

# 000 001 LM<sup>2</sup>OTIFS: AN EXPLAINABLE FRAMEWORK FOR 002 MACHINE-GENERATED TEXTS DETECTION 003 004

005 **Anonymous authors**  
006 Paper under double-blind review

## 007 008 ABSTRACT 009

011 The impressive ability of large language models to generate natural text across  
012 various tasks has led to critical challenges in authorship authentication. Although  
013 numerous detection methods have been developed to differentiate between machine-  
014 generated texts (MGT) and human-generated texts (HGT), the explainability of  
015 these methods remains a significant gap. Traditional explainability techniques  
016 often fall short in capturing the complex word relationships that distinguish HGT  
017 from MGT. To address this limitation, we present LM<sup>2</sup>OTIFS, a novel explainable  
018 framework for MGT detection. Inspired by probabilistic graphical models, we  
019 provide a theoretical rationale for the effectiveness. LM<sup>2</sup>OTIFS utilizes eXplainable  
020 Graph Neural Networks to achieve both accurate detection and interpretability. The  
021 LM<sup>2</sup>OTIFS pipeline operates in three key stages: first, it transforms text into graphs  
022 based on word co-occurrence to represent lexical dependencies; second, graph  
023 neural networks are used for prediction; and third, a post-hoc explainability method  
024 extracts interpretable motifs, offering multi-level explanations from individual  
025 words to sentence structures. Extensive experiments demonstrate the comparable  
026 performance of LM<sup>2</sup>OTIFS. The empirical evaluation of the extracted explainable  
027 motifs confirms their effectiveness in differentiating HGT and MGT. Furthermore,  
028 qualitative analysis reveals *distinct and visible linguistic fingerprints* characteristic  
029 of MGT.

## 030 031 1 INTRODUCTION 032

033 Large Language Models (LLMs) have made remarkable progress in recent years, demonstrating  
034 the ability to generate text based on prompt instructions. Models like ChatGPT (OpenAI, 2022),  
035 Llama (Touvron et al., 2023), and Claude-3 (Anthropic, 2024) have shown impressive capabilities in  
036 writing (Yuan et al., 2022a), coding (Zhang et al., 2024c), and question answering (Zhuang et al.,  
037 2023). However, these advances raise serious concerns about content authenticity, including fake  
038 news (Ahmed et al., 2021), plagiarism (Lee et al., 2023), and misinformation (Chen & Shu, 2024).  
039 Given that humans struggle to identify machine-generated texts (MGT) (Gehrmann et al., 2019b),  
040 developing reliable detectors to distinguish between MGT and human-generated texts (HGT) has  
041 become essential.

042 Existing LLM detectors (Yang et al., 2024; Nguyen-Son et al., 2024; Guo et al., 2024b; Chang  
043 et al., 2024) are broadly categorized as white-box and black-box approaches. White-box approaches,  
044 exemplified by DetectLLM (Su et al., 2023), analyze the probabilities of the output token to identify  
045 distinguishing characteristics (Yu et al., 2024). In contrast, black-box methods (Guo et al., 2024b;  
046 Soto et al., 2024; Zhang et al., 2024b; Nguyen-Son et al., 2024) achieve detection without access to  
047 the LLM’s internal workings. Despite their effectiveness, significant challenges persist in creating  
048 detectors that are both robust and explainable (Wu et al., 2025). Furthermore, these methods typically  
049 only output a binary classification. However, practical applications demand supporting evidence, such  
050 as the need for the determination of originality. However, existing explainability techniques for these  
051 detectors are inadequate. Traditional methods like Integrated Gradients (Sundararajan et al., 2017)  
052 are computationally prohibitive for LLM-based detectors, and while attention mechanisms (Jain  
053 & Wallace, 2019; Wiegreffe & Pinter, 2019) excel at capturing local dependencies, they may face  
challenges in identifying global patterns crucial for an LLM. Consequently, developing an explainable  
detector solution is critical and timely.

The fundamental architecture of modern LLM builds upon the principle of autoregressive next-token prediction, which models the joint probability distribution of a sequence as  $P(s_1, s_2, \dots, s_T) \approx \prod_{t=1}^T P_\theta(s_t | s_{1:t-1})$ , where  $\theta$  is the (trainable) model parameter,  $s_i$  is the word/token at the  $i$ th position, and  $T$  is bounded by the context length (Radford et al., 2019; Bengio et al., 2000). Following this notion, in MGT detection, current methods typically treat the input as sequential data, and measure the distance between its posterior distribution and reference distributions for MGT and HGT samples — for instance by estimating the Kullback-Leibler (KL) divergence. This often requires substantial computational resources and large sample sizes. However, an intuitive and efficient alternative, probabilistic graphical models (PGM) (Bishop & Nasrabadi, 2006; Koller, 2009), to model conditional probabilities, has been largely overlooked. From the perspective of PGM, while generation tasks require that LLM operate based on probability graphs which accurately approximate the ground-truth posterior distribution, detection tasks only require constructing and analyzing probability graphs that are sufficiently discriminative for the underlying detection task. With sufficient sample data, building such graphs is straightforward. Furthermore, by analyzing the mechanism between sequence-based detectors and graph-based detectors, we provide the advantage of graph-based detectors in theory. In practice, PGM has advantages in terms of explainability, inference speed, and detection accuracy.

Drawing inspiration from PGM, we introduce a novel explainable framework,  $\text{LM}^2\text{OTIFS}$ . Beyond classifying input text as either MGT or HGT,  $\text{LM}^2\text{OTIFS}$  generates explanatory motifs that justify its detection outcome.  $\text{LM}^2\text{OTIFS}$  consists of three key parts: i) Graph Construction, ii) MGT Detection, and iii) Explainable Motifs Extraction. In the first stage, we leverage the word co-occurrence techniques to capture the lexical dependencies. To extract meaningful patterns at multiple levels (e.g., words and phrases), we integrate mainstream eXplainable Graph Neural Networks (XGNNS) to generate these motifs. To validate the effectiveness of our PGM-inspired approach, we empirically demonstrate that  $\text{LM}^2\text{OTIFS}$  achieves competitive performance with state-of-the-art MGT detection methods, including both supervised and zero-shot approaches. Following eXplainable AI (XAI) protocols, we verify the effectiveness of  $\text{LM}^2\text{OTIFS}$ . Our results indicate that the generated explainable motifs significantly outperform the baseline in terms of interpretability. The main contributions of this paper are summarized as follows:

- ★ **We highlight the problem of missing evidence support in MGT detection.** We introduce  $\text{LM}^2\text{OTIFS}$ , an explainable framework for MGT detection that integrates co-occurrence graphs with XGNN techniques for both accurate detection and explainable motifs extraction.
- ★ We provide a theoretical analysis of the rationale and advantages of employing Graph Neural Network(GNN) for this task, drawing insights from the perspective of PGM.
- ★ We conduct comprehensive experiments on diverse datasets, validating the effectiveness of  $\text{LM}^2\text{OTIFS}$  in MGT detection. Our analysis following XAI protocols supports the correctness of the extracted explainable motifs.

## 2 PRELIMINARY

**MGT Detection.** The MGT detection problem can be formulated as a classification task. Take an example of a binary hypothesis testing task. Given a pair of training sets,

$$\mathcal{T}_h = \{\mathbf{S}_{h,i} = (S_{h,i,1}, S_{h,i,2}, \dots, S_{h,i,L_i})\}_{i \in |\mathcal{T}_h|},$$

$$\mathcal{T}_m = \{\mathbf{S}_{m,i} = (S_{m,i,1}, S_{m,i,2}, \dots, S_{m,i,L'_i})\}_{i \in |\mathcal{T}_m|},$$

consisting of human-generated and machine-generated text sequences, respectively, drawn from the distributions<sup>1</sup>  $P_h$  and  $P_m$ , the objective is to classify a newly observed text sequence  $\mathbf{S}_o$  as either human-generated or machine-generated. A detection mechanism is a function  $f : (\mathcal{T}_h, \mathcal{T}_m, \mathbf{S}_o) \mapsto \hat{Y}$ , where  $\hat{Y} \in \{0, 1\}$ , the index 0 represents the null hypothesis (human generated) and 1 represents the alternative hypothesis (machine generated). Notably, the function  $f$  takes input of  $\mathbf{S}_o$  and  $\mathcal{T}_h, \mathcal{T}_m$  are the support samples. In training-based methods,  $\mathcal{T}_h, \mathcal{T}_m$  are used to train models, while in zero-shot methods, they are used to design the function, such as log rank information in DetectLLM (Su et al., 2023). The detection error is quantified by the risk function  $P(f(\mathcal{T}_h, \mathcal{T}_m, \mathbf{S}_o) \neq Y)$ , where  $Y \in \{0, 1\}$  denotes the ground-truth hypothesis label.

<sup>1</sup>The length of the observed text sequences is not fixed and can be modeled as a random variable. This variability is implicitly captured in the distributions  $P_h$  and  $P_m$ .

108 **Probabilistic Graphical Models.** PGM offers an efficient framework for representing probabilistic  
 109 models, incorporating insightful properties such as conditional independence. Given a graph  
 110  $G = \{\mathcal{V}, \mathcal{E}\}$ , the nodes  $\mathcal{V}$  correspond to random variables, and the links  $\mathcal{E}$  capture probabilistic  
 111 dependencies between these variables. For example, given a sequence of three tokens  $\mathbf{S} = (s_1, s_2, s_3)$ ,  
 112 the joint distribution is  $P(s_1, s_2, s_3) = P(s_3|s_1, s_2)P(s_2|s_1)P(s_1)$ . This can be represented using a  
 113 graph with  $\mathcal{V} = \{s_1, s_2, s_3\}$  and  $\mathcal{E} = \{(s_1, s_2), (s_1, s_3), (s_2, s_3)\}$ . More generally, for any sequence  
 114 of tokens, a PGM can be constructed to represent the probabilistic dependencies among tokens.  
 115

116 **Node Classification.** A graph  $G$  consists of a set of nodes  $\mathcal{V} = \{v_1, v_2, \dots, v_n\}$ , where  $n \in \mathbb{N}$ ,  
 117 and a set of edges  $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ . The adjacency matrix  $\mathbf{A} \in \{0, 1\}^{n \times n}$  encodes the graph edges,  
 118 where  $A_{i,j} = \mathbb{1}((v_i, v_j) \in \mathcal{E})$ . Each node may be associated with a feature vector, collectively  
 119 represented by the matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$ , where the  $i$ -th row is the feature vector associated with the  
 120  $i$ -th node, and  $d \in \mathbb{N}$  is the dimension. Each node  $v$  is related to a label  $Y_v \in \mathcal{Y}$ , where  $\mathcal{Y}$  is the  
 121 collection of possible labels. In this work, we reformulate the author detection problem as a node  
 122 classification task. This reformulation is elaborated on in the subsequent sections. The objective in  
 123 node classification is to train a classifier  $f : (\mathbf{G}, \mathbf{X}, v) \mapsto \hat{Y}_v$ , which, given a graph  $\mathbf{G}$ , node feature  
 124 matrices  $\mathbf{X}$ , and a node index  $v$ , produces an estimate  $\hat{Y}_v$  of the node label  $Y_v$ . The accuracy of the  
 125 classifier is defined as  $P_{V, \mathbf{G}, \mathbf{X}, Y_V}(f(V, \mathbf{G}, \mathbf{X}) \neq Y_V)$ , where  $V$  is uniformly distributed over  $\mathcal{V}$ , and  
 126  $\mathbf{G}, \mathbf{X}, Y_V$  follow a joint distribution  $P_{\mathbf{G}, \mathbf{X}, Y_V}$ .  
 127

128 **Post-hoc Explainable Graph Neural Networks.** Given a graph or node classification task, the  
 129 goal of XGNN is to find an explanation function  $\Psi(\cdot)$ , which maps the input graph  $G$  to a *minimal* and *sufficient*  
 130 explanation subgraph  $G_{exp}$ . Minimality restricts the size of the explanatory  
 131 subgraph and is enforced by the constraint  $|G_{exp}| \leq s \cdot |G|$ , where  $|G|$  denotes the number of  
 132 edges in  $G$  and  $s \in [0, 1]$  is the size parameter. Sufficiency is quantified by the KL divergence  
 133 term  $d_{KL}(P_{Y|G, \mathbf{X}, V} || P_{Y|G_{exp}, \mathbf{X}, V})$ . The explainer is optimally sufficient if it minimizes the KL  
 134 divergence subject to minimality constraints. That is, given  $s \in [0, 1]$ , an *optimal* explainer  $\Psi^*$  is  
 135 defined as:  
 136

$$\Psi^*(G) = \arg \min_{\Psi: |G_{exp}| \leq s |G|} d_{KL}(P_{Y|G, \mathbf{X}, V} || P_{Y|G_{exp}, \mathbf{X}, V}) \quad (1)$$

### 3 THEORETICAL ANALYSIS

140 As discussed in the prequel, prior works in MGT detection, such as Fast-DetectGPT (Bao et al.,  
 141 2024), have employed sequential data models to design detection mechanisms. Drawing inspiration  
 142 from TextGCN, we formulate the MGT detection problem using a graph-based approach where both  
 143 tokens and documents are represented as nodes. Building upon this foundation, we demonstrate that  
 144 GNN-based detectors achieve strictly improved detection accuracy compared to such approaches.  
 145 This section provides theoretical justifications for this claim. The subsequent sections provide further  
 146 verification through empirical analysis over several benchmark datasets.  
 147

148 We formally define a class of baseline *empirical sequential-based* (ESB) detectors that capture the  
 149 essential characteristics of existing approaches. An ESB detector operates in two steps. First, it  
 150 uses the human-generated training set  $\mathcal{T}_h$  to construct the empirical conditional distribution esti-  
 151 mates  $\hat{P}_h(s_t|s_{1:t-1})$  for human-generated text sequences, where  $t \in [T]$ , and  $T$  is a hyperparameter  
 152 capturing the maximum context length. Similarly, the empirical estimates  $\hat{P}_m(s_t|s_{1:t-1})$  are com-  
 153 puted based on the machine generated training set  $\mathcal{T}_m$ . In the second step, the detector uses (a  
 154 potentially trainable) mapping  $g_s : ((\hat{P}_h(s_t|s_{1:t-1}), \hat{P}_m(s_t|s_{1:t-1}))_{t \in [T]}, \mathbf{S}_o) \mapsto \hat{Y}$ , where  $\mathbf{S}_o$  is the  
 155 to-be-classified sequence. An ESB detector is completely characterized by the mapping  $g_s(\cdot)$ . We  
 156 denote the collection of ESB detectors by  $\mathcal{F}_{ESB}$ . We introduce the class of PGB MGT detectors. A  
 157 PGB detector operates on a specially constructed graph with two types of nodes: token nodes and  
 158 text sequence nodes (Yao et al., 2019). Formally, let  $\mathcal{V} = \mathcal{S} \cup \mathcal{D}$  denote the complete node set, where  
 159

$$\begin{aligned} \mathcal{S} &= \{s | \exists \mathbf{S} \in \mathcal{T}_h \cup \mathcal{T}_m, i \in [|\mathbf{S}|] : s_i = s\}, \\ \mathcal{D} &= \{\mathbf{S} | \mathbf{S} \in \mathcal{T}_h \cup \mathcal{T}_m \cup \{\mathbf{S}_o\}\}. \end{aligned}$$

160 Here,  $\mathcal{S}$  represents the set of all unique tokens in either human or machine-generated texts, and  $\mathcal{D}$   
 161 comprises all text sequences from both sources and the to-be-classified text.  
 162

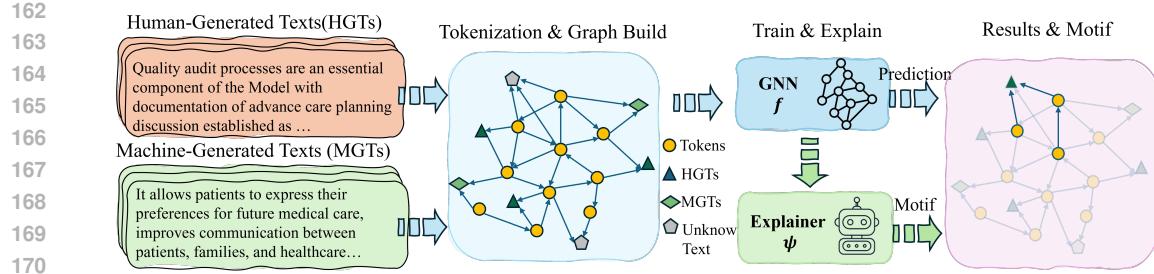


Figure 1: Overall pipeline of our framework, including tokenization, graph building, detector training, and motifs extraction.

The edge structure of the graph captures both token co-occurrences and token-sequence relationships. Two tokens  $s_i, s_j \in \mathcal{S}$  are connected if they co-occur in at least  $\lambda$  sequences within  $\mathcal{T}_h \cup \mathcal{T}_m$ , where  $\lambda$  is a hyperparameter. Additionally, each token node is connected to sequence nodes containing that token. Edge weights are defined by two distinct functions. For token-token edges  $(s_i, s_j)$ , the PGB first computes embedding vectors for each token using

$$e_\ell : \mathcal{J}_\ell(s_i) \times (\mathcal{I}_{\ell,j}(s_i))_{j \in \mathcal{J}_\ell(s_i)} \mapsto \mathbf{e}_{\ell,i}, \quad \ell \in \{h, m\},$$

where for each token  $s_i$ , the set  $\mathcal{J}_\ell(s_i) = \{j | s_i \in \mathbf{S}_{\ell,j}\}$  indexes the sequences containing  $s_i$ , while  $\mathcal{I}_{\ell,j}(s_i) = \{k | S_{\ell,j,k} = s_i\}$  indexes the positions where  $s_i$  appears in sequence  $\mathbf{S}_{\ell,j}$ . The token-token edge weights is then computed as  $A_t(\mathbf{e}_{h,i}, \mathbf{e}_{m,i}, \mathbf{e}_{h,j}, \mathbf{e}_{m,j})$ , where  $\mathbf{e}_{h,i}$  and  $\mathbf{e}_{m,i}$  are the embeddings from human and machine-generated texts, respectively. For token-sequence edges  $(s, \mathbf{S})$ , the weight is simply  $A_s(N_{s|\mathbf{S}})$ , where  $N_{s|\mathbf{S}}$  counts occurrences of token  $s$  in sequence  $\mathbf{S}$ . Examples of these edge weight functions  $A_t(\cdot)$  and  $A_s(\cdot)$  are provided in equation 2 and used in our empirical evaluations.

Token nodes are initialized with one-hot features and sequence nodes with all-zeros features. The GNN operates by several rounds of message passing among connected nodes. The PGB detector applies  $K$  rounds of message passing over the constructed graph, where at each round, node embeddings are updated based on messages received from neighboring nodes. After  $K$  iterations, the detector computes the final node embeddings, denoted by  $\mathbf{h}^{(K)}$ . The classification output is obtained via a function  $g_p : (\mathbf{h}^{(K)}, \mathbf{S}_o) \mapsto \hat{Y}$  that maps the collection of node embeddings to the binary decision  $\hat{Y}$ . A PGB detector is completely characterized by the tuple  $(K, \lambda, e_h, e_m, A_t, A_s, g_p)$ . We denote the collection of PGB detectors by  $\mathcal{F}_{PGB}$ .

The following theorem shows that the PGB class of detectors strictly subsumes the ESB class in terms of achievable detection accuracy.

**Theorem 3.1.** *For every ESB detector  $f_{ESB} \in \mathcal{F}_{ESB}$ , there exists a PGB detector  $f_{PGB} \in \mathcal{F}_{PGB}$  such that the detection accuracy of  $f_{PGB}$  matches that of  $f_{ESB}$ , i.e.,*

$$P(f_{PGB}(\mathcal{T}_h, \mathcal{T}_m, \mathbf{S}_o) = Y) = P(f_{ESB}(\mathcal{T}_h, \mathcal{T}_m, \mathbf{S}_o) = Y),$$

for all pairs of probability distributions  $(P_h, P_m)$ . Furthermore, the PGB class of detectors strictly improves upon the ESB class in terms of detection accuracy. That is, for any fixed set of hyperparameters  $T, K, \lambda$ , there exists  $(P_h, P_m)$  and  $f_{PGB} \in \mathcal{F}_{PGB}$  for which:

$$P(f_{PGB}(\mathcal{T}_h, \mathcal{T}_m, \mathbf{S}_o) = Y) > \max_{f_{ESB} \in \mathcal{F}_{ESB}} P(f_{ESB}(\mathcal{T}_h, \mathcal{T}_m, \mathbf{S}_o) = Y),$$

The proof is provided in **Appendix A**.

## 4 METHODOLOGY

In this section, drawing upon the theoretical foundations of PGM in the prequel, we present the practical implementation of our probabilistic graph-based (PGB) detector framework, LM<sup>2</sup>OTIFS. Our implementation encompasses three key components: graph construction based on token co-occurrences, GNN-based authorship detection, and explainable motif extraction. The complete pipeline of LM<sup>2</sup>OTIFS is illustrated in Figure 1.

216 4.1 GRAPH CONSTRUCTION  
217

218 Following our PGB framework, we implement an efficient graph construction method based on co-  
219 occurrence principles from TextGCN (Yao et al., 2019). Our pipeline consists of two stages. In the first  
220 stage, we capture the dependencies among words/tokens. As shown in Figure 2, a word-dependency  
221 graph (solid lines) is constructed using a sliding window. In the second stage, we add document  
222 nodes and connect them to the corresponding words (dashed lines) that appear in the document.  
223 During testing, we similarly add test-document nodes to the existing word-dependency graph. Finally,  
224 our graph consists of two types of nodes representing tokens and documents, corresponding to the  
225 node sets  $\mathcal{S}$  and  $\mathcal{D}$ . As specified in our framework, tokens are initialized with one-hot features and  
226 documents with zero vectors.

227 To construct edges that capture textual relationships,  
228 we consider both document-token connections and  
229 token co-occurrences. The adjacency matrix  $A$  is  
230 defined as:

$$231 \quad A_{ij} = \begin{cases} 1 & i, j \text{ are token, } \text{PMI}(i, j) > 0 \\ 1 & j \text{ is document, } i \text{ is token in } j \\ 1 & i = j \\ 0 & \text{otherwise} \end{cases}, \quad (2)$$

235 where  $\text{PMI}(i, j) = \log \frac{p(i, j)}{p(i)p(j)}$ , point-wise mutual  
236 information, is used to determine significant token  
237 co-occurrences. Here,  $p(i)$  represents the frequency  
238 of the  $i$ -th token within a fixed-length sliding window,  
239 and  $p(i, j)$  denotes the co-occurrence frequency of  
240 tokens  $i$  and  $j$ . As discussed in Section 3, in the most  
241 general sense, the edge weights may be continuous-  
242 valued, and generated using a learnable function.  
243 However, our experimental evaluation shows that the  
244 above binary-valued edge weights are sufficient for  
245 reliable detection.

246 4.2 GNN DETECTION  
247

248 Having constructed the graph structure, we implement the detection mechanism outlined in our  
249 framework through a GNN architecture. For a given text sequence  $\mathbf{S}_o$ , our goal is to learn a function  
250  $f$  that determines whether the text is machine-generated or human-authored. This corresponds to the  
251 PGB detector operating over  $K$  message passing rounds. Each GNN layer implements one round of  
252 message passing, with the update rule:

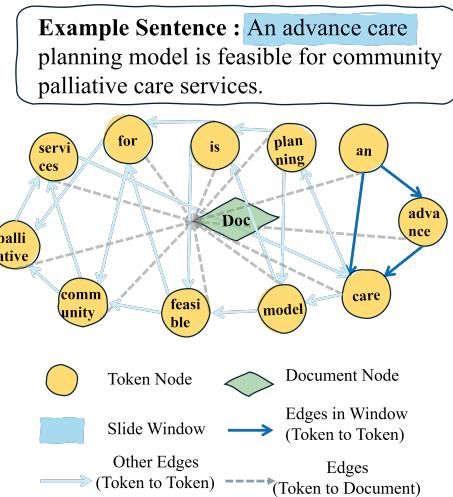
$$253 \quad a_v^{(l)} = \text{AGG}^{(l)} \left( h_u^{(l-1)} : u \in \mathcal{N}(v) \right),$$

$$254 \quad h_v^{(l)} = \text{COMBINE}^{(l)} \left( h_v^{(l-1)}, a_v^{(l)} \right),$$

255 where  $a_v^{(l)}$  represents the aggregated message at  $l$ -th layer,  $h_v^{(l)}$  is the node feature,  $\mathcal{N}(v)$  denotes the  
256 neighbors of node  $v$ , and  $\text{AGG}(\cdot)$  and  $\text{COMBINE}(\cdot)$  are the regular aggregation and combination  
257 functions in GNNs, following the definition from previous work (Xu et al., 2019). After  $K$  layers,  
258 we obtain the final node embeddings  $\mathbf{H}$ . For classification, we apply a softmax function to the final  
259 embeddings to obtain prediction probabilities  $\mathbf{Z} = \text{softmax}(\mathbf{H})$ . The model is trained by minimizing  
260 the cross-entropy loss over labeled document nodes:

$$261 \quad \mathcal{L} = - \sum_{d \in \mathcal{Y}_D} \sum_{\ell \in \{h, m\}} Y_{d\ell} \ln Z_{d\ell}, \quad (3)$$

262 where  $\mathcal{Y}_D$  represents the set of document nodes in the training set and  $Y_{d\ell}$  is the ground-truth label.  
263 While our goal focuses on binary classification (human-authored vs. machine-generated) in this  
264 paper, the framework naturally extends to scenarios with multiple classes, such as texts generated by  
265 different language models.



266 Figure 2: An example of graph construction  
267 with a fixed sliding window size 3.

270 4.3 EXPLAINABLE MOTIFS EXTRACTION  
271

272 Beyond detection accuracy, our framework provides interpretable insights through the extraction of  
273 distinguishing motifs between machine-generated and human-authored texts. While existing detection  
274 methods often operate as black boxes (Guo et al., 2024b), our graph-based approach naturally enables  
275 the identification of characteristic patterns through subgraph structures (Koller, 2009). Drawing  
276 inspiration from graph analysis techniques (Luo et al., 2020), we transform the interpretability  
277 challenge into a subgraph identification problem, where meaningful token dependencies in our  
278 constructed graph serve as distinguishing motifs. These motifs capture characteristic patterns of word  
279 usage and dependencies that differentiate between human and machine-generated content (Kim et al.,  
280 2024), providing insights beyond simple token-level statistics.

281 Specifically, we formulate a practical optimization objective using cross-entropy loss and explicit  
282 size constraints. The objective function balances the prediction accuracy of the explanation subgraph  
283 against its complexity:

$$284 \Psi^*(\cdot) = \arg \min_{\Psi: G \mapsto G_{exp}} \text{CE}(Y; f(G_{exp})) + \lambda |G_{exp}| \quad (4)$$

$$285$$

286 where  $\text{CE}(Y; f(G_{exp}))$  measures how well the explainer preserves the model’s prediction capability,  
287  $|G_{exp}|$  denotes the size of the explanation subgraph, and  $\lambda$  controls the trade-off between explanation  
288 fidelity and complexity. This formulation is an approximation of the theoretical requirements from  
289 Equation 1, where the cross-entropy term ensures sufficiency and the size penalty enforces minimality.  
290 The optimization is performed through gradient descent, with the edge weights of  $G_{exp}$  being learned  
291 continuously and then discretized through thresholding.

292 5 RELATED WORK  
293

294 **AI-generated text Detection.** Detecting machine-generated texts approaches can be categorized into  
295 three main categories. The first category focuses on watermarking LLM-generated content (Chang  
296 et al., 2024; Ajith et al., 2024; Yang et al., 2023; Wu et al., 2024; Molenda et al., 2024). Most water-  
297 marking methods operate in a white-box setting, where researchers can modify the decoding process  
298 or token distribution directly (Ajith et al., 2024; Wu et al., 2024; Molenda et al., 2024). The black-box  
299 setting can be achieved by implementing post-processing modules to embed watermarks (Chang  
300 et al., 2024; Yang et al., 2023). The second category encompasses training-based detection methods  
301 that leverage trained neural networks (Guo et al., 2024b; Solaiman et al., 2019; Zhang et al., 2024b;  
302 Kim et al., 2024; Soto et al., 2024). OpenAI developed GPT-2 detectors using RoBERTa (Liu, 2019)  
303 as their foundation model (Solaiman et al., 2019). Additionally, researchers have explored fine-tuning  
304 language models specifically for detection purposes (Li et al., 2023; Koike et al., 2024; Guo et al.,  
305 2023; Zhang et al., 2024a). The third category consists of zero-shot detection methods (Nguyen-Son  
306 et al., 2024; Zeng et al., 2024; Yang et al., 2024; Tian et al., 2024; Ma & Wang, 2024), which utilize  
307 existing tools like LLMs without additional training. For example, SimLLM (Nguyen-Son et al.,  
308 2024) generates comparative text samples to identify machine-generated content through similarity  
309 analysis. R-Detect (Song et al., 2025) suggests a non-parametric kernel relative test to check if a  
310 text’s distribution is closer to HGT than MGT.

311 **Explainable LLMs & GNNs.** Large language models often function as black-box systems, presenting  
312 inherent risks for downstream applications (Zhao et al., 2024). To address this limitation, researchers  
313 have developed various explanation methods (Wu et al., 2020; Li et al., 2016; Enguehard, 2023;  
314 Chen et al., 2023), which can be divided into local and global approaches. Local explanation  
315 methods aim to illuminate how an LLM arrives at predictions for specific inputs (Wu et al., 2020; Li  
316 et al., 2016; Chen et al., 2023). For example, the leave-one-out technique represents a fundamental  
317 approach to measuring input feature importance (Wu et al., 2020; Li et al., 2016). Global explanation  
318 methods focus on understanding how specific model components operate, including hidden layers  
319 and language model mechanisms. For instance, researchers have tracked attention layers to extract  
320 semantic information (Wu et al., 2020). SASC (Singh et al., 2023) employs pre-trained models to  
321 generate explanations for various LLM components.

322 Various approaches have emerged for extracting subgraph explanations using GNNs (Yuan et al.,  
323 2022b; Lin et al., 2021; Fang et al., 2023; Xie et al., 2022; Chen et al., 2024). These methods can be

324 Table 1: Detection performance comparisons on HGT and MGT based on ACC. The best and second-  
 325 best results are shown in bold and underlined, respectively. YSC represents the combination of the  
 326 Yelp, Essay, and Creative datasets.

| 328<br>329<br>Method              | M4          |             |             |             | RAID        |             |             |             | YSC         |             |             |             | 327<br>328<br>329<br>330<br>331<br>332<br>333<br>334<br>335<br>336<br>337<br>338<br>339<br>340<br>341<br>342<br>343<br>344<br>345<br>346<br>347<br>348<br>349<br>350<br>351<br>352<br>353<br>354<br>355<br>356<br>357<br>358<br>359<br>360<br>361<br>362<br>363<br>364<br>365<br>366<br>367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>LM <sup>2</sup> OTIFS |
|-----------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | DaV.        | Coh.        | Dol.        | Blo.        | Lla.        | GT4         | MPT         | Mis.        | Son.        | Opu.        | Gem.        | Avg.        |                                                                                                                                                                                                                                                                                                                                                                                            |
| Likelihood Solaiman et al. (2019) | 0.69        | 0.87        | 0.66        | 0.54        | 0.79        | 0.75        | 0.50        | 0.65        | 0.80        | 0.83        | 0.74        | 0.71        |                                                                                                                                                                                                                                                                                                                                                                                            |
| Rank Gehrmann et al. (2019b)      | 0.51        | 0.54        | 0.53        | 0.53        | 0.53        | 0.53        | 0.51        | 0.52        | 0.52        | 0.52        | 0.52        | 0.52        |                                                                                                                                                                                                                                                                                                                                                                                            |
| LogRank Ippolito et al. (2019)    | 0.67        | 0.88        | 0.72        | 0.62        | 0.80        | 0.74        | 0.46        | 0.66        | 0.76        | 0.79        | 0.72        | 0.71        |                                                                                                                                                                                                                                                                                                                                                                                            |
| Entropy Gehrmann et al. (2019b)   | 0.62        | 0.61        | 0.53        | 0.53        | 0.62        | 0.62        | 0.52        | 0.63        | 0.72        | 0.74        | 0.64        | 0.62        |                                                                                                                                                                                                                                                                                                                                                                                            |
| NPR Su et al. (2023)              | 0.63        | 0.67        | 0.55        | 0.59        | 0.79        | 0.66        | 0.54        | 0.65        | 0.70        | 0.63        | 0.54        | 0.63        |                                                                                                                                                                                                                                                                                                                                                                                            |
| LRR Su et al. (2023)              | 0.77        | 0.75        | 0.74        | 0.77        | 0.87        | 0.71        | 0.55        | 0.71        | 0.74        | 0.72        | 0.53        | 0.72        |                                                                                                                                                                                                                                                                                                                                                                                            |
| DetectGPT Mitchell et al. (2023)  | 0.48        | 0.57        | 0.48        | 0.59        | 0.67        | 0.59        | 0.46        | 0.53        | 0.62        | 0.58        | 0.57        | 0.56        |                                                                                                                                                                                                                                                                                                                                                                                            |
| Fast-DetectGPT Bao et al. (2024)  | 0.81        | <b>0.98</b> | 0.90        | 0.54        | 0.94        | 0.85        | 0.48        | 0.64        | 0.85        | 0.88        | 0.76        | 0.78        |                                                                                                                                                                                                                                                                                                                                                                                            |
| DNAGPT Yang et al. (2024)         | 0.53        | 0.74        | 0.53        | 0.50        | 0.68        | 0.66        | 0.39        | 0.54        | 0.62        | 0.64        | 0.65        | 0.59        |                                                                                                                                                                                                                                                                                                                                                                                            |
| Binoculars Ma & Wang (2024)       | 0.83        | <u>0.97</u> | 0.90        | 0.66        | <b>0.98</b> | 0.92        | 0.58        | 0.71        | 0.88        | <u>0.91</u> | 0.81        | 0.83        |                                                                                                                                                                                                                                                                                                                                                                                            |
| Glimpse Bao et al. (2025)         | 0.74        | 0.94        | 0.69        | 0.61        | 0.88        | 0.77        | 0.68        | 0.77        | 0.85        | 0.85        | 0.76        | 0.69        |                                                                                                                                                                                                                                                                                                                                                                                            |
| GPTZero Tian, Edward (2023)       | 0.74        | 0.80        | 0.61        | 0.53        | 0.65        | 0.60        | 0.54        | 0.55        | 0.69        | 0.71        | 0.54        | 0.63        |                                                                                                                                                                                                                                                                                                                                                                                            |
| RoBERTa-QA Guo et al. (2023)      | 0.83        | 0.94        | 0.74        | 0.51        | 0.77        | 0.70        | 0.56        | 0.56        | 0.79        | 0.87        | 0.80        | 0.73        |                                                                                                                                                                                                                                                                                                                                                                                            |
| Radar Hu et al. (2023)            | 0.76        | 0.77        | 0.65        | 0.63        | 0.68        | 0.69        | 0.64        | 0.72        | 0.80        | 0.83        | 0.78        | 0.72        |                                                                                                                                                                                                                                                                                                                                                                                            |
| DeTeCtive Guo et al. (2024b)      | <u>0.90</u> | 0.85        | <u>0.90</u> | 0.92        | <u>0.96</u> | <u>0.97</u> | <b>0.92</b> | 0.88        | <u>0.94</u> | <u>0.91</u> | 0.86        | <u>0.91</u> |                                                                                                                                                                                                                                                                                                                                                                                            |
| LM <sup>2</sup> OTIFS             | <b>0.95</b> | <u>0.97</u> | <b>0.91</b> | <b>0.98</b> | <b>0.98</b> | <b>1.00</b> | <u>0.90</u> | <b>0.91</b> | <b>0.99</b> | <b>0.99</b> | <b>0.91</b> | <b>0.95</b> |                                                                                                                                                                                                                                                                                                                                                                                            |

344 categorized into several groups. Gradient-based traditional approaches, including SA (Baldassarre  
 345 & Azizpour, 2019) and Grad-CAM (Pope et al., 2019), leverage gradient information to derive  
 346 explanations. Model-agnostic techniques encompass three main categories. First, perturbation-based  
 347 methods such as GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), and ReFine (Wang  
 348 et al., 2021b) identify important features and subgraph structures through systematic perturbations.  
 349 Second, surrogate methods (Vu & Thai, 2020; Duval & Malliaros, 2021) approximate local predictions  
 350 using surrogate models to generate explanations. Third, generation-based approaches (Yuan et al.,  
 351 2020; Shan et al., 2021; Wang & Shen, 2023) employ generative models to produce both instance-level  
 352 and global-level explanations.

## 6 EXPERIMENTS

356 We conduct extensive experiments to evaluate LM<sup>2</sup>OTIFS across two aspects: MGT detection  
 357 performance, and explainable motifs effectiveness. For MGT detection, we compare LM<sup>2</sup>OTIFS  
 358 against state-of-the-art supervised and zero-shot detectors on multiple benchmark datasets in both  
 359 **in-domain** and **cross-domain** aspects. To validate our explainable motifs, we follow the (Hooker  
 360 et al., 2019; Zheng et al., 2025) to use Most Relevant First (MoRF) and Least Relevant First (LeRF) to  
 361 verify the effectiveness. Due to the limitation of space, we provide **ablation studies**, **time complexity**,  
 362 implementation, and **motifs statistical analysis** in **Appendix C**.

### 6.1 SETUPS

366 **Datasets.** Following established benchmarks in MGT detection (Yang et al., 2024; Zeng et al., 2024),  
 367 we evaluate LM<sup>2</sup>OTIFS on six comprehensive datasets: **HC3** (Guo et al., 2023), **M4** (Wang et al.,  
 368 2024), and **RAID** (Dugan et al., 2024), **Yelp** (Mao et al., 2024), **Creative**, **Essay** (Verma et al., 2023;  
 369 Guo et al., 2024a). We select four domains in each dataset: open-qa, wiki-csai, medicine, and finance  
 370 in HC3; wiki-how, reddit, peerread, and arxiv in M4; and recipes, book summaries, poetry, and  
 371 IMDB reviews in RAID. The HC3 dataset only contains ChatGPT-generated text. While in M4  
 372 and RAID, there are several kinds of LLM-generated texts. In this paper, we also consider language  
 373 models: **DaVinci**(DaV.), **Cohere**(Coh.), **Dolly**(Dol.), and **BloomZ**(Blo.) in M4, **Llama2**(Lla.),  
 374 **GPT-4**(GT4), **MPT**, and **Mistral**(Mis.) in RAID. In Yelp, Creative, and Essay, we consider three  
 375 LLMs, **Claude3-Sonnet**(Son.), **Claude3-Opus**(Opu.), and **Gemini-1.0-Pro**(Gem.). The dataset  
 376 details are available in **Appendix B.1**.

377 **Baselines.** We consider the training-based and zero-shot detection methods, such as **DetectLLM** (Su  
 378 et al., 2023), **DeTeCtive** (Guo et al., 2024b), **DNAGPT** (Yang et al., 2024). To make a unified com-

parison protocol, both training-based and zero-shot methods use pre-trained models for comparison. For the explainable evaluation, we introduce a simple random motif for comparison due to the lack of existing methods. The detailed information is provided in Appendix B.2.

**Implementation.** Our experiments are based on a three-layer GCN architecture, and GNNExplainer (Ying et al., 2019), the  $\lambda$  is set to default 0.05. All experiments are conducted on a Linux machine with 8 NVIDIA A100 GPUs, each with 40GB of memory. The software environment is CUDA 11.3 and Driver Version 550.54.15. We used Python 3.9.13, Pytorch 1.10.0, and torch-geometric 2.0.3 to construct our project. Detailed information are available in Appendix B.2.

## 6.2 DETECTION PERFORMANCE COMPARISON

We compare  $LM^2OTIFS$  against 13 baselines, including supervised and zero-shot methods, to evaluate detection performance. The summary of baselines is provided in [Appendix B.2](#). We report both accuracy(ACC) and area under the receiver operating characteristic(AUC) results. Due to the deterministic LLM inference in few-show methods, we report the error bar of  $LM^2OTIFS$  in [Appendix C](#) separately. For the in-domain setting, we train and test our method on the same domain.

In Table 2, we report the average results of ChatGPT-based texts detection on three datasets.

$LM^2OTIFS$  achieves the best performance under ACC and AUC metrics. In Table 1, we study the performance across various LLMs. As the results show, the performance is aligned with Table 2. Under the ACC metric,  $LM^2OTIFS$  is the best performance on average, demonstrating the ability for MGT detection. The detailed results are available in [Appendix C](#). Due to the limitation of pages, we provide more experiments about cross-domain evaluation, statistical significance analysis and comparison with TextGCN in [Appendix C.1](#).

Table 2: Detection comparisons on HGTs and ChatGPT-generated texts. The best and second-best results are shown in bold font and underlined. \* means the model is trained on that dataset.

| Method         | ACC           |             |             |             | AUC           |             |             |             |
|----------------|---------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|
|                | HC3           | M4          | RAID        | Avg.        | HC3           | M4          | RAID        | Avg.        |
| Likelihood     | 0.75          | 0.88        | 0.85        | 0.83        | <b>1.00</b>   | 0.90        | 0.98        | 0.96        |
| Rank           | 0.53          | 0.58        | 0.56        | 0.56        | 0.89          | 0.95        | 0.91        | 0.92        |
| LogRank        | 0.70          | 0.87        | 0.84        | 0.81        | <b>1.00</b>   | 0.94        | <u>0.97</u> | 0.97        |
| Entropy        | 0.77          | 0.73        | 0.66        | 0.72        | <u>0.95</u>   | 0.79        | 0.89        | 0.88        |
| NPR            | 0.83          | 0.71        | 0.79        | 0.78        | <b>1.00</b>   | 0.93        | <u>0.97</u> | 0.97        |
| LRR            | 0.96          | 0.86        | 0.87        | 0.90        | <b>1.00</b>   | 0.98        | 0.96        | 0.98        |
| DetectGPT      | 0.63          | 0.61        | 0.62        | 0.62        | 0.56          | 0.63        | 0.78        | 0.66        |
| Fast-DetectGPT | 0.97          | <b>0.96</b> | <u>0.97</u> | <u>0.97</u> | <b>1.00</b>   | <u>0.99</u> | <b>1.00</b> | <u>0.99</u> |
| DNAGPT         | 0.73          | 0.68        | 0.72        | 0.71        | 0.88          | 0.86        | 0.93        | 0.89        |
| Binoculars     | <u>0.98</u>   | 0.94        | <b>0.99</b> | <u>0.97</u> | <b>1.00</b>   | 0.98        | <b>1.00</b> | <u>0.99</u> |
| Glimpse        | <u>0.98</u>   | 0.94        | 0.91        | 0.94        | <b>1.00</b>   | 0.98        | 0.96        | 0.98        |
| GPTZero        | 0.77          | 0.75        | 0.68        | 0.73        | 0.77          | 0.75        | 0.68        | 0.73        |
| RoBERTa-QA     | <b>1.00</b> * | 0.95        | 0.80        | 0.91        | <b>1.00</b> * | <u>0.99</u> | 0.96        | 0.98        |
| Radar          | 0.66          | 0.76        | 0.77        | 0.73        | 0.52          | 0.83        | 0.95        | 0.76        |
| DeTeCtive      | 0.92          | 0.93        | 0.96        | 0.93        | 0.93          | 0.94        | 0.98        | 0.95        |
| $LM^2OTIFS$    | 0.97          | <b>0.98</b> | <b>0.99</b> | <b>0.98</b> | <b>1.00</b>   | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> |

## 6.3 EXPLANATION EVALUATION

**Quantitative Analysis.** Due to a lack of ground truth, evaluating the effectiveness of explanations remains challenging. Therefore, we follow previous work (Hooker et al., 2019; Zheng et al., 2025) using MoRF and LeRF to verify the motifs, which are popular evaluation protocols in XAI that assess the faithfulness of explanations by measuring how the model’s prediction changes when the most or least relevant input attributions are sequentially removed according to explanations. For the MoRF protocol, a lower AUC indicates a more faithful explanation, whereas for LeRF, a higher AUC is better. We evaluate our motifs on the HC3 dataset using this framework. We first extract the explainable motifs, which indicate the importance of each edge. Then we remove the most important edges following an increasing sequence. As shown in Figure 3, the motifs generated by our method,  $LM^2OTIFS$ , are more effective and consistently outperform the baseline models. Under the MoRF protocol, removing the 20% most important edges from our motifs causes an average accuracy drop of over 15% on the HC3 dataset. In contrast, explanations from other methods result in an accuracy decline of less than 10%. Conversely, under the LeRF protocol, our motifs lead to a smaller performance drop than the baselines, demonstrating their robustness. Detailed results for each domain are provided in [Appendix C.2](#).

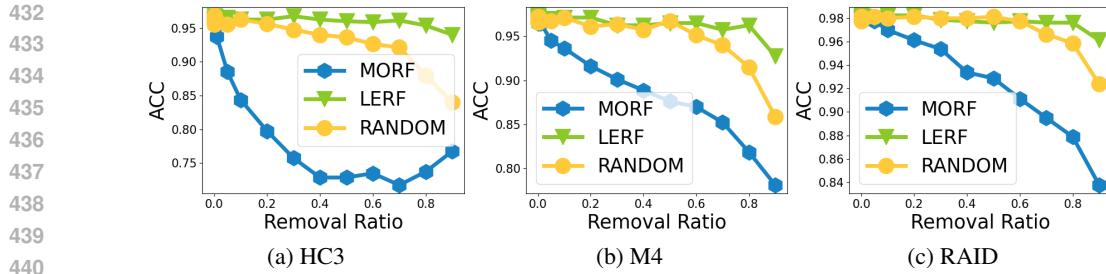


Figure 3: Comparison results of MoRF and LeRF between explainable motifs extracted from LM<sup>2</sup>OTIFS and random motifs.

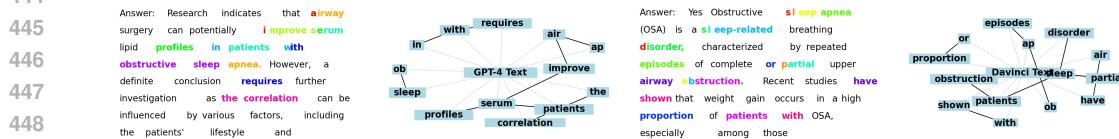


Figure 4: High-order explainable motif samples from GPT-4 and Davinci. We extract motifs from texts in the PubMed dataset for the same question. In graph motifs, solid lines represent subgraph motifs and dashed lines mean the text contains words. In text motifs, words highlighted in the same color are connected in the corresponding graph motifs. A single word may contain multiple colors.

**Qualitative Analysis.** To elucidate motif patterns, we visualize both the graph and the corresponding text motifs, encompassing word-level and higher-order structures. Word-level motifs highlight difference of word occurrence probabilities, while higher-order motifs capture complex relationships, such as phrasal and semantic structures. Figure 4 presents examples extracted from the PubMed (Jin et al., 2019) dataset, preserving the top 2% of edges. While GPT-4 and Davinci share common words (e.g., “sleep”, “patients”), our method captures distinct phrasal patterns. For instance, GPT-4’s “ob” and “sleep” (purple) indicate “obstructive sleep”, whereas Davinci’s “disorder” and “sleep” represent “sleep-related breathing disorder”. Furthermore, GPT-4’s connection of “airway”, “improves”, and “serum” reveals sentence-level patterns. Detailed case studies are provided in [Appendix C.2](#).

Generally, detectors make predictions by combining multiple types of features, such as word distributions and co-occurrence patterns. For example, in watermarking-based detection methods (Li et al., 2025), the probability of generating certain words is manipulated through predefined green and red lists. During inference, deviations in word frequencies can be used to determine whether the text is machine-generated. Interpretability aims to reveal which specific features contribute to the detector's decision. Importantly, these features are not merely simple statistical counts; rather, they reflect meaningful distinctions that separate different categories of text, which reveal that different language models possess *distinct and visible fingerprints*.

## 7 CONCLUSION

This paper focuses on explainable authorship detection, introducing a framework that identifies characteristic motifs to provide insight into model decisions. We evaluate our method against supervised and zero-shot learning baselines across various domains, demonstrating comparable performance. We follow the previous XAI evaluation protocol to verify the effectiveness of the explainable motifs.

**Limitation & Future Work.** First, we have not explored the impact of different GNN architectures or hyperparameter settings on the resulting explanations. Second, the quality of the explainable motifs is dependent on the quality of the graph representation, which in turn requires a sufficient number of training samples to construct effectively. Future work could investigate the robustness of our method under data-scarce conditions and explore a wider range of GNN backbones.

486  
487  
**ETHIC STATEMENT**488  
489 All authors confirm that they have read and commit to upholding the ICLR Code of Ethics. All  
490 experiments use publicly available benchmarks; no human subjects or sensitive data are involved.  
491492  
**REPRODUCIBILITY STATEMENT**493  
494 Code is included in the Supplementary Material. All experiments use publicly available benchmarks,  
495 and are reproducible.  
496497  
**REFERENCES**498  
499 Alim Al Ayub Ahmed, Ayman Aljabouh, Praveen Kumar Donepudi, and Myung Suh Choi. Detecting  
500 fake news using machine learning: A systematic literature review. *arXiv preprint arXiv:2102.04458*,  
2021.501  
502 Anirudh Ajith, Sameer Singh, and Danish Pruthi. Downstream trade-offs of a family of text wa-  
503 termarks. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp.  
504 14039–14053, 2024.505  
506 Anthropic. Claude3. 2024. URL <https://www.anthropic.com/clause>.507  
508 Federico Baldassarre and Hossein Azizpour. Explainability techniques for graph convolutional  
509 networks. *arXiv preprint arXiv:1905.13686*, 2019.510  
511 Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-detectgpt: Efficient  
512 zero-shot detection of machine-generated text via conditional probability curvature. In *The Twelfth  
513 International Conference on Learning Representations*, 2024.514  
515 Guangsheng Bao, Yanbin Zhao, Juncai He, and Yue Zhang. Glimpse: Enabling white-box methods  
516 to use proprietary models for zero-shot llm-generated text detection, 2025.517  
518 Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model.  
519 *Advances in neural information processing systems*, 13, 2000.520  
521 Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, volume 4.  
522 Springer, 2006.523  
524 Yapei Chang, Kalpesh Krishna, Amir Houmansadr, John Wieting, and Mohit Iyyer. Postmark: A  
525 robust blackbox watermark for large language models. *arXiv preprint arXiv:2406.14517*, 2024.526  
527 Canyu Chen and Kai Shu. Combating misinformation in the age of llms: Opportunities and challenges.  
528 *AI Magazine*, 45(3):354–368, 2024.529  
530 Hanjie Chen, Faeze Brahman, Xiang Ren, Yangfeng Ji, Yejin Choi, and Swabha Swayamdipta. Rev:  
531 Information-theoretic evaluation of free-text rationales. In *Proceedings of the 61st Annual Meeting  
532 of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2007–2030, 2023.533  
534 Zhuomin Chen, Jiaxing Zhang, Jingchao Ni, Xiaoting Li, Yuchen Bian, Md Mezbahul Islam, Ananda  
535 Mondal, Hua Wei, and Dongsheng Luo. Generating in-distribution proxy graphs for explaining  
536 graph neural networks. In *Forty-first International Conference on Machine Learning*, 2024.537  
538 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep  
539 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of  
the North American chapter of the association for computational linguistics: human language  
technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.540  
541 Liam Dugan, Alyssa Hwang, Filip Trhlík, Andrew Zhu, Josh Magnus Ludan, Hainiu Xu, Daphne  
542 Ippolito, and Chris Callison-Burch. RAID: A shared benchmark for robust evaluation of machine-  
543 generated text detectors. In *Proceedings of the 62nd Annual Meeting of the Association for  
544 Computational Linguistics (Volume 1: Long Papers)*, pp. 12463–12492, Bangkok, Thailand,  
545 August 2024. Association for Computational Linguistics. URL <https://aclanthology.org/2024.acl-long.674>.

540 Alexandre Duval and Fragkiskos D Malliaros. Graphsvx: Shapley value explanations for graph  
 541 neural networks. In *Machine Learning and Knowledge Discovery in Databases. Research Track:*  
 542 *European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings,*  
 543 *Part II 21*, pp. 302–318. Springer, 2021.

544 Joseph Enguehard. Sequential integrated gradients: a simple but effective method for explaining  
 545 language models. *arXiv preprint arXiv:2305.15853*, 2023.

547 Junfeng Fang, Xiang Wang, An Zhang, Zemin Liu, Xiangnan He, and Tat-Seng Chua. Cooperative  
 548 explanations of graph neural networks. In *Proceedings of the Sixteenth ACM International*  
 549 *Conference on Web Search and Data Mining*, pp. 616–624, 2023.

550 Sebastian Gehrmann, Hendrik Strobelt, and Alexander Rush. GLTR: Statistical detection and visual-  
 551 ization of generated text. In Marta R. Costa-jussà and Enrique Alfonseca (eds.), *Proceedings of*  
 552 *the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstra-*  
 553 *tions*, pp. 111–116, Florence, Italy, July 2019a. Association for Computational Linguistics. doi:  
 554 10.18653/v1/P19-3019. URL <https://aclanthology.org/P19-3019/>.

555 Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. Gltr: Statistical detection and  
 556 visualization of generated text. *arXiv preprint arXiv:1906.04043*, 2019b.

558 Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jinran Nie, Yuxuan Ding, Jianwei Yue, and  
 559 Yupeng Wu. How close is chatgpt to human experts? comparison corpus, evaluation, and detection.  
 560 *arXiv preprint arXiv:2301.07597*, 2023.

561 Hanxi Guo, Siyuan Cheng, Xiaolong Jin, Zhuo Zhang, Kaiyuan Zhang, Guanhong Tao, Guangyu  
 562 Shen, and Xiangyu Zhang. Biscope: Ai-generated text detection by checking memorization of  
 563 preceding tokens. *Advances in Neural Information Processing Systems*, 37:104065–104090, 2024a.

565 Xun Guo, Shan Zhang, Yongxin He, Ting Zhang, Wanquan Feng, Haibin Huang, and Chongyang  
 566 Ma. Detective: Detecting ai-generated text via multi-level contrastive learning. *arXiv preprint*  
 567 *arXiv:2410.20964*, 2024b.

568 Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretability  
 569 methods in deep neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,  
 570 E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Cur-  
 571 ran Associates, Inc., 2019. URL [https://proceedings.neurips.cc/paper\\_files/paper/2019/file/fe4b8556000d0f0cae99daa5c5c5a410-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2019/file/fe4b8556000d0f0cae99daa5c5c5a410-Paper.pdf).

573 Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. Radar: Robust ai-text detection via adversarial  
 574 learning. *Advances in neural information processing systems*, 36:15077–15095, 2023.

576 Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch, and Douglas Eck. Automatic detection of  
 577 generated text is easiest when humans are fooled. *arXiv preprint arXiv:1911.00650*, 2019.

578 Sarthak Jain and Byron C Wallace. Attention is not explanation. In *Proceedings of the 2019*  
 579 *Conference of the North American Chapter of the Association for Computational Linguistics:*  
 580 *Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 3543–3556, 2019.

582 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A  
 583 dataset for biomedical research question answering. *arXiv preprint arXiv:1909.06146*, 2019.

584 Zae Myung Kim, Kwang Hee Lee, Preston Zhu, Vipul Raheja, and Dongyeop Kang. Threads  
 585 of subtlety: Detecting machine-generated texts through discourse motifs. *arXiv preprint*  
 586 *arXiv:2402.10586*, 2024.

588 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,  
 589 2014.

590 Ryuto Koike, Masahiro Kaneko, and Naoaki Okazaki. Outfox: Llm-generated essay detection  
 591 through in-context learning with adversarially generated examples. In *Proceedings of the 38th*  
 592 *AAAI Conference on Artificial Intelligence*, Vancouver, Canada, February 2024.

593 Daphane Koller. *Probabilistic Graphical Models: Principles and Techniques*. The MIT Press, 2009.

594 Jooyoung Lee, Thai Le, Jinghui Chen, and Dongwon Lee. Do language models plagiarize? In  
 595 *Proceedings of the ACM Web Conference 2023*, pp. 3637–3647, 2023.  
 596

597 Jiwei Li, Will Monroe, and Dan Jurafsky. Understanding neural networks through representation  
 598 erasure. *arXiv preprint arXiv:1612.08220*, 2016.

599 Xiang Li, Feng Ruan, Huiyuan Wang, Qi Long, and Weijie J Su. A statistical framework of  
 600 watermarks for large language models: Pivot, detection efficiency and optimal rules. *The Annals of  
 601 Statistics*, 53(1):322–351, 2025.  
 602

603 Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Longyue Wang, Linyi Yang, Shuming Shi, and Yue Zhang.  
 604 Deepfake text detection in the wild. *arXiv preprint arXiv:2305.13242*, 2023.

605 Wanyu Lin, Hao Lan, and Baochun Li. Generative causal explanations for graph neural networks. In  
 606 *International Conference on Machine Learning*, pp. 6666–6679. PMLR, 2021.  
 607

608 Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint  
 609 arXiv:1907.11692*, 364, 2019.

610 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In  
 611 I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-  
 612 nett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Asso-  
 613 ciates, Inc., 2017. URL [https://proceedings.neurips.cc/paper\\_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf).  
 614

615 Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.  
 616 Parameterized explainer for graph neural network. *Advances in neural information processing  
 617 systems*, 33:19620–19631, 2020.

618

619 Shixuan Ma and Quan Wang. Zero-shot detection of llm-generated text using token cohesiveness. In  
 620 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.  
 621 17538–17553, 2024.

622

623 Chengzhi Mao, Carl Vondrick, Hao Wang, and Junfeng Yang. Raidar: generative ai detection via  
 624 rewriting. *arXiv preprint arXiv:2401.12970*, 2024.

625

626 Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn.  
 627 Detectgpt: Zero-shot machine-generated text detection using probability curvature. In *International  
 628 Conference on Machine Learning*, pp. 24950–24962. PMLR, 2023.

629

630 Piotr Molenda, Adian Liusie, and Mark JF Gales. Waterjudge: Quality-detection trade-off when  
 631 watermarking large language models. *arXiv preprint arXiv:2403.19548*, 2024.

632

633 Hoang-Quoc Nguyen-Son, Minh-Son Dao, and Koji Zettsu. Simllm: Detecting sentences generated  
 634 by large language models using similarity between the generation and its re-generation. In  
 635 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.  
 636 22340–22352, 2024.

637

638 OpenAI. Chatgpt. 2022. URL <https://openai.com/index/chatgpt>.  
 639

640 OpenAI. Hello gpt-4o, May 2024. URL <https://openai.com/index/hello-gpt-4o/>.  
 641 Accessed: 2025-07-27.

642

643 Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and Heiko Hoffmann.  
 644 Explainability methods for graph convolutional neural networks. In *Proceedings of the IEEE/CVF  
 645 conference on computer vision and pattern recognition*, pp. 10772–10781, 2019.

646

647 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language  
 648 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

649

650 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the  
 651 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference  
 652 on knowledge discovery and data mining*, pp. 1135–1144, 2016.

648 Caihua Shan, Yifei Shen, Yao Zhang, Xiang Li, and Dongsheng Li. Reinforcement learning enhanced  
 649 explainer for graph neural networks. *Advances in Neural Information Processing Systems*, 34:  
 650 22523–22533, 2021.

651 Chandan Singh, Aliyah R Hsu, Richard Antonello, Shailee Jain, Alexander G Huth, Bin Yu, and  
 652 Jianfeng Gao. Explaining black box text modules in natural language with language models. *arXiv*  
 653 *preprint arXiv:2305.09863*, 2023.

654 Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec  
 655 Radford, Gretchen Krueger, Jong Wook Kim, Sarah Krep, et al. Release strategies and the social  
 656 impacts of language models. *arXiv preprint arXiv:1908.09203*, 2019.

657 Yiliao Song, Zhenqiao Yuan, Shuhai Zhang, Zhen Fang, Jun Yu, and Feng Liu. Deep kernel relative  
 658 test for machine-generated text detection. In *The Thirteenth International Conference on Learning*  
 659 *Representations*, 2025. URL <https://openreview.net/forum?id=z9j7wctoGV>.

660 Rafael Alberto Rivera Soto, Kailin Koch, Aleem Khan, Barry Y Chen, Marcus Bishop, and Nicholas  
 661 Andrews. Few-shot detection of machine-generated text using style representations. In *The Twelfth*  
 662 *International Conference on Learning Representations*, 2024.

663 Jinyan Su, Terry Yue Zhuo, Di Wang, and Preslav Nakov. Detectilm: Leveraging log rank information  
 664 for zero-shot detection of machine-generated text. *arXiv preprint arXiv:2306.05540*, 2023.

665 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In *International*  
 666 *conference on machine learning*, pp. 3319–3328. PMLR, 2017.

667 Yufei Tian, Zeyu Pan, and Nanyun Peng. Detecting machine-generated long-form content with  
 668 latent-space variables. In *Findings of the Association for Computational Linguistics: EMNLP*  
 669 2024, pp. 10394–10408, 2024.

670 Tian, Edward. GPTZero. <https://gptzero.me>, 2023.

671 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée  
 672 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and  
 673 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

674 Vivek Verma, Eve Fleisig, Nicholas Tomlin, and Dan Klein. Ghostbuster: Detecting text ghostwritten  
 675 by large language models. *arXiv preprint arXiv:2305.15047*, 2023.

676 Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph neural  
 677 networks. *Advances in neural information processing systems*, 33:12225–12235, 2020.

678 Xiang Wang, Ying-Xin Wu, An Zhang, Xiangnan He, and Tat-Seng Chua. Towards multi-grained  
 679 explainability for graph neural networks. In *Proceedings of the 35th Conference on Neural*  
 680 *Information Processing Systems*, 2021a.

681 Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, and Tat-Seng Chua. Towards multi-grained  
 682 explainability for graph neural networks. *Advances in Neural Information Processing Systems*, 34:  
 683 18446–18458, 2021b.

684 Xiaoqi Wang and Han-Wei Shen. Gnninterpreter: A probabilistic generative model-level expla-  
 685 nation for graph neural networks. In *Proceedings of the International Conference on Learning*  
 686 *Representations (ICLR)*, 2023.

687 Yuxia Wang, Jonibek Mansurov, Petar Ivanov, Jinyan Su, Artem Shelmanov, Akim Tsvigun, Chenxi  
 688 Whitehouse, Osama Mohammed Afzal, Tarek Mahmoud, Toru Sasaki, Thomas Arnold, Alham Aji,  
 689 Nizar Habash, Iryna Gurevych, and Preslav Nakov. M4: Multi-generator, multi-domain, and multi-  
 690 lingual black-box machine-generated text detection. In Yvette Graham and Matthew Purver (eds.),  
 691 *Proceedings of the 18th Conference of the European Chapter of the Association for Computational*  
 692 *Linguistics (Volume 1: Long Papers)*, pp. 1369–1407, St. Julian’s, Malta, March 2024. Association  
 693 for Computational Linguistics. URL <https://aclanthology.org/2024.eacl-long.83>.

702 Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. In *Proceedings of the 2019*  
 703 *Conference on Empirical Methods in Natural Language Processing and the 9th International Joint*  
 704 *Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 11–20, 2019.

705

706 Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan, Lidia Sam Chao, and Derek Fai Wong. A  
 707 survey on llm-generated text detection: Necessity, methods, and future directions. *Computational*  
 708 *Linguistics*, pp. 1–66, 2025.

709

710 Yihan Wu, Zhengmian Hu, Junfeng Guo, Hongyang Zhang, and Heng Huang. A resilient and  
 711 accessible distribution-preserving watermark for large language models. In *Forty-first International*  
 712 *Conference on Machine Learning*, 2024.

713

714 Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for  
 715 analyzing and interpreting bert. *arXiv preprint arXiv:2004.14786*, 2020.

716

717 Yaochen Xie, Sumeet Katariya, Xianfeng Tang, Edward Huang, Nikhil Rao, Karthik Subbian, and  
 718 Shuiwang Ji. Task-agnostic graph explanations. *Advances in Neural Information Processing*  
 719 *Systems*, 35:12027–12039, 2022.

720

721 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural  
 722 networks? In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

723

724 Xi Yang, Kejiang Chen, Weiming Zhang, Chang Liu, Yuang Qi, Jie Zhang, Han Fang, and Nenghai  
 725 Yu. Watermarking text generated by black-box language models. *arXiv preprint arXiv:2305.08883*,  
 726 2023.

727

728 Xianjun Yang, Wei Cheng, Yue Wu, Linda Ruth Petzold, William Yang Wang, and Haifeng Chen.  
 729 Dna-gpt: Divergent n-gram analysis for training-free detection of gpt-generated text. In *The Twelfth*  
 730 *International Conference on Learning Representations*, 2024.

731

732 Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In  
 733 *Proceedings of the AAAI conference on artificial intelligence*, volume 33, pp. 7370–7377, 2019.

734

735 Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:  
 736 Generating explanations for graph neural networks. *Advances in neural information processing*  
 737 *systems*, 32, 2019.

738

739 Xiao Yu, Kejiang Chen, Qi Yang, Weiming Zhang, and Nenghai Yu. Text fluoroscopy: Detecting  
 740 llm-generated text through intrinsic features. In *Proceedings of the 2024 Conference on Empirical*  
 741 *Methods in Natural Language Processing*, pp. 15838–15846, 2024.

742

743 Ann Yuan, Andy Coenen, Emily Reif, and Daphne Ippolito. Wordcraft: story writing with large lan-  
 744 guage models. In *Proceedings of the 27th International Conference on Intelligent User Interfaces*,  
 745 pp. 841–852, 2022a.

746

747 Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of  
 748 graph neural networks. In *Proceedings of the 26th ACM SIGKDD International Conference on*  
 749 *Knowledge Discovery & Data Mining*, pp. 430–438, 2020.

750

751 Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks:  
 752 A taxonomic survey. *IEEE transactions on pattern analysis and machine intelligence*, 45(5):  
 753 5782–5799, 2022b.

754

755 Cong Zeng, Shengkun Tang, Xianjun Yang, Yuanzhou Chen, Yiyou Sun, Yao Li, Haifeng Chen, Wei  
 756 Cheng, Dongkuan Xu, et al. Dald: Improving logits-based detector without logits from black-box  
 757 llms. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

758

759 Shuhai Zhang, Yiliao Song, Jiahao Yang, Yuanqing Li, Bo Han, and Mingkui Tan. Detecting machine-  
 760 generated texts by multi-population aware optimization for maximum mean discrepancy. In *The*  
 761 *Twelfth International Conference on Learning Representations*, 2024a.

756 Shuhai Zhang, Yiliao Song, Jiahao Yang, Yuanqing Li, Bo Han, and Mingkui Tan. Detecting machine-  
757 generated texts by multi-population aware optimization for maximum mean discrepancy. In *The*  
758 *Twelfth International Conference on Learning Representations*, 2024b.

759

760 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher  
761 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language  
762 models. *arXiv preprint arXiv:2205.01068*, 2022.

763 Yaolun Zhang, Yinxu Pan, Yudong Wang, and Jie Cai. Pybench: Evaluating llm agent on various  
764 real-world coding tasks. *arXiv preprint arXiv:2407.16732*, 2024c.

765

766 Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai, Shuaiqiang Wang,  
767 Dawei Yin, and Mengnan Du. Explainability for large language models: A survey. *ACM*  
768 *Transactions on Intelligent Systems and Technology*, 15(2):1–38, 2024.

769

770 Xu Zheng, Farhad Shirani, Zhuomin Chen, Chaohao Lin, Wei Cheng, Wenbo Guo, and Dongsheng  
771 Luo. F-fidelity: A robust framework for faithfulness evaluation of explainable AI. In *The Thirteenth*  
772 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=X0r4BN50Dv>.

773

774 Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. Toolqa: A dataset for  
775 llm question answering with external tools. In A. Oh, T. Naumann, A. Globerson, K. Saenko,  
776 M. Hardt, and S. Levine (eds.), *Advances in Neural Information Processing Systems*, volume 36,  
777 pp. 50117–50143. Curran Associates, Inc., 2023.

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

|     |          |                                            |           |
|-----|----------|--------------------------------------------|-----------|
| 810 | CONTENTS |                                            |           |
| 811 |          |                                            |           |
| 812 | <b>1</b> | <b>Introduction</b>                        | <b>1</b>  |
| 813 |          |                                            |           |
| 814 | <b>2</b> | <b>Preliminary</b>                         | <b>2</b>  |
| 815 |          |                                            |           |
| 816 | <b>3</b> | <b>Theoretical Analysis</b>                | <b>3</b>  |
| 817 |          |                                            |           |
| 818 | <b>4</b> | <b>Methodology</b>                         | <b>4</b>  |
| 819 |          |                                            |           |
| 820 | 4.1      | Graph Construction . . . . .               | 5         |
| 821 |          |                                            |           |
| 822 | 4.2      | GNN Detection . . . . .                    | 5         |
| 823 |          |                                            |           |
| 824 | 4.3      | Explainable Motifs Extraction . . . . .    | 6         |
| 825 |          |                                            |           |
| 826 | <b>5</b> | <b>Related Work</b>                        | <b>6</b>  |
| 827 |          |                                            |           |
| 828 | <b>6</b> | <b>Experiments</b>                         | <b>7</b>  |
| 829 |          |                                            |           |
| 830 | 6.1      | Setups . . . . .                           | 7         |
| 831 |          |                                            |           |
| 832 | 6.2      | Detection Performance Comparison . . . . . | 8         |
| 833 |          |                                            |           |
| 834 | 6.3      | Explanation Evaluation . . . . .           | 8         |
| 835 |          |                                            |           |
| 836 | <b>7</b> | <b>Conclusion</b>                          | <b>9</b>  |
| 837 |          |                                            |           |
| 838 | <b>A</b> | <b>Proof of Theorem 3.1</b>                | <b>17</b> |
| 839 |          |                                            |           |
| 840 | <b>B</b> | <b>Experimental Setup Details</b>          | <b>17</b> |
| 841 |          |                                            |           |
| 842 | B.1      | Datasets . . . . .                         | 17        |
| 843 |          |                                            |           |
| 844 | B.2      | Experimental Setup . . . . .               | 19        |
| 845 |          |                                            |           |
| 846 | <b>C</b> | <b>Detailed Experiment Results</b>         | <b>22</b> |
| 847 |          |                                            |           |
| 848 | C.1      | Extended Detection Experiments . . . . .   | 22        |
| 849 |          |                                            |           |
| 850 | C.2      | Extended Motifs Evaluation . . . . .       | 25        |
| 851 |          |                                            |           |
| 852 | <b>D</b> | <b>LLM Usage</b>                           | <b>27</b> |
| 853 |          |                                            |           |
| 854 |          |                                            |           |
| 855 |          |                                            |           |
| 856 |          |                                            |           |
| 857 |          |                                            |           |
| 858 |          |                                            |           |
| 859 |          |                                            |           |
| 860 |          |                                            |           |
| 861 |          |                                            |           |
| 862 |          |                                            |           |
| 863 |          |                                            |           |

864 **A PROOF OF THEOREM 3.1**  
865

866 We first prove that the ensemble of PGB detectors is at least as accurate as the ensemble of ESB  
867 detectors. To this end, let us recall that an ESB detector is completely characterized by the mapping  
868  $g_s$  and the PGB detector by  $(K, \lambda, e_h, e_m, A_t, A_s, g_p)$ . Let us consider an arbitrary ESB detector by  
869 fixing the function  $g_s(\cdot)$ . The ESB detector computes  $\hat{P}_\ell(s_t|s_{1:t-1})$ ,  $\ell \in \{h, m\}$ ,  $t \in [T]$  empirically  
870 and uses  $g_s((\hat{P}_\ell(s_t|s_{1:t-1}))_{\ell \in \{h, m\}, t \in [T]}, \mathbf{S}_o)$  for detection. On the other hand, the PGB uses the  
871 embedding functions  $e_\ell, A_t, A_s$  to compute the final node embeddings  $\mathbf{h}^{(K)}$  and the mapping  
872  $g_p(\mathbf{h}^{(K)}, \mathbf{S}_o)$  for detection. We take  $K = T$  and  $\lambda = 1$ . Then, to prove that there exists a PGB  
873 which matches the ESB in terms of detection accuracy, it suffices to show that there exist choices of  
874 embedding functions  $e_\ell, A_t, A_s$ , such that the empirical estimate  $\hat{P}_\ell(s_t|s_{1:t-1})$ ,  $\ell \in \{h, m\}$ ,  $t \in [T]$   
875 can be written as a function of the final node embeddings  $\mathbf{h}^{(T)}$ , i.e., there exists  $r(\cdot)$  such that  
876  $r(\mathbf{h}^{(T)}) = (\hat{P}_\ell(s_t|s_{1:t-1}))_{\ell \in \{h, m\}, t \in [T]}$ . Then, the proof follows by taking  $g_p(r(\mathbf{h}^{(T)}), \mathbf{S}_o) =$   
877  $g_s((\hat{P}_\ell(s_t|s_{1:t-1}))_{\ell \in \{h, m\}, t \in [T]}, \mathbf{S}_o)$ , so that

$$878 P(f_{\text{PGB}}(\mathcal{T}_h, \mathcal{T}_m, \mathbf{S}_o) = f_{\text{ESB}}(\mathcal{T}_h, \mathcal{T}_m, \mathbf{S}_o)) = 1.$$

881 To this end, we take  $e_\ell$  as the identity function and  $A_t$  as a one-to-one parametrization function,  
882 so that for each token node  $s_i$ , the collection  $\mathcal{J}_\ell(s_i) \times (\mathcal{I}_{\ell,j}(s_i))_{j \in \mathcal{J}_\ell(s_i)}$  can be computed from its  
883 connected edge weights, where  $\mathcal{J}_\ell(s_i)$  is the training sequence indices in which the token is present  
884 and  $\mathcal{I}_{\ell,j}(s_i)$  is the collection of indices in the sequence  $\mathbf{S}_{\ell,j}$ ,  $j \in \mathcal{J}_\ell$  whose value is equal to  $s_i$ . We  
885 further note that

$$886 \hat{P}_\ell(s_t|s_{1:t-1}) = \\ 887 \frac{1}{|\mathcal{J}_\ell(s_t)|} \sum_{i=1}^{|\mathcal{J}_\ell(s_t)|} \frac{\sum_{j=1}^{|\mathbf{S}_{\ell,i}|} \mathbf{1}(\mathbf{S}_{\ell,i,j:j+t} = s_{1:t})}{\sum_{j=1}^{|\mathbf{S}_{\ell,i}|} \mathbf{1}(\mathbf{S}_{\ell,i,j:j+t-1} = s_{1:t-1})},$$

890 Furthermore,

$$891 \mathbf{1}(\mathbf{S}_{\ell,i,j:j+t} = s_{1:t}) = \prod_{s_i:i \in [t]} \mathbf{1}((j+i) \in \mathcal{I}_{\ell,j}(s_i)),$$

894 Consequently, for each  $t \in [T]$ , the conditional distribution  $\hat{P}_\ell(s_t|s_{1:t-1})$  can be computed as a  
895 function of  $\mathbf{h}^{(t)}$ . As a result, the aggregate final node embedding  $\mathbf{h}^{(T)}$  can yield  $\hat{P}_\ell(s_t|s_{1:t-1})$ ,  $\ell \in$   
896  $\{h, m\}$ ,  $t \in [T]$  as a function. This complete the first part of the proof.

897 To prove strict improvements of PGM detectors over ESB detectors in terms of detection accuracy, we  
898 note that ESB detectors are restricted by their limited context length  $T$ . To provide a concrete example,  
899 consider a detection scenario characterized by the pair of probability distributions  $P_h, P_m$ , where all  
900 human and machine generated text sequences have length greater than  $T$ . That is, for any sequence  
901  $\mathbf{S}_\ell = (S_{\ell,1}, S_{\ell,2}, \dots, S_{\ell,L})$  with  $L \leq T$ , we have  $P_\ell(S_{\ell,1}, S_{\ell,2}, \dots, S_{\ell,L}) = 0$ , where  $\ell \in \{h, m\}$ .  
902 Furthermore, assume that the vocabulary consists of two tokens  $\{a, b\}$ . Both human and machine  
903 generated text sequences consist of tokens generated independently and with equal probability over  
904 the vocabulary for all indices in  $\{1, 2, \dots, L-1\}$ . The human generated text always ends with the  
905 token  $a$  and machine generated text with the token  $b$ , i.e.,  $P(S_{h,L} = a) = P(S_{m,L} = b) = 1$ . Then,  
906 it is straightforward to see that a PGM can achieve accuracy equal to one, since the edge weights,  
907 which are functions of  $\mathcal{J}_\ell \times (\mathcal{I}_{\ell,j})_{j \in \mathcal{J}_\ell}$  can capture the fact that the human generated text ends in  $a$   
908 and machine generated text ends in  $b$ . On the other hand, for an ESB, it can be noted that all of the  
909 empirical conditional distributions  $\hat{P}_\ell(s_t|s_{1:t-1})$ ,  $t \in [T]$ ,  $\ell \in \{h, m\}$  converge to uniform Bernoulli  
910 distributions as  $L \rightarrow \infty$ . So, the ESB achieves an accuracy which is strictly less than 1 due to its  
911 limited context length, and its accuracy converges to  $\frac{1}{2}$  as  $L \rightarrow \infty$ . This completes the proof.  $\square$

912 **B EXPERIMENTAL SETUP DETAILS**  
913914 **B.1 DATASETS**  
915

916 Our evaluation employs six distinct datasets. We selected specific domains or text sources from each  
917 to create a comprehensive benchmark.

918 Table 3: The details of the dataset for detection between HGT and MGT generated by ChaGPT.  
919

|              | HC3     |           |          |         | M4       |        |          |        | RAID   |        |        |        |
|--------------|---------|-----------|----------|---------|----------|--------|----------|--------|--------|--------|--------|--------|
|              | open-qa | wiki-csai | medicine | finance | wiki-how | reddit | peerread | arxiv  | recipe | book   | poetry | review |
| # Training   | 2,000   | 1,384     | 2,000    | 2,000   | 2,000    | 872    | 2,000    | 2,000  | 2,000  | 2,000  | 2,000  | 1,793  |
| # Validation | 100     | 100       | 100      | 100     | 100      | 100    | 100      | 100    | 100    | 100    | 100    | 100    |
| # Test       | 200     | 200       | 200      | 200     | 200      | 200    | 200      | 200    | 200    | 200    | 200    | 200    |
| # Nodes      | 15,974  | 12,069    | 8,127    | 9,581   | 20,061   | 11,276 | 18,926   | 10,526 | 6,562  | 20,515 | 16,818 | 17,024 |
| # Edges      | 3,262K  | 2,635K    | 2,063K   | 2,326K  | 6,823K   | 4,658K | 8,591K   | 3,595K | 2,119K | 7,076K | 5,059K | 5,448K |

926 Table 4: The details of the M4 dataset for detection between HGT and MGT generated by LLMs.  
927

|              | reddit  |        |        |        | peerread |        |        |        | arxiv   |        |        |        |
|--------------|---------|--------|--------|--------|----------|--------|--------|--------|---------|--------|--------|--------|
|              | Davinci | Cohere | Dolly  | BloomZ | Davinci  | Cohere | Dolly  | BloomZ | Davinci | Cohere | Dolly  | BloomZ |
| # Training   | 2,000   | 2,000  | 2,000  | 2,000  | 872      | 824    | 872    | 830    | 2,000   | 2,000  | 2,000  | 2,000  |
| # Validation | 100     | 100    | 100    | 100    | 100      | 100    | 100    | 98     | 100     | 100    | 100    | 100    |
| # Test       | 200     | 200    | 200    | 200    | 200      | 198    | 200    | 192    | 200     | 200    | 200    | 200    |
| # Nodes      | 20,867  | 21,701 | 21,344 | 20,944 | 11,059   | 10,837 | 14,366 | 11,340 | 10,153  | 10,724 | 12,039 | 11,468 |
| # Edges      | 7,175K  | 7,055K | 7,157K | 6,601K | 4,139K   | 3,933K | 5,924K | 4,296K | 3,343K  | 3,376K | 4,132K | 4,011K |

935 Table 5: The details of the RAID dataset for detection between HGT and MGT generated by LLMs.  
936

|              | recipes |        |        |         | poetry  |        |        |         | reviews |        |        |         |
|--------------|---------|--------|--------|---------|---------|--------|--------|---------|---------|--------|--------|---------|
|              | Llama   | GPT-4  | MPT    | Mistral | Llama 2 | GPT-4  | MPT    | Mistral | Llama 2 | GPT-4  | MPT    | Mistral |
| # Training   | 2,000   | 2,000  | 2,000  | 2,000   | 2,000   | 2,000  | 2,000  | 2,000   | 1,793   | 1,793  | 1,793  | 1,793   |
| # Validation | 100     | 100    | 100    | 100     | 100     | 100    | 100    | 100     | 100     | 100    | 100    | 100     |
| # Test       | 200     | 200    | 200    | 200     | 200     | 200    | 200    | 200     | 200     | 200    | 200    | 200     |
| # Nodes      | 6,904   | 6,701  | 13,466 | 8,833   | 16,696  | 17,152 | 19,476 | 17,523  | 17,004  | 17,387 | 19,371 | 17,843  |
| # Edges      | 2,125K  | 2,163K | 4,066K | 2,586K  | 4,766K  | 4,527K | 5,924K | 4,835K  | 5,039K  | 5,694K | 6,017K | 5,142K  |

944 Table 6: The details of the dataset for detection between HGT and MGT generated by LLMs in Yelp,  
945 Creative, and Essay Dataset. Sonnet and Opus are short for Claude3-Sonnet and Claude-3-Opus.  
946

|              | Yelp   |        |        | Essay  |        |        | Creative |        |        |
|--------------|--------|--------|--------|--------|--------|--------|----------|--------|--------|
|              | Sonnet | Opus   | Gemini | Sonnet | Opus   | Gemini | Sonnet   | Opus   | Gemini |
| # Training   | 2,000  | 2,000  | 2,000  | 1,500  | 1,500  | 1,500  | 1,500    | 1,500  | 1,500  |
| # Validation | 200    | 200    | 200    | 100    | 100    | 100    | 100      | 100    | 100    |
| # Test       | 200    | 200    | 200    | 200    | 200    | 200    | 200      | 200    | 200    |
| # Nodes      | 11,581 | 11,308 | 11,350 | 20,836 | 20,748 | 20,868 | 20,597   | 20,057 | 19,936 |
| # Edges      | 1,940K | 1,886K | 1,778K | 8,422K | 8,038K | 7,989K | 7,187K   | 6,308K | 6,250K |

- **HC3**(Human-ChatGPT Comparison Corpus) (Guo et al., 2023): This dataset contains questions with both human-generated text (HGT) and machine-generated text (MGT) from ChatGPT. From its five available domains, we utilize four for our experiments: open-qa, wiki-csai, medicine, and finance.
- **M4** (Wang et al., 2024): The M4 dataset provides MGT from several LLMs, including Davinci, Dolly, and BloomZ, across diverse domains such as wiki-how, reddit, peerread, and arxiv.
- **RAID** (Dugan et al., 2024): This large-scale dataset contains documents generated by 11 LLMs across 11 genres. Our benchmark includes four of these: recipe, book, poetry, and review.
- **Yelp, Creative, and Essay** (Mao et al., 2024; Verma et al., 2023; Guo et al., 2024a): For these three datasets, while texts from five LLMs are available, our analysis focuses on those generated by Claude-3-Sonnet, Claude-3-Opus, and Gemini-1.0-Pro.

955 Detailed statistics for the training, validation, and test sets, including their graph representations, are  
956 presented in Tables 3, 4, 5, and 6.  
957

972 Table 7: Detection comparisons with SOTA methods on ACC between HGT and ChatGPT-generated  
 973 texts. The best results are shown in bold font. The second-best results are shown underlined. \* means  
 974 the model is trained on that dataset. The Fast-D.GPT is short for Fast-DetectGPT.

| 976 Method            | 977 HC3       |               |               |               | 978 M4       |             |              |             | 979 RAID    |             |             |             | 980 Avg.    |
|-----------------------|---------------|---------------|---------------|---------------|--------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                       | 981 open-qa   | 982 wiki-csai | 983 medicine  | 984 finance   | 985 wiki-how | 986 reddit  | 987 peerread | 988 arxiv   | 989 recipe  | 990 book    | 991 poetry  | 992 review  |             |
| Likelihood            | 0.85          | 0.81          | 0.76          | 0.58          | 0.85         | 0.96        | 0.80         | 0.92        | 0.83        | 0.96        | 0.82        | 0.78        | 0.83        |
| Rank                  | 0.54          | 0.53          | 0.54          | 0.51          | 0.57         | 0.55        | 0.58         | 0.61        | 0.51        | 0.65        | 0.53        | 0.54        | 0.56        |
| LogRank               | 0.77          | 0.73          | 0.72          | 0.58          | 0.82         | 0.95        | 0.80         | 0.92        | 0.81        | 0.93        | 0.84        | 0.79        | 0.81        |
| Entropy               | 0.92          | 0.76          | 0.77          | 0.61          | 0.83         | 0.81        | 0.68         | 0.60        | 0.80        | 0.71        | 0.49        | 0.62        | 0.72        |
| NPR                   | 0.65          | 0.92          | 0.91          | 0.85          | 0.61         | 0.68        | 0.83         | 0.72        | 0.84        | 0.83        | 0.50        | 0.97        | 0.78        |
| LRR                   | 0.98          | 0.95          | 0.98          | 0.94          | 0.82         | 0.82        | <b>1.00</b>  | 0.81        | 0.94        | 0.81        | 0.75        | 0.98        | 0.90        |
| DetectGPT             | 0.46          | 0.63          | 0.76          | 0.68          | 0.58         | 0.66        | 0.59         | 0.61        | 0.56        | 0.66        | 0.59        | 0.68        | 0.62        |
| Fast-D.GPT            | 0.95          | <u>0.99</u>   | 0.98          | 0.97          | 0.88         | 0.94        | <b>1.00</b>  | <b>1.00</b> | <u>0.99</u> | <u>0.97</u> | 0.93        | <b>1.00</b> | 0.97        |
| DNAGPT                | 0.63          | 0.79          | 0.63          | 0.88          | 0.60         | 0.79        | 0.53         | 0.81        | 0.71        | 0.82        | 0.75        | 0.59        | 0.71        |
| Binoculars            | 0.92          | <b>1.00</b>   | <b>1.00</b>   | <b>1.00</b>   | 0.77         | <u>0.97</u> | <b>1.00</b>  | <b>1.00</b> | <b>1.00</b> | 0.96        | <b>0.99</b> | <u>0.99</u> | <u>0.97</u> |
| Glimpse               | 0.95          | 0.98          | <u>0.99</u>   | <u>0.99</u>   | 0.97         | 0.91        | 0.87         | <u>0.99</u> | 0.94        | 0.96        | 0.76        | 0.98        | 0.94        |
| GPTZero               | 0.58          | 0.69          | 0.96          | 0.84          | 0.54         | 0.82        | 0.96         | 0.69        | 0.61        | 0.84        | 0.48        | 0.78        | 0.73        |
| RoBERTa-QA            | <b>1.00</b> * | <b>1.00</b> * | <b>1.00</b> * | <u>0.99</u> * | 0.88         | 0.96        | <u>0.99</u>  | 0.95        | 0.83        | 0.86        | 0.50        | <b>1.00</b> | 0.91        |
| Radar                 | 0.52          | 0.81          | 0.55          | 0.75          | 0.46         | 0.93        | 0.88         | 0.77        | 0.61        | 0.97        | 0.61        | 0.89        | 0.73        |
| DeTeCtive             | <u>0.99</u>   | 0.79          | <u>0.99</u>   | 0.89          | <u>0.89</u>  | 0.93        | 0.90         | 0.98        | 0.94        | <u>0.95</u> | <u>0.97</u> | 0.97        | 0.93        |
| LM <sup>2</sup> OTIFS | 0.97          | 0.96          | 0.98          | 0.98          | <b>0.97</b>  | <b>0.99</b> | 0.98         | 0.96        | <u>0.99</u> | <b>1.00</b> | <b>0.99</b> | 0.96        | <b>0.98</b> |

990  
 991 Table 8: MGT detection AUC performance comparisons with SOTA methods on HGT and ChatGPT-  
 992 generated texts. The best results are shown in bold font. The second-best results are shown underlined.  
 993 \* means the model is trained on that dataset. The Fast-D.GPT is short for Fast-DetectGPT.

| 994 Method            | 995 HC3       |               |               |               | 996 M4       |             |              |             | 997 RAID    |             |             |             | 998 Avg.    |
|-----------------------|---------------|---------------|---------------|---------------|--------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                       | 999 open-qa   | 999 wiki-csai | 999 medicine  | 999 finance   | 999 wiki-how | 999 reddit  | 999 peerread | 999 arxiv   | 999 recipe  | 999 book    | 999 poetry  | 999 review  |             |
| Likelihood            | <b>1.00</b>   | <b>1.00</b>   | <b>1.00</b>   | <b>1.00</b>   | 0.95         | 0.99        | 0.69         | 0.97        | <b>1.00</b> | <b>1.00</b> | 0.90        | <b>1.00</b> | 0.96        |
| Rank                  | <b>1.00</b>   | 0.77          | <u>0.99</u>   | 0.81          | 0.94         | 0.92        | <u>0.97</u>  | 0.95        | 0.79        | <u>0.99</u> | 0.87        | <b>1.00</b> | 0.92        |
| LogRank               | <b>1.00</b>   | <b>1.00</b>   | <b>1.00</b>   | <b>1.00</b>   | 0.95         | <u>0.99</u> | 0.82         | 0.98        | <b>1.00</b> | <b>1.00</b> | 0.89        | <b>1.00</b> | 0.97        |
| Entropy               | <u>0.99</u>   | 0.85          | <u>0.99</u>   | 0.97          | 0.91         | 0.91        | 0.60         | 0.75        | 0.97        | 0.88        | 0.75        | 0.97        | 0.88        |
| NPR                   | <b>1.00</b>   | <b>1.00</b>   | <b>1.00</b>   | <b>1.00</b>   | 0.95         | <u>0.99</u> | 0.81         | 0.98        | <b>1.00</b> | <b>1.00</b> | 0.89        | <b>1.00</b> | 0.97        |
| LRR                   | <b>1.00</b>   | <u>0.99</u>   | <b>1.00</b>   | 0.99          | 0.93         | 0.98        | <b>1.00</b>  | <u>0.99</u> | 0.99        | <u>0.99</u> | 0.85        | <b>1.00</b> | 0.98        |
| DetectGPT             | 0.35          | 0.59          | 0.70          | 0.61          | 0.68         | 0.71        | 0.70         | 0.43        | 0.65        | 0.77        | 0.84        | 0.84        | 0.66        |
| Fast-D.GPT            | <b>1.00</b>   | <b>1.00</b>   | <b>1.00</b>   | <u>0.98</u>   | <u>0.96</u>  | <u>0.99</u> | <b>1.00</b>  | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | 0.98        | <b>1.00</b> | <u>0.99</u> |
| DNAGPT                | 0.72          | 0.95          | 0.91          | 0.94          | 0.97         | 0.95        | 0.56         | 0.94        | 0.94        | 0.97        | 0.84        | <u>0.98</u> | 0.89        |
| Binoculars            | 0.98          | <b>1.00</b>   | <b>1.00</b>   | <b>1.00</b>   | 0.90         | <b>1.00</b> | <b>1.00</b>  | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | <u>0.99</u> | <b>1.00</b> | 0.99        |
| Glimpse               | <b>1.00</b>   | <b>1.00</b>   | <b>1.00</b>   | <b>1.00</b>   | <u>0.99</u>  | <b>1.00</b> | 0.92         | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | 0.85        | <b>1.00</b> | 0.98        |
| GPTZero               | 0.58          | 0.69          | 0.96          | 0.84          | 0.54         | 0.82        | 0.96         | 0.69        | 0.61        | 0.84        | 0.48        | 0.78        | 0.73        |
| RoBERTa-QA            | <b>1.00</b> * | <b>1.00</b> * | <b>1.00</b> * | <b>1.00</b> * | 0.94         | <b>1.00</b> | <b>1.00</b>  | <b>1.00</b> | 0.90        | 0.99        | 0.95        | <b>1.00</b> | 0.98        |
| Radar                 | 0.20          | 0.77          | 0.41          | 0.68          | 0.40         | 0.97        | <b>1.00</b>  | 0.95        | <u>0.99</u> | <b>1.00</b> | 0.88        | 0.91        | 0.76        |
| DeTeCtive             | <b>1.00</b>   | 0.84          | <u>0.99</u>   | 0.89          | 0.90         | 0.98        | 0.90         | <u>0.99</u> | <u>0.99</u> | 0.97        | 0.97        | 0.97        | 0.95        |
| LM <sup>2</sup> OTIFS | <b>1.00</b>   | <u>0.99</u>   | <b>1.00</b>   | <b>1.00</b>   | <b>0.99</b>  | <b>1.00</b> | <b>1.00</b>  | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> |

## 1009 B.2 EXPERIMENTAL SETUP

1010  
 1011 **Detection Baselines.** Our evaluation includes comparisons with several zero-shot detection methods:  
 1012 **Likelihood**, **Rank**, **Log-Rank**, **Entropy** (Gehrmann et al., 2019b; Solaiman et al., 2019; Ippolito  
 1013 et al., 2019), **DetectGPT** (Mitchell et al., 2023), **DetectLLM** (**LRR** and **NPR**) (Su et al., 2023),  
 1014 **DNA-GPT** (Yang et al., 2024), **Fast-DetectGPT** (Bao et al., 2024), **Glimpse** (Bao et al., 2025) and  
 1015 **Binoculars** (Ma & Wang, 2024). DetectGPT employs perturbations to approximate the probability  
 1016 distribution of the text. Fast-DetectGPT improves upon this by introducing a conditional probability  
 1017 curvature metric for detector optimization, thus replacing traditional perturbation-based methods.  
 1018 DNA-GPT adopts a distinct approach: it first truncates the input text, then uses LLMs to generate the  
 1019 subsequent content, and finally analyzes the N-gram differences between the original and generated  
 1020 text. To make a fair comparison, we utilize the OPT-2.7B model (Zhang et al., 2022) as the  
 1021 default reference model. For detailed implementation specifics, we followed the publicly available  
 1022 implementation of Fast-DetectGPT<sup>2</sup>.

1023  
 1024 <sup>2</sup><https://github.com/baoguangsheng/fast-detect-gpt>

1026 Table 9: Cross-domain MGT detection ACC performance comparisons with SOTA methods on HGT  
 1027 and ChatGPT-generated texts. The best results are shown in bold font. The second-best results are  
 1028 shown in underlined. The Fast-D.GPT is short for Fast-DetectGPT.

| Method                | HC3         |             |             | M4          |             |             | RAID        |             |             | Avg.        |
|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                       | wiki-csai   | medicine    | finance     | reddit      | peerread    | arxiv       | recipe      | poetry      | review      |             |
| Likelihood            | 0.97        | 0.96        | <u>0.98</u> | 0.88        | 0.80        | 0.67        | 0.57        | 0.70        | <u>0.99</u> | 0.84        |
| Rank                  | 0.65        | 0.94        | <u>0.65</u> | 0.82        | <u>0.56</u> | 0.66        | 0.54        | 0.80        | <u>0.80</u> | 0.71        |
| LogRank               | 0.98        | 0.97        | <u>0.98</u> | 0.92        | 0.83        | 0.71        | 0.53        | 0.73        | 0.97        | 0.85        |
| Entropy               | 0.71        | 0.91        | 0.87        | 0.61        | 0.75        | 0.50        | 0.50        | 0.58        | 0.78        | 0.69        |
| NPR                   | 0.97        | 0.97        | <u>0.98</u> | <u>0.93</u> | 0.97        | 0.77        | 0.55        | 0.72        | 0.97        | 0.87        |
| LRR                   | 0.98        | 0.94        | <u>0.96</u> | <u>0.93</u> | 0.94        | 0.76        | 0.52        | 0.69        | 0.93        | 0.85        |
| DetectGPT             | 0.52        | 0.58        | 0.53        | <u>0.56</u> | 0.54        | 0.50        | 0.56        | 0.67        | 0.73        | 0.58        |
| Fast-D.GPT            | <u>0.99</u> | <b>0.99</b> | 0.95        | <u>0.93</u> | <b>1.00</b> | 0.94        | <b>1.00</b> | 0.89        | <b>1.00</b> | <b>0.97</b> |
| DNAGPT                | 0.86        | 0.87        | 0.84        | 0.92        | 0.49        | 0.85        | <u>0.84</u> | 0.67        | 0.96        | 0.81        |
| Binoculars            | 0.97        | 0.97        | 0.97        | 0.89        | 0.89        | 0.89        | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | <u>0.95</u> |
| Glimpse               | <b>1.00</b> | <u>0.98</u> | <b>1.00</b> | <b>0.96</b> | 0.88        | <b>0.99</b> | 0.96        | 0.78        | <b>1.00</b> | <u>0.95</u> |
| RoBERTa-QA            | 0.53        | <u>0.65</u> | 0.53        | 0.77        | 0.93        | <b>0.99</b> | 0.70        | 0.86        | 0.85        | 0.76        |
| Radar                 | 0.79        | 0.53        | 0.74        | 0.92        | 0.77        | 0.87        | 0.65        | 0.74        | 0.88        | 0.77        |
| DeTeCtive             | 0.68        | 0.58        | 0.60        | 0.76        | 0.76        | 0.65        | 0.48        | 0.72        | 0.89        | 0.68        |
| LM <sup>2</sup> OTIFS | 0.71        | 0.82        | 0.64        | 0.59        | <u>0.99</u> | 0.93        | 0.50        | <u>0.93</u> | 0.97        | 0.79        |

1047  
 1048 Table 10: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT on  
 1049 M4 dataset. The best results are shown in bold font. The second-best results are shown in underlined.  
 1050 The Fast-D.GPT is short for Fast-DetectGPT.

| Method                | DaVinci     |             |             | Cohere      |             |             | Dolly       |             |             | BloomZ      |             |             | Avg.        |
|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                       | reddit      | peerread    | arxiv       |             |
| Likelihood            | 0.89        | 0.77        | 0.40        | 0.95        | 0.78        | 0.89        | 0.63        | 0.65        | 0.71        | 0.56        | 0.34        | 0.72        | 0.69        |
| Rank                  | 0.57        | 0.51        | 0.45        | <u>0.56</u> | 0.54        | 0.52        | 0.50        | 0.53        | 0.57        | 0.55        | 0.51        | 0.53        | 0.53        |
| LogRank               | 0.83        | 0.77        | 0.40        | 0.94        | 0.81        | 0.90        | 0.75        | 0.69        | 0.73        | 0.71        | 0.39        | 0.77        | 0.72        |
| Entropy               | 0.78        | 0.71        | 0.37        | 0.73        | 0.53        | 0.58        | 0.54        | 0.46        | 0.58        | 0.63        | 0.34        | 0.62        | 0.57        |
| NPR                   | 0.67        | 0.74        | 0.49        | 0.65        | 0.83        | 0.53        | 0.51        | 0.52        | 0.61        | 0.52        | 0.71        | 0.55        | 0.61        |
| LRR                   | 0.86        | 0.95        | 0.50        | 0.68        | 0.94        | 0.63        | 0.75        | 0.82        | 0.66        | 0.75        | <u>0.98</u> | 0.59        | 0.76        |
| DetectGPT             | 0.56        | 0.53        | 0.35        | <u>0.63</u> | 0.60        | 0.47        | 0.54        | 0.46        | 0.45        | 0.58        | 0.57        | 0.62        | 0.53        |
| Fast-D.GPT            | <u>0.97</u> | <b>1.00</b> | 0.46        | <u>0.96</u> | <u>0.99</u> | <b>0.98</b> | 0.90        | <u>0.99</u> | 0.82        | 0.43        | 0.51        | 0.69        | 0.81        |
| DNAGPT                | 0.75        | 0.47        | 0.36        | <u>0.90</u> | 0.47        | 0.86        | 0.51        | 0.53        | 0.54        | 0.45        | 0.49        | 0.57        | 0.58        |
| Binoculars            | <b>0.98</b> | <b>1.00</b> | 0.51        | <b>0.98</b> | 0.96        | <b>0.98</b> | 0.83        | <u>0.99</u> | <u>0.87</u> | 0.58        | 0.62        | 0.77        | 0.84        |
| Glimpse               | 0.77        | 0.95        | 0.51        | 0.95        | 0.88        | 1.00        | 0.64        | 0.68        | 0.75        | 0.52        | 0.43        | 0.88        | 0.75        |
| GPTZero               | 0.86        | <u>0.99</u> | 0.36        | 0.84        | 0.92        | 0.65        | 0.76        | 0.58        | 0.50        | 0.61        | 0.53        | 0.46        | 0.67        |
| RoBERTa-QA            | 0.93        | 1.00        | 0.55        | 0.95        | 0.97        | 0.89        | 0.95        | 0.55        | 0.71        | 0.50        | 0.50        | 0.52        | 0.75        |
| Radar                 | 0.84        | 0.88        | 0.57        | 0.87        | 0.85        | 0.60        | 0.66        | 0.77        | 0.53        | 0.80        | 0.79        | 0.30        | 0.71        |
| DeTeCtive             | 0.90        | 0.85        | <b>0.95</b> | 0.84        | 0.76        | <u>0.95</u> | <b>0.96</b> | 0.75        | <b>0.98</b> | 0.94        | 0.89        | 0.92        | 0.89        |
| LM <sup>2</sup> OTIFS | <u>0.97</u> | <b>1.00</b> | <u>0.87</u> | <b>0.98</b> | <b>1.00</b> | 0.94        | <u>0.95</u> | <b>1.00</b> | 0.77        | <b>1.00</b> | <b>1.00</b> | <b>0.95</b> | <b>0.95</b> |

1069 Our comparative evaluation also includes training-based methods: **RoBERTa-QA** (Guo et al.,  
 1070 2023), **DeTeCtive** (Guo et al., 2024b), and **RADAR** (Hu et al., 2023). Additionally, we present  
 1071 comparison results with **GPTZero**<sup>3</sup>. DeTeCtive is specifically designed for multi-source MGT  
 1072 detection. It employs contrastive learning to minimize the representational divergence among various  
 1073 MGT sources. During prediction, DeTeCtive utilizes k-nearest neighbors (KNN) to determine  
 1074 the classification. For our experiments, we use the DeTeCtive model trained on the OUTFOX  
 1075 dataset (Koike et al., 2024). RoBERTa-QA, proposed in (Guo et al., 2023) and trained on the HC3  
 1076 dataset, leverages the pre-trained RoBERTa model (Liu, 2019) and fine-tunes a classification layer on  
 1077 the HC3 data.

<sup>3</sup><https://gptzero.me>

1080 Table 11: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT  
 1081 on RAID dataset. The best results are shown in bold font. The second-best results are shown in  
 1082 underlined. The Fast-D.GPT is short for Fast-DetectGPT.

| Method                | Llama       |             |             | GPT-4       |             |             | MPT         |             |             | Mistral     |             |             | Avg.        |
|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                       | recipe      | poetry      | review      |             |
| Likelihood            | 0.83        | 0.78        | 0.76        | 0.82        | 0.68        | 0.75        | 0.27        | 0.69        | 0.54        | 0.45        | 0.76        | 0.73        | 0.67        |
| Rank                  | 0.51        | 0.53        | 0.54        | 0.51        | 0.53        | 0.54        | 0.50        | 0.53        | 0.50        | 0.50        | 0.53        | 0.54        | 0.52        |
| LogRank               | 0.79        | 0.81        | 0.79        | 0.80        | 0.64        | 0.78        | 0.30        | 0.63        | 0.44        | 0.43        | 0.77        | 0.78        | 0.66        |
| Entropy               | 0.78        | 0.47        | 0.61        | 0.76        | 0.49        | 0.60        | 0.29        | 0.65        | 0.62        | 0.55        | 0.68        | 0.65        | 0.60        |
| NPR                   | 0.92        | 0.50        | 0.94        | 0.73        | 0.50        | 0.76        | 0.56        | 0.53        | 0.54        | 0.58        | 0.53        | 0.84        | 0.66        |
| LRR                   | 0.91        | 0.81        | 0.90        | 0.78        | 0.60        | 0.74        | 0.57        | 0.53        | 0.56        | 0.66        | 0.61        | 0.86        | 0.71        |
| DetectGPT             | 0.51        | 0.77        | 0.73        | 0.51        | 0.61        | 0.65        | 0.44        | 0.48        | 0.46        | 0.51        | 0.52        | 0.56        | 0.56        |
| Fast-D.GPT            | <u>0.92</u> | 0.94        | <u>0.96</u> | 0.96        | 0.79        | 0.80        | 0.39        | 0.63        | 0.41        | 0.48        | 0.79        | 0.64        | 0.73        |
| DNAGPT                | 0.76        | 0.69        | 0.58        | 0.68        | 0.70        | 0.59        | 0.29        | 0.54        | 0.35        | 0.40        | 0.52        | 0.70        | 0.57        |
| Binoculars            | <b>1.00</b> | <b>0.98</b> | 0.95        | <b>0.99</b> | 0.81        | 0.95        | 0.43        | 0.62        | 0.68        | 0.76        | 0.72        | 0.65        | 0.80        |
| Glimpse               | 0.93        | 0.77        | 0.95        | 0.93        | 0.60        | 0.79        | 0.70        | 0.59        | 0.75        | 0.81        | 0.67        | 0.84        | 0.78        |
| GPTZero               | 0.74        | 0.47        | 0.73        | 0.61        | 0.46        | 0.73        | 0.53        | 0.52        | 0.57        | 0.58        | 0.57        | 0.51        | 0.59        |
| RoBERTa-QA            | 0.85        | 0.50        | <u>0.96</u> | 0.76        | 0.50        | 0.83        | 0.46        | 0.53        | 0.69        | 0.44        | 0.55        | 0.69        | 0.65        |
| Radar                 | 0.58        | 0.59        | 0.86        | 0.63        | 0.57        | 0.86        | 0.59        | 0.73        | 0.59        | 0.64        | <b>0.89</b> | 0.63        | 0.68        |
| DeTeCtive             | <b>1.00</b> | <u>0.95</u> | 0.94        | <u>0.97</u> | <u>0.96</u> | <u>0.97</u> | <u>0.91</u> | <b>0.90</b> | <b>0.95</b> | <u>0.87</u> | <u>0.88</u> | <u>0.90</u> | <u>0.93</u> |
| LM <sup>2</sup> OTIFS | <b>1.00</b> | <b>0.98</b> | <b>0.97</b> | <u>0.99</u> | <b>1.00</b> | <b>1.00</b> | <u>0.95</u> | <u>0.84</u> | <u>0.90</u> | <b>0.94</b> | <u>0.88</u> | <b>0.92</b> | <b>0.95</b> |

1100 Table 12: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT on  
 1101 Yelp, Essay, and Creative dataset. The best results are shown in bold font. The second-best results are  
 1102 shown in underlined. The Fast-D.GPT is short for Fast-DetectGPT.

| Method                | Claude3-Sonnet |             |             | Claude3-Opus |             |             | Gemini      |             |             | Avg.        |
|-----------------------|----------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                       | Yelp           | Essay       | Creative    | Yelp         | Essay       | Creative    | Yelp        | Essay       | Creative    |             |
| Likelihood            | 0.61           | 0.96        | 0.83        | 0.61         | 0.97        | 0.91        | 0.56        | 0.97        | 0.69        | 0.79        |
| Rank                  | 0.51           | 0.54        | 0.51        | 0.50         | 0.55        | 0.51        | 0.50        | 0.55        | 0.51        | 0.52        |
| LogRank               | 0.57           | 0.91        | 0.79        | 0.54         | 0.93        | 0.89        | 0.54        | 0.94        | 0.68        | 0.75        |
| Entropy               | 0.60           | 0.87        | 0.69        | 0.58         | 0.92        | 0.71        | 0.53        | 0.85        | 0.53        | 0.70        |
| NPR                   | 0.62           | 0.67        | 0.80        | 0.62         | 0.58        | 0.68        | 0.50        | 0.57        | 0.56        | 0.62        |
| LRR                   | 0.55           | 0.90        | 0.78        | 0.52         | 0.91        | 0.73        | 0.45        | 0.58        | 0.56        | 0.66        |
| DetectGPT             | 0.49           | 0.68        | 0.69        | 0.44         | 0.62        | 0.69        | 0.42        | 0.66        | 0.62        | 0.59        |
| Fast-D.GPT            | 0.66           | <b>1.00</b> | 0.88        | 0.72         | <u>0.99</u> | 0.93        | 0.60        | <b>0.98</b> | 0.69        | 0.83        |
| DNAGPT                | 0.54           | 0.66        | 0.66        | 0.54         | 0.71        | 0.67        | 0.53        | 0.77        | 0.64        | 0.64        |
| Binoculars            | 0.69           | <b>1.00</b> | 0.94        | 0.77         | <b>1.00</b> | 0.97        | 0.68        | <u>0.97</u> | <b>0.78</b> | 0.87        |
| Glimpse               | 0.69           | <b>1.00</b> | 0.86        | 0.69         | 0.97        | 0.90        | 0.59        | 0.96        | 0.74        | 0.82        |
| GPTZero               | 0.63           | 0.66        | 0.78        | 0.61         | 0.65        | 0.86        | 0.59        | 0.36        | 0.66        | 0.64        |
| RoBERTa-QA            | 0.72           | 0.86        | 0.79        | 0.82         | 0.87        | 0.93        | 0.81        | 0.86        | 0.72        | 0.82        |
| Radar                 | 0.62           | 0.94        | 0.84        | 0.64         | 0.95        | 0.91        | 0.64        | 0.96        | 0.74        | 0.80        |
| DeTeCtive             | 0.98           | 0.86        | 0.97        | 0.99         | 0.79        | 0.96        | 0.97        | 0.85        | 0.77        | 0.90        |
| LM <sup>2</sup> OTIFS | <b>0.99</b>    | <u>0.99</u> | <b>0.98</b> | <b>1.00</b>  | <u>0.99</u> | <b>0.98</b> | <b>0.99</b> | <u>0.97</u> | 0.77        | <b>0.96</b> |

1123 **Explainable Baselines.** To verify the effectiveness of our method, we introduce a simple baseline,  
 1124 Random Motifs, which serves as a graph-explainable sanity check, where the importance of each  
 1125 edge is randomly assigned. If an explanation method performs worse than random, it is considered to  
 1126 provide no meaningful insight.

1127 **Implementation.** The detector is implemented as a two-layer Graph Convolutional Network. The  
 1128 input dimension of the first layer is dependent on the token size of the training set. The hidden  
 1129 dimension is 64, and the output dimensionality is fixed to the number of text categories. We use  
 1130 the Bert (Devlin et al., 2019) tokenizer as the tokenizer. We employ Adam (Kingma, 2014) as  
 1131 the default optimizer with the learning rate 5E-4, 5000 epochs. For motif extraction, we adapt  
 1132 the GNNEExplainer (Ying et al., 2019) to suit our analysis. Notably, the explanation method can be  
 1133 replaced by others, and we only use a basic post-hoc explainer here. We follow the Refine (Wang

Table 13: MGT detection AUC performance comparisons with SOTA methods on HGT and MGT on M4 dataset. The best results are shown in bold font. The second-best results are shown in underlined. The Fast-D.GPT is short for Fast-DetectGPT.

| Method                | DaVinci     |             |             | Cohere      |             |             | Dolly       |             |             | BloomZ      |             |             | Avg.        |
|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                       | reddit      | peerread    | arxiv       |             |
| Likelihood            | 0.98        | 0.83        | 0.27        | 0.96        | 0.78        | 0.96        | 0.93        | 0.60        | 0.80        | 0.70        | 0.47        | 0.78        | 0.76        |
| Rank                  | 0.92        | 0.94        | 0.45        | 0.90        | 0.82        | 0.81        | 0.72        | 0.50        | 0.69        | 0.88        | 0.72        | 0.88        | 0.77        |
| LogRank               | 0.98        | 0.96        | 0.28        | 0.97        | 0.90        | 0.97        | 0.93        | 0.65        | 0.79        | 0.84        | 0.58        | 0.85        | 0.81        |
| Entropy               | 0.86        | 0.58        | 0.23        | 0.76        | 0.61        | 0.58        | 0.76        | 0.51        | 0.61        | 0.83        | 0.49        | 0.69        | 0.63        |
| NPR                   | 0.98        | <b>1.00</b> | 0.28        | 0.97        | <b>1.00</b> | 0.97        | 0.86        | 0.97        | 0.80        | 0.86        | 0.97        | 0.86        | 0.88        |
| LRR                   | 0.97        | <b>1.00</b> | 0.36        | 0.97        | <b>1.00</b> | 0.97        | 0.98        | 0.92        | 0.74        | <u>0.98</u> | <b>1.00</b> | <u>0.93</u> | 0.90        |
| DetectGPT             | 0.59        | 0.74        | 0.29        | 0.72        | 0.76        | 0.43        | 0.61        | 0.54        | 0.42        | 0.73        | 0.71        | 0.63        | 0.60        |
| Fast-D.GPT            | <u>0.99</u> | <b>1.00</b> | 0.48        | <u>0.99</u> | <b>1.00</b> | <u>0.99</u> | 0.97        | <b>1.00</b> | 0.90        | 0.37        | 0.52        | 0.75        | 0.83        |
| DNAGPT                | 0.84        | 0.27        | 0.32        | 0.94        | 0.35        | 0.93        | 0.72        | 0.55        | 0.70        | 0.47        | 0.11        | 0.69        | 0.57        |
| Binoculars            | <b>1.00</b> | <b>1.00</b> | 0.51        | 0.98        | <b>1.00</b> | <b>1.00</b> | <u>0.98</u> | <b>1.00</b> | 0.95        | 0.53        | 0.66        | 0.85        | 0.87        |
| Glimpse               | 0.92        | <b>1.00</b> | 0.51        | 0.98        | 0.96        | <b>1.00</b> | 0.83        | 0.81        | 0.91        | 0.66        | 0.42        | <b>0.98</b> | 0.83        |
| GPTZero               | 0.86        | 0.99        | 0.36        | 0.84        | 0.92        | 0.65        | 0.76        | 0.58        | 0.50        | 0.61        | 0.53        | 0.46        | 0.67        |
| RoBERTa-QA            | <u>0.99</u> | <b>1.00</b> | 0.94        | <u>0.99</u> | <b>1.00</b> | <b>1.00</b> | <u>0.98</u> | <u>0.95</u> | <u>0.99</u> | 0.61        | 0.38        | 0.66        | 0.87        |
| Radar                 | 0.95        | <b>1.00</b> | 0.48        | 0.97        | <b>1.00</b> | 0.78        | 0.79        | 0.92        | 0.43        | 0.90        | 0.88        | 0.52        | 0.80        |
| DeTeCtive             | 0.96        | 0.85        | <b>0.98</b> | 0.89        | 0.88        | 0.98        | 0.96        | 0.86        | <b>1.00</b> | 0.96        | <u>0.96</u> | <b>0.98</b> | 0.94        |
| LM <sup>2</sup> OTIFS | <u>0.99</u> | <b>1.00</b> | <u>0.94</u> | <b>1.00</b> | <b>1.00</b> | 0.98        | <b>0.99</b> | <b>1.00</b> | 0.85        | <b>1.00</b> | <b>1.00</b> | <b>0.98</b> | <b>0.98</b> |

Table 14: MGT detection AUC performance comparisons with SOTA methods on HGT and MGT on RAID dataset. The best results are shown in bold font. The second-best results are shown in underlined. The Fast-D.GPT is short for Fast-DetectGPT.

| Method                | Llama       |             |             | GPT-4       |             |             | MPT         |             |             | Mistral     |             |             | Avg.        |
|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                       | recipe      | poetry      | review      |             |
| Likelihood            | <u>0.99</u> | 0.86        | <b>0.98</b> | 0.98        | 0.72        | 0.95        | 0.38        | 0.67        | 0.53        | 0.64        | 0.80        | 0.71        | 0.77        |
| Rank                  | <u>0.88</u> | 0.79        | <b>0.97</b> | 0.67        | 0.65        | 0.87        | 0.45        | 0.92        | 0.83        | 0.45        | 0.93        | 0.90        | 0.78        |
| LogRank               | 0.99        | 0.87        | <u>0.98</u> | 0.97        | 0.69        | 0.94        | 0.38        | 0.73        | 0.60        | 0.64        | 0.81        | 0.74        | 0.78        |
| Entropy               | 0.94        | 0.63        | 0.92        | 0.91        | 0.59        | 0.77        | 0.35        | 0.72        | 0.61        | 0.59        | 0.80        | 0.71        | 0.71        |
| NPR                   | <u>0.99</u> | 0.87        | <b>0.98</b> | 0.97        | 0.70        | 0.93        | 0.39        | 0.74        | 0.61        | 0.64        | 0.82        | 0.74        | 0.78        |
| LRR                   | 0.98        | 0.88        | <b>0.98</b> | 0.94        | 0.60        | 0.83        | 0.44        | 0.83        | 0.84        | 0.62        | 0.89        | 0.84        | 0.81        |
| DetectGPT             | 0.52        | 0.82        | 0.83        | 0.55        | 0.63        | 0.75        | 0.29        | 0.45        | 0.45        | 0.48        | 0.45        | 0.55        | 0.56        |
| Fast-D.GPT            | <u>0.99</u> | <u>0.97</u> | 0.97        | <u>0.99</u> | 0.88        | <u>0.99</u> | 0.50        | 0.61        | 0.51        | 0.70        | 0.77        | 0.65        | 0.79        |
| DNAGPT                | 0.96        | 0.75        | 0.95        | 0.80        | 0.75        | 0.88        | 0.38        | 0.55        | 0.49        | 0.57        | 0.72        | 0.60        | 0.70        |
| Binoculars            | <u>0.99</u> | <b>0.99</b> | 0.97        | <b>1.00</b> | <u>0.98</u> | <b>0.99</b> | 0.55        | 0.66        | 0.59        | 0.72        | 0.79        | 0.68        | 0.83        |
| Glimpse               | <b>1.00</b> | 0.87        | 0.97        | <u>0.99</u> | 0.60        | 0.88        | 0.69        | 0.63        | 0.84        | 0.86        | 0.74        | 0.92        | 0.83        |
| GPTZero               | 0.74        | 0.47        | 0.73        | <u>0.61</u> | 0.46        | 0.73        | 0.53        | 0.52        | 0.57        | 0.58        | 0.57        | 0.51        | 0.59        |
| RoBERTa-QA            | 0.95        | 0.94        | 0.96        | 0.82        | 0.83        | 0.95        | 0.45        | 0.73        | 0.63        | 0.31        | 0.65        | 0.54        | 0.73        |
| Radar                 | 0.98        | 0.85        | 0.89        | <u>0.99</u> | 0.81        | 0.87        | <u>0.95</u> | 0.83        | 0.74        | 0.80        | 0.86        | 0.63        | 0.85        |
| DeTeCtive             | <b>1.00</b> | 0.95        | 0.96        | <u>0.99</u> | 0.96        | 0.99        | 0.92        | <b>0.91</b> | <b>0.99</b> | 0.91        | 0.90        | 0.97        | 0.95        |
| LM <sup>2</sup> OTIFS | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | <b>0.99</b> | <b>0.90</b> | <b>0.95</b> | <b>0.99</b> | <b>0.94</b> | <b>0.98</b> | <b>0.98</b> |

et al., 2021a) to implement the GNNExplainer. The optimizer for GNNExplainer is Adam with a learning rate of 1E-3, 100 epochs.

## C DETAILED EXPERIMENT RESULTS

### C.1 EXTENDED DETECTION EXPERIMENTS

In our experiments, we consider in-domain detection and cross-domain detection in the same dataset and report the results in this section. We report the results under ACC and AUC metrics. For GPTZero, since it provides a binary output, we consider its ACC and AUC values to be equivalent.

**In-Domain Detection.** We provide the detailed experiment results for distinguishing HGTs and MGTs by ChatGPT in Table 7 and Table 8. The results demonstrate that LM<sup>2</sup>OTIFS achieves the best performance across all domains under both ACC and AUC metrics, aligned with our analysis. In

Table 15: MGT detection ACC performance comparisons with SOTA methods on HGT and MGT on Yelp, Essay, and Creative dataset. The best results are shown in bold font. The second-best results are shown in underlined. The Fast-D.GPT is short for Fast-DetectGPT.

| Method                | Claude3-Sonnet |             |             | Claude3-Opus |             |             | Gemini      |             |             | Avg.        |
|-----------------------|----------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                       | Yelp           | Essay       | Creative    | Yelp         | Essay       | Creative    | Yelp        | Essay       | Creative    |             |
| Likelihood            | 0.73           | 0.94        | 0.94        | 0.72         | <b>1.00</b> | <b>0.99</b> | 0.55        | <b>0.99</b> | 0.76        | 0.85        |
| Rank                  | 0.54           | 0.85        | 0.85        | 0.49         | <u>0.99</u> | 0.92        | 0.39        | <u>0.97</u> | 0.65        | 0.74        |
| LogRank               | 0.69           | 0.93        | 0.93        | 0.68         | <b>1.00</b> | 0.98        | 0.50        | <b>0.99</b> | 0.74        | 0.83        |
| Entropy               | 0.64           | 0.83        | 0.83        | 0.57         | 0.95        | 0.88        | 0.42        | 0.91        | 0.57        | 0.73        |
| NPR                   | 0.68           | <u>0.99</u> | 0.94        | 0.66         | 0.99        | 0.98        | 0.49        | 0.98        | 0.76        | 0.83        |
| LRR                   | 0.54           | <b>1.00</b> | 0.88        | 0.52         | <b>1.00</b> | 0.95        | 0.39        | <b>0.99</b> | 0.70        | 0.77        |
| DetectGPT             | 0.53           | 0.75        | 0.71        | 0.43         | 0.74        | 0.78        | 0.37        | 0.80        | 0.64        | 0.64        |
| Fast-D.GPT            | 0.73           | <b>1.00</b> | 0.94        | 0.81         | <b>1.00</b> | <b>0.99</b> | 0.68        | <b>0.99</b> | <b>0.79</b> | 0.88        |
| DNAGPT                | 0.67           | 0.94        | 0.86        | 0.70         | 0.94        | 0.93        | 0.58        | 0.95        | 0.75        | 0.81        |
| Binoculars            | 0.79           | <b>1.00</b> | <u>0.99</u> | 0.87         | <b>1.00</b> | <b>1.00</b> | 0.73        | <u>0.99</u> | 0.79        | <u>0.91</u> |
| Glimpse               | 0.78           | <b>1.00</b> | 0.90        | 0.83         | <b>1.00</b> | 0.96        | 0.74        | <b>1.00</b> | 0.78        | 0.89        |
| GPTZero               | 0.63           | 0.66        | 0.78        | 0.61         | 0.65        | 0.86        | 0.59        | 0.36        | 0.66        | 0.64        |
| RoBERTa-QA            | 0.92           | 0.95        | 0.94        | 0.96         | 0.98        | 0.97        | 0.96        | 0.94        | <u>0.78</u> | 0.93        |
| Radar                 | 0.58           | 0.93        | <u>0.99</u> | 0.68         | <u>0.99</u> | 0.97        | 0.70        | <b>0.99</b> | 0.76        | 0.84        |
| DeTeCtive             | <u>0.98</u>    | 0.86        | 0.96        | <u>0.99</u>  | 0.79        | <b>0.99</b> | 0.99        | 0.85        | 0.76        | <u>0.91</u> |
| LM <sup>2</sup> OTIFS | <b>1.00</b>    | <b>1.00</b> | <b>1.00</b> | <b>1.00</b>  | <b>1.00</b> | <b>0.99</b> | <b>1.00</b> | <b>0.99</b> | <u>0.78</u> | <b>0.97</b> |

addition, we also provide the experiment results between HGT and MGT by other LLMs in Table 10, 11, 12, 13, 14, and 15. LM<sup>2</sup>OTIFS performs consistently well on various LLMs and achieves the best performance, indicating the effectiveness of PGM for MGT detection tasks.

Table 16: Statistical significance analysis on HC3 dataset. We repeat the experiments 5 times and report the mean and standard deviation.

| Metric | open-qa             | wiki-csai           | medicine            | finance             |
|--------|---------------------|---------------------|---------------------|---------------------|
| ACC    | $0.9690 \pm 0.0073$ | $0.9410 \pm 0.0097$ | $0.9750 \pm 0.0032$ | $0.9810 \pm 0.0037$ |
| AUC    | $0.9965 \pm 0.0005$ | $0.9938 \pm 0.0005$ | $0.9993 \pm 0.0001$ | $0.9983 \pm 0.0004$ |

**Cross-Domain Detection.** To further analysis the generality of LM<sup>2</sup>OTIFS, we conduct cross-domain detection experiments. We use the open-qa, wiki-how, and books domains in HC, M4, and RAID datasets as the training domain and test on other domains, respectively. For the zero-shot baselines and RADAR, we use the training data as a reference to learning a threshold and apply it to the test domain. For the RoBERTa-QA, we follow its pipeline to fine-tune the RoBERTa on one domain and test on other domains. As Table 9 shows, LM<sup>2</sup>OTIFS performs poorly on some domains, such as the reddit domain on the M4 dataset. One potential reason is that our method is only trained on a limited training set and lacks generalization, while other methods, such as zero-shot methods, fully utilize the generalization of LLM.

Table 17: MGT detection performance comparison on HC3 dataset between default(Bert) and GPT2 tokenizers.

| Metric | open-qa |      | wiki-csai |      | medicine |      | finance |      |
|--------|---------|------|-----------|------|----------|------|---------|------|
|        | Bert    | GPT2 | Bert      | GPT2 | Bert     | GPT2 | Bert    | GPT2 |
| ACC    | 0.97    | 0.99 | 0.96      | 0.95 | 0.98     | 0.98 | 0.98    | 0.97 |
| AUC    | 1.00    | 1.00 | 0.99      | 1.00 | 1.00     | 0.99 | 1.00    | 1.00 |

**Statistical Significance Analysis.** To further demonstrate the robustness of LM<sup>2</sup>OTIFS, we conducted a Statistical Significance Analysis. Specifically, we repeated our experiments five times on the HC3 dataset, each with a distinct random seed, and the resulting performance metrics are detailed in

Table 18: Ablation analysis on HC3 dataset. The best results are shown in bold font.

|     | Method                          | open-qa     | wiki-csai   | medicine    | finance     | Avg.        |
|-----|---------------------------------|-------------|-------------|-------------|-------------|-------------|
| ACC | LM <sup>2</sup> OTIFS           | 0.97        | 0.96        | 0.98        | <b>0.98</b> | <b>0.97</b> |
|     | LM <sup>2</sup> OTIFS-U         | 0.95        | 0.94        | <b>1.00</b> | <b>0.98</b> | <b>0.97</b> |
|     | LM <sup>2</sup> OTIFS-W         | <b>1.00</b> | 0.84        | <b>1.00</b> | 0.94        | 0.95        |
|     | LM <sup>2</sup> OTIFS-UW        | 0.98        | 0.79        | <b>1.00</b> | 0.93        | 0.92        |
|     | <b>LM<sup>2</sup>OTIFS-Bert</b> | <b>1.00</b> | <b>0.79</b> | 0.98        | <b>0.89</b> | <b>0.91</b> |
| AUC | LM <sup>2</sup> OTIFS           | <b>1.00</b> | 0.99        | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> |
|     | LM <sup>2</sup> OTIFS-U         | 0.99        | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> |
|     | LM <sup>2</sup> OTIFS-W         | <b>1.00</b> | 0.84        | <b>1.00</b> | 0.98        | 0.96        |
|     | LM <sup>2</sup> OTIFS-UW        | <b>1.00</b> | 0.86        | <b>1.00</b> | 0.97        | 0.96        |
|     | <b>LM<sup>2</sup>OTIFS-Bert</b> | <b>1.00</b> | <b>0.85</b> | 0.99        | <b>0.97</b> | <b>0.95</b> |

Table 19: Sliding window size ablation analysis on HC3 dataset. The best results are shown in bold font.

|     | Method | open-qa     | wiki-csai   | medicine    | finance     | Avg.        |
|-----|--------|-------------|-------------|-------------|-------------|-------------|
| ACC | 10     | 0.95        | 0.93        | 0.99        | 0.93        | 0.95        |
|     | 15     | 0.97        | 0.95        | 0.99        | 0.94        | 0.96        |
|     | 20     | 0.97        | <b>0.96</b> | 0.98        | <b>0.98</b> | <b>0.97</b> |
|     | 25     | 0.96        | 0.94        | <b>1.00</b> | 0.94        | 0.96        |
|     | 30     | <b>0.98</b> | 0.93        | 0.99        | 0.93        | 0.96        |
| AUC | 10     | 0.99        | 0.99        | <b>1.00</b> | 0.98        | 0.99        |
|     | 15     | <b>1.00</b> | 0.99        | <b>1.00</b> | 0.98        | 0.99        |
|     | 20     | <b>1.00</b> | 0.99        | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> |
|     | 25     | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | 0.98        | <b>1.00</b> |
|     | 30     | <b>1.00</b> | <b>1.00</b> | <b>1.00</b> | 0.98        | <b>1.00</b> |

Table 16. The consistently high performance across these different runs indicates the stable and reliable nature of LM<sup>2</sup>OTIFS.

**Ablation Study.** To investigate the impact of different graph characteristics on the MGT detection task, we performed ablation experiments on graph categories, specifically comparing undirected versus directed graphs and weighted versus unweighted graphs. To verify the influence of token semantics on detection performance, we also performed an ablation study on the token node initialization method, where token nodes are initialized using Bert token embeddings. In our experiments, we use -U and -W to represent undirected graphs and weighted graphs, while -Bert indicates replacing Bert token embeddings with a simpler initialization method.

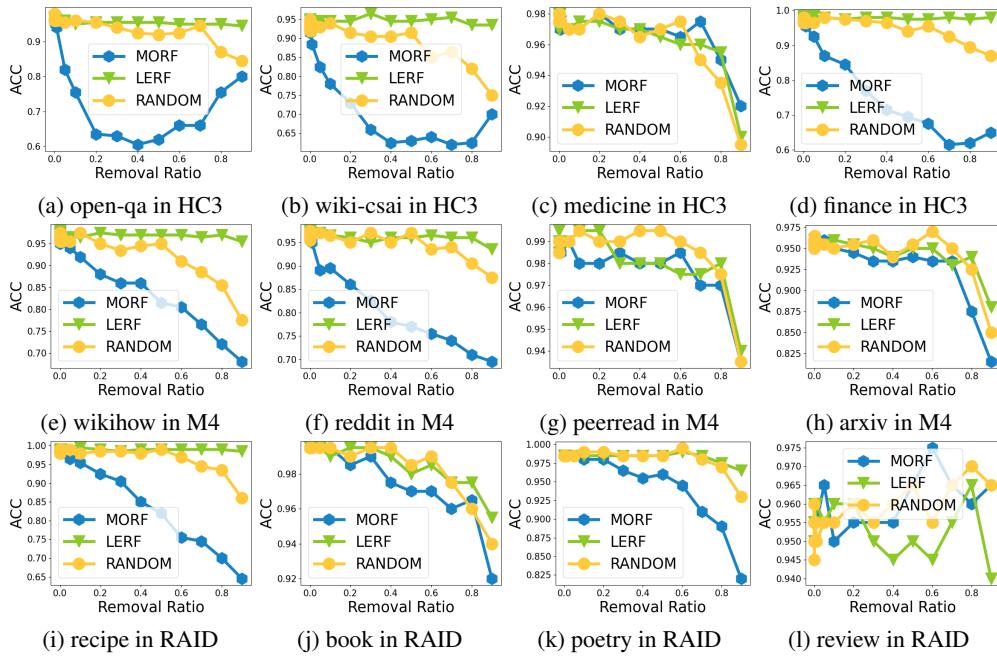
We further investigated the impact of different tokenizers on the MGT detection task. Our default tokenizer is Bert’s tokenizer. To assess the influence of tokenization, we conducted experiments using GPT-2’s tokenizer. The results of this comparison are presented in Table 17. Our findings indicate that the choice between Bert’s and GPT-2’s tokenizers did not significantly affect the overall detection performance.

To investigate the effect of sliding window size on detection performance, we conduct ablation studies, and the results are presented in Table 19. As the window size increases, the detection accuracy initially improves and then declines. Based on these results, we set 20 as the default sliding-window size in our experiments.

**Time Consumption.** Compared to other training-based methods, LM<sup>2</sup>OTIFS have an additional pipeline, the graph construction phase. Specifically, its time complexity for graph construction is  $O(LW^2)$ , where  $L$  represents the length of the sentence and  $W$  denotes the size of the sliding window. We also evaluated the test time efficiency of LM<sup>2</sup>OTIFS in comparison to several other baselines. As detailed in Table 20, LM<sup>2</sup>OTIFS demonstrates the lowest time consumption during the testing phase.

1296 Table 20: Inference time(seconds) comparison on HC3 dataset. We repeat the experiments 10 times  
 1297 and report the average time consumption. - indicates the inference time is more than 10 minutes. The  
 1298 best results are shown in bold font.

|                            | open-qa       | wiki-csai     | medicine      | finance       |
|----------------------------|---------------|---------------|---------------|---------------|
| NPR                        | -             | -             | -             | -             |
| DNA-GPT                    | -             | -             | -             | -             |
| DetectGPT                  | 442.0000      | 161.6530      | 82.2744       | 255.4350      |
| Fast-DetectGPT             | 28.0217       | 27.0673       | 24.1440       | 28.4082       |
| RoBERTa-QA                 | 2.9267        | 2.5464        | 2.5391        | 2.5413        |
| DeTeCtive                  | 18.7223       | 13.2559       | 17.2883       | 17.5105       |
| <b>LM<sup>2</sup>OTIFS</b> | <b>0.0091</b> | <b>0.0065</b> | <b>0.0051</b> | <b>0.0058</b> |

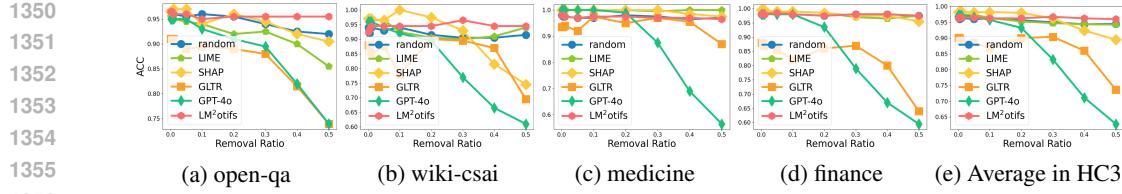
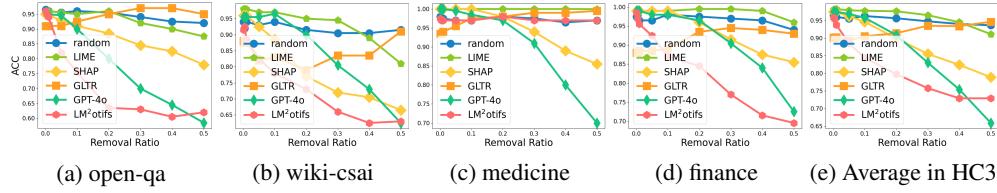


1330 Figure 5: Comparison results of MORF and LERF between explainable motifs extracted from  
 1331 LM<sup>2</sup>OTIFS and random motifs on HGT and ChatGPT-generated texts.

## C.2 EXTENDED MOTIFS EVALUATION

1336 **XAI Protocol Evaluation.** We follow Section 6.3 to report the explainable motifs evaluation results  
 1337 on the HGT and ChatGPT-generated datasets. As the detailed results show in Figure 5, the explainable  
 1338 motifs are effective in most cases and obtain better results than baselines from both LeRF and MoRF  
 1339 protocols. However, in the medicine domain in HC3, the explainable motifs are not better than  
 1340 random motifs. The potential reason could be the distributed nature of the explainable motifs across  
 1341 numerous nodes and edges. Consequently, the deletion of some edges does not drastically impede the  
 1342 graph network’s ability to accurately perform detection. For instance, in the medicine domain of the  
 1343 HC3 dataset, a significant performance drop in the GNN is observed when the proportion of deleted  
 1344 edges surpasses 70%.

1345 **Extensive Evaluation.** Although interpretable approaches for the HGT detection task are currently  
 1346 limited, we adapt several existing interpretability methods to this task in order to demonstrate  
 1347 the effectiveness of our approach. Beside **random motifs**, we compare it against other baselines:  
 1348 **LIME** (Ribeiro et al., 2016), **SHAP** (Lundberg & Lee, 2017), **GLTR** (Gehrman et al., 2019a), and  
 1349 **GPT-4o** (OpenAI, 2024). For these baselines, we use RoBERTa-QA, a well-trained model in the  
 HC3 dataset, as the model to be explained. Notably, the reason we use RoBERTa-QA is that it has

Figure 6: Comparison results of LERF between  $LM^2OTIFS$  and adapted baselines.Figure 7: Comparison results of MORF between  $LM^2OTIFS$  and adapted baselines.

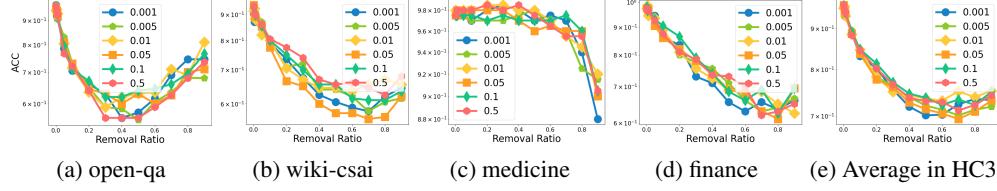
```

prompt = ("Text: " + text + "\n\n" + f"A pretrained Roberta Model Prediction Score: {prediction_score:.4f} (>0.5 indicates AI-generated)\n\n" +
    "Please analyze the text and provide a list of words with their importance scores (0-1).\n\n" + "Format your response EXACTLY like this
example:\n" + "[\n" + "'words': [\"This\", \"is\", \"a\", \"apple\"], \"score\": [0.85, 0.78, 0.75, 0.72]]\n" + ']\n\n' + "Provide all the words in the text, for each
word:\n" + "- Score should be between 0 and 1\n" + "- Higher scores (closer to 1) indicate stronger evidence of AI generation\n\n" + "Return ONLY
the JSON list, no other text."
)

```

Figure 8: The prompt of GPT-4o as an explainer.

the best performance in the HC3 dataset, and it can be replaced by other models. GLTR is a tool to analyze a piece of text and visualizing these statistical patterns, which uses a language model to determine the probability of each word appearing in its context. In this paper, we follow the original code to use GPT2 as the default language model. Besides, we also consider using the GPT-4o as a baseline for the LLM explainer. The prompt is shown in Figure 8.

Figure 9: Comparison results of MORF between different  $\lambda$  settings on HC3 dataset.

Our results are provided in Figure 6 and 7. As Figure 3 shows, the motifs from  $LM^2OTIFS$  are more effective, which consistently have a better performance than baselines. From the MoRF protocol, when the 20% important edges are removed, the explainable motifs cause more than an average 15% accuracy drop on HC3 dataset, while other explanations get less than 10% accuracy decline. Under the LeRF protocol, the explainable motifs cause a lower performance drop than other motifs. GPT-4o performs well under the MoRF setting but fails under the LeRF setting.

Table 21: MORF average results of the  $\lambda$  ablation study on HC3 dataset. Lower is better.

| $\lambda$ | open-qa     | wiki-csai   | medicine    | finance     | Avg.        |
|-----------|-------------|-------------|-------------|-------------|-------------|
| 0.001     | 0.73        | 0.72        | 0.97        | <b>0.79</b> | <b>0.80</b> |
| 0.005     | 0.72        | 0.74        | <b>0.96</b> | 0.80        | <b>0.80</b> |
| 0.01      | 0.74        | 0.74        | 0.97        | 0.80        | 0.81        |
| 0.05      | 0.73        | <b>0.71</b> | 0.97        | <b>0.79</b> | <b>0.80</b> |
| 0.1       | 0.74        | 0.74        | 0.97        | 0.81        | 0.81        |
| 0.5       | <b>0.71</b> | 0.76        | 0.97        | 0.80        | 0.81        |

We conducted ablation experiments on the explainer’s hyperparameter  $\lambda$  using the HC3 dataset and evaluated the interpretation results following the MoRF protocol. The results are presented in Figure 9 and Table 21. As shown, the explanation performance is largely robust to different choices of  $\lambda$ .

**Motifs Statistical Analysis.** We provide more statistical analysis on M4 and RAID datasets. Table 22, 24, and 23 reveal distinct motif fingerprints—frequency variations between HGT and MGT across tokens(nodes) and token-token co-occurrences(edges). Selecting the top 0.05% of edges as global explainable motifs highlights a notable difference: HGT shows a higher ratio of token and token-token co-occurrences compared to MGT. This suggests that for MGT detection, word-to-word connections are more influential than for HGT detection, given the same number of tokens. One possible explanation is that language models excel at utilizing diverse word collocations, while humans tend to rely on more conventional patterns.

Table 22: Statistics of text covered by explanation motifs on HC3 dataset. The sparsity of the explanation motifs is 0.05%.

|             | open-qa |      | wiki-csai |      | medicine |      | finance |      |
|-------------|---------|------|-----------|------|----------|------|---------|------|
| Statistic   | HGT     | MGT  | HGT       | MGT  | HGT      | MGT  | HGT     | MGT  |
| Nodes       | 610     | 2407 | 1685      | 777  | 923      | 990  | 1251    | 618  |
| Edges       | 277     | 3496 | 2180      | 1993 | 797      | 2086 | 2004    | 1816 |
| Nodes/Edges | 2.20    | 0.69 | 0.77      | 0.39 | 1.16     | 0.47 | 0.62    | 0.34 |

Table 23: Statistics of text covered by explanation motifs on RAID dataset. The sparsity of the explanation motifs is 0.05%.

|             | recipes |      | book |      | poetry |      | review |      |
|-------------|---------|------|------|------|--------|------|--------|------|
| Statistic   | HGTs    | MGTs | HGTs | MGTs | HGTs   | MGTs | HGTs   | MGTs |
| Nodes       | 1100    | 458  | 4093 | 1116 | 2892   | 760  | 2674   | 1560 |
| Edges       | 3519    | 2567 | 8583 | 4163 | 7731   | 3452 | 5100   | 5791 |
| Nodes/Edges | 0.31    | 0.18 | 0.48 | 0.27 | 0.37   | 0.22 | 0.52   | 0.27 |

Table 24: Statistics of text covered by explanation motifs on M4 dataset. The sparsity of the explanation motifs is 0.05%.

|             | wikihow |      | reddit |      | peerread |      | arxiv |      |
|-------------|---------|------|--------|------|----------|------|-------|------|
| Statistic   | HGT     | MGT  | HGT    | MGT  | HGT      | MGT  | HGT   | MGT  |
| Nodes       | 4207    | 1894 | 3929   | 1282 | 2138     | 609  | 1449  | 725  |
| Edges       | 19511   | 8819 | 8448   | 2770 | 10937    | 6044 | 2954  | 2112 |
| Nodes/Edges | 0.22    | 0.21 | 0.47   | 0.46 | 0.20     | 0.10 | 0.49  | 0.34 |

**Visualizations.** To visualize the extracted motifs, we utilized the PubMed dataset, which includes MGT samples generated by three LLMs: GPT-4, Claude-3, and Davinci. We present the identified motifs at two levels of granularity: individual words and multi-word phrases or even entire sentences. We specifically extracted word-level motifs from one-hop neighbor subgraphs to visualize word-level motifs. As shown in Table 25, we selected the top 20% of tokens based on their motif scores for visualization. Similarly, for visualizing higher-level motifs (phrases/sentences) in Table 26, we extracted them from two-hop subgraphs, with the top-k ratio set to 2% for display.

## D LLM USAGE

In this paper, we leverage LLMs, including ChatGPT and Gemini 2.5 Pro, to refine sentence-level writing.

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

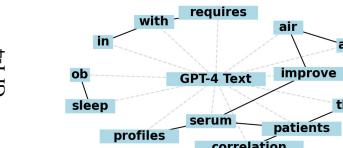
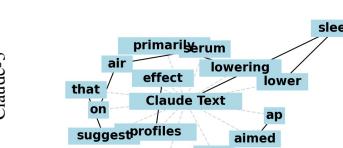
1510

1511

Table 25: Samples of words explanation motifs.

|          | Graph Motifs                                                                      | Words Mapping                                                                                                                                                                                                                                                                            |
|----------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPT-4    |  | <p>Answer: Yes, <b>blood pressure</b> readings<br/> <b>can</b> vary in treated hypertensive patients based on <b>who</b> measures <b>it</b>. A <b>phenomenon</b> known as "white <b>coat</b> hypertension" <b>may</b> cause higher readings if measured <b>by a</b> physician due to</p> |
| Claude-3 |  | <p>Answer: Yes, blood pressure readings can differ when <b>measured by a</b> physician compared to <b>a</b> nurse <b>in</b> treated hypertensive patients. <b>This</b> phenomenon, known as <b>the "white-coat effect,"</b> is attributed to patient anxiety and can</p>                 |
| Davinci  |  | <p>In <b>each</b> case, <b>to</b> assume <b>that</b> what is <b>being measured</b> is blood pressure is <b>incorrect.</b> Note: The issue is not what constitutes the "gold standard" of</p>                                                                                             |

Table 26: Samples of phase explanation motifs.

|          | Graph Motifs                                                                        | Words Mapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPT-4    |  | <p>Answer: Research indicates that <b>airway</b> surgery can potentially <b>improve</b> <b>serum</b> <b>lipid</b> <b>profiles</b> <b>in</b> <b>patients</b> <b>with</b> <b>obstructive</b> <b>sleep</b> <b>apnea</b>. However, a definite conclusion <b>requires</b> further investigation as <b>the correlation</b> can be influenced by various factors, including the patients' lifestyle and</p>                                                                                                              |
| Claude-3 |  | <p>Question: Does <b>airway</b> surgery <b>lower</b> <b>serum</b> <b>lipid</b> <b>levels</b> <b>in</b> <b>obstructive</b> <b>sleep</b> <b>apnea</b> <b>patients</b>? Answer: <b>Airway</b> surgery for obstructive <b>sleep apnea</b> (OSA) is not <b>primarily</b> <b>aimed</b> at <b>lowering</b> <b>serum</b> <b>lipid</b> <b>levels</b>. While some studies <b>suggest</b> <b>that</b> treating OSA <b>may have</b> a positive impact on <b>lipid</b> <b>profiles</b>, the <b>effect</b> of <b>airway</b></p> |
| Davinci  |  | <p>Answer: Yes Obstructive <b>sleep apnea</b> (OSA) is a <b>sleep-related</b> breathing <b>disorder</b>, characterized by repeated <b>episodes</b> of complete <b>or partial</b> upper <b>airway</b> <b>obstruction</b>. Recent studies <b>have</b> <b>shown</b> that weight gain occurs in a high <b>proportion</b> of <b>patients</b> <b>with</b> OSA, especially among those</p>                                                                                                                               |