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ABSTRACT

The impressive ability of large language models to generate natural text across
various tasks has led to critical challenges in authorship authentication. Although
numerous detection methods have been developed to differentiate between machine-
generated texts (MGT) and human-generated texts (HGT), the explainability of
these methods remains a significant gap. Traditional explainability techniques
often fall short in capturing the complex word relationships that distinguish HGT
from MGT. To address this limitation, we present LM2OTIFS, a novel explainable
framework for MGT detection. Inspired by probabilistic graphical models, we
provide a theoretical rationale for the effectiveness. LM2OTIFS utilizes eXplainable
Graph Neural Networks to achieve both accurate detection and interpretability. The
LM2OTIFS pipeline operates in three key stages: first, it transforms text into graphs
based on word co-occurrence to represent lexical dependencies; second, graph
neural networks are used for prediction; and third, a post-hoc explainability method
extracts interpretable motifs, offering multi-level explanations from individual
words to sentence structures. Extensive experiments demonstrate the comparable
performance of LM2OTIFS. The empirical evaluation of the extracted explainable
motifs confirms their effectiveness in differentiating HGT and MGT. Furthermore,
qualitative analysis reveals distinct and visible linguistic fingerprints characteristic
of MGT.

1 INTRODUCTION

Large Language Models (LLMs) have made remarkable progress in recent years, demonstrating
the ability to generate text based on prompt instructions. Models like ChatGPT (OpenAI, 2022),
Llama (Touvron et al., 2023), and Claude-3 (Anthropic, 2024) have shown impressive capabilities in
writing (Yuan et al., 2022a), coding (Zhang et al., 2024c), and question answering (Zhuang et al.,
2023). However, these advances raise serious concerns about content authenticity, including fake
news (Ahmed et al., 2021), plagiarism (Lee et al., 2023), and misinformation (Chen & Shu, 2024).
Given that humans struggle to identify machine-generated texts (MGT) (Gehrmann et al., 2019b),
developing reliable detectors to distinguish between MGT and human-generated texts (HGT) has
become essential.

Existing LLM detectors (Yang et al., 2024; Nguyen-Son et al., 2024; Guo et al., 2024b; Chang
et al., 2024) are broadly categorized as white-box and black-box approaches. White-box approaches,
exemplified by DetectLLM (Su et al., 2023), analyze the probabilities of the output token to identify
distinguishing characteristics (Yu et al., 2024). In contrast, black-box methods (Guo et al., 2024b;
Soto et al., 2024; Zhang et al., 2024b; Nguyen-Son et al., 2024) achieve detection without access to
the LLM’s internal workings. Despite their effectiveness, significant challenges persist in creating
detectors that are both robust and explainable (Wu et al., 2025). Furthermore, these methods typically
only output a binary classification. However, practical applications demand supporting evidence, such
as the need for the determination of originality. However, existing explainability techniques for these
detectors are inadequate. Traditional methods like Integrated Gradients (Sundararajan et al., 2017)
are computationally prohibitive for LLM-based detectors, and while attention mechanisms (Jain
& Wallace, 2019; Wiegreffe & Pinter, 2019) excel at capturing local dependencies, they may face
challenges in identifying global patterns crucial for an LLM. Consequently, developing an explainable
detector solution is critical and timely.
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The fundamental architecture of modern LLM builds upon the principle of autoregressive next-token
prediction, which models the joint probability distribution of a sequence as P (s1, s2, · · · , sT ) ≈∏T

t=1 Pθ(st|s1:t−1), where θ is the (trainable) model parameter, si is the word/token at the ith
position, and T is bounded by the context length (Radford et al., 2019; Bengio et al., 2000).
Following this notion, in MGT detection, current methods typically treat the input as sequential
data, and measure the distance between its posterior distribution and reference distributions for
MGT and HGT samples — for instance by estimating the Kullback-Leibler (KL) divergence. This
often requires substantial computational resources and large sample sizes. However, an intuitive
and efficient alternative, probabilistic graphical models (PGM) (Bishop & Nasrabadi, 2006; Koller,
2009), to model conditional probabilities, has been largely overlooked. From the perspective of
PGM, while generation tasks require that LLM operate based on probability graphs which accurately
approximate the ground-truth posterior distribution, detection tasks only require constructing and
analyzing probability graphs that are sufficiently discriminative for the underlying detection task.
With sufficient sample data, building such graphs is straightforward. Furthermore, by analyzing the
mechanism between sequence-based detectors and graph-based detectors, we provide the advantage
of graph-based detectors in theory. In practice, PGM has advantages in terms of explainability,
inference speed, and detection accuracy.

Drawing inspiration from PGM, we introduce a novel explainable framework, LM2OTIFS. Beyond
classifying input text as either MGT or HGT, LM2OTIFS generates explanatory motifs that justify
its detection outcome. LM2OTIFS consists of three key parts: i) Graph Construction, ii) MGT
Detection, and iii) Explainable Motifs Extraction. In the first stage, we leverage the word co-
occurrence techniques to capture the lexical dependencies. To extract meaningful patterns at multiple
levels (e.g., words and phrases), we integrate mainstream eXplainable Graph Neural Networks
(XGNNs) to generate these motifs. To validate the effectiveness of our PGM-inspired approach, we
empirically demonstrate that LM2OTIFS achieves competitive performance with state-of-the-art MGT
detection methods, including both supervised and zero-shot approaches. Following eXplainable AI
(XAI) protocols, we verify the effectiveness of LM2OTIFS. Our results indicate that the generated
explainable motifs significantly outperform the baseline in terms of interpretability. The main
contributions of this paper are summarized as follows:

★ We highlight the problem of missing evidence support in MGT detection. We introduce LM2OTIFS,
an explainable framework for MGT detection that integrates co-occurrence graphs with XGNN
techniques for both accurate detection and explainable motifs extraction.

★ We provide a theoretical analysis of the rationale and advantages of employing Graph Neural
Network(GNN) for this task, drawing insights from the perspective of PGM.

★ We conduct comprehensive experiments on diverse datasets, validating the effectiveness of
LM2OTIFS in MGT detection. Our analysis following XAI protocols supports the correctness of
the extracted explainable motifs.

2 PRELIMINARY

MGT Detection. The MGT detection problem can be formulated as a classification task. Take an
example of a binary hypothesis testing task. Given a pair of training sets,

Th = {Sh,i = (Sh,i,1, Sh,i,2, · · · , Sh,i,Li)}i∈|Th|,

Tm = {Sm,i = (Sm,i,1, Sm,i,2, · · · , Sm,i,L′
i
)}i∈|Tm|,

consisting of human-generated and machine-generated text sequences, respectively, drawn from the
distributions1 Ph and Pm, the objective is to classify a newly observed text sequence So as either
human-generated or machine-generated. A detection mechanism is a function f : (Th, Tm,So) 7→ Ŷ ,
where Ŷ ∈ {0, 1}, the index 0 represents the null hypothesis (human generated) and 1 represents the
alternative hypothesis (machine generated). Notably, the function f takes input of So and Th, Tm are
the support samples. In training-based methods, Th, Tm are used to train models, while in zero-shot
methods, they are used to design the function, such as log rank information in DetectLLM (Su
et al., 2023). The detection error is quantified by the risk function P (f(Th, Tm,So) ̸= Y ), where
Y ∈ {0, 1} denotes the ground-truth hypothesis label.

1The length of the observed text sequences is not fixed and can be modeled as a random variable. This
variability is implicitly captured in the distributions Ph and Pm.
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Probabilistic Graphical Models. PGM offers an efficient framework for representing probabilis-

tic models, incorporating insightful properties such as conditional independence. Given a graph
G = {V, E}, the nodes V correspond to random variables, and the links E capture probabilistic de-
pendencies between these variables. For example, given a sequence of three tokens S = (s1, s2, s3),
the joint distribution is P (s1, s2, s3) = P (s3|s1, s2)P (s2|s1)P (s1). This can be represented using a
graph with V = {s1, s2, s3} and E = {(s1, s2), (s1, s3), (s2, s3)}. More generally, for any sequence
of tokens, a PGM can be constructed to represent the probabilistic dependencies among tokens.

Node Classification. A graph G consists of a set of nodes V = {v1, v2, · · · , vn}, where n ∈ N,
and a set of edges E ⊆ V × V . The adjacency matrix A ∈ {0, 1}n×n encodes the graph edges,
where Ai,j = 1((vi, vj) ∈ E). Each node may be associated with a feature vector, collectively
represented by the matrix X ∈ Rn×d, where the i-th row is the feature vector associated with the
i-th node, and d ∈ N is the dimension. Each node v is related to a label Yv ∈ Y , where Y is the
collection of possible labels. In this work, we reformulate the author detection problem as a node
classification task. This reformulation is elaborated on in the subsequent sections. The objective in
node classification is to train a classifier f : (G,X, v) 7→ Ŷv , which, given a graph G, node feature
matrices X , and a node index v, produces an estimate Ŷv of the node label Yv. The accuracy of the
classifier is defined as PV,G,X,YV

(f(V,G,X) ̸= YV ), where V is uniformly distributed over V , and
G,X, YV follow a joint distribution PG,X,YV

.

Post-hoc Explainable Graph Neural Networks. Given a graph or node classification task, the
goal of XGNN is to find an explanation function Ψ(·), which maps the input graph G to a min-
imal and sufficient explanation subgraph Gexp. Minimality restricts the size of the explanatory
subgraph and is enforced by the constraint |Gexp| ≤ s · |G|, where |G| denotes the number of
edges in G and s ∈ [0, 1] is the size parameter. Sufficiency is quantified by the KL divergence
term dKL(PY |G,X,V ||PY |Gexp,X,V ). The explainer is optimally sufficient if it minimizes the KL
divergence subject to minimality constraints. That is, given s ∈ [0, 1], an optimal explainer Ψ∗ is
defined as:

Ψ∗(G) = argmin
Ψ:|Gexp|≤s|G|

dKL(PY |G,X,V ||PY |Gexp,X,V ) (1)

3 THEORETICAL ANALYSIS

As discussed in the prequel, prior works in MGT detection, such as Fast-DetectGPT (Bao et al.,
2024), have employed sequential data models to design detection mechanisms. Drawing inspiration
from TextGCN, we formulate the MGT detection problem using a graph-based approach where both
tokens and documents are represented as nodes. Building upon this foundation, we demonstrate that
GNN-based detectors achieve strictly improved detection accuracy compared to such approaches.
This section provides theoretical justifications for this claim. The subsequent sections provide further
verification through empirical analysis over several benchmark datasets.

We formally define a class of baseline empirical sequential-based (ESB) detectors that capture the
essential characteristics of existing approaches. An ESB detector operates in two steps. First, it
uses the human-generated training set Th to construct the empirical conditional distribution esti-
mates P̂h(st|s1:t−1) for human-generated text sequences, where t ∈ [T ], and T is a hyperparameter
capturing the maximum context length. Similarly, the empirical estimates P̂m(st|s1:t−1) are com-
puted based on the machine generated training set Tm. In the second step, the detector uses (a
potentially trainable) mapping gs : ((P̂h(st|s1:t−1), P̂m(st|s1:t−1))t∈[T ],So) 7→ Ŷ , where So is the
to-be-classified sequence. An ESB detector is completely characterized by the mapping gs(·). We
denote the collection of ESB detectors by FESB. We introduce the class of PGB MGT detectors. A
PGB detector operates on a specially constructed graph with two types of nodes: token nodes and
text sequence nodes (Yao et al., 2019). Formally, let V = S ∪D denote the complete node set, where

S = {s|∃S ∈ Th ∪ Tm, i ∈ [|S|] : si = s},
D = {S|S ∈ Th ∪ Tm ∪ {So}}.

Here, S represents the set of all unique tokens in either human or machine-generated texts, and D
comprises all text sequences from both sources and the to-be-classified text.
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Figure 1: Overall pipeline of our framework, including tokenization, graph building, detector training,
and motifs extraction.

The edge structure of the graph captures both token co-occurrences and token-sequence relationships.
Two tokens si, sj ∈ S are connected if they co-occur in at least λ sequences within Th ∪ Tm, where
λ is a hyperparameter. Additionally, each token node is connected to sequence nodes containing that
token. Edge weights are defined by two distinct functions. For token-token edges (si, sj), the PGB
first computes embedding vectors for each token using

eℓ : Jℓ(si)× (Iℓ,j(si))j∈Jℓ(si) 7→ eℓ,i, ℓ ∈ {h,m},

where for each token si, the set Jℓ(si) = {j|si ∈ Sℓ,j} indexes the sequences containing si, while
Iℓ,j(si) = {k|Sℓ,j,k = si} indexes the positions where si appears in sequence Sℓ,j . The token-token
edge weights is then computed as At(eh,i, em,i, eh,j , em,j), where eh,i and em,i are the embeddings
from human and machine-generated texts, respectively. For token-sequence edges (s,S), the weight
is simply As(Ns|S), where Ns|S counts occurrences of token s in sequence S. Examples of these edge
weight functions At(·) and As(·) are provided in equation 2 and used in our empirical evaluations.

Token nodes are initialized with one-hot features and sequence nodes with all-zeros features. The
GNN operates by several rounds of message passing among connected nodes. The PGB detector
applies K rounds of message passing over the constructed graph, where at each round, node em-
beddings are updated based on messages received from neighboring nodes. After K iterations, the
detector computes the final node embeddings, denoted by h(K). The classification output is obtained
via a function gp : (h(K),So) 7→ Ŷ that maps the collection of node embeddings to the binary
decision Ŷ . A PGB detector is completely characterized by the tuple (K,λ, eh, em, At, As, gp). We
denote the collection of PGB detectors by FPGB.

The following theorem shows that the PGB class of detectors strictly subsumes the ESB class in
terms of achievable detection accuracy.

Theorem 3.1. For every ESB detector fESB ∈ FESB, there exists a PGB detector fPGB ∈ FPGB such
that the detection accuracy of fPGB matches that of fESB, i.e.,

P (fPGB(Th, Tm,So) = Y ) = P (fESB(Th, Tm,So) = Y ),

for all pairs of probability distributions (Ph, Pm). Furthermore, the PGB class of detectors strictly im-
proves upon the ESB class in terms of detection accuracy. That is, for any fixed set of hyperparameters
T,K, λ, there exists (Ph, Pm) and fPGB ∈ FPGB for which:

P (fPGB(Th,Tm,So)=Y )> max
fESB∈FESB

P (fESB(Th,Tm,So)=Y ),

The proof is provided in Appendix A.

4 METHODOLOGY

In this section, drawing upon the theoretical foundations of PGM in the prequel, we present the
practical implementation of our probabilistic graph-based (PGB) detector framework, LM2OTIFS.
Our implementation encompasses three key components: graph construction based on token co-
occurrences, GNN-based authorship detection, and explainable motif extraction. The complete
pipeline of LM2OTIFS is illustrated in Figure 1.

4
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4.1 GRAPH CONSTRUCTION

Following our PGB framework, we implement an efficient graph construction method based on co-
occurrence principles from TextGCN (Yao et al., 2019). Our pipeline consists of two stages. In the first
stage, we capture the dependencies among words/tokens. As shown in Figure 2, a word-dependency
graph (solid lines) is constructed using a sliding window. In the second stage, we add document
nodes and connect them to the corresponding words (dashed lines) that appear in the document.
During testing, we similarly add test-document nodes to the existing word-dependency graph. Finally,
our graph consists of two types of nodes representing tokens and documents, corresponding to the
node sets S and D. As specified in our framework, tokens are initialized with one-hot features and
documents with zero vectors.

Figure 2: An example of graph construction
with a fixed sliding window size 3.

To construct edges that capture textual relationships,
we consider both document-token connections and
token co-occurrences. The adjacency matrix A is
defined as:

Aij =


1 i, j are token, PMI(i, j) > 0
1 j is document, i is token in j
1 i = j
0 otherwise

, (2)

where PMI(i, j) = log p(i,j)
p(i)p(j) , point-wise mutual

information, is used to determine significant token
co-occurrences. Here, p(i) represents the frequency
of the i-th token within a fixed-length sliding window,
and p(i, j) denotes the co-occurrence frequency of
tokens i and j. As discussed in Section 3, in the most
general sense, the edge weights may be continuous-
valued, and generated using a learnable function.
However, our experimental evaluation shows that the
above binary-valued edge weights are sufficient for
reliable detection.

4.2 GNN DETECTION

Having constructed the graph structure, we implement the detection mechanism outlined in our
framework through a GNN architecture. For a given text sequence So, our goal is to learn a function
f that determines whether the text is machine-generated or human-authored. This corresponds to the
PGB detector operating over K message passing rounds. Each GNN layer implements one round of
message passing, with the update rule:

a(l)v = AGG(l)
(
h(l−1)
u : u ∈ N (v)

)
,

h(l)
v = COMBINE(l)

(
h(l−1)
v , a(l)v

)
,

where a
(l)
v represents the aggregated message at l-th layer, h(l)

v is the node feature, N (v) denotes the
neighbors of node v, and AGG(·) and COMBINE(·) are the regular aggregation and combination
functions in GNNs, following the definition from previous work (Xu et al., 2019). After K layers,
we obtain the final node embeddings H . For classification, we apply a softmax function to the final
embeddings to obtain prediction probabilities Z = softmax(H). The model is trained by minimizing
the cross-entropy loss over labeled document nodes:

L = −
∑
d∈YD

∑
ℓ∈{h,m}

Ydℓ lnZdℓ, (3)

where YD represents the set of document nodes in the training set and Ydℓ is the ground-truth label,.
While our goal focuses on binary classification (human-authored vs. machine-generated) in this
paper, the framework naturally extends to scenarios with multiple classes, such as texts generated by
different language models.

5
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4.3 EXPLAINABLE MOTIFS EXTRACTION

Beyond detection accuracy, our framework provides interpretable insights through the extraction of
distinguishing motifs between machine-generated and human-authored texts. While existing detection
methods often operate as black boxes (Guo et al., 2024b), our graph-based approach naturally enables
the identification of characteristic patterns through subgraph structures (Koller, 2009). Drawing
inspiration from graph analysis techniques (Luo et al., 2020), we transform the interpretability
challenge into a subgraph identification problem, where meaningful token dependencies in our
constructed graph serve as distinguishing motifs. These motifs capture characteristic patterns of word
usage and dependencies that differentiate between human and machine-generated content (Kim et al.,
2024), providing insights beyond simple token-level statistics.

Specifically, we formulate a practical optimization objective using cross-entropy loss and explicit
size constraints. The objective function balances the prediction accuracy of the explanation subgraph
against its complexity:

Ψ∗(·) = argmin
Ψ:G7→Gexp

CE(Y ; f(Gexp)) + λ|Gexp| (4)

where CE(Y ; f(Gexp)) measures how well the explainer preserves the model’s prediction capability,
|Gexp| denotes the size of the explanation subgraph, and λ controls the trade-off between explanation
fidelity and complexity. This formulation is an approximation of the theoretical requirements from
Equation 1, where the cross-entropy term ensures sufficiency and the size penalty enforces minimality.
The optimization is performed through gradient descent, with the edge weights of Gexp being learned
continuously and then discretized through thresholding.

5 RELATED WORK

AI-generated text Detection. Detecting machine-generated texts approaches can be categorized into
three main categories. The first category focuses on watermarking LLM-generated content (Chang
et al., 2024; Ajith et al., 2024; Yang et al., 2023; Wu et al., 2024; Molenda et al., 2024). Most water-
marking methods operate in a white-box setting, where researchers can modify the decoding process
or token distribution directly (Ajith et al., 2024; Wu et al., 2024; Molenda et al., 2024). The black-box
setting can be achieved by implementing post-processing modules to embed watermarks (Chang
et al., 2024; Yang et al., 2023). The second category encompasses training-based detection methods
that leverage trained neural networks (Guo et al., 2024b; Solaiman et al., 2019; Zhang et al., 2024b;
Kim et al., 2024; Soto et al., 2024). OpenAI developed GPT-2 detectors using RoBERTa (Liu, 2019)
as their foundation model (Solaiman et al., 2019). Additionally, researchers have explored fine-tuning
language models specifically for detection purposes (Li et al., 2023; Koike et al., 2024; Guo et al.,
2023; Zhang et al., 2024a). The third category consists of zero-shot detection methods (Nguyen-Son
et al., 2024; Zeng et al., 2024; Yang et al., 2024; Tian et al., 2024; Ma & Wang, 2024), which utilize
existing tools like LLMs without additional training. For example, SimLLM (Nguyen-Son et al.,
2024) generates comparative text samples to identify machine-generated content through similarity
analysis. R-Detect (Song et al., 2025) suggests a non-parametric kernel relative test to check if a
text’s distribution is closer to HGT than MGT.

Explainable LLMs & GNNs. Large language models often function as black-box systems, presenting
inherent risks for downstream applications (Zhao et al., 2024). To address this limitation, researchers
have developed various explanation methods (Wu et al., 2020; Li et al., 2016; Enguehard, 2023;
Chen et al., 2023), which can be divided into local and global approaches. Local explanation
methods aim to illuminate how an LLM arrives at predictions for specific inputs (Wu et al., 2020; Li
et al., 2016; Chen et al., 2023). For example, the leave-one-out technique represents a fundamental
approach to measuring input feature importance (Wu et al., 2020; Li et al., 2016). Global explanation
methods focus on understanding how specific model components operate, including hidden layers
and language model mechanisms. For instance, researchers have tracked attention layers to extract
semantic information (Wu et al., 2020). SASC (Singh et al., 2023) employs pre-trained models to
generate explanations for various LLM components.

Various approaches have emerged for extracting subgraph explanations using GNNs (Yuan et al.,
2022b; Lin et al., 2021; Fang et al., 2023; Xie et al., 2022; Chen et al., 2024). These methods can be

6
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Table 1: Detection performance comparisons on HGT and MGT based on ACC. The best and second-
best results are shown in bold and underlined, respectively. YSC represents the combination of the
Yelp, Essay, and Creative datasets.

M4 RAID YSC

Method DaV. Coh. Dol. Blo. Lla. GT4 MPT Mis. Son. Opu. Gem. Avg.

Likelihood Solaiman et al. (2019) 0.69 0.87 0.66 0.54 0.79 0.75 0.50 0.65 0.80 0.83 0.74 0.71
Rank Gehrmann et al. (2019b) 0.51 0.54 0.53 0.53 0.53 0.53 0.51 0.52 0.52 0.52 0.52 0.52
LogRank Ippolito et al. (2019) 0.67 0.88 0.72 0.62 0.80 0.74 0.46 0.66 0.76 0.79 0.72 0.71
Entropy Gehrmann et al. (2019b) 0.62 0.61 0.53 0.53 0.62 0.62 0.52 0.63 0.72 0.74 0.64 0.62
NPR Su et al. (2023) 0.63 0.67 0.55 0.59 0.79 0.66 0.54 0.65 0.70 0.63 0.54 0.63
LRR Su et al. (2023) 0.77 0.75 0.74 0.77 0.87 0.71 0.55 0.71 0.74 0.72 0.53 0.72
DetectGPT Mitchell et al. (2023) 0.48 0.57 0.48 0.59 0.67 0.59 0.46 0.53 0.62 0.58 0.57 0.56
Fast-DetectGPT Bao et al. (2024) 0.81 0.98 0.90 0.54 0.94 0.85 0.48 0.64 0.85 0.88 0.76 0.78
DNAGPT Yang et al. (2024) 0.53 0.74 0.53 0.50 0.68 0.66 0.39 0.54 0.62 0.64 0.65 0.59
Binoculars Ma & Wang (2024) 0.83 0.97 0.90 0.66 0.98 0.92 0.58 0.71 0.88 0.91 0.81 0.83
Glimpse Bao et al. (2025) 0.74 0.94 0.69 0.61 0.88 0.77 0.68 0.77 0.85 0.85 0.76 0.69
GPTZero Tian, Edward (2023) 0.74 0.80 0.61 0.53 0.65 0.60 0.54 0.55 0.69 0.71 0.54 0.63
RoBERTa-QA Guo et al. (2023) 0.83 0.94 0.74 0.51 0.77 0.70 0.56 0.56 0.79 0.87 0.80 0.73
Radar Hu et al. (2023) 0.76 0.77 0.65 0.63 0.68 0.69 0.64 0.72 0.80 0.83 0.78 0.72
DeTeCtive Guo et al. (2024b) 0.90 0.85 0.90 0.92 0.96 0.97 0.92 0.88 0.94 0.91 0.86 0.91

LM2OTIFS 0.95 0.97 0.91 0.98 0.98 1.00 0.90 0.91 0.99 0.99 0.91 0.95

categorized into several groups. Gradient-based traditional approaches, including SA (Baldassarre
& Azizpour, 2019) and Grad-CAM (Pope et al., 2019), leverage gradient information to derive
explanations. Model-agnostic techniques encompass three main categories. First, perturbation-based
methods such as GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), and ReFine (Wang
et al., 2021b) identify important features and subgraph structures through systematic perturbations.
Second, surrogate methods (Vu & Thai, 2020; Duval & Malliaros, 2021) approximate local predictions
using surrogate models to generate explanations. Third, generation-based approaches (Yuan et al.,
2020; Shan et al., 2021; Wang & Shen, 2023) employ generative models to produce both instance-level
and global-level explanations.

6 EXPERIMENTS

We conduct extensive experiments to evaluate LM2OTIFS across two aspects: MGT detection
performance, and explainable motifs effectiveness. For MGT detection, we compare LM2OTIFS
against state-of-the-art supervised and zero-shot detectors on multiple benchmark datasets in both
in-domain and cross-domain aspects. To validate our explainable motifs, we follow the (Hooker
et al., 2019; Zheng et al., 2025) to use Most Relevant First (MoRF) and Least Relevant First (LeRF) to
verify the effectiveness. Due to the limitation of space, we provide ablation studies, time complexity,
implementation, and motifs statistical analysis in Appendix C.

6.1 SETUPS

Datasets. Following established benchmarks in MGT detection (Yang et al., 2024; Zeng et al., 2024),
we evaluate LM2OTIFS on six comprehensive datasets: HC3 (Guo et al., 2023), M4 (Wang et al.,
2024), and RAID (Dugan et al., 2024), Yelp (Mao et al., 2024), Creative, Essay (Verma et al., 2023;
Guo et al., 2024a). We select four domains in each dataset: open-qa, wiki-csai, medicine, and finance
in HC3; wiki-how, reddit, peerread, and arxiv in M4; and recipes, book summaries, poetry, and
IMDB reviews in RAID. The HC3 dataset only contains ChatGPT-generated text. While in M4
and RAID, there are several kinds of LLM-generated texts. In this paper, we also consider language
models: DaVinci(DaV.), Cohere(Coh.), Dolly(Dol.), and BloomZ(Blo.) in M4, Llama2(Lla.),
GPT-4(GT4), MPT, and Mistral(Mis.) in RAID. In Yelp, Creative, and Essay, we consider three
LLMs, Claude3-Sonnet(Son.), Claude-3-Opus(Opu.), and Gemini-1.0-Pro(Gem.). The dataset
details are available in Appendix B.1.

Baselines. We consider the training-based and zero-shot detection methods, such as DetectLLM (Su

et al., 2023), DeTeCtive (Guo et al., 2024b), DNAGPT (Yang et al., 2024). To make a unified com-
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parison protocol, both training-based and zero-shot methods use pre-trained models for comparison.
For the explainable evaluation, we introduce a simple random motif for comparison due to the lack of
existing methods. The detailed information is provided in Appendix B.2.

Implementation. Our experiments are based on a three-layer GCN architecture, and GNNEx-

plainer (Ying et al., 2019), the λ is set to default 0.05. All experiments are conducted on a Linux
machine with 8 NVIDIA A100 GPUs, each with 40GB of memory. The software environment
is CUDA 11.3 and Driver Version 550.54.15. We used Python 3.9.13, Pytorch 1.10.0, and torch-
geometric 2.0.3 to construct our project. Detailed inforamtion are available in Appendix B.2.

6.2 DETECTION PERFORMANCE COMPARISON

We compare LM2OTIFS against 13 baselines, including supervised and zero-shot methods, to
evaluate detection performance. The summary of baselines is provided in Appendix B.2.
We report both accuracy(ACC) and area under the receiver operating characteristic(AUC) re-
sults. Due to the deterministic LLM inference in few-show methods, we report the error bar
of LM2OTIFS in Appendix C separately. For the in-domain setting, we train and test our

Table 2: Detection comparisons on HGTs and ChatGPT-generated
texts. The best and second-best results are shown in bold font and
underlined. * means the model is trained on that dataset.

ACC AUC

Method HC3 M4 RAID Avg. HC3 M4 RAID Avg.

Likelihood 0.75 0.88 0.85 0.83 1.00 0.90 0.98 0.96
Rank 0.53 0.58 0.56 0.56 0.89 0.95 0.91 0.92
LogRank 0.70 0.87 0.84 0.81 1.00 0.94 0.97 0.97
Entropy 0.77 0.73 0.66 0.72 0.95 0.79 0.89 0.88
NPR 0.83 0.71 0.79 0.78 1.00 0.93 0.97 0.97
LRR 0.96 0.86 0.87 0.90 1.00 0.98 0.96 0.98
DetectGPT 0.63 0.61 0.62 0.62 0.56 0.63 0.78 0.66
Fast-DetectGPT 0.97 0.96 0.97 0.97 1.00 0.99 1.00 0.99
DNAGPT 0.73 0.68 0.72 0.71 0.88 0.86 0.93 0.89
Binoculars 0.98 0.94 0.99 0.97 1.00 0.98 1.00 0.99
Glimpse 0.98 0.94 0.91 0.94 1.00 0.98 0.96 0.98
GPTZero 0.77 0.75 0.68 0.73 0.77 0.75 0.68 0.73
RoBERTa-QA 1.00* 0.95 0.80 0.91 1.00* 0.99 0.96 0.98
Radar 0.66 0.76 0.77 0.73 0.52 0.83 0.95 0.76
DeTeCtive 0.92 0.93 0.96 0.93 0.93 0.94 0.98 0.95

LM2OTIFS 0.97 0.98 0.99 0.98 1.00 1.00 1.00 1.00

method on the same domain.
In Table 2, we report the av-
erage results of ChatGPT-based
texts detection on three datasets.
LM2OTIFS achieves the best per-
formance under ACC and AUC
metrics. In Table 1, we study
the performance across various
LLMs. As the results show, the
performance is aligned with Ta-
ble 2. Under the ACC metric,
LM2OTIFS is the best perfor-
mance on average, demonstrat-
ing the ability for MGT detec-
tion. The detailed results are
available in Appendix C. Due
to the limitation of pages, we
provide more experiments about
cross-domain evaluation, statis-
tical significance analysis and
comparison with TextGCN in
Appendix C.1.

6.3 EXPLANATION EVALUATION

Quantitive Analysis. Due to a lack of ground truth, evaluating the effectiveness of explanations
remains challenging. Therefore, we follow previous work (Hooker et al., 2019; Zheng et al., 2025)
using MoRF and LeRF to verify the motifs, which are popular evaluation protocols in XAI that
assess the faithfulness of explanations by measuring how the model’s prediction changes when the
most or least relevant input attributions are sequentially removed according to explanations. For
the MoRF protocol, a lower AUC indicates a more faithful explanation, whereas for LeRF, a higher
AUC is better. We evaluate our motifs on the HC3 dataset using this framework. We first extract
the explainable motifs, which indicate the importance of each edge. Then we remove the most
important edges following an increasing sequence. As shown in Figure 3, the motifs generated by
our method, LM2OTIFS, are more effective and consistently outperform the baseline models. Under
the MoRF protocol, removing the 20% most important edges from our motifs causes an average
accuracy drop of over 15% on the HC3 dataset. In contrast, explanations from other methods result
in an accuracy decline of less than 10%. Conversely, under the LeRF protocol, our motifs lead to
a smaller performance drop than the baselines, demonstrating their robustness. Detailed results for
each domain are provided in Appendix C.2.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) HC3 (b) M4 (c) RAID

Figure 3: Comparison results of MoRF and LeRF between explainable motifs extracted from
LM2OTIFS and random motifs.

Figure 4: High-order explainable motif samples from GPT-4 and Davinci. We extract motifs from
texts in the PubMed dataset for the same question. In graph motifs, solid lines represent subgraph
motifs and dashed lines mean the text contains words. In text motifs, words highlighted in the same
color are connected in the corresponding graph motifs. A single word may contain multiple colors.

Qualitative Analysis.To elucidate motif patterns, we visualize both the graph and the corresponding
text motifs, encompassing word-level and higher-order structures. Word-level motifs highlight
difference of word occurrence probabilities, while higher-order motifs capture complex relationships,
such as phrasal and semantic structures. Figure 4 presents examples extracted from the PubMed (Jin
et al., 2019) dataset, preserving the top 2% of edges. While GPT-4 and Davinci share common words
(e.g., “sleep”, “patients”), our method captures distinct phrasal patterns. For instance, GPT-4’s “ob”
and “sleep” (purple) indicate “obstructive sleep”, whereas Davinci’s “disorder” and “sleep” represent
“sleep-related breathing disorder”. Furthermore, GPT-4’s connection of “airway”, “improves”, and
“serum” reveals sentence-level patterns. Detailed case studies are provided in Appendix C.2.

Generally, detectors make predictions by combining multiple types of features, such as word dis-
tributions and co-occurrence patterns. For example, in watermarking-based detection methods (Li
et al., 2025), the probability of generating certain words is manipulated through predefined green
and red lists. During inference, deviations in word frequencies can be used to determine whether the
text is machine-generated. Interpretability aims to reveal which specific features contribute to the
detector’s decision. Importantly, these features are not merely simple statistical counts; rather, they
reflect meaningful distinctions that separate different categories of text, which reveal that different
language models possess distinct and visible fingerprints.

7 CONCLUSION

This paper focuses on explainable authorship detection, introducing a framework that identifies
characteristic motifs to provide insight into model decisions. We evaluate our method against
supervised and zero-shot learning baselines across various domains, demonstrating comparable
performance. We follow the previous XAI evaluation protocol to verify the effectiveness of the
explainable motifs.

Limitation & Future Work. First, we have not explored the impact of different GNN architectures
or hyperparameter settings on the resulting explanations. Second, the quality of the explainable
motifs is dependent on the quality of the graph representation, which in turn requires a sufficient
number of training samples to construct effectively. Future work could investigate the robustness of
our method under data-scarce conditions and explore a wider range of GNN backbones.
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A PROOF OF THEOREM 3.1

We first prove that the ensemble of PGB detectors is at least as accurate as the ensemble of ESB
detectors. To this end, let us recall that an ESB detector is completely characterized by the mapping
gs and the PGB detector by (K,λ, eh, em, At, As, gp). Let us consider an arbitrary ESB detector by
fixing the function gs(·). The ESB detector computes P̂ℓ(st|s1:t−1), ℓ ∈ {h,m}, t ∈ [T ] empirically
and uses gs((P̂ℓ(st|s1:t−1))ℓ∈{h,m},t∈[T ],So) for detection. On the other hand, the PGB uses the
embedding functions eℓ, At, As to compute the final node embeddings h(K) and the mapping
gp(h

(K),So) for detection. We take K = T and λ = 1. Then, to prove that there exists a PGB
which matches the ESB in terms of detection accuracy, it suffices to show that there exist choices of
embedding functions eℓ, At, As, such that the empirical estimate P̂ℓ(st|s1:t−1), ℓ ∈ {h,m}, t ∈ [T ]
can be written as a function of the final node embeddings h(T ), i.e., there exists r(·) such that
r(h(T )) = (P̂ℓ(st|s1:t−1))ℓ∈{h,m},t∈[T ]. Then, the proof follows by taking gp(r(h

(T )),So) =

gs((P̂ℓ(st|s1:t−1))ℓ∈{h,m},t∈[T ],So), so that

P (fPGB(Th, Tm,So) = fESB(Th, Tm,So)) = 1.

To this end, we take eℓ as the identity function and At as a one-to-one parametrization function,
so that for each token node si, the collection Jℓ(si)× (Iℓ,j(si))j∈Jℓ(si) can be computed from its
connected edge weights, where Jℓ(si) is the training sequence indices in which the token is present
and Iℓ,j(si) is the collection of indices in the sequence Sℓ,j , j ∈ Jℓ whose value is equal to si. We
further note that

P̂ℓ(st|s1:t−1) =

1

|Jℓ(st)|

|Jℓ(st)|∑
i=1

∑|Sℓ,i|−t
j=1 1(Sℓ,i,j:j+t = s1:t)∑|Sℓ,i|−t

j=1 1(Sℓ,i,j:j+t−1 = s1:t−1)
,

Furthermore,

1(Sℓ,i,j:j+t = s1:t) =
∏

si:i∈[t]

1((j + i) ∈ Iℓ,j(si)),

Consequently, for each t ∈ [T ], the conditional distribution P̂ℓ(st|s1:t−1) can be computed as a
function of h(t). As a result, the aggregate final node embedding h(T ) can yeild P̂ℓ(st|s1:t−1), ℓ ∈
{h,m}, t ∈ [T ] as a function. This complete the first part of the proof.

To prove strict improvements of PGM detectors over ESB detectors in terms of detection accuracy, we
note that ESB detectors are restricted by their limited context length T . To provide a concrete example,
consider a detection scenario characterized by the pair of probability distributions Ph, Pm, where all
human and machine generated text sequences have length greater than T . That is, for any sequence
Sℓ = (Sℓ,1, Sℓ,2, · · · , Sℓ,L) with L ≤ T , we have Pℓ(Sℓ,1, Sℓ,2, · · · , Sℓ,L) = 0, where ℓ ∈ {h,m}.
Furthermore, assume that the vocabulary consists of two tokens {a, b}. Both human and machine
generated text sequences consist of tokens generated independently and with equal probability over
the vocabulary for all indices in {1, 2, · · · , L− 1}. The human generated text always ends with the
token a and machine generated text with the token b, i.e., P (Sh,L = a) = P (Sm,L = b) = 1. Then,
it is straightforward to see that a PGM can achieve accuracy equal to one, since the edge weights,
which are functions of Jℓ × (Iℓ,j)j∈Jℓ

can capture the fact that the human generated text ends in a
and machine generated text ends in b. On the other hand, for an ESB, it can be noted that all of the
empirical conditional distributions P̂ℓ(st|s1:t−1), t ∈ [T ], ℓ ∈ {h,m} converge to uniform Bernoulli
distributions as L → ∞. So, the ESB achieves an accuracy which is strictly less than 1 due to its
limited context length, and its accuracy converges to 1

2 as L → ∞. This completes the proof.

B EXPERIMENTAL SETUP DETAILS

B.1 DATASETS

Our evaluation employs six distinct datasets. We selected specific domains or text sources from each
to create a comprehensive benchmark.
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Table 3: The details of the dataset for detection between HGT and MGT generated by ChaGPT.

HC3 M4 RAID

open-qa wiki-csai medicine finance wiki-how reddit peerread arxiv recipe book poetry review
# Training 2,000 1,384 2,000 2,000 2,000 872 2,000 2,000 2,000 2,000 2,000 1,793
# Validation 100 100 100 100 100 100 100 100 100 100 100 100
# Test 200 200 200 200 200 200 200 200 200 200 200 200
# Nodes 15,974 12,069 8,127 9,581 20,061 11,276 18,926 10,526 6,562 20,515 16,818 17,024
# Edges 3,262K 2,635K 2,063K 2,326K 6,823K 4,658K 8,591K 3,595K 2,119K 7,076K 5,059K 5,448K

Table 4: The details of the M4 dataset for detection between HGT and MGT generated by LLMs.

reddit peerread arxiv

Davinci Cohere Dolly BloomZ Davinci Cohere Dolly BloomZ Davinci Cohere Dolly BloomZ
# Training 2,000 2,000 2,000 2,000 872 824 872 830 2,000 2,000 2,000 2,000
# Validation 100 100 100 100 100 100 100 98 100 100 100 100
# Test 200 200 200 200 200 198 200 192 200 200 200 200
# Nodes 20,867 21,701 21,344 20,944 11,059 10,837 14,366 11,340 10,153 10,724 12,039 11,468
# Edges 7,175K 7,055K 7,157K 6,601K 4,139K 3,933K 5,924K 4,296K 3,343K 3,376K 4,132K 4,011K

Table 5: The details of the RAID dataset for detection between HGT and MGT generated by LLMs.

recipes poetry reviews

Llama GPT-4 MPT Mistral Llama 2 GPT-4 MPT Mistral Llama 2 GPT-4 MPT Mistral
# Training 2,000 2,000 2,000 2,000 2,000 2,000 2,000 2,000 1,793 1,793 1,793 1,793
# Validation 100 100 100 100 100 100 100 100 100 100 100 100
# Test 200 200 200 200 200 200 200 200 200 200 200 200
# Nodes 6,904 6,701 13,466 8,833 16,696 17,152 19,476 17,523 17,004 17,387 19,371 17,843
# Edges 2,125K 2,163K 4,066K 2,586K 4,766K 4,527K 5,924K 4,835K 5,039K 5,694K 6,017K 5,142K

Table 6: The details of the dataset for detection between HGT and MGT generated by LLMs in Yelp,
Creative, and Essay Dataset. Sonnet and Opus are short for Claude3-Sonnet and Claude-3-Opus.

Yelp Essay Creative

Sonnet Opus Gemini Sonnet Opus Gemini Sonnet Opus Gemini
# Training 2,000 2,000 2,000 1,500 1,500 1,500 1,500 1,500 1,500
# Validation 200 200 200 100 100 100 100 100 100
# Test 200 200 200 200 200 200 200 200 200
# Nodes 11,581 11,308 11,350 20,836 20,748 20,868 20,597 20,057 19,936
# Edges 1,940K 1,886K 1,778K 8,422K 8,038K 7,989K 7,187K 6,308K 6,250K

• HC3(Human-ChatGPT Comparison Corpus) (Guo et al., 2023): This dataset contains
questions with both human-generated text (HGT) and machine-generated text (MGT) from
ChatGPT. From its five available domains, we utilize four for our experiments: open-qa,
wiki-csai, medicine, and finance.

• M4 (Wang et al., 2024): The M4 dataset provides MGT from several LLMs, including
Davinci, Dolly, and BloomZ, across diverse domains such as wiki-how, reddit, peerread,
and arxiv.

• RAID (Dugan et al., 2024): This large-scale dataset contains documents generated by 11
LLMs across 11 genres. Our benchmark includes four of these: recipe, book, poetry, and
review.

• Yelp, Creative, and Essay (Mao et al., 2024; Verma et al., 2023; Guo et al., 2024a): For
these three datasets, while texts from five LLMs are available, our analysis focuses on those
generated by Claude-3-Sonnet, Claude-3-Opus, and Gemini-1.0-Pro.

Detailed statistics for the training, validation, and test sets, including their graph representations, are
presented in Tables 3, 4, 5, and 6.
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Table 7: Detection comparisons with SOTA methods on ACC between HGT and ChatGPT-generated
texts. The best results are shown in bold font. The second-best results are shown underlined. * means
the model is trained on that dataset. The Fast-D.GPT is short for Fast-DetectGPT.

HC3 M4 RAID

Method open-qa wiki-csai medicine finance wiki-how reddit peerread arxiv recipe book poetry review Avg.

Likelihood 0.85 0.81 0.76 0.58 0.85 0.96 0.80 0.92 0.83 0.96 0.82 0.78 0.83
Rank 0.54 0.53 0.54 0.51 0.57 0.55 0.58 0.61 0.51 0.65 0.53 0.54 0.56
LogRank 0.77 0.73 0.72 0.58 0.82 0.95 0.80 0.92 0.81 0.93 0.84 0.79 0.81
Entropy 0.92 0.76 0.77 0.61 0.83 0.81 0.68 0.60 0.80 0.71 0.49 0.62 0.72
NPR 0.65 0.92 0.91 0.85 0.61 0.68 0.83 0.72 0.84 0.83 0.50 0.97 0.78
LRR 0.98 0.95 0.98 0.94 0.82 0.82 1.00 0.81 0.94 0.81 0.75 0.98 0.90
DetectGPT 0.46 0.63 0.76 0.68 0.58 0.66 0.59 0.61 0.56 0.66 0.59 0.68 0.62
Fast-D.GPT 0.95 0.99 0.98 0.97 0.88 0.94 1.00 1.00 0.99 0.97 0.93 1.00 0.97
DNAGPT 0.63 0.79 0.63 0.88 0.60 0.79 0.53 0.81 0.71 0.82 0.75 0.59 0.71
Binoculars 0.92 1.00 1.00 1.00 0.77 0.97 1.00 1.00 1.00 0.96 0.99 0.99 0.97
Glimpse 0.95 0.98 0.99 0.99 0.97 0.91 0.87 0.99 0.94 0.96 0.76 0.98 0.94
GPTZero 0.58 0.69 0.96 0.84 0.54 0.82 0.96 0.69 0.61 0.84 0.48 0.78 0.73
RoBERTa-QA 1.00* 1.00* 1.00* 0.99* 0.88 0.96 0.99 0.95 0.83 0.86 0.50 1.00 0.91
Radar 0.52 0.81 0.55 0.75 0.46 0.93 0.88 0.77 0.61 0.97 0.61 0.89 0.73
DeTeCtive 0.99 0.79 0.99 0.89 0.89 0.93 0.90 0.98 0.94 0.95 0.97 0.97 0.93

LM2OTIFS 0.97 0.96 0.98 0.98 0.97 0.99 0.98 0.96 0.99 1.00 0.99 0.96 0.98

Table 8: MGT detection AUC performance comparisons with SOTA methods on HGT and ChatGPT-
generated texts. The best results are shown in bold font. The second-best results are shown underlined.
* means the model is trained on that dataset. The Fast-D.GPT is short for Fast-DetectGPT.

HC3 M4 RAID

Method open-qa wiki-csai medicine finance wiki-how reddit peerread arxiv recipe book poetry review Avg.

Likelihood 1.00 1.00 1.00 1.00 0.95 0.99 0.69 0.97 1.00 1.00 0.90 1.00 0.96
Rank 1.00 0.77 0.99 0.81 0.94 0.92 0.97 0.95 0.79 0.99 0.87 1.00 0.92
LogRank 1.00 1.00 1.00 1.00 0.95 0.99 0.82 0.98 1.00 1.00 0.89 1.00 0.97
Entropy 0.99 0.85 0.99 0.97 0.91 0.91 0.60 0.75 0.97 0.88 0.75 0.97 0.88
NPR 1.00 1.00 1.00 1.00 0.95 0.99 0.81 0.98 1.00 1.00 0.89 1.00 0.97
LRR 1.00 0.99 1.00 0.99 0.93 0.98 1.00 0.99 0.99 0.99 0.85 1.00 0.98
DetectGPT 0.35 0.59 0.70 0.61 0.68 0.71 0.70 0.43 0.65 0.77 0.84 0.84 0.66
Fast-D.GPT 1.00 1.00 1.00 0.98 0.96 0.99 1.00 1.00 1.00 1.00 0.98 1.00 0.99
DNAGPT 0.72 0.95 0.91 0.94 0.97 0.95 0.56 0.94 0.94 0.97 0.84 0.98 0.89
Binoculars 0.98 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99
Glimpse 1.00 1.00 1.00 1.00 0.99 1.00 0.92 1.00 1.00 1.00 0.85 1.00 0.98
GPTZero 0.58 0.69 0.96 0.84 0.54 0.82 0.96 0.69 0.61 0.84 0.48 0.78 0.73
RoBERTa-QA 1.00* 1.00* 1.00* 1.00* 0.94 1.00 1.00 1.00 0.90 0.99 0.95 1.00 0.98
Radar 0.20 0.77 0.41 0.68 0.40 0.97 1.00 0.95 0.99 1.00 0.88 0.91 0.76
DeTeCtive 1.00 0.84 0.99 0.89 0.90 0.98 0.90 0.99 0.99 0.97 0.97 0.97 0.95

LM2OTIFS 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

B.2 EXPERIMENTAL SETUP

Detection Baselines. Our evaluation includes comparisons with several zero-shot detection methods:
Likelihood, Rank, Log-Rank, Entropy (Gehrmann et al., 2019b; Solaiman et al., 2019; Ippolito
et al., 2019), DetectGPT (Mitchell et al., 2023), DetectLLM (LRR and NPR) (Su et al., 2023),
DNA-GPT (Yang et al., 2024), Fast-DetectGPT (Bao et al., 2024), Glimpse (Bao et al., 2025) and
Binoculars (Ma & Wang, 2024). DetectGPT employs perturbations to approximate the probability
distribution of the text. Fast-DetectGPT improves upon this by introducing a conditional probability
curvature metric for detector optimization, thus replacing traditional perturbation-based methods.
DNA-GPT adopts a distinct approach: it first truncates the input text, then uses LLMs to generate the
subsequent content, and finally analyzes the N-gram differences between the original and generated
text. To make a fair comparison, we utilize the OPT-2.7B model (Zhang et al., 2022) as the
default reference model. For detailed implementation specifics, we followed the publicly available
implementation of Fast-DetectGPT 2.

2https://github.com/baoguangsheng/fast-detect-gpt
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Table 9: Cross-domain MGT detection ACC performance comparisons with SOTA methods on HGT
and ChatGPT-generated texts. The best results are shown in bold font. The second-best results are
shown in underlined. The Fast-D.GPT is short for Fast-DetectGPT.

HC3 M4 RAID

Method wiki-csai medicine finance reddit peerread arxiv recipe poetry review Avg.

Likelihood 0.97 0.96 0.98 0.88 0.80 0.67 0.57 0.70 0.99 0.84
Rank 0.65 0.94 0.65 0.82 0.56 0.66 0.54 0.80 0.80 0.71
LogRank 0.98 0.97 0.98 0.92 0.83 0.71 0.53 0.73 0.97 0.85
Entropy 0.71 0.91 0.87 0.61 0.75 0.50 0.50 0.58 0.78 0.69
NPR 0.97 0.97 0.98 0.93 0.97 0.77 0.55 0.72 0.97 0.87
LRR 0.98 0.94 0.96 0.93 0.94 0.76 0.52 0.69 0.93 0.85
DetectGPT 0.52 0.58 0.53 0.56 0.54 0.50 0.56 0.67 0.73 0.58
Fast-D.GPT 0.99 0.99 0.95 0.93 1.00 0.94 1.00 0.89 1.00 0.97
DNAGPT 0.86 0.87 0.84 0.92 0.49 0.85 0.84 0.67 0.96 0.81
Binoculars 0.97 0.97 0.97 0.89 0.89 0.89 1.00 1.00 1.00 0.95
Glimpse 1.00 0.98 1.00 0.96 0.88 0.99 0.96 0.78 1.00 0.95
RoBERTa-QA 0.53 0.65 0.53 0.77 0.93 0.99 0.70 0.86 0.85 0.76
Radar 0.79 0.53 0.74 0.92 0.77 0.87 0.65 0.74 0.88 0.77
DeTeCtive 0.68 0.58 0.60 0.76 0.76 0.65 0.48 0.72 0.89 0.68

LM2OTIFS 0.71 0.82 0.64 0.59 0.99 0.93 0.50 0.93 0.97 0.79

Table 10: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT on
M4 dataset. The best results are shown in bold font. The second-best results are shown in underlined.
The Fast-D.GPT is short for Fast-DetectGPT.

DaVinci Cohere Dolly BloomZ

Method reddit peerread arxiv reddit peerread arxiv reddit peerread arxiv reddit peerread arxiv Avg.

Likelihood 0.89 0.77 0.40 0.95 0.78 0.89 0.63 0.65 0.71 0.56 0.34 0.72 0.69
Rank 0.57 0.51 0.45 0.56 0.54 0.52 0.50 0.53 0.57 0.55 0.51 0.53 0.53
LogRank 0.83 0.77 0.40 0.94 0.81 0.90 0.75 0.69 0.73 0.71 0.39 0.77 0.72
Entropy 0.78 0.71 0.37 0.73 0.53 0.58 0.54 0.46 0.58 0.63 0.34 0.62 0.57
NPR 0.67 0.74 0.49 0.65 0.83 0.53 0.51 0.52 0.61 0.52 0.71 0.55 0.61
LRR 0.86 0.95 0.50 0.68 0.94 0.63 0.75 0.82 0.66 0.75 0.98 0.59 0.76
DetectGPT 0.56 0.53 0.35 0.63 0.60 0.47 0.54 0.46 0.45 0.58 0.57 0.62 0.53
Fast-D.GPT 0.97 1.00 0.46 0.96 0.99 0.98 0.90 0.99 0.82 0.43 0.51 0.69 0.81
DNAGPT 0.75 0.47 0.36 0.90 0.47 0.86 0.51 0.53 0.54 0.45 0.49 0.57 0.58
Binoculars 0.98 1.00 0.51 0.98 0.96 0.98 0.83 0.99 0.87 0.58 0.62 0.77 0.84
Glimpse 0.77 0.95 0.51 0.95 0.88 1.00 0.64 0.68 0.75 0.52 0.43 0.88 0.75
GPTZero 0.86 0.99 0.36 0.84 0.92 0.65 0.76 0.58 0.50 0.61 0.53 0.46 0.67
RoBERTa-QA 0.93 1.00 0.55 0.95 0.97 0.89 0.95 0.55 0.71 0.50 0.50 0.52 0.75
Radar 0.84 0.88 0.57 0.87 0.85 0.60 0.66 0.77 0.53 0.80 0.79 0.30 0.71
DeTeCtive 0.90 0.85 0.95 0.84 0.76 0.95 0.96 0.75 0.98 0.94 0.89 0.92 0.89

LM2OTIFS 0.97 1.00 0.87 0.98 1.00 0.94 0.95 1.00 0.77 1.00 1.00 0.95 0.95

Our comparative evaluation also includes training-based methods: RoBERTa-QA (Guo et al.,
2023), DeTeCtive (Guo et al., 2024b), and RADAR (Hu et al., 2023). Additionally, we present
comparison results with GPTZero 3. DeTeCtive is specifically designed for multi-source MGT
detection. It employs contrastive learning to minimize the representational divergence among various
MGT sources. During prediction, DeTeCtive utilizes k-nearest neighbors (KNN) to determine
the classification. For our experiments, we use the DeTeCtive model trained on the OUTFOX
dataset (Koike et al., 2024). RoBERTa-QA, proposed in (Guo et al., 2023) and trained on the HC3
dataset, leverages the pre-trained RoBERTa model (Liu, 2019) and fine-tunes a classification layer on
the HC3 data.

3https://gptzero.me
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Table 11: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT
on RAID dataset. The best results are shown in bold font. The second-best results are shown in
underlined. The Fast-D.GPT is short for Fast-DetectGPT.

Llama GPT-4 MPT Mistral

Method recipe poetry review recipe poetry review recipe poetry review recipe poetry review Avg.

Likelihood 0.83 0.78 0.76 0.82 0.68 0.75 0.27 0.69 0.54 0.45 0.76 0.73 0.67
Rank 0.51 0.53 0.54 0.51 0.53 0.54 0.50 0.53 0.50 0.50 0.53 0.54 0.52
LogRank 0.79 0.81 0.79 0.80 0.64 0.78 0.30 0.63 0.44 0.43 0.77 0.78 0.66
Entropy 0.78 0.47 0.61 0.76 0.49 0.60 0.29 0.65 0.62 0.55 0.68 0.65 0.60
NPR 0.92 0.50 0.94 0.73 0.50 0.76 0.56 0.53 0.54 0.58 0.53 0.84 0.66
LRR 0.91 0.81 0.90 0.78 0.60 0.74 0.57 0.53 0.56 0.66 0.61 0.86 0.71
DetectGPT 0.51 0.77 0.73 0.51 0.61 0.65 0.44 0.48 0.46 0.51 0.52 0.56 0.56
Fast-D.GPT 0.92 0.94 0.96 0.96 0.79 0.80 0.39 0.63 0.41 0.48 0.79 0.64 0.73
DNAGPT 0.76 0.69 0.58 0.68 0.70 0.59 0.29 0.54 0.35 0.40 0.52 0.70 0.57
Binoculars 1.00 0.98 0.95 0.99 0.81 0.95 0.43 0.62 0.68 0.76 0.72 0.65 0.80
Glimpse 0.93 0.77 0.95 0.93 0.60 0.79 0.70 0.59 0.75 0.81 0.67 0.84 0.78
GPTZero 0.74 0.47 0.73 0.61 0.46 0.73 0.53 0.52 0.57 0.58 0.57 0.51 0.59
RoBERTa-QA 0.85 0.50 0.96 0.76 0.50 0.83 0.46 0.53 0.69 0.44 0.55 0.69 0.65
Radar 0.58 0.59 0.86 0.63 0.57 0.86 0.59 0.73 0.59 0.64 0.89 0.63 0.68
DeTeCtive 1.00 0.95 0.94 0.97 0.96 0.97 0.91 0.90 0.95 0.87 0.88 0.90 0.93

LM2OTIFS 1.00 0.98 0.97 0.99 1.00 1.00 0.95 0.84 0.90 0.94 0.88 0.92 0.95

Table 12: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT on
Yelp, Essay, and Creative dataset. The best results are shown in bold font. The second-best results are
shown in underlined. The Fast-D.GPT is short for Fast-DetectGPT.

Claude3-Sonnet Claude3-Opus Gemini

Method Yelp Essay Creative Yelp Essay Creative Yelp Essay Creative Avg.

Likelihood 0.61 0.96 0.83 0.61 0.97 0.91 0.56 0.97 0.69 0.79
Rank 0.51 0.54 0.51 0.50 0.55 0.51 0.50 0.55 0.51 0.52
LogRank 0.57 0.91 0.79 0.54 0.93 0.89 0.54 0.94 0.68 0.75
Entropy 0.60 0.87 0.69 0.58 0.92 0.71 0.53 0.85 0.53 0.70
NPR 0.62 0.67 0.80 0.62 0.58 0.68 0.50 0.57 0.56 0.62
LRR 0.55 0.90 0.78 0.52 0.91 0.73 0.45 0.58 0.56 0.66
DetectGPT 0.49 0.68 0.69 0.44 0.62 0.69 0.42 0.66 0.62 0.59
Fast-D.GPT 0.66 1.00 0.88 0.72 0.99 0.93 0.60 0.98 0.69 0.83
DNAGPT 0.54 0.66 0.66 0.54 0.71 0.67 0.53 0.77 0.64 0.64
Binoculars 0.69 1.00 0.94 0.77 1.00 0.97 0.68 0.97 0.78 0.87
Glimpse 0.69 1.00 0.86 0.69 0.97 0.90 0.59 0.96 0.74 0.82
GPTZero 0.63 0.66 0.78 0.61 0.65 0.86 0.59 0.36 0.66 0.64
RoBERTa-QA 0.72 0.86 0.79 0.82 0.87 0.93 0.81 0.86 0.72 0.82
Radar 0.62 0.94 0.84 0.64 0.95 0.91 0.64 0.96 0.74 0.80
DeTeCtive 0.98 0.86 0.97 0.99 0.79 0.96 0.97 0.85 0.77 0.90

LM2OTIFS 0.99 0.99 0.98 1.00 0.99 0.98 0.99 0.97 0.77 0.96

Explainable Baselines. To verify the effectiveness of our method, we introduce a simple baseline,
Random Motifs, which serves as a graph-explainable sanity check, where the importance of each
edge is randomly assigned. If an explanation method performs worse than random, it is considered to
provide no meaningful insight.

Implementation. The detector is implemented as a two-layer Graph Convolutional Network. The
input dimension of the first layer is dependent on the token size of the training set. The hidden
dimension is 64, and the output dimensionality is fixed to the number of text categories. We use
the Bert (Devlin et al., 2019) tokenizer as the tokenizer. We employ Adam (Kingma, 2014) as
the default optimizer with the learning rate 5E-4, 5000 epochs. For motif extraction, we adapt
the GNNExplainer (Ying et al., 2019)to suit our analysis. Notably, the explanation method can be
replaced by others, and we only use a basic post-hoc explainer here. We follow the Refine (Wang
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Table 13: MGT detection AUC performance comparisons with SOTA methods on HGT and MGT on
M4 dataset. The best results are shown in bold font. The second-best results are shown in underlined.
The Fast-D.GPT is short for Fast-DetectGPT.

DaVinci Cohere Dolly BloomZ

Method reddit peerread arxiv reddit peerread arxiv reddit peerread arxiv reddit peerread arxiv Avg.

Likelihood 0.98 0.83 0.27 0.96 0.78 0.96 0.93 0.60 0.80 0.70 0.47 0.78 0.76
Rank 0.92 0.94 0.45 0.90 0.82 0.81 0.72 0.50 0.69 0.88 0.72 0.88 0.77
LogRank 0.98 0.96 0.28 0.97 0.90 0.97 0.93 0.65 0.79 0.84 0.58 0.85 0.81
Entropy 0.86 0.58 0.23 0.76 0.61 0.58 0.76 0.51 0.61 0.83 0.49 0.69 0.63
NPR 0.98 1.00 0.28 0.97 1.00 0.97 0.86 0.97 0.80 0.86 0.97 0.86 0.88
LRR 0.97 1.00 0.36 0.97 1.00 0.97 0.98 0.92 0.74 0.98 1.00 0.93 0.90
DetectGPT 0.59 0.74 0.29 0.72 0.76 0.43 0.61 0.54 0.42 0.73 0.71 0.63 0.60
Fast-D.GPT 0.99 1.00 0.48 0.99 1.00 0.99 0.97 1.00 0.90 0.37 0.52 0.75 0.83
DNAGPT 0.84 0.27 0.32 0.94 0.35 0.93 0.72 0.55 0.70 0.47 0.11 0.69 0.57
Binoculars 1.00 1.00 0.51 0.98 1.00 1.00 0.98 1.00 0.95 0.53 0.66 0.85 0.87
Glimpse 0.92 1.00 0.51 0.98 0.96 1.00 0.83 0.81 0.91 0.66 0.42 0.98 0.83
GPTZero 0.86 0.99 0.36 0.84 0.92 0.65 0.76 0.58 0.50 0.61 0.53 0.46 0.67
RoBERTa-QA 0.99 1.00 0.94 0.99 1.00 1.00 0.98 0.95 0.99 0.61 0.38 0.66 0.87
Radar 0.95 1.00 0.48 0.97 1.00 0.78 0.79 0.92 0.43 0.90 0.88 0.52 0.80
DeTeCtive 0.96 0.85 0.98 0.89 0.88 0.98 0.96 0.86 1.00 0.96 0.96 0.98 0.94

LM2OTIFS 0.99 1.00 0.94 1.00 1.00 0.98 0.99 1.00 0.85 1.00 1.00 0.98 0.98

Table 14: MGT detection AUC performance comparisons with SOTA methods on HGT and MGT
on RAID dataset. The best results are shown in bold font. The second-best results are shown in
underlined. The Fast-D.GPT is short for Fast-DetectGPT.

Llama GPT-4 MPT Mistral

Method recipe poetry review recipe poetry review recipe poetry review recipe poetry review Avg.

Likelihood 0.99 0.86 0.98 0.98 0.72 0.95 0.38 0.67 0.53 0.64 0.80 0.71 0.77
Rank 0.88 0.79 0.97 0.67 0.65 0.87 0.45 0.92 0.83 0.45 0.93 0.90 0.78
LogRank 0.99 0.87 0.98 0.97 0.69 0.94 0.38 0.73 0.60 0.64 0.81 0.74 0.78
Entropy 0.94 0.63 0.92 0.91 0.59 0.77 0.35 0.72 0.61 0.59 0.80 0.71 0.71
NPR 0.99 0.87 0.98 0.97 0.70 0.93 0.39 0.74 0.61 0.64 0.82 0.74 0.78
LRR 0.98 0.88 0.98 0.94 0.60 0.83 0.44 0.83 0.84 0.62 0.89 0.84 0.81
DetectGPT 0.52 0.82 0.83 0.55 0.63 0.75 0.29 0.45 0.45 0.48 0.45 0.55 0.56
Fast-D.GPT 0.99 0.97 0.97 0.99 0.88 0.99 0.50 0.61 0.51 0.70 0.77 0.65 0.79
DNAGPT 0.96 0.75 0.95 0.80 0.75 0.88 0.38 0.55 0.49 0.57 0.72 0.60 0.70
Binoculars 0.99 0.99 0.97 1.00 0.98 0.99 0.55 0.66 0.59 0.72 0.79 0.68 0.83
Glimpse 1.00 0.87 0.97 0.99 0.60 0.88 0.69 0.63 0.84 0.86 0.74 0.92 0.83
GPTZero 0.74 0.47 0.73 0.61 0.46 0.73 0.53 0.52 0.57 0.58 0.57 0.51 0.59
RoBERTa-QA 0.95 0.94 0.96 0.82 0.83 0.95 0.45 0.73 0.63 0.31 0.65 0.54 0.73
Radar 0.98 0.85 0.89 0.99 0.81 0.87 0.95 0.83 0.74 0.80 0.86 0.63 0.85
DeTeCtive 1.00 0.95 0.96 0.99 0.96 0.99 0.92 0.91 0.99 0.91 0.90 0.97 0.95

LM2OTIFS 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.90 0.95 0.99 0.94 0.98 0.98

et al., 2021a) to implement the GNNExplainer. The optimizer for GNNExplainer is Adam with a
learning rate of 1E-3, 100 epochs.

C DETAILED EXPERIMENT RESULTS

C.1 EXTENDED DETECTION EXPERIMENTS

In our experiments, we consider in-domain detection and cross-domain detection in the same dataset
and report the results in this section. We report the results under ACC and AUC metrics. For GPTZero,
since it provides a binary output, we consider its ACC and AUC values to be equivalent.

In-Domain Detection. We provide the detailed experiment results for distinguishing HGTs and
MGTs by ChatGPT in Table 7 and Table 8. The results demonstrate that LM2OTIFS achieves the
best performance across all domains under both ACC and AUC metrics, aligned with our analysis. In
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Table 15: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT on
Yelp, Essay, and Creative dataset. The best results are shown in bold font. The second-best results are
shown in underlined. The Fast-D.GPT is short for Fast-DetectGPT.

Claude3-Sonnet Claude3-Opus Gemini

Method Yelp Essay Creative Yelp Essay Creative Yelp Essay Creative Avg.

Likelihood 0.73 0.94 0.94 0.72 1.00 0.99 0.55 0.99 0.76 0.85
Rank 0.54 0.85 0.85 0.49 0.99 0.92 0.39 0.97 0.65 0.74
LogRank 0.69 0.93 0.93 0.68 1.00 0.98 0.50 0.99 0.74 0.83
Entropy 0.64 0.83 0.83 0.57 0.95 0.88 0.42 0.91 0.57 0.73
NPR 0.68 0.99 0.94 0.66 0.99 0.98 0.49 0.98 0.76 0.83
LRR 0.54 1.00 0.88 0.52 1.00 0.95 0.39 0.99 0.70 0.77
DetectGPT 0.53 0.75 0.71 0.43 0.74 0.78 0.37 0.80 0.64 0.64
Fast-D.GPT 0.73 1.00 0.94 0.81 1.00 0.99 0.68 0.99 0.79 0.88
DNAGPT 0.67 0.94 0.86 0.70 0.94 0.93 0.58 0.95 0.75 0.81
Binoculars 0.79 1.00 0.99 0.87 1.00 1.00 0.73 0.99 0.79 0.91
Glimpse 0.78 1.00 0.90 0.83 1.00 0.96 0.74 1.00 0.78 0.89
GPTZero 0.63 0.66 0.78 0.61 0.65 0.86 0.59 0.36 0.66 0.64
RoBERTa-QA 0.92 0.95 0.94 0.96 0.98 0.97 0.96 0.94 0.78 0.93
Radar 0.58 0.93 0.99 0.68 0.99 0.97 0.70 0.99 0.76 0.84
DeTeCtive 0.98 0.86 0.96 0.99 0.79 0.99 0.99 0.85 0.76 0.91

LM2OTIFS 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.78 0.97

addition, we also provide the experiment results between HGT and MGT by other LLMs in Table 10,
11, 12, 13, 14, and 15. LM2OTIFS performs consistently well on various LLMs and achieves the best
performance, indicating the effectiveness of PGM for MGT detection tasks.

Table 16: Statistical significance analysis on HC3 dataset. We repeat the experiments 5 times and
report the mean and standard deviation.

Metric open-qa wiki-csai medicine finance

ACC 0.9690±0.0073 0.9410±0.0097 0.9750±0.0032 0.9810±0.0037

AUC 0.9965±0.0005 0.9938±0.0005 0.9993±0.0001 0.9983±0.0004

Cross-Domain Detection. To further analysis the generality of LM2OTIFS, we conduct cross-domain
detection experiments. We use the open-qa, wiki-how, and books domains in HC, M4, and RAID
datasets as the training domain and test on other domains, respectively. For the zero-shot baselines
and RADAR, we use the training data as a reference to learning a threshold and apply it to the test
domain. For the RoBERTa-QA, we follow its pipeline to fine-tune the RoBERTa on one domain and
test on other domains. As Table 9 shows, LM2OTIFS performs poorly on some domains, such as the
reddit domain on the M4 dataset. One potential reason is that our method is only trained on a limited
training set and lacks generalization, while other methods, such as zero-shot methods, fully utilize
the generalization of LLM.

Table 17: MGT detection performance comparison on HC3 dataset between default(Bert) and GPT2
tokenizers.

open-qa wiki-csai medicine finance

Metric Bert GPT2 Bert GPT2 Bert GPT2 Bert GPT2

ACC 0.97 0.99 0.96 0.95 0.98 0.98 0.98 0.97
AUC 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00

Statistical Significance Analysis. To further demonstrate the robustness of LM2OTIFS, we conducted
a Statistical Significance Analysis. Specifically, we repeated our experiments five times on the HC3
dataset, each with a distinct random seed, and the resulting performance metrics are detailed in
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Table 18: Ablation analysis on HC3 dataset. The best results are shown in bold font.

Method open-qa wiki-csai medicine finance Avg.

A
C

C

LM2OTIFS 0.97 0.96 0.98 0.98 0.97
LM2OTIFS-U 0.95 0.94 1.00 0.98 0.97
LM2OTIFS-W 1.00 0.84 1.00 0.94 0.95
LM2OTIFS-UW 0.98 0.79 1.00 0.93 0.92
LM2OTIFS-Bert 1.00 0.79 0.98 0.89 0.91

A
U

C
LM2OTIFS 1.00 0.99 1.00 1.00 1.00
LM2OTIFS-U 0.99 1.00 1.00 1.00 1.00
LM2OTIFS-W 1.00 0.84 1.00 0.98 0.96
LM2OTIFS-UW 1.00 0.86 1.00 0.97 0.96
LM2OTIFS-Bert 1.00 0.85 0.99 0.97 0.95

Table 19: Sliding window size ablation analysis on HC3 dataset. The best results are shown in bold
font.

Method open-qa wiki-csai medicine finance Avg.

A
C

C

10 0.95 0.93 0.99 0.93 0.95
15 0.97 0.95 0.99 0.94 0.96
20 0.97 0.96 0.98 0.98 0.97
25 0.96 0.94 1.00 0.94 0.96
30 0.98 0.93 0.99 0.93 0.96

A
U

C

10 0.99 0.99 1.00 0.98 0.99
15 1.00 0.99 1.00 0.98 0.99
20 1.00 0.99 1.00 1.00 1.00
25 1.00 1.00 1.00 0.98 1.00
30 1.00 1.00 1.00 0.98 1.00

Table 16. The consistently high performance across these different runs indicates the stable and
reliable nature of LM2OTIFS.

Ablation Study. To investigate the impact of different graph characteristics on the MGT detection
task, we performed ablation experiments on graph categories, specifically comparing undirected
versus directed graphs and weighted versus unweighted graphs. To verify the influence of token
semantics on detection performance, we also performed an ablation study on the token node initializa-
tion method, where token nodes are initialized using Bert token embeddings. In our experiments, we
use -U and -W to represent undirected graphs and weighted graphs, while -Bert indicates replacing
Bert token embeddings with a simpler initialization method.

We further investigated the impact of different tokenizers on the MGT detection task. Our default
tokenizer is Bert’s tokenizer. To assess the influence of tokenization, we conducted experiments using
GPT-2’s tokenizer. The results of this comparison are presented in Table 17. Our findings indicate
that the choice between Bert’s and GPT-2’s tokenizers did not significantly affect the overall detection
performance.

To investigate the effect of sliding window size on detection performance, we conduct ablation studies,
and the results are presented in Table 19. As the window size increases, the detection accuracy initially
improves and then declines. Based on these results, we set 20 as the default sliding-window size in
our experiments.

Time Consumption. Compared to other training-based methods, LM2OTIFS have an additional
pipeline, the graph construction phase. Specifically, its time complexity for graph construction is
O(LW 2), where L represents the length of the sentence and W denotes the size of the sliding window.
We also evaluated the test time efficiency of LM2OTIFS in comparison to several other baselines. As
detailed in Table 20, LM2OTIFS demonstrates the lowest time consumption during the testing phase.
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Table 20: Inference time(seconds) comparison on HC3 dataset. We repeat the experiments 10 times
and report the average time consumption. - indicates the inference time is more than 10 minutes. The
best results are shown in bold font.

open-qa wiki-csai medicine finance

NPR - - - -
DNA-GPT - - - -
DetectGPT 442.0000 161.6530 82.2744 255.4350
Fast-DetectGPT 28.0217 27.0673 24.1440 28.4082
RoBERTa-QA 2.9267 2.5464 2.5391 2.5413
DeTeCtive 18.7223 13.2559 17.2883 17.5105

LM2OTIFS 0.0091 0.0065 0.0051 0.0058

(a) open-qa in HC3 (b) wiki-csai in HC3 (c) medicine in HC3 (d) finance in HC3

(e) wikihow in M4 (f) reddit in M4 (g) peerread in M4 (h) arxiv in M4

(i) recipe in RAID (j) book in RAID (k) poetry in RAID (l) review in RAID

Figure 5: Comparison results of MORF and LERF between explainable motifs extracted from
LM2OTIFS and random motifs on HGT and ChatGPT-generated texts.

C.2 EXTENDED MOTIFS EVALUATION

XAI Protocol Evaluation. We follow Section 6.3 to report the explainable motifs evaluation results
on the HGT and ChatGPT-generated datasets. As the detailed results show in Figure 5, the explainable
motifs are effective in most cases and obtain better results than baselines from both LeRF and MoRF
protocols. However, in the medicine domain in HC3, the explainable motifs are not better than
random motifs. The potential reason could be the distributed nature of the explainable motifs across
numerous nodes and edges. Consequently, the deletion of some edges does not drastically impede the
graph network’s ability to accurately perform detection. For instance, in the medicine domain of the
HC3 dataset, a significant performance drop in the GNN is observed when the proportion of deleted
edges surpasses 70%.

Extensive Evaluation. Although interpretable approaches for the HGT detection task are currently
limited, we adapt several existing interpretability methods to this task in order to demonstrate
the effectiveness of our approach. Beside random motifs, we compare it against other baselines:
LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee, 2017), GLTR (Gehrmann et al., 2019a), and
GPT-4o (OpenAI, 2024). For these baselines, we use RoBERTa-QA, a well-trained model in the
HC3 dataset, as the model to be explained. Notably, the reason we use RoBERTa-QA is that it has
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(a) open-qa (b) wiki-csai (c) medicine (d) finance (e) Average in HC3

Figure 6: Comparison results of LERF between LM2OTIFS and adapted baselines.

(a) open-qa (b) wiki-csai (c) medicine (d) finance (e) Average in HC3

Figure 7: Comparison results of MORF between LM2OTIFS and adapted baselines.

Figure 8: The prompt of GPT-4o as an explainer.

the best performance in the HC3 dataset, and it can be replaced by other models. GLTR is a tool
to analyze a piece of text and visualizing these statistical patterns, which uses a language model to
determine the probability of each word appearing in its context. In this paper, we follow the original
code to use GPT2 as the default language model. Besides, we also consider using the GPT-4o as a
baseline for the LLM explainer. The prompt is shown in Figure 8.

(a) open-qa (b) wiki-csai (c) medicine (d) finance (e) Average in HC3

Figure 9: Comparison results of MORF between different λ settings on HC3 dataset.

Our results are provided in Figure 6 and 7. As Figure 3 shows, the motifs from LM2OTIFS are more
effective, which consistently have a better performance than baselines. From the MoRF protocol,
when the 20% important edges are removed, the explainable motifs cause more than an average 15%
accuracy drop on HC3 dataset, while other explanations get less than 10% accuracy decline. Under
the LeRF protocol, the explainable motifs cause a lower performance drop than other motifs. GPT-4o
performs well under the MoRF setting but fails under the LeRF setting.

Table 21: MORF average results of the λ ablation study on HC3 dataset. Lower is better.

λ open-qa wiki-csai medicine finance Avg.

0.001 0.73 0.72 0.97 0.79 0.80
0.005 0.72 0.74 0.96 0.80 0.80
0.01 0.74 0.74 0.97 0.80 0.81
0.05 0.73 0.71 0.97 0.79 0.80
0.1 0.74 0.74 0.97 0.81 0.81
0.5 0.71 0.76 0.97 0.80 0.81
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We conducted ablation experiments on the explainer’s hyperparameter λ using the HC3 dataset and
evaluated the interpretation results following the MoRF protocol. The results are presented in Figure 9
and Table 21. As shown, the explanation performance is largely robust to different choices of λ.

Motifs Statistical Analysis. We provide more statistical analysis on M4 and RAID datasets. Ta-
ble 22, 24, and 23 reveal distinct motif fingerprints—frequency variations between HGT and MGT
across tokens(nodes) and token-token co-occurrences(edges). Selecting the top 0.05% of edges as
global explainable motifs highlights a notable difference: HGT shows a higher ratio of token and
token-token co-occurrences compared to MGT. This suggests that for MGT detection, word-to-word
connections are more influential than for HGT detection, given the same number of tokens. One
possible explanation is that language models excel at utilizing diverse word collocations, while
humans tend to rely on more conventional patterns.

Table 22: Statistics of text covered by explanation motifs on HC3 dataset. The sparsity of the
explanation motifs is 0.05%.

open-qa wiki-csai medicine finance

Statistic HGT MGT HGT MGT HGT MGT HGT MGT

Nodes 610 2407 1685 777 923 990 1251 618
Edges 277 3496 2180 1993 797 2086 2004 1816

Nodes/Edges 2.20 0.69 0.77 0.39 1.16 0.47 0.62 0.34

Table 23: Statistics of text covered by explanation motifs on RAID dataset. The sparsity of the
explanation motifs is 0.05%.

recipes book poetry review

Statistic HGTs MGTs HGTs MGTs HGTs MGTs HGTs MGTs

Nodes 1100 458 4093 1116 2892 760 2674 1560
Edges 3519 2567 8583 4163 7731 3452 5100 5791

Nodes/Edges 0.31 0.18 0.48 0.27 0.37 0.22 0.52 0.27

Table 24: Statistics of text covered by explanation motifs on M4 dataset. The sparsity of the
explanation motifs is 0.05%.

wikihow reddit peerread arxiv

Statistic HGT MGT HGT MGT HGT MGT HGT MGT

Nodes 4207 1894 3929 1282 2138 609 1449 725
Edges 19511 8819 8448 2770 10937 6044 2954 2112

Nodes/Edges 0.22 0.21 0.47 0.46 0.20 0.10 0.49 0.34

Visualizations. To visualize the extracted motifs, we utilized the PubMed dataset, which includes
MGT samples generated by three LLMs: GPT-4, Claude-3, and Davinci. We present the identified
motifs at two levels of granularity: individual words and multi-word phrases or even entire sentences.
We specifically extracted word-level motifs from one-hop neighbor subgraphs to visualize word-level
motifs. As shown in Table 25, we selected the top 20% of tokens based on their motif scores for
visualization. Similarly, for visualizing higher-level motifs (phrases/sentences) in Table 26, we
extracted them from two-hop subgraphs, with the top-k ratio set to 2% for display.

D LLM USAGE

In this paper, we leverage LLMs, including ChatGPT and Gemini 2.5 Pro, to refine sentence-level
writing.
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Table 25: Samples of words explanation motifs.

Graph Motifs Words Mapping
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Table 26: Samples of phase explanation motifs.

Graph Motifs Words Mapping
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