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Abstract

Audio-visual source localization is a challenging task that aims to predict the loca-
tion of visual sound sources in a video. Since collecting ground-truth annotations
of sounding objects can be costly, a plethora of weakly-supervised localization
methods that can learn from datasets with no bounding-box annotations have been
proposed in recent years, by leveraging the natural co-occurrence of audio and
visual signals. Despite significant interest, popular evaluation protocols have two
major flaws. First, they allow for the use of a fully annotated dataset to perform
early stopping, thus significantly increasing the annotation effort required for train-
ing. Second, current evaluation metrics assume the presence of sound sources at
all times. This is of course an unrealistic assumption, and thus better metrics are
necessary to capture the model’s performance on (negative) samples with no visible
sound sources. To accomplish this, we extend the test set of popular benchmarks,
Flickr SoundNet and VGG-Sound Sources, in order to include negative samples,
and measure performance using metrics that balance localization accuracy and
recall. Using the new protocol, we conducted an extensive evaluation of prior
methods, and found that most prior works are not capable of identifying negatives
and suffer from significant overfitting problems (rely heavily on early stopping for
best results). We also propose a new approach for visual sound source localization
that addresses both these problems. In particular, we found that, through extreme
visual dropout and the use of momentum encoders, the proposed approach com-
bats overfitting effectively, and establishes a new state-of-the-art performance on
both Flickr SoundNet and VGG-Sound Source. Code and pre-trained models are
available at https://github. com/stoneMo/SLAVC.

1 Introduction

Humans and most other animals have evolved to localize sources of sound in their environment. This
remarkable ability relies in part on the uniqueness of different sound sources, which allows us to
recognize the sounds we hear and visually localize them in our environment. Given recent advances
in audio and visual perception research, there is broad interest in developing multi-modal systems
capable of mimicking our ability to visually localize sound sources.

One promising direction is to leverage the co-occurrence between sounds and the corresponding
sources in video data. Since audio-visual co-occurrence arises naturally, algorithms can scale to very
large datasets without requiring costly human annotations. However, despite encouraging recent
progress [1, 2, 3, 4, 5], currently accepted evaluation protocols hide two critical limitations of current
methods: (1) current methods overfit easily even when scaled up to large datasets, and (2) current
methods assume that visible sound sources are always present in the video and thus are unreliable
when deployed on realistic data where this assumption does not hold.

The first limitation remained hidden as prior works [2, 4, 6, 5] rely heavily on early stopping for
optimal performance (i.e., by continuously validating the model during training using a human-
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annotated set). However, this practice violates the main assumption of weakly supervised visual
source localization, i.e., the requirement for no bounding box annotations during training.

The second limitation remained hidden as most prominent benchmark datasets [1, 6] and evaluation
metrics only assess the ability to localize sound sources when one is present in the video. Importantly,
it ignores the ability to correctly predict the absence of visual sound sources. This has led to a bias
towards localization accuracy with disregard for false positive detection. False positive detection is
closely related to the silent object detection problem highlighted in recent works [7, 8]. However,
although these works introduce methods to suppress the localization of silent objects, they require the
collection of a clean dataset containing a single source per video. Instead, we aim to tackle this issue
without assuming knowledge of the number of sources.

The two limitations above highlight the need for a more balanced and complete evaluation protocol
for visual sound source localization. To achieve this, we extend popular benchmark test sets (Flickr
SoundNet [1] and VGG-Sound Sources [6]) to include *negative’ samples without any visible sound
sources. We conduct an extensive evaluation of existing methods [2, 3, 4, 6, 9, 7], where in addition
to overall localization accuracy, we also assess methods based on their ability to predict negative
samples. We observe that all prior work suffers from significant overfitting problems, relying on early
stopping for optimal performance. We also found that previous approaches struggle to strike a good
balance between false positive and false negative rates.

We also propose a novel procedure - Simultaneous Localization and Audio-Visual Correspondence
(SLAVC) - which provably tackles these two issues. First, to combat overfitting, we adopt slow-moving
momentum target encoders and extreme visual dropout. Second, to reduce false positives, we localize
visual sources by forcing the model to explicitly perform audio visual correspondence in addition to
localization. The latter term highlights which regions within an image are most associated with a
particular audio, while the former downplays regions that can be better described by the audio of
other samples. By combining these two terms, the model is able to both accurately localize visible
sources and identify when no visible sources are present. Using the newly developed evaluation
protocol, we show that, unlike all prior work, SLAVC does not overfit and thus can be trained without
relying on early stopping. SLAVC achieves state-of-the-art performance on multiple datasets and is
more accurate at identifying samples without any visible sound sources.

2 Related Work

Audio-Visual Self-Supervised Learning. The natural audio-visual alignment is a rich source
of supervision for self-supervised learning [10]. Recently, it has been explored to learn a wide
variety of deep learning models [11, 12, 13, 1, 14, 15, 16, 17, 18, 19]. Given a database of videos,
the main idea is to close the distance between audio and visual features from the same video
while pushing away those from different videos [20, 19, 21], from the same video but different
timestamp [22, 23], or from the same video but difference spatial location [24]. Such audio-visual
alignment is beneficial to several tasks, such as audio separation [18, 25, 26, 15, 16, 27, 28, 29],
audio-visual spatialization [14, 30, 31, 24], visual sound source localization [1, 2, 3, 4, 6, 32]. In
this work, we mainly focus on visual source localization, which requires learning fine-grained and
high-resolution representations that are discriminative of the various sound sources.

Audio-Visual Source Localization. Audio-visual source localization aims at predicting the location
of sounding objects in a video. Early models [33, 34, 35] learn to capture the low-level correspon-
dences between audio and visual features. Recently, contrastive approaches [1, 23, 2, 6, 9] seek to
localize objects by aligning audio and visual representation spaces. For instance, LVS [6] leveraged a
contrastive loss with hard negative mining to learn the audio-visual co-occurrence map discrimina-
tively. Contrastive learning with hard positives was introduced in HardPos [9] to learn audio-visual
alignment with negative samples. EZ-VSL [5] introduced a multiple instance contrastive learning
framework that focus only on the most aligned regions when matching the audio to the video.

However, we show that these methods can easily overfit in the source localization task, and heavily
rely on early stopping for best performance. Furthermore, with the exception of [7, 8], they focus on
localizing sound sources that are visible, and struggle to identify negatives (when there are no visible
sources). Although understanding when sources are not visible is important to several audio-visual
tasks, like in open-domain audio-visual source separation [36, 37], this issue still poses significant
challenges. DSOL [7] and IEr [8] proposed a method to suppress localization of silent objects, and



Global Contrastive Learning Multi-Instance Contrastive Learning (EZ-VSL)

Similarities from H Max similarities between

A non-matching pairs
r © ¢

non-matching pairs ¢
¥ H
fa da & \ W fa \
| Contrastive _ fo) - | Contrastive
= /@ Loss : EW / Loss
ﬁ; gv @ g ﬁJ gu

Pool
Q
Q

Pool

Pixel-wise
P AV similarity

Simultaneous Localization and Audio-Visual Correspondence (Ours)

Similarity maps between

non-matching pairs X Max similarities between
‘ non-matching pairs Audio Visual Correspondence (AVC)
5 —» | Pixel-wise ¥ Similarity maps between
IW fa & ﬁ AVC \ Audio yid non-matching pairs
— " Feature Ja & v
Contrastive n - -
52} Max |=> Loss Pixel-wise &a)
" Ells . ®~| Instance |~ '
3 L j Visual . Softmax
EMAU;J) g — | Localization Feature g;;ud
a iy Map Pixel-wise Prediction
Projections AV similarity Map
Similarity maps between Localization

Audio

non-matching pairs " — e
Max similarities between Feature O &

' non-matching pairs \ Soatial ':’:‘
Pixel-wise ; ohe patial |
—_
EMA(fa) 7 AVC | Visual | sotmex
Contrastive Feature g]l,oc
(&) Max )= Map
[ Loss L .
Pixel-wise Prediction
f j Projections AV similarity Map
v Fusion
14

Pool

M,

= | Localization

Dropout

Figure 1: Illustration of the proposed SLAVC with synchronized momentum audio-visual matching.
The audio-visual correspondence of pixel-wise similarity between momentum branches and base
branches is aligned by the cross-modal multiple instance contrastive learning objective.

an evaluation metric that measures the ability to ignore them. These methods, however, rely on the
knowledge of the number of sound sources, not available in most large scale datasets. In this work,
we do not assume such knowledge. We propose a novel Simultaneous Instance Discrimination and
Localization framework for weakly-supervised visual source localization with clear benefits, as it
demonstrably improves both localization accuracy and false positive rates. We also annotate real
world test samples that may lead to false positives (beyond silent objects), and propose new metrics
for a more comprehensive evaluation.

Weakly-supervised Object Detection (WSOD). Weakly-supervised object detection [38, 39, 40, 41]
is closely related to visual sound localization, since both aim at localizing object regions by learning
from image/frame level supervision (corresponding audio in the case of VSL, and object classes for
WSOD). However, different from WSOD, we assume no access to class information during training.
Instead, SLAVC aims at learning from audio-visual correspondence alone.

3 Visual Source Localization

We propose a self-supervised learning approach for Visual Sound Localization (VSL). This method
builds on the current state-of-the-art based on multiple-instance contrastive learning [5]. The proposed
approach addresses two critical problems: 1) severe overfitting even when trained on large datasets
and 2) the tendency to hallucinate sound sources when none are visible in the video. For clear
exposition, we begin by defining the problem and briefly revisit the current state-of-the-art [5]
(Sec. 3.1). We then detail the proposed approach in Sec. 3.2, and highlight the main differences to
prior work. Finally, we present in 4 an evaluation protocol that is sensitive to these issues.

3.1 Preliminaries: Weakly-Supervised Visual Source Localization

Given an audio-visual dataset D = {(v;,a;) : ¢ = 1,..., N}, VSL seeks to train a system that
can predict the location of the sources present in sound a; within the visual frame v;. VSL models
can be learned from various levels of supervision: Unsupervised VSL learns to localize without
any form of human annotations; Weakly-supervised VSL forgo bounding-box supervision but may
leverage categorical information. This categorical information can be in the form of object labels for
visual encoder pre-training, or audio event labels for audio encoder pre-training; Semi-supervised



VSL learns from a small number of bounding-box annotations, together with a large unsupervised
or weakly-supervised dataset; Finally, Fully supervised VSL models rely on large amounts of fully
annotated datasets. In this paper, we tackle the Weakly-Supervised VSL problem. We note that
equivalent prior work, such as [1, 4, 2, 3,7, 6, 9, 5], often refer to this problem as unsupervised VSL,
despite actually addressing the weakly supervised problem, as they use vision models pre-trained on
ImageNet for object recognition.

To train the system, the current state-of-the-art method, EZ-VSL [5] maps both audio and visual
features into a common space using projection heads g,(-) and g, (-), resulting in a set of visual
features spanning all locations in an image V; = {g,(v;") : Va,y} and one global audio feature
ga(a;). Ideally, the model should be trained to align the audio and visual features at locations (z, y),
where sound sources are located. However, since these locations are unknown during training, EZ-
VSL [5] optimizes a multiple-instance contrastive learning objective, in which the audio representation
ga(a;) is matched with ar least one location in the corresponding bag of visual features V;, while
pushing away from the visual features in all "negative" bags in the same mini-batch V; Vj # i (at all
spatial locations). Specifically, the model is trained to minimize the average per sample loss
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where 7 is a temperature hyper-parameter, B is the batch-size, and the similarity sim(a;, V;) between
an audio feature a; and a bag of visual features V; is computed by max-pooling audio-visual cosine
similarities s() across spatial locations x, y
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3.2 Simultaneous Localization and Audio-Visual Correspondence (SLAVC)

Previous methods, including EZ-VSL [5], suffer from two critical limitations: (1) models easily
overfit to the self-supervised objective; (2) models are not capable of identifying negative samples
(i.e., samples with no visible sound sources). The method proposed in this work is designed to address
these two limitations. To combat overfitting, we apply two regularization techniques: dropout [42]
and (slow-moving) momentum encoders [43, 44]. To better identify negatives, we propose to conduct
VSL by simultaneously performing sounding region localization and audio-visual correspondence.
These three components are illustrated in Figure 1, and are now discussed separately.

Dropout [42] is a widely used technique to combat overfitting. We applied dropout on the output
of both the f, and f, encoders. Interestingly, we found that heavy visual dropout is required to
prevent overfitting (with a dropout probability as large as 0.9), while audio dropout is not required.
Since multiple-instance contrastive learning (Eq. 1) requires the audio to match only one of a large
number of locations in the image (h X w), spurious alignment becomes more likely. Visual dropout
reduces the likelihood of spurious alignments, as visual features become more spatially redundant.'

Momentum encoders [43, 44] is a technique often used in self-supervised and semi-supervised
learning to obtain slow-moving target representations, leading to more stable self-training and
enhanced representations. We apply momentum encoders to both audio and visual inputs a; =

fala;), vi = fu(v;), in order to obtain more stable targets. Following [43, 44], momentum encoders
are updated using an exponential moving average of the corresponding online encoders with coeffi-
cient m.? Since updates to the audio-visual encoders are slowly incorporated into the momentum
encoders, the target representations display a smoother behavior during the training process.

Simultaneous localization and audio-visual correspondence To better avoid false predictions,
we explicitly force the model to only predict regions of an image that can be used to identify the
corresponding sound source. Specifically, we factorize VSL into two terms. The first is a localization
term P'°° that distinguishes regions within an image that likely depict the sound source from the
regions that likely do not. The second is an audio-visual correspondence term P that highlights

!Spatial redundancy is encouraged as it prevents loss of information when features are dropped.
’EMA update is 6 < 6+ (1 —m)0, where 6 and @ denote the parameters of online and momentum functions.



regions that are likely associated with the corresponding audio, and suppresses regions that would
be better explained by other sound sources. The key insight is that to prevent false detections, VSL
should select only the regions that are simultaneously highlighted in both terms. While the first term
is responsible for sound source localization, the second prevents VSL to be overly confident when no
sound sources are visible in the image.

Localization and audio-visual correspondence is conducted on separate subspaces In particular let
g'(a;) and ¢g2*(a;) be the two audio representations of a;, and {g!%(v{") : Vx y} and {g™¢(viY) :
Va,y} the two bags of visual features for v;. We use linear projections for the various functions g( ).

Then, we define the localization term as the softmax p,,, () over spatial dimensions x, y

PG = oy (15 2@ 5 7) ). ®

and the audio-visual correspondence term as the softmax p;(-) over instances ¢

1
P™(a;,v;") = pi ( s(ga (i), g, (v -”)))- )
To select the regions in which both P'°¢ and P** are active the two terms are combined into a single
prediction map P(a;, v;¥) = P (a;,v}") - P*(a;,v;]"), and the model is trained to optimize
[SLAVCE _ | maxgy Pa;, vi’) maxg, P(a;, v;") . 5)
Z]B:r max,, P(a;, v;") Zszl maxg, P(ag, v;Y)

Full method While we demonstrate the benefits of the three components separately, they can be
combined for optimal performance. The full approach is illustrated in Fig. 1. Dropout is always
applied on the encoders’ outputs. To combine the SLAVC factorization with momentum encoders, the
model is trained to optimize

£ Z 1o maxy, P(a;, v;") log maxy, P(a;,v;") ©
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where a; and {,;t_'y are the audio and visual momentum features.

During inference, both localization and audio-visual correspondence terms are used for VSL. We
observed that matching momentum features at test time lead to improved localization. Thus, given an
audio-visual pair (v, a), the audio-visual localization map at location xy is computed as

S = 5 (9a°(8), g (V")) + 5 (92 (a), gy (¥"7)). )

Furthermore, this audio-visual localization map can be easily combined with object-guided localiza-
tion proposed in [5] for improved performance.

4 Benchmarking Visual Source Localization

We introduce an evaluation protocol for VSL that is more sensitive to the high false positives and
overfitting issues of current approaches.

First, to ensure overfitting is not hidden by the evaluation protocol, we suggest to rule out early
stopping from weakly-supervised VSL evaluation, and instead always evaluate models after training
them to convergence (or a large number of iterations). Note that early stopping defeats the purpose of
weakly-supervised VSL, as it requires a fully annotated evaluation subset for tracking performance.

Second, to assess false detection of non-existing sources, we extend the test sets of both Flickr-
SoundNet [1] and VGG Sound Sources [45] to include samples without visible sound sources. We
also use metrics that measure the balance between high localization accuracy and low false positive
rates.

Extended Flickr-SoundNet/VGG-SS Non-visible sounds or frames with silent objects are preva-
lent in video. To tackle these cases, we present a new evaluation protocol. We extended VGG-
SS/Flickr-SoundNet by merging clips with no sounding objects to the original test sets. Specifically,



Table 1: Statistics of weakly-supervised audio-visual source localization test sets.

Total Real Automated Automated Total

Dataset Small Medium Large Huge Pos Neg EasyNeg  HardNeg  Neg Total
Ground-truth size (pixels) 1-322 322 -962 962 — 144> 1442 — 2242 1 -—2247 0 0 0 0 1 — 2242
Flickr-SoundNet [1] 0 9 83 158 250 0 0 0 0 250
Extended Flickr-SoundNet 0 9 83 158 250 42 169 39 250 500
VGG-Sound Source [6] 134 1796 1726 1502 5158 0 0 0 0 5158
Extended VGG-SS 134 1796 1726 1502 5158 379 3594 1185 5158 10316

we analyzed 1000 videos from VGG-Sound test set (and 250 from Flickr-SoundNet test set), and
manually select 5-second clips with non-audible frames and/or non-visible sound sources. This
resulted in 379/42 samples with no sounding sources for VGG-SS/Flickr-SoundNet, respectively.

Beyond the manually identified negative pairs, we further generate negative samples by pairing audio
and videos that do not belong together. We control the difficulty of these negative pairs, by sampling
25% of pairs from audio and video that are from the same class (hard negative), and 75% from
different classes. We merge all negatives with the VGG-SS [6] and Flickr-SoundNet [1] test set.
Table 1 shows the statistics of the extended test sets. We also split test samples into four groups
(Small, Medium, Large, and Huge) according to the size of the sound sources, as measured by the
area (in pixels) occupied by the ground-truth bounding boxes.

Evaluation metrics Localization maps are often evaluated by comparing them to a group of
human annotations using consensus intersection over union (cloU, denoted as u) [1]. Given a set of
predictions with cloUs U = {ui}fil, prior work [2, 3, 4, 6, 9, 5] measures the localization accuracy
(LocAcc) among all samples with visible sounding objects, where each prediction is considered to
be correct if its cIoU is above the cIoU threshold 7. The cloU threshold is set at v = 0.5 unless
otherwise specified.

Beyond localization error, we also evaluate on samples with no visible sounding sources. Thus, the
model cannot assume the presence of a sound source, it is required to predict whether the current
video contains a visible source or not. This is accomplished by computing a confidence score d;,
which we define as the maximum value in the predicted audio-visual similarity map, max,, Siy; -
For evaluation, we define a flag ¢; to be 1 for samples with visible sources (positive samples) and
0 for samples with no visible sources (negative samples). True positive are then given as TP =
{ile; = 1,d; > 0,u; > 7}, false positives as FP = {i|c; = 1,d; > §,u; < ~v}U{i|e; =0,d; > d},
and false negatives as FN = {i|c; = 1,d; < §}. These sets are used to compute the Average
Precision (AP), and the maximum F1 (max-F1) score obtained by sweeping the confidence threshold
(i.e. maxs F'1(6)). Detailed formulas are provided in appendix.

5 Experiments

Using the evaluation protocol outlined above, we now show that prior works easily overfit and are
prone to high false positive rates. We also show that the proposed SLAVC effectively addresses these
issues, outperforming prior state-of-the-art by large margins. Next, we conduct a thorough analysis
of the various components of the system, and identify the main limitations of both ours and prior
work, namely, small objects and high-quality detection.

5.1 Experimental setup

Datasets We evaluate the effectiveness of the proposed method on two datasets - Flickr SoundNet [1]
and VGG Sound Sources [45]. Following commonly-used settings [6, 9, 5], we use a subset of 144k
samples for training in both cases. We evaluate on the extended test sets described in Sec. 4.

Models and optimization We followed prior work and used ResNet-18 [46] for both the audio and
visual encoders. The visual encoder is initialized with ImageNet [47] pre-trained weights [6, 9, 5].
The output dimensions of the audio and visual encoders (i.e., the output of projection functions g())
was kept at 512, the momentum encoders update factor at 0.999, and the visual dropout at 0.9. No
audio dropout is applied. Models are trained with a batch size of 128 on 2 GPUs for 20 epochs (which

3This metric is also referred to as “CIoU”. To avoid confusion, we prefer the term Localization Accuracy.



Table 2: Comparison results of LocAcc (“CIoU”) for models obtained with and without early stopping
on Flickr SoundNet and VGG-SS testsets. All models were trained on VGG-Sound 144k. * indicates
values reported in the original papers.

Method Flickr-SoundNet VGG-SS
Early Stop  NO Early Stop  Early Stop ~ NO Early Stop

Attention10k [1] 42.26 34.16 18.50*/18.52 14.04
CoarsetoFine [4] - 47.20 - 21.93
DMC [2] 55.60 52.80 23.90 22.63
AVObiject [3] - - 29.70* -
DSOL [7] 74.00 72.91 29.91 26.87
LVS [6] 71.90*/71.60 19.60 34.40%/33.36 10.43
HardPos [9] 76.80* - 34.60* -
EZ-VSL [5] 79.60 66.40 34.28 31.58
SLAVC (ours) 83.20 83.60 37.22 37.79
EZ-VSL + OGL [5] 83.94%/83.94 72.80 38.85%/38.85 37.86
SLAVC (ours) + OGL [5] 86.40 86.00 39.67 39.80

Table 3: Comparison results of the proposed metrics (AP, max-F1, LocAcc) on Extended Flickr-
SoundNet and Extended VGG-SS benchmark. All models were trained on VGG-Sound 144k.

Method Extended Flickr-SoundNet Extended VGG-SS
AP max-F1 LocAcc AP max-F1  LocAcc

Center Prior - - 67.60 - - 34.16
CoarsetoFine [4] 0.00 38.20 47.20 0.00 19.80 21.93
LVS [6] 9.80 17.90 19.60 5.15 9.90 10.43
Attention10k [1] 1598  24.00 34.16 6.70 13.10 14.04
DMC [2] 25,56  41.80 52.80 11.53 20.30 22.63
DSOL [7] 38.32 49.40 7291 16.84  25.60 26.87
OGL [5] 40.20  55.70 77.20 18.73 30.90 36.58
EZ-VSL [5] 46.30  54.60 66.40 24.55 30.90 31.58
SLAVC (ours) 51.63 59.10 83.60 3295 40.00 37.79
EZ-VSL + OGL [5] 48.75 56.80 72.80 27.71 34.60 37.86

SLAVC (ours) + OGL [5] 52.15  60.10 86.00 3446 41.50 39.80

we found to be enough to achieve convergence in most cases). We used the Adam [48] optimizer
with 81 = 0.9, B2 = 0.999, learning rate of 1le — 4 and weight decay of 1e — 4. Our implementation,
available at https://github. com/stoneMo/SLAVC, is based on PyTorch [49] deep learning tool.

Audio and visual processing We extract audio-visual pairs composed of a single frame and 3 seconds
of audio centered around the frame. The visual frame is resized into 256 along the shortest edge,
followed by random cropping and random horizontal flipping. During inference, frames are resized
into 224 x 224, with no additional data augmentations. For the audio, we extract log spectrograms with
257 frequency bands over 300 timesteps from 3s of audio at 22050 kHz. The underlying short-term
Fourier transform is computed on approximately 25ms windows with a step size of 10ms.

Prior works and baselines We compare the proposed approach to several prior VSL methods.
Specifically, we considered Attention 10k [1], CoarsetoFine [4], DMC [2], DSOL [7], LVS [6],
HardPose [9] and EZ-VSL [5]. We used authors’ implementations when available, and our own
implementations otherwise. To ensure that our results match the original papers, we report both
results when possible in Tab. 2. For the current state-of-the-art EZ-VSL [5], we consider two versions:
with and without object guided localization (OGL). OGL computes an object prior which is merged
with the audio-visual localization prediction for improved localization. We also use OGL together
with our approach. As a sanity check, we also evaluate a Center Prior baseline, which always selects
a circle centered in the middle of the image. Since when recording, we tend to put objects in the
middle of the frame, this baseline provides a good low bound for localization performance, which
VSL methods should outperform.
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vdrop AP max-F1 LocAcc adrop AP max-F1 LocAcc mom AP max-F1 LocAce  SLAVC

Train Infer AP max-F1 LocAcc
0 26.03  32.00 36.45 0 3295  40.00 37.79 0. 2503 3250 3245

050 2633 3220 3627 050 2063 2830 3230 09 2702 3350  34.32 AVLoc 28.19 3560 3275
075 3022 3780 3682 075 1888 2470 2691 099 2558 3200 3540 v AVLoc 2201 3080  23.65
090 3295 4000 3779 090 1621 2270 1910 0995 30.53 3740 3594 v AVC 1729 2960 3472
095 2607 3370 3594 095 7.63 1260 1064 0999 3295 40.00 3779 v SLAVC 3295 4000  37.79

(a) Video dropout. (b) Audio dropout. (c) Momentum. (d) SLAVC decomposition.

Table 4: Ablation studies. Impact of video dropout rate (vdrop), audio dropout rate (adrop), the
momentum parameter for the target encoders (mom), and the use of SLAVC decomposition both
during training and inference. Default parameters are highlighted in gray.

5.2 Main results

Preventing overfitting To demonstrate that current methods suffer from severe overfitting, we
compare several methods trained with and without early stopping [1, 2, 3, 4, 6, 9, 5]. Table 2 shows
the Localization Accuracy (LocAcc) of these models on two datasets: Flickr SoundNet and VGG
Sound Sources. We observe that, despite the large training sets (144k audio-visual pairs in both
datasets), early stopping is critical to obtain high LocAcc in all prior works, despite the fact that
it should not be used in a weakly-supervised VSL setting. In fact, we observed that in most cases
performance peaks within the first 2 to 3 training epochs, and decays rapidly afterwards. Training
curves are shown in Figure ??. This observation suggests that, due to overfitting, prior methods do
not scale well (i.e., they cannot take advantage of larger datasets).

In contrast, SLAVC does not show the same signs of overfitting. The model improves as it is trained
for longer. As a result, early stopping is not required to obtain a high performing model. Also, since
the model can better leverage the large training data, it also significantly outperforms all prior work
(even without early stopping). Without OGL (object-guided localization), we outperform the previous
SOTA (EZ-VSL [5]) by 3.60% and 2.94% on Flickr and VGG-SS, respectively. If early stopping is
ruled out, these gains increase to 17.2% and 6.2% on Flickr and VGG-SS, respectively. Finally, by
combining SLAVC with OGL, we achieve a new state-of-the-art on weakly-supervised VSL (86.4%
LocAcc on Flickr and 39.67% on VGG-SS).

Preventing false positives Since all prior work rely on LocAcc as the main evaluation metric,
models are not penalized for high false positives rates. To better assess prior work, we evaluated
several models on the proposed Extended Flickr and VGG-SS datasets with the evaluation protocol
described in Sec. 4 (without early stopping). As can be seen in Table 3, with the exception of EZ-VSL
and SLAVC, AP and max-F1 scores of prior works are very low, as these models struggle to avoid false
positives without substantially increasing false negatives. EZ-VSL was shown to be more effective
at preventing false positives. However, its overall performance was still lacking in comparison to
the proposed SLAVC, which achieves the best results on all metrics. SLAVC+OGL improves AP by 3.4
and max-F1 by 3.3 on the Extended Flickr-SoundNet test set. On the more challenging extended
VGG-SS dataset, the gains of SLAVC+OGL were even larger, with an increase in AP of 6.75 and in
max-F1 score of 6.9%.

5.3 Analysis

We now conduct a thorough analysis of SLAVC. Our goal is to improve audio-visual localization of
sound sources. As seen in Tables 2 and Tab. 3, OGL enhances localization. However, since it only
provides an object prior, OGL can be applied to any method. To better understand the proposed
procedure, we conduct the various analysis without OGL (unless stated otherwise).

Regularization strategies. We start by showing in Tables 4a, 4b and 4c the effect of the various
regularization techniques used to tackle overfitting (dropout and momentum target encoders). Models
are trained and tested on VGG Sound Sources. As can be seen, heavy dropout of visual features (i.e.
with a dropout rate of 0.9) is critical for localization, while audio dropout is not required. As for the
target encoders, we found that a momentum of 0.999 achieves best results, outperforming models that
do not use momentum encoders by significant margins (6.0% AP, 5.2% max-F1, and 2.0% LocAcc).
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Figure 2: Effect of different relative sorting thresholds on LocAcc and AP for visible objects of
various sizes (Small, Medium, Large, Huge). CPL, EZVSL+OGL, SLAVC, and SLAVC+OGL denote
the localization using Gaussian center prior map, audio-visual response map, object-guided map, and
the linear combination of audio-visual response and object-guided map.
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Table 5: Comparison results of max-F1 score for false positives among hand selected negatives, easy
negatives and hard negatives on Extended Flickr-SoundNet and Extended VGG-SS benchmark where

models are trained on VGG-Sound 144k data.

Extended Flickr-SoundNet Extended VGG-SS

Method Real  Automated Automated Real  Automated Automated

Neg Easy Neg Hard Neg Neg Easy Neg Hard Neg
LVS [6] 14.50 17.80 14.30 8.30 8.80 7.60
Attentionl10k [1] 27.10 28.10 27.00 9.10 7.40 7.90
CoarsetoFine [4] 36.90 39.40 35.80 22.10 19.80 18.90
DMC [2] 48.80 41.40 43.70 20.70 19.40 21.90
EZ-VSL [5] 52.60 55.70 54.20 32.80 36.10 31.40
SLAVC (ours) 63.50 57.40 63.30 40.30 43.20 33.00

SLAVC decomposition. We also studied the effect of SLAVC decomposition during training
and the localization strategy used for inference, i.e., either using audio-visual similarities tuned
for localization alone (AVLoc; s(V%, a'¢)), for AV correspondence (AVC; s(V2, a™°)) or both
(SLAVC; Eq. 7). Table 4d shows the localization performance for the different strategies. We observe
that by training to simultaneously perform both audio-visual localization and correspondence, we can
enhance localization by significant margins (4.76% AP, 4.40% max-F1, and 5.04% LocAcc). Also,
both SLAVC branches, audio-visual localization (AVLoc) and correspondence (AVC), are required

during inference for optimal performance.



Sound source size. Figure 2 shows the performance of Center Prior (CPL), OGL, SLAVC and
SLAVC+OGL on sources of different sizes (i.e. using the Small, Medium, Large and Huge subsets) on
the VGG Sound Sources datasets. Each method was forced to output a prediction of constant size,
by setting an appropriate threshold in the localization map. We then plotted the LocAcc obtained
for predictions that vary between 10% and 90% of the total image area. As can be seen, localization
performance degrades significantly for smaller objects, regardless of the method used. In fact, all
methods achieve a peak LocAcc of 0 in the Small subset containing sources of size up to 322 in area.
This corroborates observations in prior work, that detection of small sound sources remains one of
the main limitations of current approaches. We also observe that all methods perform well when
localizing very large sound sources. In fact, since the IoU threshold is set relatively low (y = 0.5)
given the prediction sizes, even the Center Prior, which always selects the center pixels, can achieve
high LocAcc. The methods differ however when they are required to also identify negative samples,
in which case SLAVC significantly outperforms prior methods (as shown in AP scores) regardless of
prediction size.

Balancing positive and negative detection. To better understand the models’ ability to detect
samples with no visible sound sources, we plot in Fig. 3 (left) the F1 score for increasing confidence
thresholds. As the threshold increases, models are more selective in identifying sound sources, and
thus avoid making predictions if none is visible. However, this can come at the cost of missing visible
sound sources. As can be seen in Fig. 3 (left), SLAVC and EZVSL are the only approaches whose F1
scores increase with higher confidence thresholds, with SLAVC achieving the highest F1 score. This
shows that unlike most of prior work, SLAVC can effectively identify negative pairs, i.e. ti reduces
false positive rates without sacrificing true positive rates.

High quality detection. Figure 3 (right) also shows the AP scores at varying IoU thresholds. We
observe that while our method consistently outperforms prior work, the performance of all methods
degrade substantially as the IoU threshold increases. In fact, the AP at 0.75 IoU is close to 0 for
all methods, indicating that current weakly-supervised VSL methods still struggle to achieve high
quality detection.

Negative type. Table 5 studies the max-F1 score for false positives among real and hand selected
negatives (easy/hard). For each of the three negative subsets, we add a similar number of positives
(e.g., there are 1185 hard negatives on Extended VGG-SS, so 1185 random positives are added to this
set to get a total of 2370 samples). These results measure how well methods can balance positive
and negative detections when given only those types of negatives. The proposed SLAVC achieves the
best performance in terms of all types of negatives, which further demonstrates the robustness and
effectiveness in balancing positive and negative detections.

6 Conclusion

In this work, we identify two critical issues with current weakly-supervised visual sound source
localization methods: severe overfitting even when trained with large datasets, and their poor ability to
identify when no sound sources are visible (i.e., negatives). Since current evaluation protocols allow
for early stopping and always assume the presence of a visible sound sources, they are not sensitive
to the aforementioned issues, reason why they remained relatively unknown. To fix these issues,
we propose a new evaluation protocol and a novel method for VSL. We extend current evaluation
datasets to also include negative samples (i.e., frames with no visible sound source). We show
that overfitting can be effectively addressed through commonly used regularization techniques like
dropout and momentum target encoders. We also show that forcing the model to explicitly conduct
both localization and audio visual correspondence enhances the model’s ability to identify negative
samples.
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