, LoRA-adapted) image/text encoders, and let u(z) € R% and v(w) €
R% denote their whitened, centered embeddings within a mini-batch: ¥, = 5252, Z, + %I, Su =

ﬁZ{th +nl, Xy = ﬁZIZt. The whitened cross-covariance is

M = S;128,, 5,17 e Rbvx, (14)
Let the rank-k SVDs be M, = Uy diag(p1.1)V, and My = Uf diag(p}.,,,)V;:", with orthoprojectors
P, =UU/!, P, =V, V., Pr =U;U; T, Pr = V¥V, We denote by O, (resp. ©,) the diagonal matrix

v

of principal angles between span(Uy) and span(U};) (resp. Vi, and V), and recall the identity ||P—P*||p =
V2| sin O/ .

Given a pair (z, w), define the zero-shot score sps(x,w) := (u(x), M v(w)) and the task loss £ : R — R..
The (population) zero-shot risk under distribution D is

R(M) = Equwop [su(z,w))]. (15)
Assumptions.

(A1) (Bounded whitened embeddings) ||u(z)||2 < 1 and ||v(w)||2 < 1 almost surely.
(A2) (Lipschitz loss in the score) £ is Lg-Lipschitz: |¢(a) — £(b)| < Lg|a — b.

(A3) (Rank-k structure) We compare M and a reference M™ through their top-k SVD factors above;
denote ppax := max{py, p7} < 1.

A.4.1 SINGLE-STEP EXCESS-RISK BOUND FROM SPECTRAL AND SUBSPACE DRIFT

We first quantify how changes in canonical spectrum and canonical subspaces control the zero-shot risk.
Lemma 1 (Risk is Lipschitz in M under (A1)—(A2)). For any M, M’,

IR(M) = R(M")| < L |M — M. (16)

Proof. By (A2) and Jensen,
IR(M) — R(M")| = ’E[wu, Mv)) — £((u, M'0))] ‘ < LeE[|{u, (M — M)0)|]. a7
By Cauchy—Schwarz and (A1), |[(u, (M — M'")v)| < ||M — M’||2, hence the claim. O
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Table 11: Effect of adapter configuration on Pi—-CCA.

Configuration MTIL Avg (1) VLCLI2TR@1 (1) Time (s/step) () Memory (GB) ({)
LoRA rank = 16 (default) 76.8 48.6 3.2 16.4
LoRA rank = 32 77.2 48.9 3.5 17.1
LoRA rank = 64 77.5 49.1 3.8 18.0
Full finetune (last layer) 77.0 48.8 3.9 17.5
Full finetune (all layers) 774 49.0 4.2 19.0

Table 12: Effect of the number of prompt perturbations M across benchmarks. For M/ = 0 we do not apply
prompt perturbations on X-TAIL (entries marked “-).

M X-TAILR@1 (1) X-TAILAF(]) VLCLIR2TR@I (1) ConStruct-VL AF(]) Rel. step time (x) (1)
0 (no Ly) - - 47.1 33 1.00
1 67.8 3.6 47.9 3.1 1.02
2 68.4 3.4 48.4 2.9 1.06
4 (default) 69.2 32 48.6 2.7 1.12
8 69.1 33 48.7 2.7 1.21

Lemma 2 (Geometric decomposition of the rank-k part). Let Ap := sort) (p1:x) — p7.;- Then

1M = Mills < [18plle + 2pmax (| sin©, [l2 + [ sin ©¢l2). (18)

Proof. Write D := diag(p1.;;), D* := diag(p}.,,). By the triangle inequality,
10DV, = Ui D*Vi |2 < ||URDV;| = Ui DV, |l + |[Uf DV, — Uy DV T||o + | U (D — D)V |l
(4) (B) ()

19
For (O), ||Uf (D — D*)V;T||l2 = ||D — D*||2 = ||Apl|2 (permutation-invariant pairing by sorting).
For (A), insert I = P} + (I — Py):
(4) = | = P)Ux DV, + PIUx DV," = UL DV, |5 (20)
< I = PY)Ukll2 [1Dll2 + 10z (U U = DIz [1D]]2- @n

= || sin O, |2

Since U} T Uy, has eigenvalues cos 0", we use |1 — cos 0] < sin to get | U T Uy — I||2 < || sin ©, 2. Thus
(A) < 2|[Dllz2 || sin Oull2 < 2pmax| sin Ou||2.

The term (B) is symmetric on the text side, giving (B) < 2pmax]| sin ©¢||2. Combining the three bounds
yields the result. O

M — My||2 = ok+1(M). Hence
M = M|z < [[My — M{|l2 + ok1(M) + op1 (M7). (22)

Lemma 3 (Tail energy identity). For any matrix M,

Theorem 1 (Alignment-geometry drift = single-step excess-risk bound). Under (Al)—(A3),

R(M) = ROM*) < Le [ 8ll2 + 2 (150 O0l2 + |5 €42) + 711(M) + 011 (M) 23)
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Table 13: Effect of prompt invariance under adversarial prompt shifts on X-TAIL.

Method Adv.R@1 (T) Adv.AF(]) NormalR@1 (T) Normal AF (])
Pi—CCA with L 56.2 3.1 69.2 32
Pi—-CCA w/o L; 49.1 4.2 69.1 33
Pi—CCA with L, (no perturbation) 69.2 3.2 69.2 3.2

Table 14: Overhead and memory footprint of Pi—-CCA vs. a LoRA baseline. Replay buffer sizes for replay-
based CL methods are typically in the GB range.

Method Time increase (]) Peak memory increase (])  Certificate storage ({) Replay buffer
Pi—-CCA (ours) ~ 8% ~ 6% ~ 50 KB N/A
LoRA baseline N/A N/A N/A ~GB (replay methods)

Equivalently, using orthoprojectors,

R(M) = R(M") < Le[|Aplla + 25 (1o = Pylle + 1P = P 1) + 02 (M) + 011 (M),
(24)

Proof. By Lemmalf3| M — M*[|y < ||M), — M}||2 + okt1(M) + o1 (M*). Apply Lemma 2] to bound
|| M}, — M2, then Lemmal 1] to convert spectral deviation into risk deviation. For the projector form, use
|P = P*|r = V2| sin®| . 0

Interpretation. If Ap = 0 and U, = U}, V), = V;*, the excess risk is controlled purely by tail energy;
when the CCA spectrum decays fast beyond k, zero-shot ability is rigidly preserved.

A.4.2 DYNAMIC REGRET OVER A NON-STATIONARY TASK SEQUENCE

We now consider a stream {D; }]_; with models {M,}]_; produced by any adaptation rule (e.g., PI-CCA).

Let the per-step comparator be M;r (e.g., the best rank-k model for D; within the same hypothesis class).
Define the dynamic regret

T
Regp = Z <Rt(Mt) - Rt(MtT))» Ri(M) = E(m,w)NDt [€(<Ua MU))] (25)
t=1
For each ¢, denote Ap; := sort (pg.1:) — p}:l:k, Oy 1= @(Uk,t»Uli,t)’ O = @(Vk,t,V,it), Pmax,t ‘=
max{p;,1, 01,1}7 and 6y i 1= o1 (M) + Uk+1(MtT)~

Theorem 2 (Dynamic regret bound from geometric drift). Under (Al)—(A3), for any sequence {M;} and
comparators { M},

T
Regr < Lo |[18pilla+ 225 (I1Pus = PLille + 1Pt = PLille) + 0. 20)
t=1
Proof. Apply Theoremto (M, M; ) under D; for each t, then sumovert =1,...,T. O
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Table 15: Comparison of Pi-CCA with strong regularization and proxy-alignment baselines.

Method MTIL Avg (1) MTIL Last (1) VLCLI2T R@1 (1)
LoRA (plain finetuning) 71.2 69.9 42.0
LoRA + strong regularizers (L2, cosine) 72.4 71.1 43.5
LoRA + proxy alignment (Mod-X style) 73.6 72.2 45.0
LoRA + Pi—-CCA (ours) 76.8 75.5 48.6

Table 16: Effect of anchor prompt configuration on Pi—-CCA.

Anchor configuration MTIL Avg (1) MTIL Last () VLCLI2TR@1 (1) ConStruct-VL AF ({)

Default-only 76.4 75.0 48.2 2.9
50% dropped 76.6 75.2 48.4 2.8
Full (main setting) 76.8 75.5 48.6 2.7

Plug-in control via certificate-based regularization. Let the training losses

2
27

cert

Lspec(t) = H sorty (pe,1:6) — PIk

Lun(t) = 5|[Poe = Py |5 + 51| Pee = PP F, @D

be computed against a slowly refreshed certificate (p§et, P, Pgert), By triangle inequality,

18ptll2 < A/ Lapec(t) + 1655 = pliallzs 1P = Plillr < V2 Lo (6) + | S = Pl [l (28)

If the certificate tracks the instantaneous comparators (e.g., by a slow EMA) so that the residual terms
|pSert — pl | |l2 and || PEert — P,T,t|| F remain small, then Theoremimplies

T T
Regy S Ly Z (q/ﬁspec(t) + ,Csub(t)) + Ly Z Otwil + (small tracking error). 29)
t=1

t=1

This formalizes the empirical observation that stabilizing the CCA spectrum and subspaces controls forget-
ting and reduces dynamic regret in replay-free continual adaptation.

A.5 PYTHON SCRIPT FOR PI-CCA

The following Python script demonstrates the core functionality of Pi-CCA. The script is modular and can
be adapted to different datasets and configurations.

Listing 1: Compact Python Script for Pi-CCA

import torch

import torch.nn.functional as F

import numpy as np

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler

# Load pre-trained model (e.g., CLIP) for image and text embeddings
# Here, we assume the use of a toy dataset like MNIST or CIFAR-10

def load_data():
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Table 17: Paired t-tests between Pi—-CCA and strongest replay-free baselines on key metrics. Pi-CCA means
are reported in the main text.

Metric Baseline Baseline mean =+ std  p-value vs. Pi-CCA ({)
MTIL Avg (1) C-CLIP 75.2+0.7 0.019
MTIL Last (T) DDAS 74.1+£0.8 0.023
MTIL Transfer (1) ZAF 71.9+£0.6 0.017
X-TAIL Avg (1) RAIL 67.4+0.5 0.021
X-TAIL Last (1) C-CLIP 66.3 +0.7 0.028
X-TAIL Transfer (1) RAIL 64.2 £0.6 0.024
VLCL 2TR@1 (1) C-CLIP 46.1+1.4 0.017
VLCL T2IR@1 (1) C-CLIP 35.7+1.2 0.021
ConStruct-VL FA (1) C-CLIP 72.4+1.9 0.013
ConStruct-VL AF (]) ZAF 3.8+ 0.6 0.008

Table 18: Per-task results for MTIL, VLCL, and ConStruct-VL: Pi—-CCA vs. C-CLIP.

Benchmark Task / Dataset / Subset ~ Metric Pi-CCA (1) C-CLIP (1)

MTIL FGVC-Aircraft Acc 75.7 73.8
MTIL Caltech101 Acc 79.2 77.8
MTIL CIFAR-100 Acc 75.0 73.6
MTIL DTD Acc 73.3 71.3
MTIL EuroSAT Acc 76.9 74.8
MTIL Flowers-102 Acc 78.5 76.3
MTIL Food-101 Acc 75.8 74.3
MTIL MNIST Acc 80.0 78.8
MTIL Oxford-IIIT Pets Acc 74.7 73.1
MTIL Stanford Cars Acc 80.1 78.9
MTIL SUN397 Acc 75.9 74.8
VLCL Flickr30K 2TR@1 49.7 48.7
VLCL COCO Captions I2TR@1 51.6 50.6
VLCL Pets 2TR@1 47.8 46.4
VLCL Lexica RTR@1 50.1 48.4
VLCL Simpsons I2TR@1 42.8 41.4
VLCL WikiArt RTR@1 494 47.9
VLCL Kream 2TR@]1 51.7 50.7
VLCL Sketch I2TR@1 459 44 .4
ConStruct-VL  Relation: spatial FA 75.9 75.8
ConStruct-VL  Attribute: size FA 74.4 72.3
ConStruct-VL  Attribute: material FA 73.7 72.5
ConStruct-VL  Relation: action FA 75.1 73.3
ConStruct-VL  Attribute: color FA 76.9 75.7
ConStruct-VL  Object state FA 74.1 73.1
ConStruct-VL  Attribute: action FA 76.2 74.3

# Example: load MNIST or CIFAR-10 and precompute image and text
— embeddings using CLIP

# For simplicity, using random data for demonstration purposes
num_samples = 100

num_features = 512 # Feature dimension
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# Random data: [num _samples x num_features]

image_data = np.random.rand(num_samples, num_features)
text_data = np.random.rand(num_samples, num_features)
return image_data, text_data

# Mini-batch covariance computation

def compute_covariances (image_embeddings, text_embeddings, batch_size
— =32):
# Compute covariance matrices for image and text embeddings in mini
— —batches
B = len (image_embeddings)

image_embeddings = torch.tensor (image_embeddings)

text_embeddings = torch.tensor (text_embeddings)

cov_vv = torch.zeros ((image_embeddings.shape[l], image_embeddings.

— shape[l]))

cov_tt = torch.zeros((text_embeddings.shapel[l], text_embeddings.

<~ shape[l]))

cov_vt = torch.zeros ((image_embeddings.shape[l], text_embeddings.
[11)

for i in range (0, B, batch_size):
batch_image = image_embeddings[i:i+tbatch_size]
batch_text = text_embeddings[i:itbatch_size]

# Compute covariance for mini-batch

cov_vv += torch.cov(batch_image.T)

cov_tt += torch.cov(batch_text.T)

cov_vt += torch.mm(batch_image.T, batch_text)

# Normalize covariance
cov_vv /= B
cov_tt /=B
cov_vt /= B

return cov_vv, cov_tt, cov_vt

# Whitening and CCA certificate computation

def whiten_and_compute_cca(cov_vv, cov_tt, cov_vt, k=64):
# Perform whitening of covariance matrices
inv_cov_vv = torch.inverse (cov_vv)

inv_cov_tt = torch.inverse(cov_tt)

# Compute whitened cross—-covariance matrix
M = torch.mm(torch.mm(inv_cov_vv, cov_vt), inv_cov_tt)

# Perform SVD on the whitened cross—-covariance matrix
U, S, V = torch.svd (M)

# Extract top-k singular values and vectors (Pi-CCA certificate)
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top_k_singular_values = S[:k]
top_k_U = U[:, :k]
top_k_V = VI[:, :Kk]

# Return the compact certificate (canonical correlations and
— subspaces)
return top_k_singular_values, top_k_ U, top_k_V

# Update the certificate using mini-batch statistics
def update_certificate (image_embeddings, text_embeddings, k=64,
— batch_size=32):
# Step 1: Compute covariance matrices
cov_vv, cov_tt, cov_vt = compute_covariances (image_embeddings,
— text_embeddings, batch_size=batch_size)

# Step 2: Whitening and SVD to get Pi-CCA certificate
top_k_singular_values, top_k_ U, top_k_V = whiten_and_ compute_cca (
<~ cov_vv, cov_tt, cov_vt, k=k)

# Return the updated Pi-CCA certificate
return top_k_singular_values, top_k U, top_k V

# Main function to run the Pi-CCA process

def main() :
# Load data (e.g., MNIST or CIFAR-10, here we use random embeddings
)
image_data, text_data = load_data()

# Update the certificate (this would typically be done iteratively
— over tasks)

top_k_singular_values, top_k_U, top_k_V = update_certificate(

— image_data, text_data, k=64)

# Output the resulting certificate
print ("Top-K_Singular Values:", top_k_singular_values)
print ("Top-K_U_ (Image Subspace):", top_k_U)

print ("Top-K_V_ (Text_Subspace):", top_k_V)
if name == "_ main_ ":
main ()

A.6 LLM USAGE

We used a large language model for minor English editing (grammar/wording/clarity) and small, localized
code fixes (e.g., resolving syntax errors, adding missing imports). The LLM did not contribute to research
ideation, experimental design, data processing, analysis, or figure generation. All technical content and
results were produced and verified by the authors, who take full responsibility for the manuscript.
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