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ABSTRACT

The impressive ability of large language models to generate natural text across
various tasks has led to critical challenges in authorship authentication. Although
numerous detection methods have been developed to differentiate between machine-
generated texts (MGT) and human-generated texts (HGT), the explainability of
these methods remains a significant gap. Traditional explainability techniques
often fall short in capturing the complex word relationships that distinguish HGT
from MGT. To address this limitation, we present LMZ20TIFS, a novel explainable
framework for MGT detection. Inspired by probabilistic graphical models, we
provide a theoretical rationale for the effectiveness. LM20TIFS utilizes eXplainable
Graph Neural Networks to achieve both accurate detection and interpretability. The
LMZ20TIFS pipeline operates in three key stages: first, it transforms text into graphs
based on word co-occurrence to represent lexical dependencies; second, graph
neural networks are used for prediction; and third, a post-hoc explainability method
extracts interpretable motifs, offering multi-level explanations from individual
words to sentence structures. Extensive experiments demonstrate the comparable
performance of LM20TIFSs. The empirical evaluation of the extracted explainable
motifs confirms their effectiveness in differentiating HGT and MGT. Furthermore,
qualitative analysis reveals distinct and visible linguistic fingerprints characteristic
of MGT.

1 INTRODUCTION

Large Language Models (LLMs) have made remarkable progress in recent years, demonstrating
the ability to generate text based on prompt instructions. Models like ChatGPT (OpenAll [2022),
Llama (Touvron et al.,2023)), and Claude-3 (Anthropic} 2024) have shown impressive capabilities in
writing (Yuan et al., [2022a)), coding (Zhang et al., [2024c)), and question answering (Zhuang et al.,
2023). However, these advances raise serious concerns about content authenticity, including fake
news (Ahmed et al.| [2021), plagiarism (Lee et al.,[2023), and misinformation (Chen & Shul, |2024)).
Given that humans struggle to identify machine-generated texts (MGT) (Gehrmann et al.| 2019b)),
developing reliable detectors to distinguish between MGT and human-generated texts (HGT) has
become essential.

Existing LLM detectors (Yang et al., 2024; Nguyen-Son et al., [2024; |Guo et al.| [2024b; (Chang
et al.}2024) are broadly categorized as white-box and black-box approaches. White-box approaches,
exemplified by DetectLLM (Su et al., 2023)), analyze the probabilities of the output token to identify
distinguishing characteristics (Yu et al.,|2024). In contrast, black-box methods (Guo et al.,2024bj
Soto et al., 2024} Zhang et al., [2024b; Nguyen-Son et al.,|2024) achieve detection without access to
the LLM’s internal workings. Despite their effectiveness, significant challenges persist in creating
detectors that are both robust and explainable (Wu et al.}[2025). Furthermore, these methods typically
only output a binary classification. However, practical applications demand supporting evidence, such
as the need for the determination of originality. However, existing explainability techniques for these
detectors are inadequate. Traditional methods like Integrated Gradients (Sundararajan et al., 2017)
are computationally prohibitive for LLM-based detectors, and while attention mechanisms (Jain
& Wallace,, 2019 |Wiegreffe & Pinter, |2019) excel at capturing local dependencies, they may face
challenges in identifying global patterns crucial for an LLM. Consequently, developing an explainable
detector solution is critical and timely.
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The fundamental architecture of modern LLM builds upon the principle of autoregressive next-token
prediction, which models the joint probability distribution of a sequence as P(s1, S2," -, ST) &

Hthl Py(s¢|s1:t—1), where 0 is the (trainable) model parameter, s; is the word/token at the ith
position, and T is bounded by the context length (Radford et al., 2019} Bengio et al., [2000).
Following this notion, in MGT detection, current methods typically treat the input as sequential
data, and measure the distance between its posterior distribution and reference distributions for
MGT and HGT samples — for instance by estimating the Kullback-Leibler (KL) divergence. This
often requires substantial computational resources and large sample sizes. However, an intuitive
and efficient alternative, probabilistic graphical models (PGM) (Bishop & Nasrabadil, 2006} [Koller,
2009), to model conditional probabilities, has been largely overlooked. From the perspective of
PGM, while generation tasks require that LLM operate based on probability graphs which accurately
approximate the ground-truth posterior distribution, detection tasks only require constructing and
analyzing probability graphs that are sufficiently discriminative for the underlying detection task.
With sufficient sample data, building such graphs is straightforward. Furthermore, by analyzing the
mechanism between sequence-based detectors and graph-based detectors, we provide the advantage
of graph-based detectors in theory. In practice, PGM has advantages in terms of explainability,
inference speed, and detection accuracy.

Drawing inspiration from PGM, we introduce a novel explainable framework, LM20TIFS. Beyond
classifying input text as either MGT or HGT, LM2OTIFS generates explanatory motifs that justify
its detection outcome. LMZOTIFS consists of three key parts: i) Graph Construction, ii) MGT
Detection, and iii) Explainable Motifs Extraction. In the first stage, we leverage the word co-
occurrence techniques to capture the lexical dependencies. To extract meaningful patterns at multiple
levels (e.g., words and phrases), we integrate mainstream eXplainable Graph Neural Networks
(XGNNp5s) to generate these motifs. To validate the effectiveness of our PGM-inspired approach, we
empirically demonstrate that LM?OTIFS achieves competitive performance with state-of-the-art MGT
detection methods, including both supervised and zero-shot approaches. Following eXplainable Al
(XAI) protocols, we verify the effectiveness of LM2?0TIFS. Our results indicate that the generated
explainable motifs significantly outperform the baseline in terms of interpretability. The main
contributions of this paper are summarized as follows:

* We introduce LM20TIFS, an explainable framework for MGT detection that integrates co-
occurrence graphs with XGNN techniques for both accurate detection and explainable motifs
extraction.

% We provide a theoretical analysis of the rationale and advantages of employing GNN for this task,
drawing insights from the perspective of PGM.

% We conduct comprehensive experiments on diverse datasets, validating the effectiveness of
LMZ20TIFS in MGT detection. Our analysis following XAl protocols supports the correctness of
the extracted explainable motifs.

2 PRELIMINARY

MGT Detection. The MGT detection problem can be formulated as a classification task. Take an
example of a binary hypothesis testing task. Given a pair of training sets,

Th = {Sh,i = (Sn,i1sShi2, 5 ShiL;) Yie| T
Tm = {Sm,l = (Sm,i,la Sm,i,Qa T 7Sm,i,L;)}i€|Tm\v

consisting of human-generated and machine-generated text sequences, respectively, drawn from the
distribution{] Py, and P,,, the objective is to classify a newly observed text sequence S, as either

human-generated or machine-generated. A detection mechanism is a function f : (75, T, So) — ?,

where Y € {0, 1}, the index O represents the null hypothesis (human generated) and 1 represents the
alternative hypothesis (machine generated). The detection error is quantified by the risk function
P(f(Th, Tm,So) #Y), where Y € {0, 1} denotes the ground-truth hypothesis label.

Probabilistic Graphical Models. PGM offers an efficient framework for representing probabilis-

!The length of the observed text sequences is not fixed and can be modeled as a random variable. This
variability is implicitly captured in the distributions P}, and P, .
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Figure 1: Overall pipeline of our framework, including tokenization, graph building, detector training,
and motifs extraction.

tic models, incorporating insightful properties such as conditional independence. Given a graph
G = {V, £}, the nodes V correspond to random variables, and the links £ capture probabilistic de-
pendencies between these variables. For example, given a sequence of three tokens S = (s1, s2, s3),
the joint distribution is P(s1, $2,83) = P(s3|s1, $2)P(s2|s1)P(s1). This can be represented using a
graph with V = {s1, $2, 83} and € = {(s1, s2), (51, $3), (82, $3) }. More generally, for any sequence
of tokens, a PGM can be constructed to represent the probabilistic dependencies among tokens.

Node Classification. A graph G consists of a set of nodes V = {vy,vs,-- ,v,}, where n € N,
and a set of edges &€ C V x V. The adjacency matrix A € {0,1}"*™ encodes the graph edges,
where A; ; = 1((v;,v;) € £). Each node may be associated with a feature vector, collectively
represented by the matrix X € R"*<, where the i-th row is the feature vector associated with the
i-th node, and d € N is the dimension. Each node v is related to a label Y,, € ), where ) is the
collection of possible labels. In this work, we reformulate the author detection problem as a node
classification task. This reformulation is elaborated on in the subsequent sections. The objective in
node classification is to train a classifier f : (G, X, v) — Y,,, which, given a graph G, node feature

matrices X, and a node index v, produces an estimate Y,, of the node label Y,,. The accuracy of the
classifier is defined as Py.g x v (f(V, G, X)) # Yy ), where V is uniformly distributed over V, and
G, X, Yy follow a joint distribution Pg, x v, .

Post-hoc Explainable Graph Neural Networks. Given a graph or node classification task, the
goal of XGNN is to find an explanation function ¥(-), which maps the input graph G to a min-
imal and sufficient explanation subgraph G.,,. Minimality restricts the size of the explanatory
subgraph and is enforced by the constraint |G.zp| < s - |G|, where |G| denotes the number of
edges in G and s € [0, 1] is the size parameter. Sufficiency is quantified by the KL divergence
term dx 1.(Py|c,x,v||Py|a..,.x,v)- The explainer is optimally sufficient if it minimizes the KL
divergence subject to minimality constraints. That is, given s € [0, 1], an optfimal explainer ¥* is
defined as:

U*(G) = argmin  dir(Pyiox vI|[Py|G.., x,v) (D
i[Gerp | <5/

3 METHODOLOGY

In this section, drawing upon the theoretical foundations of PGM in the prequel, we present the
practical implementation of our probabilistic graph-based (PGB) detector framework, LM2OTIFS.
Our implementation encompasses three key components: graph construction based on token co-
occurrences, GNN-based authorship detection, and explainable motif extraction. The complete
pipeline of LM2OTIFS is illustrated in Figure

3.1 GRAPH CONSTRUCTION

Following our PGB framework, we implement an efficient graph construction method based on
co-occurrence principles from TextGCN (Yao et al.l|2019). Our graph consists of two types of nodes
representing tokens and documents, corresponding to the node sets S and D. As specified in our
framework, tokens are initialized with one-hot features and documents with zero vectors.
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To construct edges that capture textual relationships,
we consider both document-token connections and
token co-occurrences. The adjacency matrix A is
defined as:

Example Sentence : An advance care
planning model is feasible for community
palliative care services.

1 i, are token, PMI(i, j) > 0 @ °
1 7 is document, i is token in j 1
Ay=¢1"7 ks )

. d
0 otherwise @>
where PMI(i,j) = logpfi(;z’)@), point-wise mutual @
information, is used to determine significant token

co-occurrences. Here, p(i) represents the frequency

of the i-th token within a fixed-length sliding window, Q Token Node < Document Node
and p(i, j) denotes the co-occurrence frequency of Edges in Window
tokens ¢ and j. As discussed in Section[d] in the most Slide Window  ——>(Token to Token)
general sense, the edge weights may be continuous- Other Edges Edges
valued, and generated using a learnable function. (Token to Token) (Token to Document)

However, our experimental evaluation shows that the
above binary-valued edge weights are sufficient for
reliable detection.

Figure 2: An example of graph construction
with a fixed sliding window size 3.

3.2 GNN DETECTION

Having constructed the graph structure, we implement the detection mechanism outlined in our
framework through a GNN architecture. For a given text sequence S,, our goal is to learn a function
f that determines whether the text is machine-generated or human-authored. This corresponds to the
PGB detector operating over K message passing rounds. Each GNN layer implements one round of
message passing, with the update rule:

o) = AGGY (hg_l) fu € /\/(v)) ,
h{) = COMBINE(" (th), agp) ,

where ag,l) represents the aggregated message at layer [, th) is the node feature vector, and N (v)

denotes the neighbors of node v. The AGGY function aggregates information from neighboring
nodes, while COMBINE") updates the nodes’ representation. After K layers, we obtain the final
node embeddings H . For classification, we apply a softmax function to the final embeddings to obtain
prediction probabilities Z = softmax(H ). The model is trained by minimizing the cross-entropy
loss over labeled document nodes:

L=— Z Z Yaeln Zyy, &)

deYp Le{h,m}

where Yp represents the set of document nodes in the training set and Yy, is the ground-truth label,.
While our goal focuses on binary classification (human-authored vs. machine-generated) in this
paper, the framework naturally extends to scenarios with multiple classes, such as texts generated by
different language models.

3.3 EXPLAINABLE MOTIFS EXTRACTION

Beyond detection accuracy, our framework provides interpretable insights through the extraction of
distinguishing motifs between machine-generated and human-authored texts. While existing detection
methods often operate as black boxes (Guo et al.,|2024b), our graph-based approach naturally enables
the identification of characteristic patterns through subgraph structures (Koller, [2009). Drawing
inspiration from graph analysis techniques (Luo et al., [2020), we transform the interpretability
challenge into a subgraph identification problem, where meaningful token dependencies in our
constructed graph serve as distinguishing motifs. These motifs capture characteristic patterns of word
usage and dependencies that differentiate between human and machine-generated content (Kim et al.|
2024), providing insights beyond simple token-level statistics.
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We use the GNNExplainer (Ying et al., 2019) to extract meaningful motifs. Specifically, we formulate
a practical optimization objective using cross-entropy loss and explicit size constraints. The objective
function balances the prediction accuracy of the explanation subgraph against its complexity:

W) = argmin CE(Y: f(Gurp)) + A Genyl )

V:G—Gezp

where CE(Y'; f(Gezp)) measures how well the explainer preserves the model’s prediction capability,
|Gesp| denotes the size of the explanation subgraph, and X controls the trade-off between explanation
fidelity and complexity. This formulation is an approximation of the theoretical requirements from
Equation [I] where the cross-entropy term ensures sufficiency and the size penalty enforces minimality.
The optimization is performed through gradient descent, with the edge weights of G, being learned
continuously and then discretized through thresholding.

4 THEORETICAL ANALYSIS

As discussed in the prequel, prior works in MGT detection, such as Fast-DetectGPT (Bao et al.,
2024]), have employed sequential data models to design detection mechanisms. Drawing inspiration
from TextGCN, we formulate the MGT detection problem using a graph-based approach where both
tokens and documents are represented as nodes. Building upon this foundation, we demonstrate that
GNN-based detectors achieve strictly improved detection accuracy compared to such approaches.
This section provides theoretical justifications for this claim. The subsequent sections provide further
verification through empirical analysis over several benchmark datasets.

We formally define a class of baseline empirical sequential-based (ESB) detectors that capture the
essential characteristics of existing approaches. An ESB detector operates in two steps. First, it
uses the human-generated training set 7, to construct the empirical conditional distribution esti-

mates 13h($t|51:t—1) for human-generated text sequences, where ¢ € [T'], and T is a hyperparameter

capturing the maximum context length. Similarly, the empirical estimates P, (s¢|s1.t—1) are com-
puted based on the machine generated training set 7,,,. In the second step, the detector uses (a
potentially trainable) mapping g, : ((Ph(5¢|51:t—1), P (8¢51:6—1))ee[r], So) + Y, where S, is the
to-be-classified sequence. An ESB detector is completely characterized by the mapping g,(-). We
denote the collection of ESB detectors by Fgsg. We introduce the class of PGB MGT detectors. A
PGB detector operates on a specially constructed graph with two types of nodes: token nodes and
text sequence nodes (Yao et al.,[2019). Formally, let V = S U D denote the complete node set, where

S={s]3S € T, UTm,i €[|S]] : ss = s},
D={SISeThUTnU{Ss}}

Here, S represents the set of all unique tokens in either human or machine-generated texts, and D
comprises all text sequences from both sources and the to-be-classified text.

The edge structure of the graph captures both token co-occurrences and token-sequence relationships.
Two tokens s;, s; € S are connected if they co-occur in at least A sequences within 75, U 7,,,, where
A is a hyperparameter. Additionally, each token node is connected to sequence nodes containing that
token. Edge weights are defined by two distinct functions. For token-token edges (s;, s;), the PGB
first computes embedding vectors for each token using

ey : ._7@(81) X (Ié,j(si))je.ﬁ(si) = €y q, { e {h,m},

where for each token s;, the set Jy(s;) = {j|s; € S¢ ;} indexes the sequences containing s;, while
Ty (si) = {k|Se;,x = s} indexes the positions where s; appears in sequence Sy ;. The token-token
edge weights is then computed as A; (e, i, €m,i; €5, €m,j), Where ey, ; and ey, ; are the embeddings
from human and machine-generated texts, respectively. For token-sequence edges (s, S), the weight
is simply A,(Ny|s), where N |g counts occurrences of token s in sequence S. Examples of these edge
weight functions A;(-) and A;(+) are provided in equation [2|and used in our empirical evaluations.

Token nodes are initialized with one-hot features and sequence nodes with all-zeros features. The
GNN operates by several rounds of message passing among connected nodes. The PGB detector
applies K rounds of message passing over the constructed graph, where at each round, node em-
beddings are updated based on messages received from neighboring nodes. After K iterations, the
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detector computes the final node embeddings, denoted by h*). The classification output is obtained
via a function g, : (h(K), S,) — Y that maps the collection of node embeddings to the binary

decision Y. A PGB detector is completely characterized by the tuple (K, A, en, em, A¢, As, gp). We
denote the collection of PGB detectors by Fpgg.

The following theorem shows that the PGB class of detectors strictly subsumes the ESB class in
terms of achievable detection accuracy.

Theorem 4.1. For every ESB detector fgsp € Fesp, there exists a PGB detector fpgp € Fpgp such
that the detection accuracy of fpgp matches that of fess, i.e.,

P(fPGB(,ﬁu,];ruSo) = Y) = P(fESB(ﬁuTm; SO) = Y)7

Sor all pairs of probability distributions (P, P,,). Furthermore, the PGB class of detectors strictly im-
proves upon the ESB class in terms of detection accuracy. That is, for any fixed set of hyperparameters
T, K, )\ there exists (Pp, Py,) and fpgp € Fpgp for which:

P(fPGB(ﬂl7Tm7SO):Y)> max P(fESB(anm7SO>:Y>7

fess€EFESB

The proof is provided in Appendix[A]

5 RELATED WORK

5.1 AI-GENERATED TEXT DETECTION

Detecting machine-generated texts approaches can be categorized into three main categories. The
first category focuses on watermarking LL.M-generated content (Chang et al., 2024; |Ajith et al.|
2024} |Yang et al.|, 2023} [Wu et al., 2024} Molenda et al.| 2024). Most watermarking methods operate
in a white-box setting, where researchers can modify the decoding process or token distribution
directly (Ajith et al.} |2024; Wu et al., 2024; Molenda et al., 2024). The black-box setting can be
achieved by implementing post-processing modules to embed watermarks (Chang et al., 2024} Yang
et al., 2023). The second category encompasses training-based detection methods that leverage
trained neural networks (Guo et al., 2024b; |Solaiman et al., |2019; Zhang et al.,|2024b; |Kim et al.,
2024; [Soto et al., [2024)). OpenAl developed GPT-2 detectors using RoBERTa (Liu} 2019) as their
foundation model (Solaiman et al., [2019). Additionally, researchers have explored fine-tuning
language models specifically for detection purposes (Li et al.,|2023} [Koike et al., 2024} \Guo et al.|
2023}, [Zhang et al.||2024a). The third category consists of zero-shot detection methods (Nguyen-Son
et al.,2024; Zeng et al.,|2024; Yang et al., [2024} Tian et al., 2024; |[Ma & Wang, 2024), which utilize
existing tools like LLMs without additional training. For example, SImLLM (Nguyen-Son et al.|
2024) generates comparative text samples to identify machine-generated content through similarity
analysis. R-Detect (Song et al., 2025)) suggests a non-parametric kernel relative test to check if a
text’s distribution is closer to HGT than MGT.

5.2 EXPLAINABLE LLMS & GNNs

Large language models often function as black-box systems, presenting inherent risks for downstream
applications (Zhao et al., [2024). To address this limitation, researchers have developed various
explanation methods (Wu et al.,|2020; L1 et al.,|2016; |Enguehard, 2023} |Chen et al., |2023)), which
can be divided into local and global approaches. Local explanation methods aim to illuminate how an
LLM arrives at predictions for specific inputs (Wu et al., 2020; L1 et al., |2016; |(Chen et al., 2023). For
example, the leave-one-out technique represents a fundamental approach to measuring input feature
importance (Wu et al., [2020; L1 et al., |2016). Global explanation methods focus on understanding
how specific model components operate, including hidden layers and language model mechanisms.
For instance, researchers have tracked attention layers to extract semantic information (Wu et al.,
2020). SASC (Singh et al.| [2023)) employs pre-trained models to generate explanations for various
LLM components.

Various approaches have emerged for extracting subgraph explanations using GNNs (Yuan et al.,
2022b; |Lin et al.,[2021} [Fang et al.| [2023} [ Xie et al., 2022} |Chen et al., [2024). These methods can be
categorized into several groups. Gradient-based traditional approaches, including SA (Baldassarre
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Table 1: Detection comparisons on HGT and MGT based on ACC. The best and second-best results
are shown in bold font and underlined. YSC represents the combination of Yelp, Essay, and Creative
datasets. DaV., Coh., Dol., Blo., Lla., GT4, Mis., Son., Opu. and Gem. are short for DaVinci, Cohere,
Dolly, BloomZ, Llama, GPT-4, Mistral Claude3-Sonnet, Claude-3-Opus and Gemini.

| M4 | RAID | YSC |
Method |DaV. Coh. Dol. Blo. | Lla. GT4 MPT Mis. | Son. Opu. Gem. | Avg.

Likelihood |Solaiman et al.|(2019) | 0.69 0.87 0.66 0.54 [0.79 0.75 0.50 0.65 [0.80 0.83 0.74 |0.71
Rank |Gehrmann et al.|(2019b) 0.51 0.54 0.53 0.53 |0.53 0.53 0.51 0.52 |0.52 0.52 0.52 |0.52
LogRank Ippolito et al.[(2019) 0.67 0.88 0.72 0.62 |0.80 0.74 0.46 0.66 |0.76 0.79 0.72 |0.71
Entropy |Gehrmann et al.|(2019b) | 0.62 0.61 0.53 0.53 |0.62 0.62 0.52 0.63 |0.72 0.74 0.64 |0.62
NPR |Su et al.|[(2023) 0.63 0.67 0.55 0.59 {0.79 0.66 0.54 0.65 [0.70 0.63 0.54 |0.63
LRR |Su et al.|(2023) 0.77 0.75 0.74 0.77 |0.87 0.71 0.55 0.71 {0.74 0.72 0.53 |0.72
DetectGPT Mitchell et al.|(2023) | 0.48 0.57 0.48 0.59 [0.67 0.59 0.46 0.53 |0.62 0.58 0.57 |0.56
Fast-DetectGPT Bao et al.|[(2024) | 0.81 0.98 0.90 0.54 |0.94 0.85 0.48 0.64 |0.85 0.88 0.76 |0.78

DNAGPT |Yang et al.|(2024) 0.53 0.74 0.53 0.50 [0.68 0.66 0.39 0.54 |0.62 0.64 0.65 |0.59
Binoculars Ma & Wang|(2024) 0.83 0.97 0.90 0.66 [0.98 092 0.58 0.71 |0.88 0.91 0.81 |0.83
Glimpse [Bao et al.|(2025) 0.74 0.94 0.69 0.61 |0.88 0.77 0.68 0.77 |0.85 0.85 0.76 |0.69

GPTZero|[T1an, Edward|(2023) 0.74 0.80 0.61 0.53 |0.65 0.60 0.54 0.55 |0.69 0.71 0.54 |0.63
RoBERTa-QA |Guo et al.|(2023) | 0.83 0.94 0.74 0.51 |0.77 0.70 0.56 0.56 |0.79 0.87 0.80 |0.73

Radar |[Flu et al. |(2023) 0.76 0.77 0.65 0.63 |0.68 0.69 0.64 0.72 |0.80 0.83 078 |0.72
DeTeCtive Guo et al|(2024b) | 0.90 0.85 0.90 0.92 |0.96 0.97 0.92 0.88 |0.94 091 0.86 |091
LM2OTIFS 10.95 0.97 0.91 0.98 [0.98 1.00 090 0.91 [0.99 0.9 0.91 |0.95

& Azizpour, 2019) and Grad-CAM (Pope et al., [2019)), leverage gradient information to derive
explanations. Model-agnostic techniques encompass three main categories. First, perturbation-based
methods such as GNNExplainer (Ying et al.;,[2019)), PGExplainer (Luo et al.| 2020), and ReFine (Wang
et al.| 2021b) identify important features and subgraph structures through systematic perturbations.
Second, surrogate methods (Vu & Thai, [2020; | Duval & Malliaros, [202 1)) approximate local predictions
using surrogate models to generate explanations. Third, generation-based approaches (Yuan et al.,
20205 |Shan et al.} 20215 |Wang & Shen,|2023)) employ generative models to produce both instance-level
and global-level explanations.

6 EXPERIMENTS

We conduct extensive experiments to evaluate LM2OTIFS across two aspects: MGT detection
performance, and explainable motifs effectiveness. For MGT detection, we compare LM2OTIFS
against state-of-the-art supervised and zero-shot detectors on multiple benchmark datasets in both
in-domain and cross-domain aspects. To validate our explainable motifs, we follow the (Hooker
et al.,|2019;[Zheng et al.|[2025) to use Most Relevant First (MoRF) and Least Relevant First (LeRF) to
verify the effectiveness. Due to the limitation of space, we provide ablation studies, time complexity,
implementation, and motifs statistical analysis in Appendix|[C]

6.1 SETUPS

Datasets. Following established benchmarks in MGT detection (Yang et al.| [2024; Zeng et al., 2024)),
we evaluate LM20TIFS on six comprehensive datasets: HC3 (Guo et al.}2023), M4 (Wang et al.,
2024), and RAID (Dugan et al.l 2024)), Yelp (Mao et al., 2024), Creative, Essay (Verma et al.,
2023} |Guo et al., 2024a). We select four domains in each dataset: open-qa, wiki-csai, medicine,
and finance in HC3; wiki-how, reddit, peerread, and arxiv in M4; and recipes, book summaries,
poetry, and IMDB reviews in RAID. The HC3 dataset only contains ChatGPT-generated text. While
in M4 and RAID, there are several kinds of LLM-generated texts. In this paper, we also consider
language models: Davinci, Cohere, Dolly, and BloomZ in M4, Llama2, GPT-4, MPT, and Mistral
in RAID. In Yelp, Creative, and Essay, we consider three LLMs, Claude3-Sonnet, Claude-3-Opus,
and Gemini-1.0-Pro. The dataset details are available in Appendix [B.1]
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6.2 DETECTION PERFORMANCE COMPARISON

We compare LMZ2OTIFS against 13 baselines, including supervised and zero-shot meth-
ods, to evaluate detection performance. The summary of baselines is provided in Ap-
pendix We report both accuracy(ACC) and area under the receiver operating charac-
teristic(AUC) results. Due to the deterministic LLM inference in few-show methods, we
report the error bar of LM20OTIFS in Appendix separately. For the in-domain setting,
we train and test our method on

the same domain. In Table Pl Table 2: Detection comparisons on HGTs and ChatGPT-generated
we report the average results of  texts. The best and second-best results are shown in bold font and

ChatGPT-based texts detection ypderlined. * means the model is trained on that dataset.
on three datasets. LM?ZOTIFS

achieves the best performance \ ACC \ AUC
under ACC and AUC metrics.

In Table [} we study the per- Method | HC3 M4 RAID Avg.| HC3 M4 RAID Avg.
formance across various LL.Ms.  Likelihood 0.75 0.88 0.85 0.83] 1.00 0.90 0.98 0.96

Rank 0.53 0.58 0.56 0.56| 0.89 0.95 091 0.92
?s the res.“hsl.Sho‘g’ ﬂ.leh Por LogRank 070 0.87 0.84 0.81| 1.00 094 0.97 097
ormance 1s aligned with la-  phq,, 0.77 0.73 0.66 0.72] 0.95 0.79 0.89 0.88
ble 2l Under the ACC metric,  Npr 083 0.71 0.79 0.78| 1.00 0.93 0.97 0.97
LMZ20TIES is the best perfor-  LRR 0.96 0.86 0.87 0.90| 1.00 0.98 096 0.98

p

mance on average, demonstrat- DetectGPT 0.63 0.61 0.62 0.62| 0.56 0.63 0.78 0.66
ing the ability for MGT detec- Fast-DetectGPT | 097 0.96 0.97 0.97| 1.00 0.99 1.00 0.99
: ) DNAGPT 0.73 0.68 0.72 0.71| 0.88 0.86 0.93 0.89
tion. The detailed results are gy 0.98 094 0.99 0.97| 1.00 098 1.00 0.99
available in Appendix [Cl Due  Gjimpse 098 094 091 0.94| 1.00 098 096 098
to the limitation of pages, we  GPTZero 0.77 075 0.68 0.73| 0.77 0.75 0.68 0.73
provide more experiments about RoBERTa-QA | 1.00%* 0.95 0.80 0.91| 1.00* 0.99 0.96 0.98
Cross_domain evaluation’ Statis_ Radar 0.66 0.76 0.77 0.73 0.52 0.83 095 0.76
fical significance analysis and ~_DeTeCtive 0.92 093 096 093] 093 094 098 095
comparison with TextGCN in LM?0TIFS | 0.97 098 0.99 0.98| 1.00 1.00 1.00 1.00

Appendix[C.1]
6.3 EXPLANATION EVALUATION

Quantitive Analysis. Due to a lack of ground truth, evaluating the effectiveness of explanations
remains challenging. Therefore, we follow previous work (Hooker et al., 2019; |Zheng et al., 2025)
using MoRF and LeRF to verify the motifs, which are popular evaluation protocols in XAl that assess
the faithfulness of explanations by measuring how the model’s prediction changes when the most or
least relevant input attributions are sequentially removed according to explanations. For the MoRF
protocol, a lower AUC indicates a more faithful explanation, whereas for LeRF, a higher AUC is better.
We evaluate our motifs on the HC3 dataset using this framework. We first extract the explainable
motifs, which indicate the importance of each edge. Then we remove the most important edges
following an increasing sequence. To validate our approach, we compare it against five baselines:
random motifs, LIME (Ribeiro et al.,[2016), SHAP (Lundberg & Lee} 2017), GLTR (Gehrmann
et al., 2019a), and GPT-40 (OpenAl, 2024). Detailed information about these baselines is provided

in Appendix

As shown in Figure the motifs generated by our method, LMZ20TIFS, are more effective and consis-
tently outperform the baseline models. Under the MoRF protocol, removing the 20% most important
edges from our motifs causes an average accuracy drop of over 15% on the HC3 dataset. In contrast,
explanations from other methods result in an accuracy decline of less than 10%. Conversely, under
the LeRF protocol, our motifs lead to a smaller performance drop than the baselines, demonstrating
their robustness. While GPT-40 performs well in the MoRF setting, it is significantly less effective
under the LeRF protocol. Detailed results for each domain are provided in Appendix|[C.2]

Qualitative Analysis.To elucidate motif patterns, we visualize both graph and corresponding text
motifs, encompassing word-level and high-order structures. Word-level motifs highlight word
occurrence probabilities, while high-order motifs capture complex relationships, such as phrasal
and semantic structures. Figure[z_f]presents examples extracted from the PubMed (Jin et al.,[2019)
dataset, preserving the top 2% of edges. While GPT-4 and Davinci share common words (e.g.,
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Figure 3: Comparison results of MoRF and LeRF between explainable motifs extracted from
LM?0TIFS and random motifs.

CERNT3

“sleep”, “patients”), our method captures distinct phrasal patterns. For instance, GPT-4’s “ob” and
“sleep” (purple) indicate “obstructive sleep”, whereas Davinci’s “disorder” and “sleep” represent
“sleep-related breathing disorder”. Furthermore, GPT-4’s connection of “airway”, “improves”, and
“serum” reveals sentence-level patterns. Detailed case studies are provided in Appendix|[C.2] The

motifs reveal that different language models possess distinct and visible fingerprints.

Answer: Research indicates that a
surgery  can potentially i : with - reduires -
lpid  profiles in with i Tap
obsltructlve slelep - However, a ob it improve
definite conclusion requires further \
. S . sleep the
investigation as the correlation can be serum —_ | tiefts
influenced by various  factors, including profiles COTTEIation
the patients' lifestyle and
Answer: Yes Obstructive s

i -related i episodes
(OSA) is a eep-relate breathing o N disorder
d characterized by repeated ap

= air
of complete or upper REBRELEIGN MR /

. Davinci Texdleep -
airway  bstruction. Recent studies have obstruction P— partial
shown that weight gain occurs in a high shown Patients ob have
proportion of patients with OSA, \with

especially among those

Figure 4: High-order explainable motif samples from GPT-4 and Davinci. We extract motifs from
texts in the PubMed dataset for the same question. In graph motifs, solid lines represent subgraph
motifs and dashed lines mean the text contains words. In text motifs, words highlighted in the same
color are connected in the corresponding graph motifs. A single word may contain multiple colors.

7 CONCLUSION

This paper focuses on explainable authorship detection, introducing a framework that identifies
characteristic motifs to provide insight into model decisions. We evaluate our method against
supervised and zero-shot learning baselines across various domains, demonstrating comparable
performance. We follow the previous XAl evaluation protocol to verify the effectiveness of the
explainable motifs.

Limitation & Future Work. First, we have not explored the impact of different GNN architectures
or hyperparameter settings on the resulting explanations. Second, the quality of the explainable
motifs is dependent on the quality of the graph representation, which in turn requires a sufficient
number of training samples to construct effectively. Future work could investigate the robustness of
our method under data-scarce conditions and explore a wider range of GNN backbones.
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A PROOF OF THEOREM

We first prove that the ensemble of PGB detectors is at least as accurate as the ensemble of ESB
detectors. To this end, let us recall that an ESB detector is completely characterized by the mapping
gs and the PGB detector by (K, A, ey, €m, Ay, As, gp). Let us consider an arbitrary ESB detector by
fixing the function g,(-). The ESB detector computes Py(s¢|s1:t—1),¢ € {h,m},t € [T] empirically
and uses g, ((Pr(8¢|51:4—1))eefh,m}.te[r)> So) for detection. On the other hand, the PGB uses the
embedding functions ey, A;, A, to compute the final node embeddings h*) and the mapping
gp(h(K ),S,) for detection. We take K = T and A\ = 1. Then, to prove that there exists a PGB
which matches the ESB in terms of detection accuracy, it suffices to show that there exist choices of

embedding functions ey, A;, A, such that the empirical estimate ﬁg(5t|31;t_1), £e{h,m} telT]
can be written as a function of the final node embeddings h{™), i.e., there exists r(-) such that
r(h™) = (Pu(st|s1:4=1))ee{n,m},tefr)- Then, the proof follows by taking gp(r(h™);S,) =

95 ((Pe(5¢]51:-1))ee (hm} te[r]» So)s s0 that
P(feaB(Ths Tm» So) = fess(Th, Tm, So)) = 1.

To this end, we take e, as the identity function and A; as a one-to-one parametrization function,
so that for each token node s;, the collection J;(s;) x (Z¢,j(8:)) e 7,(s:) can be computed from its
connected edge weights, where J;(s;) is the training sequence indices in which the token is present
and Zy ;(s;) is the collection of indices in the sequence S, ;, j € Jr whose value is equal to s;. We
further note that

Py(st]s1:4-1) =

St Seil—
1 |Te(sp)l Z! | t]l(sé,i,j:j+t = S1:t)

| Te(s0) 2

i=1 le:ﬂl 1(Se,ijjrt—1 = S1:6-1)

Furthermore,

U(Seigie = s10) = [[ LG +9) € Toj(s0)),

si:i€E[t]

Consequently, for each t € [T, the conditional distribution ﬁg(st|31;t,1) can be computed as a

function of h(®). As a result, the aggregate final node embedding h(™) can yeild ﬁg(st |s1.4-1),¢ €
{h,m},t € [T] as a function. This complete the first part of the proof.

To prove strict improvements of PGM detectors over ESB detectors in terms of detection accuracy, we
note that ESB detectors are restricted by their limited context length 7". To provide a concrete example,
consider a detection scenario characterized by the pair of probability distributions Py, P,,, where all
human and machine generated text sequences have length greater than 7'. That is, for any sequence
S, = (Sg’l, Se2, ,S&L) with L < T, we have Pg(Sg,l, Se2, ,S&L) =0, where { € {h, m}
Furthermore, assume that the vocabulary consists of two tokens {a, b}. Both human and machine
generated text sequences consist of tokens generated independently and with equal probability over
the vocabulary for all indices in {1,2,--- , L — 1}. The human generated text always ends with the
token a and machine generated text with the token b, i.e., P(Sy, 1, = a) = P(Sy,,, = b) = 1. Then,
it is straightforward to see that a PGM can achieve accuracy equal to one, since the edge weights,
which are functions of J; x (Z; ;) ez, can capture the fact that the human generated text ends in a
and machine generated text ends in b. On the other hand, for an ESB, it can be noted that all of the
empirical conditional distributions Py(s|s1.4_1),t € [T],¢ € {h, m} converge to uniform Bernoulli
distributions as L. — oco. So, the ESB achieves an accuracy which is strictly less than 1 due to its
limited context length, and its accuracy converges to % as L — oo. This completes the proof. O

B EXPERIMENTAL SETUP DETAILS

B.1 DATASETS

Our evaluation employs six distinct datasets. We selected specific domains or text sources from each
to create a comprehensive benchmark.
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e HC3(Human-ChatGPT Comparison Corpus) (Guo et al., |2023): This dataset contains
questions with both human-generated text (HGT) and machine-generated text (MGT) from
ChatGPT. From its five available domains, we utilize four for our experiments: open-qa,
wiki-csai, medicine, and finance.

e M4 (Wang et al.l [2024): The M4 dataset provides MGT from several LLMs, including
Davinci, Dolly, and BloomZ, across diverse domains such as wiki-how, reddit, peerread,
and arxiv.

* RAID (Dugan et al.|[2024): This large-scale dataset contains documents generated by 11
LLMs across 11 genres. Our benchmark includes four of these: recipe, book, poetry, and
review.

* Yelp, Creative, and Essay (Mao et al., 2024} [Verma et al., [2023}; |Guo et al.,2024a): For
these three datasets, while texts from five LLMs are available, our analysis focuses on those
generated by Claude-3-Sonnet, Claude-3-Opus, and Gemini-1.0-Pro.

Detailed statistics for the training, validation, and test sets, including their graph representations, are

presented in Tables and
B.2 BASELINES

Detection Baselines. Our evaluation includes comparisons with several zero-shot detection methods:
Likelihood, Rank, Log-Rank, Entropy (Gehrmann et al., 2019b} [Solaiman et al.| 2019; Ippolito
et al., 2019), DetectGPT (Mitchell et al., 2023), DetectLLM (LRR and NPR) (Su et al., [2023)),
DNA-GPT (Yang et al,[2024), Fast-DetectGPT (Bao et al.,2024), Glimpse (Bao et al., 2025) and
Binoculars (Ma & Wang| 2024). DetectGPT employs perturbations to approximate the probability
distribution of the text. Fast-DetectGPT improves upon this by introducing a conditional probability
curvature metric for detector optimization, thus replacing traditional perturbation-based methods.
DNA-GPT adopts a distinct approach: it first truncates the input text, then uses LLMs to generate the
subsequent content, and finally analyzes the N-gram differences between the original and generated
text. To make a fair comparison, we utilize the OPT-2.7B model (Zhang et al., 2022)) as the
default reference model. For detailed implementation specifics, we followed the publicly available
implementation of Fast-DetectGPT [}

Our comparative evaluation also includes training-based methods: RoBERTa-QA (Guo et al.
2023), DeTeCtive (Guo et al., 2024b)), and RADAR (Hu et al.| [2023). Additionally, we present
comparison results with GPTZero |} DeTeCtive is specifically designed for multi-source MGT
detection. It employs contrastive learning to minimize the representational divergence among various
MGT sources. During prediction, DeTeCtive utilizes k-nearest neighbors (KNN) to determine
the classification. For our experiments, we use the DeTeCtive model trained on the OUTFOX
dataset (Koike et al., 2024)). ROBERTa-QA, proposed in (Guo et al., 2023) and trained on the HC3
dataset, leverages the pre-trained RoOBERTa model (Liu, |2019) and fine-tunes a classification layer on
the HC3 data.

Explainable Baselines. We compare LM20TIFS with five baseline methods, including random
motifs, LIME (Ribeiro et al. |[2016), SHAP (Lundberg & Leel [2017), GLTR (Gehrmann et al.,
2019a), and GPT-40 (OpenAlL [2024). Random Motifs serves as a graph-explainable sanity check,
where the importance of each edge is randomly assigned. If an explanation method performs worse
than random, it is considered to provide no meaningful insight. For the other baselines, we compare
the effectiveness between LM20TIFS and general methods, including LIME and SHAP. We use
RoBERTa-QA, a well-trained model in the HC3 dataset, as the model to be explained. Notably, the
reason we use RoBERTa-QA is that it has the best performance in the HC3 dataset, and it can be
replaced by other models. GLTR is a tool to analyze a piece of text and visualizing these statistical
patterns, which uses a language model to determine the probability of each word appearing in its
context. In this paper, we follow the original code to use GPT2 as the default language model.
Besides, we also consider using the GPT-40 as a baseline for the LLM explainer. The prompt is
shown in Figure

2https://github.com/baoguangsheng/fast-detect-gpt
3https://gptzero.me
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prompt = (

"Text: " + text + "\n\n" +

f"A pretrained Roberta Model Prediction Score:
{prediction_score:.4f} (>0.5 indicates Al-generated)\n\n" +

"Please analyze the text and provide a list of words with their
importance scores (0-1).\n\n" +

"Format your response EXACTLY like this example:\n" +

T\n' +

" {"words": ["This","is","a","apple"], "score":
[0.85,0.78,0.75,0.72])\n" +

Nn\n' +

"Provide all the words in the text,for each word:\n" +

"- Score should be between 0 and 1\n" +

"- Higher scores (closer to 1) indicate stronger evidence of Al
generation\n\n" +

"Return ONLY the JSON list, no other text."

)

Figure 5: The prompt of GPT-40 as an explainer.

Implementation. The detector is implemented as a two-layer Graph Convolutional Network. The
input dimension of the first layer is dependent on the token size of the training set. The hidden
dimension is 64, and the output dimensionality is fixed to the number of text categories. We use
the Bert (Devlin et al.| 2019) tokenizer as the tokenizer. We employ Adam (Kingma, 2014) as
the default optimizer with the learning rate SE-4, 5000 epochs. For motif extraction, we adapt
the GNNExplainer (Ying et al.| 2019)to suit our analysis. Notably, the explanation method can be
replaced by others, and we only use a basic post-hoc explainer here. We follow the Refine (Wang
et al.l [2021a)) to implement the GNNExplainer. The optimizer for GNNExplainer is Adam with
a learning rate of 1E-3, 100 epochs. Hardware platform consisted of a Linux system with eight
NVIDIA A100 GPUs (40GB each), running CUDA 11.3, Python 3.9, and PyTorch 1.10.1.

C DETAILED EXPERIMENT RESULTS

C.1 EXTENDED DETECTION EXPERIMENTS

In our experiments, we consider in-domain detection and cross-domain detection in the same dataset
and report the results in this section. We report the results under ACC and AUC metrics. For GPTZero,
since it provides a binary output, we consider its ACC and AUC values to be equivalent.

In-Domain Detection. We provide the detailed experiment results for distinguishing HGTs and
MGTs by ChatGPT in Table and Table The results demonstrate that LM?OTIFS achieves the
best performance across all domains under both ACC and AUC metrics, aligned with our analysis. In
addition, we also provide the experiment results between HGT and MGT by other LLMs in Table [T9]
and LM?20TIFs performs consistently well on various LLMs and achieves the best
performance, indicating the effectiveness of PGM for MGT detection tasks.

Cross-Domain Detection. To further analysis the generality of LM20TIFS, we conduct cross-domain
detection experiments. We use the open-qa, wiki-how, and books domains in HC, M4, and RAID
datasets as the training domain and test on other domains, respectively. For the zero-shot baselines
and RADAR, we use the training data as a reference to learning a threshold and apply it to the test
domain. For the ROBERTa-QA, we follow its pipeline to fine-tune the RoOBERTa on one domain and
test on other domains. As Table 18|shows, LM20TIFS performs poorly on some domains, such as the
reddit domain on the M4 dataset. One potential reason is that our method is only trained on a limited
training set and lacks generalization, while other methods, such as zero-shot methods, fully utilize
the generalization of LLM.

Statistical Significance Analysis. To further demonstrate the robustness of LM20TIFS, we conducted

a Statistical Significance Analysis. Specifically, we repeated our experiments five times on the HC3
dataset, each with a distinct random seed, and the resulting performance metrics are detailed in
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Table 3: Statistical significance analysis on HC3 dataset. We repeat the experiments 5 times and
report the mean and standard deviation.

Metric| open-qa wiki-csai medicine finance

ACC ]0.9690+00073 0.9410+0.0007 0.9750+00032 0.9810+0.0037
AUC ]0.9965+0000s 0.9938-+0.0005 0.9993+00001 0.9983+0.0004

Table 4: Ablation analysis on HC3 dataset. The best results are shown in bold font.

Method | open-ga  wiki-csai medicine finance Avg.
LM20TIFS 0.97 0.96 0.98 098 097
9 LM?0TIFS-B 0.95 0.94 1.00 0.98 0.97
< LMZ20TIFS-W 1.00 0.84 1.00 094 095
LM?0TIFs-BW | 0.98 0.79 1.00 093 092
LMZ?0TIFS 1.00 0.99 1.00 1.00 1.00
8 LM?0TIFS-B 0.99 1.00 1.00 1.00 1.00
< LM?0TIFS-W 1.00 0.84 1.00 098 0.96
LM?0TIFS-BW | 1.00 0.86 1.00 097 0.96

Table[3] The consistently high performance across these different runs indicates the stable and reliable
nature of LM2OTIFS.

Ablation Study. To investigate the impact of different graph characteristics on the MGT detection
task, we performed ablation experiments on graph categories, specifically comparing undirected
versus directed graphs and weighted versus unweighted graphs. In our experiments, we use -B and
-W to represent undirected graphs and weighted graphs.

We further investigated the impact of different tokenizers on the MGT detection task. Our default
tokenizer is Bert’s tokenizer. To assess the influence of tokenization, we conducted experiments using
GPT-2’s tokenizer. The results of this comparison are presented in Table[6] Our findings indicate that
the choice between Bert’s and GPT-2’s tokenizers did not significantly affect the overall detection
performance.

Time Consumption. Compared to other training-based methods, LM20TIFS have an additional
pipeline, the graph construction phase. Specifically, its time complexity for graph construction is
O(LW?), where L represents the length of the sentence and W denotes the size of the sliding window.
We also evaluated the test time efficiency of LM2O0TIFS in comparison to several other baselines. As
detailed in Table [S| LM20TIFS demonstrates the lowest time consumption during the testing phase.

C.2 EXTENDED MOTIFS EVALUATION

XAI Protocol Evaluation. We follow Section [6.3|to report the explainable motifs evaluation results
on the HGT and ChatGPT-generated datasets. As the detailed results show in Figure[6] the explainable
motifs are effective in most cases and obtain better results than baselines from both LeRF and MoRF
protocols. However, in the medicine domain in HC3, the explainable motifs are not better than
random motifs. The potential reason could be the distributed nature of the explainable motifs across
numerous nodes and edges. Consequently, the deletion of some edges does not drastically impede the
graph network’s ability to accurately perform detection. For instance, in the medicine domain of the
HC3 dataset, a significant performance drop in the GNN is observed when the proportion of deleted
edges surpasses 70%.

Motifs Statistical Analysis. We provide more statistical analysis on M4 and RAID datasets. Ta-
ble 7} 9] and [§] reveal distinct motif fingerprints—frequency variations between HGT and MGT
across tokens(nodes) and token-token co-occurrences(edges). Selecting the top 0.05% of edges as
global explainable motifs highlights a notable difference: HGT shows a higher ratio of token and
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Table 5: Inference time(seconds) comparison on HC3 dataset. We repeat the experiments 10 times
and report the average time consumption. - indicates the inference time is more than 10 minutes. The
best results are shown in bold font.

| open-qa  wiki-csai medicine finance
NPR - - - -
DNA-GPT - - - -
DetectGPT 442.0000 161.6530  82.2744 255.4350
Fast-DetectGPT | 28.0217  27.0673  24.1440  28.4082
RoBERTa-QA 2.9267 2.5464 2.5391 2.5413
DeTeCtive 18.7223  13.2559  17.2883  17.5105
LM20TIFS | 0.0091 0.0065 0.0051 0.0058

Table 6: Authorship detection performance comparison on HC3 dataset between default(Bert) and
GPT?2 tokenizers.

| open-ga | wiki-csai | medicine | finance
Metric |Bert GPT2|Bert GPT2|Bert GPT2|Bert GPT2

ACC 097 099 |096 095|098 0.98 [0.98 0.97
AUROC|1.00 1.00 [0.99 1.00 |1.00 0.99 |1.00 1.00

token-token co-occurrences compared to MGT. This suggests that for MGT detection, word-to-word
connections are more influential than for HGT detection, given the same number of tokens. One
possible explanation is that language models excel at utilizing diverse word collocations, while
humans tend to rely on more conventional patterns.

Visualizations. To visualize the extracted motifs, we utilized the PubMed dataset, which includes
MGT samples generated by three LLMs: GPT-4, Claude-3, and Davinci. We present the identified
motifs at two levels of granularity: individual words and multi-word phrases or even entire sentences.
We specifically extracted word-level motifs from one-hop neighbor subgraphs to visualize word-level
motifs. As shown in Table[I0] we selected the top 20% of tokens based on their motif scores for
visualization. Similarly, for visualizing higher-level motifs (phrases/sentences) in Table [TT] we
extracted them from two-hop subgraphs, with the top-k ratio set to 2% for display.

D LLM USAGE

In this paper, we leverage LLMs, including ChatGPT and Gemini 2.5 Pro, to refine sentence-level
writing.
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Table 7: Statistics of text covered by explanation motifs. The sparsity of the explanation motifs is
0.05%.

| open-ga | wiki-csai | medicine | finance
Statisic  |HGT MGT|HGT MGT|HGT MGT |HGT MGT
Nodes 610 2407 | 1685 777 | 923 990 | 1251 618
Edges 277 3496 | 2180 1993 | 797 2086 | 2004 1816

Nodes/Edges | 220 0.69 | 0.77 0.39 | 1.16 047 | 0.62 0.34

Table 8: Statistics of text covered by explanation motifs on RAID dataset. The sparsity of the
explanation motifs is 0.05%.

| recipes | book | poetry |  review
Statistic |HGTs MGTs|HGTs MGTs |HGTs MGTs | HGTs MGTs
Nodes 1100 458 | 4093 1116 | 2892 760 | 2674 1560
Edges 3519 2567 | 8583 4163 | 7731 3452 | 5100 5791

Nodes/Edges | 0.31  0.18 | 0.48 027 | 037 022 | 0.52 027
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Figure 6: Comparison results of MORF and LERF between explainable motifs extracted from
LM?0TIFS and random motifs on HGT and ChatGPT-generated texts.

Table 9: Statistics of text covered by explanation motifs on M4 dataset. The sparsity of the explanation
motifs is 0.05%.

| wikihow | reddit | peerread |  arxiv
Statistic ‘ HGT MGT ‘ HGT MGT ‘ HGT MGT ‘ HGT MGT
Nodes 4207 1894 13929 1282 | 2138 609 | 1449 725
Edges 19511 8819 | 8448 2770 | 10937 6044 | 2954 2112

Nodes/Edges| 0.22 021 | 047 046 | 020 0.10 | 0.49 0.34
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Table 10: Samples of words explanation motifs.

Graph Motifs ‘Words Mapping
Answer: Yes, blood pressure readings
a Whe':herlower can vary in treated hypertensive
an taken blood
< pressure® “ patients based on whomeasures it. A
£ it " white
A Ll GPT-4 Doc phenomenon known as "white coat
] coat
who " might thereforeccurate hypertension” may cause higher readings
may be phenomenon
by if measured by a physician due to
Answer: Yes, blood pressure readings
" yes whether can differ  when measured by a physician
it i effect
o in .
| compared to a nurse in treated
2 measured by
§ the Claude Doc 4 4teng is hypertensive patients. This phenomenon,
O a— taken .
this ##ive known as the "white-coat effect,” s
on change
does or attributed to patient anxiety and can
In each case, to assume that what is
for i
each chanfglucing
i to m . ) .
g patients hyper being measured is blood pressure is
B + that pyincimbeasuremetitod ‘ ‘
fa) incorrect. Note: The issue is not what
treatad .
lepending being it
measured | incorrect
physmﬁﬂrse which constitutes the “gold standard” of
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Table 11: Samples of phase explanation motifs.

Graph Motifs Words Mapping
Answer:  Research indicates that a
requires surgery  can potentially i e
with - alr . . )
= lipid in with
in ap
E obstructive sleep However, a
b improve . . -
% e GPT-4 Text R definite  conclusion  requires further
sleep the investigation as the correlation can be
profiles _p influenced by various  factors, including
correlation
the patients' lifestyle and
Question: Does airway surgery
sleep serum lipid levels in obstructive
primaribsrym atients?  Answer: surge
T) air — \Iowering/ for obsptructive (OSA) giS I’ynot
k] ot /  effect " lower
E at Claude Text primarily at lowering lipid
O on ap . )
\ s ). levels. While some studies suggest that
suggestprofiles aimed
e treating OSA may have a positive impact
may—
on lipid profiles, the effect of airway
Answer: Yes Obstructive s
episodes (OSA) is a sl eep-related  breathing
or ap Gl d characterized by repeated
2 proportion air of complete or upper
S obstruction22Vinci Tedleep o 4ia airway - bstruction.  Recent studies have
chown Patients o Kava shown that weight gain occurs in a high

" proportion of patients with OSA,
witl
especially among those

Table 12: The details of the dataset for detection between HGT and MGT generated by ChaGPT.

| HC3 | M4 | RAID

| open-qawiki-csai medicine finance | wiki-how reddit peerread arxiv | recipe book poetry review
# Training 2,000 1,384 2,000 2,000 | 2,000 872 2,000 2,000 | 2,000 2,000 2,000 1,793
# Validation | 100 100 100 100 100 100 100 100 100 100 100 100
# Test 200 200 200 200 200 200 200 200 200 200 200 200

# Nodes 15974 12,069 8,127 9,581 | 20,061 11,276 18,926 10,526 | 6,562 20,515 16,818 17,024
# Edges 3,262K  2,635K  2,063K 2,326K| 6,823K 4,658K 8,591K 3,595K|2,119K 7,076K 5,059K 5,448K

Table 13: The details of the M4 dataset for detection between HGT and MGT generated by LLM:s.

| reddit | peerread | arxiv

| Davinci Cohere Dolly BloomZ | Davinci Cohere Dolly BloomZ | Davinci Cohere Dolly BloomZ

# Training 2,000 2,000 2,000 2,000 872 824 872 830 2,000 2,000 2,000 2,000
# Validation | 100 100 100 100 100 100 100 98 100 100 100 100
# Test 200 200 200 200 200 198 200 192 200 200 200 200
# Nodes 20,867 21,701 21,344 20,944 | 11,059 10,837 14,366 11,340 | 10,153 10,724 12,039 11,468
# Edges 7,175K 7,055K 7,157K 6,601K | 4,139K 3,933K 5,924K 4,296K | 3,343K 3,376K 4,132K 4,011K

Table 14: The details of the RAID dataset for detection between HGT and MGT generated by LLMs.

| recipes | poetry | reviews
| Llama GPT-4 MPT Mistral |[Llama2 GPT-4 MPT Mistral |Llama2 GPT-4 MPT Mistral

# Training | 2,000 2,000 2,000 2,000 | 2,000 2,000 2,000 2,000 | 1,793 1,793 1,793 1,793
# Validation | 100 100 100 100 100 100 100 100 100 100 100 100
# Test 200 200 200 200 200 200 200 200 200 200 200 200
# Nodes 6,904 6,701 13,466 8833 | 16,696 17,152 19,476 17,523 | 17,004 17,387 19,371 17,843
# Edges 2,125K 2,163K 4,066K 2,586K | 4,766K 4,527K 5,924K 4,835K | 5,039K 5,694K 6,017K 5,142K
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Table 15: The details of the dataset for detection between HGT and MGT generated by LLMs in Yelp,
Creative, and Essay Dataset. Sonnet and Opus are short for Claude3-Sonnet and Claude-3-Opus.

| Yelp | Essay | Creative

| Sonnet  Opus  Gemini | Sonnet  Opus  Gemini | Sonnet  Opus  Gemini
# Training 2,000 2,000 2,000 1,500 1,500 1,500 1,500 1,500 1,500

# Validation 200 200 200 100 100 100 100 100 100
# Test 200 200 200 200 200 200 200 200 200
# Nodes 11,581 11,308 11,350 | 20,836 20,748 20,868 | 20,597 20,057 19,936
# Edges 1,940K 1,886K 1,778K | 8,422K 8,038K 7,989K | 7,187K 6,308K  6,250K

Table 16: Detection comparisons with SOTA methods on ACC between HGT and ChatGPT-generated
texts. The best results are shown in bold font. The second-best results are shown underlined. * means
the model is trained on that dataset. The Fast-D.GPT is short for Fast-DetectGPT.

\ HC3 \ M4 \ RAID \
Method \ open-qa wiki-csai medicine finance \ wiki-how reddit peerread arxiv \ recipe book poetry review ‘ Avg.
Likelihood 0.85 0.81 0.76 0.58 085 096 080 092 | 083 096 082 0.78 | 0.83
Rank 0.54 0.53 0.54 0.51 0.57 055 058 061 | 051 065 053 0.54 | 0.56
LogRank 0.77 0.73 0.72 0.58 0.82 095 080 092 | 081 093 0.84 0.79 | 0.81
Entropy 0.92 0.76 0.77 0.61 083 081 068 0.60 | 080 0.71 049 0.62 | 0.72
NPR 0.65 0.92 091 0.85 0.61 068 083 0.72 | 0.84 083 050 097 | 0.78
LRR 0.98 0.95 0.98 0.94 082 082 100 0.81 | 094 081 075 0.98 | 0.90
DetectGPT 0.46 0.63 0.76 0.68 058 066 059 0.61 0.56 0.66 0.59 0.68 | 0.62
Fast-D.GPT 0.95 0.99 0.98 0.97 088 094 100 1.00 | 099 097 093 1.00 | 0.97
DNAGPT 0.63 0.79 0.63 0.88 0.60 079 053 0.81 0.71 0.82 0.75 0.59 | 0.71
Binoculars 0.92 1.00 1.00 1.00 0.77 097 1.00 1.00 | 1.00 096 0.99 0.99 | 0.97
Glimpse 0.95 0.98 0.99 0.99 097 091 087 099 | 094 096 0.76 098 | 0.94
GPTZero 0.58 0.69 0.96 0.84 054 082 096 0.69 | 061 084 048 0.78 | 0.73
RoBERT2-QA | 1.00*  1.00% 1.00*  0.99% 088 096 099 095 | 083 086 050 1.00 | 091
Radar 0.52 0.81 0.55 0.75 046 093 088 0.77 | 0.61 097 061 0.89 | 0.73
DeTeCtive 0.99 0.79 0.99 0.89 0.89 093 090 098 | 094 095 097 097 | 093
LM?0TIFS \ 0.97 0.96 0.98 0.98 \ 097 099 098 0.96 \ 0.99 1.00 0.99 096 \ 0.98

Table 17: MGT detection AUC performance comparisons with SOTA methods on HGT and ChatGPT-
generated texts. The best results are shown in bold font. The second-best results are shown underlined.
* means the model is trained on that dataset. The Fast-D.GPT is short for Fast-DetectGPT.

‘ HC3 ‘ M4 ‘ RAID ‘
Method ‘open—qa wiki-csai medicine finance ‘ wiki-how reddit peerread arxiv ‘ recipe book poetry review ‘ Avg.
Likelihood 1.00 1.00 1.00 1.00 0.95 099 0.69 097] 1.00 1.00 090 1.00 |0.96
Rank 1.00 0.77 0.99 0.81 0.94 092 097 095]0.79 099 0.87 1.00 |0.92
LogRank 1.00 1.00 1.00 1.00 0.95 0.99 082 098] 1.00 1.00 0.89 1.00 |0.97
Entropy 0.99 0.85 0.99 0.97 0.91 091 060 0.75] 097 0.88 0.75 0.97 |0.88
NPR 1.00 1.00 1.00 1.00 0.95 0.99 081 098] 1.00 1.00 0.89 1.00 |0.97
LRR 1.00 0.99 1.00 0.99 0.93 098 1.00 0.99] 099 099 0.85 1.00 |0.98

DetectGPT 0.35 0.59 0.70 0.61 068 071 070 043 0.65 0.77 0.84 0.84 |0.66
Fast-D.GPT 1.00 1.00 1.00 0.98 096 099 1.00 1.00| 1.00 1.00 0.98 1.00 |0.99

DNAGPT 0.72 0.95 0.91 0.94 097 095 056 094 094 097 0.84 098 |0.89
Binoculars 0.98 1.00 1.00 1.00 090 1.00 1.00 1.00| 1.00 1.00 0.99 1.00 |0.99
Glimpse 1.00 1.00 1.00 1.00 099 1.00 092 1.00| 1.00 1.00 0.85 1.00 |0.98
GPTZero 0.58 0.69 0.96 0.84 054 082 096 0.69| 061 0.84 048 0.78 |0.73
RoBERTa-QA | 1.00*  1.00* 1.00%  1.00* 094 1.00 1.00 1.00| 090 0.99 095 1.00 |0.98
Radar 0.20 0.77 0.41 0.68 040 097 100 095|099 1.00 0.88 091 |0.76
DeTeCtive 1.00 0.84 0.99 0.89 090 098 090 0.99| 0.9 097 097 097 |0.95
LM?oTIFs | 1.00 0.99 1.00 1.00 | 099 100 1.00 1.00| 1.00 1.00 1.00 1.00 |1.00
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Table 18: Cross-domain MGT detection ACC performance comparisons with SOTA methods on
HGT and ChatGPT-generated texts. The best results are shown in bold font. The second-best results
are shown in underlined. The Fast-D.GPT is short for Fast-DetectGPT.

| HC3 | M4 | RAID |
Method | wiki-csai medicine finance |reddit peerread arxiv |recipe poetry review | Avg.
Likelihood 0.97 0.96 0.98 | 0.88 0.80 0.67 | 0.57 0.70 0.99 |0.84
Rank 0.65 0.94 0.65 | 0.82 0.56 0.66| 0.54 080 0.80 |0.71
LogRank 0.98 0.97 0.98 | 0.92 0.83 071 0.53 0.73 097 [0.85
Entropy 0.71 0.91 0.87 | 0.61 0.75 050 | 0.50 0.58 0.78 [0.69
NPR 0.97 0.97 098 | 0.93 0.97 0.77 ] 0.55 0.72 097 |0.87
LRR 0.98 0.94 0.96 | 0.93 0.94 076 | 0.52 0.69 093 [0.85
DetectGPT 0.52 0.58 0.53 | 0.56 0.54 050 | 0.56 0.67 0.73 [0.58
Fast-D.GPT 0.99 0.99 095 | 0.93 1.00 094 | 1.00 0.89 1.00 |0.97
DNAGPT 0.86 0.87 0.84 | 0.92 0.49 0.85] 0.84 0.67 0.96 |0.81
Binoculars 0.97 0.97 0.97 0.89 0.89 0.89 | 1.00 1.00 1.00 | 0.95
Glimpse 1.00 0.98 1.00 | 0.96 0.88 099 | 096 0.78 1.00 |0.95
RoBERTa-QA 0.53 0.65 0.53 0.77 0.93 099 | 0.70 086 0.85 |0.76
Radar 0.79 0.53 0.74 | 0.92 0.77 0871 0.65 0.74 0.88 [0.77
DeTeCtive 0.68 0.58 0.60 | 0.76 0.76 0.65] 048 0.72 0.89 [0.68
LM%oTiEs | 071 082 064 | 059 099 093] 050 093 097 |0.79

Table 19: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT on
M4 dataset. The best results are shown in bold font. The second-best results are shown in underlined.
The Fast-D.GPT is short for Fast-DetectGPT.

\ DaVinci \ Cohere \ Dolly \ BloomZ \
Method | reddit peerread arxiv | reddit peerread arxiv | reddit peerread arxiv | reddit peerread arxiv | Avg.
Likelihood 089 0.77 040|095 078 0.89] 063 065 071|056 034 0.72]0.69
Rank 057 051 045]056 054 0.52]050 053 057 0.55 0.51 0.53]0.53
LogRank 083 0.77 040|094 081 090|075 0.69 0.73| 0.71 0.39 0.77 |0.72
Entropy 0.78 0.71 0371 0.73 053 058|054 046 0.58 | 0.63 0.34  0.62|0.57
NPR 0.67 074 049 0.65 0.83 0.53] 0.51 052 061] 052 071 0.55]0.61
LRR 086 095 050|068 094 063|075 082 066|075 098 0.59]0.76

DetectGPT 056 053 035|063 0.60 047|054 046 045|058 057 0.62)0.53
Fast-D.GPT 097 1.00 046|096 099 098|090 099 082|043 051 0.69|0.81
DNAGPT 075 047 036|090 047 086|051 053 0.54]045 049 057058
Binoculars 098 100 051|098 09 098|083 099 0.87]058 062 0.77|0.84

Glimpse 077 095 051|095 088 1.00| 064 068 075|052 043 0.88/0.75
GPTZero 0.86 099 036|084 092 065|076 058 050|061 053 0.46)0.67
RoBERTa-QA | 093 1.00 055|095 097 089|095 055 0.71]050 050 0.52]0.75
Radar 0.84 088 057|087 085 0.60|066 077 053|080 0.79 0.30|0.71

DeTeCtive 090 085 095|084 076 095|096 075 098] 094 0.89 0.920.89
LMZ20TIFS ‘0.97 1.00 0.87 ‘ 098 1.00 0.94‘@ 1.00 077‘ 1.00 1.00 0.95‘0.95
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Table 20: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT
on RAID dataset. The best results are shown in bold font. The second-best results are shown in
underlined. The Fast-D.GPT is short for Fast-DetectGPT.

‘ Llama ‘ GPT-4 ‘ MPT ‘ Mistral ‘
Method ‘ recipe poetry review ‘ recipe poetry review ‘ recipe poetry review ‘ recipe poetry review ‘ Avg.
Likelihood 0.83 0.78 0.76 | 0.82 0.68 0.75 | 0.27 0.69 054 | 045 0.76 0.73 ]0.67
Rank 0.51 053 054 | 051 053 054 | 050 053 050 | 0.50 0.53 0.54 [0.52
LogRank 079 0.81 0.79 | 0.80 0.64 0.78 | 0.30 0.63 044 | 043 0.77 0.78 |0.66
Entropy 078 047 061 | 0.76 049 060 | 0.29 0.65 0.62 | 0.55 0.68 0.65 |0.60
NPR 092 050 094 | 073 0.50 0.76 | 0.56 0.53 0.54 | 0.58 0.53 0.84 |0.66
LRR 091 0.81 090 | 0.78 0.60 0.74 | 0.57 0.53 0.56 | 0.66 0.61 0.86 |0.71

DetectGPT 051 0.77 073 | 051 061 0.65 | 044 048 046 | 0.51 0.52 056 |0.56
Fast-D.GPT 092 094 096 | 096 0.79 080 | 0.39 0.63 041 | 048 0.79 0.64 |0.73

DNAGPT 076 0.69 058 | 0.68 0.70 059 | 029 054 035 | 040 0.52 0.70 |0.57
Binoculars 1.00 098 095 | 099 081 095 | 043 0.62 068 | 0.76 0.72 0.65 |0.80
Glimpse 093 077 095 | 093 060 0.79 | 0.70 0.59 0.75 | 0.81 0.67 0.84 |0.78
GPTZero 0.74 047 073 | 061 046 0.73 | 0.53 0.52 0.57 | 0.58 0.57 0.51 |0.59
RoBERTa-QA| 085 0.50 096 | 076 050 0.83 | 046 0.53 0.69 | 0.44 0.55 0.69 |0.65
Radar 058 059 086 | 0.63 057 086 | 059 0.73 0.59 | 0.64 0.89 0.63 |0.68

DeTeCtive 1.00 095 094 | 097 096 0.97 | 091 090 095 | 0.87 0.88 0.90 |0.93
LM?oTiFs | 1.00 0.98 0.97 | 0.99 1.00 1.00 | 0.95 0.84 090 | 0.94 0.838 0.92 |0.95

Table 21: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT on
Yelp, Essay, and Creative dataset. The best results are shown in bold font. The second-best results are
shown in underlined. The Fast-D.GPT is short for Fast-DetectGPT.

| Claude3-Sonnet |  Claude3-Opus | Gemini \
Method | Yelp Essay Creative | Yelp Essay Creative | Yelp Essay Creative | Avg.
Likelihood 0.61 0.96 0.83 |0.61 0.97 0.91 0.56 0.97 0.69 |0.79
Rank 0.51 0.54 0.51 |0.50 0.55 0.51 |0.50 0.55 0.51 0.52
LogRank 0.57 0.91 0.79 10.54 0.93 0.89 |0.54 094 0.68 |0.75
Entropy 0.60 0.87 0.69 |0.58 0.92 0.71 0.53 0.85 0.53 0.70
NPR 0.62 0.67 0.80 |0.62 0.58 0.68 |0.50 0.57 0.56 |0.62
LRR 0.55 0.90 0.78 10.52 0091 0.73 1045 0.58 0.56 |0.66

DetectGPT 049 068 069 |044 062 069 |042 066 0.62 |0.59
Fast-D.GPT |0.66 1.00 0.88 |0.72 099 093 |0.60 098 0.69 |0.83
DNAGPT 054 066 066 |054 0.71 067 |0.53 077 064 |0.64
Binoculars 069 100 094 |077 100 097 |068 097 0.78 |0.87

Glimpse 069 100 086 [0.69 097 090 [0.59 09 0.74 |0.82
GPTZero 063 066 078 |061 065 086 [059 036 0.66 |0.64
RoBERTa-QA [0.72 0.86 0.79 [0.82 0.87 093 (081 0.86 0.72 |0.82
Radar 062 094 084 |064 095 091 |064 096 0.74 |0.80

DeTeCtive  |0.98 0.86 097 [099 079 096 [0.97 085 0.77 |0.90
LM20TIFs  [0.99 0.99 098 |[1.00 099 098 [0.99 097 077 |0.96
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Table 22: MGT detection AUC performance comparisons with SOTA methods on HGT and MGT on
M4 dataset. The best results are shown in bold font. The second-best results are shown in underlined.
The Fast-D.GPT is short for Fast-DetectGPT.

| DaVinci | Cohere | Dolly | BloomZ |
Method | reddit peerread arxiv | reddit peerread arxiv |reddit peerread arxiv | reddit peerread arxiv | Avg.
Likelihood 098 0.83 02709 078 096|093 060 080|070 047 0.78]0.76
Rank 092 094 045|090 082 081|072 050 069|088 072 0.88]0.77
LogRank 098 096 0.28 | 0.97 090 097|093 065 079|084 0.58 0.85]0.81
Entropy 086 0.58 023|076 061 058|076 051 061|083 049 0.69]0.63
NPR 0.98 1.00 0.28 | 0.97 1.00 09708 097 080| 0.86 097 0.86|0.88
LRR 0.97 1.00 0.36| 097 1.00 097|098 092 0.74| 0.98 1.00  0.93 1 0.90

DetectGPT 059 074 029]072 076 043|061 054 042]0.73 0.71 0.63|0.60
Fast-D.GPT 099 1.00 048|099 100 099|097 100 090|037 052 0.75]0.83
DNAGPT 084 027 032]094 035 093|072 055 070|047 0.11 0.69|0.57
Binoculars 1.00 1.00 051|098 1.00 1.00| 098 1.00 095|053 066 0.85]|0.87

Glimpse 092 1.00 051|098 096 1.00 0.83 081 091|066 042 0.98]0.83
GPTZero 086 099 036|084 092 065|076 058 050|061 053 046]0.67
ROBERT2-QA | 0.99 1.00 0094|099 1.00 1.00| 098 095 099|061 038 0.66 |0.87
Radar 095 1.00 048|097 100 078|079 092 043|090 088 0.520.80

DeTeCtive | 096 085 098 089 088 098|096 086 1.00 096 0.96 0.98 | 0.94
LM?0TiFs | 099 1.00 094|100 100 098|099 100 085|100 100 098|098

Table 23: MGT detection AUC performance comparisons with SOTA methods on HGT and MGT
on RAID dataset. The best results are shown in bold font. The second-best results are shown in
underlined. The Fast-D.GPT is short for Fast-DetectGPT.

\ Llama \ GPT-4 \ MPT \ Mistral \
Method | recipe poetry review | recipe poetry review |recipe poetry review |recipe poetry review | Avg.
Likelihood 099 086 098 | 098 0.72 095 | 038 0.67 053 | 0.64 080 0.71 |0.77
Rank 088 0.79 097 | 0.67 065 087 | 045 092 083 | 045 093 090 |0.78
LogRank 099 087 098 | 097 0.69 094 | 038 0.73 0.60 | 0.64 0.81 0.74 10.78
Entropy 094 063 092 | 091 059 077 | 035 072 061 | 059 080 0.71 |0.71
NPR 099 087 098 | 097 070 093 | 039 0.74 061 | 0.64 082 0.74 |0.78
LRR 098 088 098 | 094 060 083 | 044 083 0.84 | 062 089 0.84 |0.81

DetectGPT 052 082 083|055 063 075|029 045 045 | 048 045 055 |0.56
Fast-D.GPT 099 097 097 | 099 088 0.99 | 0.50 061 051 | 070 0.77 0.65 |0.79

DNAGPT 096 075 095 | 0.80 075 0.88 | 038 055 049 | 057 072 0.60 |0.70
Binoculars 0.99 099 097 | 1.00 098 099 | 055 0.66 059 | 072 0.79 0.68 |0.83
Glimpse 1.00 087 097 | 099 0.60 088 | 069 0.63 0.84 | 0.86 0.74 0.92 |0.83
GPTZero 074 047 073 | 061 046 073 | 053 052 057 | 058 057 051 |0.59
RoBERTa-QA | 095 094 096 | 0.82 083 095 | 045 073 0.63 | 031 0.65 0.54 |0.73
Radar 098 085 0.89 | 099 081 0.87 | 095 083 0.74 | 0.80 086 0.63 |0.85

DeTeCtive 1.00 095 096 | 099 096 099 | 092 091 099 | 091 090 0.97 |0.95
LMZ20TIFS ‘1.00 1.00 1.00 ‘ 1.00 1.00 1.00 ‘ 099 090 095 ‘0.99 094 0.98 ‘0.98
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Table 24: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT on
Yelp, Essay, and Creative dataset. The best results are shown in bold font. The second-best results are
shown in underlined. The Fast-D.GPT is short for Fast-DetectGPT.

|  Claude3-Sonnet | Claude3-Opus | Gemini |
Method | Yelp Essay Creative | Yelp Essay Creative | Yelp Essay Creative | Avg.
Likelihood 0.73 094 0% 0.72  1.00 0.99 055 099 0.76 0.85
Rank 054 085 0.85 049 099 092 0.39 097 0.65 0.74
LogRank 0.69 093 093 0.68 1.00 0.98 0.50 099 0.74 0.83
Entropy 0.64 083 0.83 0.57 095 0.88 042 091 0.57 0.73
NPR 0.68 099 094 0.66 099 0.98 049 098 0.76 0.83
LRR 0.54 1.00 0.88 052 1.00 095 039 099 0.70 0.77

DetectGPT 053 075 0.71 043 074 0.78 037 080 0.64 0.64
Fast-D.GPT 073  1.00 094 0.81 1.00 0.99 0.68 099 0.79 0.88

DNAGPT 067 094 086 |070 094 093 [058 095 075 | 081
Binoculars 079 100 099 |087 100 1.00 |073 099 079 | 091
Glimpse 078 100 090 |083 100 096 | 074 1.00 078 | 0.89
GPTZero 063 066 078 |061 065 08 |05 036 066 | 0.64
RoBERTa-QA | 092 095 094 | 096 098 097 |09 094 078 | 093
Radar 058 093 099 |068 099 097 |070 099 076 | 0.84
DeTeCtive 098 08 09 |099 079 099 |099 085 076 | 091

LMZ20TIFS | .00 1.00 1.00 | 1.00 100 099 | 100 099 078 | 0.97
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