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Abstract

Protein-ligand binding prediction is central to virtual screening and affinity ranking,1

two fundamental tasks in drug discovery. While recent retrieval-based methods2

embed ligands and protein pockets into Euclidean space for similarity-based search,3

the geometry of Euclidean embeddings often fails to capture the hierarchical struc-4

ture and fine-grained affinity variations intrinsic to molecular interactions. In this5

work, we propose HypSeek, a hyperbolic representation learning framework that6

embeds ligands, protein pockets, and sequences into Lorentz-model hyperbolic7

space. By leveraging the exponential geometry and negative curvature of hyper-8

bolic space, HypSeek enables expressive, affinity-sensitive embeddings that can9

effectively model both global activity and subtle functional differences-particularly10

in challenging cases such as activity cliffs, where structurally similar ligands ex-11

hibit large affinity gaps. Our mode unifies virtual screening and affinity ranking12

in a single framework, introducing a protein-guided three-tower architecture to13

enhance representational structure. HypSeek improves early enrichment in virtual14

screening on DUD-E from 42.63 to 51.44 (+20.7%) and affinity ranking correlation15

on JACS from 0.5774 to 0.7239 (+25.4%), demonstrating the benefits of hyperbolic16

geometry across both tasks and highlighting its potential as a powerful inductive17

bias for protein-ligand modeling.18

1 Introduction19

Modeling protein–ligand interactions is critical for drug discovery, where accurate binding affinity20

prediction underpins both large-scale virtual screening and fine-grained ligand prioritization. Virtual21

screening seeks to identify molecules likely to bind a given protein target from large compound22

libraries, often containing millions or even billions of candidates. Approaches such as molecular23

docking [1, 2] estimate binding compatibility by sampling ligand poses and scoring them with physics-24

based functions. While effective in small-scale settings, these methods are computationally intensive25

and scale poorly to modern library sizes. Unlike virtual screening, which emphasizes identifying26

likely binders from vast libraries, affinity ranking focuses on ordering a smaller set of candidate27

ligands by predicted binding strength, with physics-based techniques like free energy perturbation28

(FEP+) [3] offering high accuracy at the cost of extensive molecular dynamics simulations. These29

limitations restrict the practicality of traditional methods in early-stage drug discovery pipelines.30

A notable shift in virtual screening came with DrugCLIP [4], which reframed the task as a dense31

retrieval problem. Rather than predicting binding affinity or docking poses, DrugCLIP learns32

contrastive embeddings of ligands and protein pockets such that interacting pairs are close in a shared33

Euclidean space. This design enables efficient similarity-based retrieval and allows for scalable34

screening across billion-scale compound libraries. Despite its promising performance and efficiency,35

DrugCLIP struggles to capture fine-grained interaction patterns which are essential for downstream36

affinity ranking. Recently, LigUnity [5] extends the retrieval-based framework by unifying virtual37

screening and affinity ranking into a single training objective. It combines contrastive learning for38
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global interaction patterns with listwise ranking to model pocket-specific ligand preferences, aiming39

to jointly learn both binding likelihood and relative affinity within a unified embedding space.40

While retrieval-based methods have shown strong potential, they typically embed ligands and protein41

pockets into Euclidean space, where distances grow linearly and the geometry does not explicitly42

encourage separation based on functional or activity-related differences. As a result, standard43

Euclidean training objectives may fail to emphasize fine-grained distinctions in binding strength,44

especially when molecular structures are similar.45
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Figure 1: Illustration of how hyperbolic geometry dis-
tinguishes activity cliffs (PDB ID: 5EHR). Left: Two
structurally similar ligands (Ligand ID: 5OD vs. its
amino-substituent-removed derivative) show an ∼80-
fold affinity difference. Right: The yellow and red
points denote the two ligands; the blue point is the
pocket. Dashed lines show distances in hyperbolic
(red/light blue) and Euclidean (dark blue) space. Eu-
clidean embeddings preserve structural similarity but
fail to reflect affinity gaps, while hyperbolic embed-
dings separate such pairs via both radial and angular
dimensions (DH , green), enabling affinity-sensitive
representations.

To enrich the embedding geometry and bet-46

ter capture complex protein–ligand interac-47

tions, we propose HypSeek, a retrieval-based48

model that embeds ligands, pockets, and pro-49

tein sequences into hyperbolic space. Un-50

like previous dual-tower designs, HypSeek51

adopts a protein-guided three-tower architec-52

ture during training to promote more struc-53

tured representations. The curvature of hyper-54

bolic space enables affinity-sensitive encod-55

ing through both angular direction and radial56

depth, providing greater expressivity than57

linear Euclidean geometry. This design not58

only enhances fine-grained affinity discrim-59

ination, but also offers a natural mechanism60

to address activity cliffs—cases where struc-61

turally similar ligands exhibit large differ-62

ences in binding strength. While Euclidean63

embeddings often enforce functional simi-64

larity among structurally similar ligands, hy-65

perbolic geometry allows such ligands to di-66

verge meaningfully in the embedding space,67

reflecting differences in interaction modes68

or physicochemical properties. During in-69

ference, we retain efficient similarity com-70

putation via Euclidean inner products over71

hyperbolically shaped representations, pre-72

serving scalability without sacrificing expres-73

siveness.74

We evaluate HypSeek across both large-scale virtual screening and fine-grained affinity ranking75

tasks. On the DUD-E [6] benchmark, HypSeek improves EF1% from 42.63 to 51.44 (+20.7%),76

demonstrating strong retrieval performance across targets. For affinity ranking, it increases Spearman77

correlation on the JACS [3] dataset from 0.5774 to 0.7239 (+25.4%), consistently outperforming78

Euclidean baselines. These results highlight the benefits of hyperbolic geometry in capturing both79

global activity and nuanced affinity variation within a unified embedding space.80

In summary, our contributions are as follows:81

• We propose a hyperbolic embedding framework for protein–ligand modeling, where the82

geometry naturally captures hierarchical interactions and targets the critical challenge of83

activity cliffs by enabling structured separation of similar ligands with divergent affinities.84

• We introduce HypSeek, a dense retrieval model with a protein-guided three-tower architec-85

ture that integrates structure and sequence information to learn affinity-aware representations86

in hyperbolic space.87

• HypSeek achieves strong performance on both virtual screening and affinity ranking, cap-88

turing fine-grained binding differences more effectively than Euclidean baselines while89

maintaining scalable inference.90
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Figure 2: Overall architecture of HypSeek: three encoders lift ligands, pockets and protein sequences
to a shared hyperbolic space (left); contrastive and list-wise ranking losses align pocket/sequence
with ligands while the cone–hierarchy loss imposes radial–angular tiers around each pocket (right).

2 Method91

2.1 Problem Setting92

Our goal is to predict the binding affinity between protein pockets and candidate ligands. The training93

data are organized by assay, where each assay is an experimental setup designed to evaluate ligand94

binding against a specific protein target. Each assay includes one protein and a subset of ligands from95

the full compound library that have been experimentally screened, yielding binary activity labels and96

optionally affinity values. Crucially, affinity values are only comparable within the same assay due97

to differences in experimental conditions (e.g., pH, temperature, cofactors), assay protocols (e.g.,98

cell-based or target-based), and measurement types (e.g., IC50, Kd, Ki).99

Therefore, the task is formulated as learning relative binding strength rankings within each assay100

rather than predicting absolute affinities across assays. Let A denote the set of assays. For each101

assay Ai ∈ A, let Li be the set of tested ligands, and vi(ℓ) be the affinity value of ligand ℓ ∈ Li.102

Each assay corresponds to a target protein, represented by both its amino acid sequence and a set103

of candidate pocket structures Pi. During training, one pocket from Pi is sampled to represent the104

structure, and combined with the sequence information to encode the full target. The model is trained105

to embed both targets and ligands into a shared hyperbolic space, enabling retrieval of active ligands106

and ranking them by relative binding strengths within each assay.107

2.2 Multimodal Encoding and Lorentz Mapping108

Let xp and xm denote the atom-based inputs (coordinates and types) for a protein pocket and ligand,109

respectively, and let S = (s1, . . . , sL) denote the amino acid sequence of a target protein. We define110

three encoder functions: gϕ and fθ as SE(3)-equivariant 3D graph transformers for pockets and111

ligands (following DrugCLIP [4]), and hψ as a protein sequence encoder based on ESM-2 [7]. As112

illustrated in Figure 2, each encoder maps its input to a vector in Rdeuc :113

Epoc = gϕ(x
p), Emol = fθ(x

m), Eseq = hψ(S). (1)

We then lift these Euclidean embeddings to hyperbolic space via the exponential map defined in114

Eq. (22):115

hpoc = expκ0
(
Epoc

)
,hmol = expκ0

(
Emol

)
,hseq = expκ0

(
Eseq

)
. (2)

The resulting hyperbolic embeddings hmol,hpoc,hseq ∈ Ln are subsequently employed in both the116

training and the inference stage.117
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2.3 Contrastive and Ranking as the Foundation.118

We retain the in-batch contrastive retrieval losses of DrugCLIP [4] and LigUnity’s listwise ranking119

term [5], applied to the spatial components h̃u = hu[1 :]. For each assay Ai with query modality120

u ∈ {poc, seq} and its B candidate ligands {vj}, we compute similarity logits si,j = 1
τ

〈
h̃ui

, h̃vj
〉
.121

We adopt a symmetric InfoNCE objective over each assay Ai. Let Li ⊆ {1, . . . , B} denote the122

indices of true binders for ui. We compute:123

L(i)
p→l = − 1

|Li|
∑
k∈Li

log
exp(si,k)∑B
j=1 exp(si,j)

, (3)

L(i)
l→p = − 1

|Li|
∑
k∈Li

log
exp(sk,i)∑B
n=1 exp(sn,i)

, (4)

The total contrastive loss is then124

Lcontrast =
1

2

∑
i

(
L(i)
p→l + L(i)

l→p

)
. (5)

For each assay Ai the screened ligands are sorted by measured affinity, yielding an ordered list125

(vi,1, . . . , vi,B). Following the Plackett–Luce model [8], the probability of selecting ligand vi,k at126

step k (from the remaining set Ri,k = {k, k + 1, . . . , B}) is127

pi,k(vi,k) =
exp

(
si,k

)∑
j∈Ri,k

exp
(
si,j

) , (6)

where si,k = ⟨h̃ui
, h̃vi,k⟩/τ . We use the decay µk = 1√

B log(k+1)
. The listwise loss for assay Ai is128

therefore129

L(i)
rank = −

B∑
k=1

µk log pi,k
(
vi,k

)
. (7)

2.4 Hyperbolic Geometry as a Structural Prior130

Beyond simply embedding pockets and ligands into a shared hyperbolic space, we aim to further131

leverage the geometric structure of Ln to encode fine-grained inductive biases about binding affinity.132

The exponential capacity of hyperbolic space allows for natural modeling of hierarchical relationships,133

while the Lorentz model enables cone-based entailment mechanisms. We therefore introduce a134

cone–hierarchy learning process that exploits both the radial and angular dimensions of hyperbolic135

space to reflect the graded nature of ligand binding strength.136

Within an assay Ai, the protein pocket is represented by a Lorentz-model vector hpoc,i ∈ Ln,137

and every screened ligand j ∈ Li has its own embedding hmol,ij ∈ Ln. Each hyperbolic vector138

splits into a time-like coordinate and an n-dimensional spatial part: hpoc,i =
(
p0,i, p̃ i

)
,hmol,ij =139 (

m0,ij , m̃ ij

)
, with p0,i,m0,ij ∈ R and p̃ i, m̃ ij ∈ Rn. These components satisfy the hyperboloid140

constraint p20,i − ∥p̃ i∥2 = m2
0,ij − ∥m̃ ij∥2 = 1/κ.141

The geodesic distance di,j = dL(hpoc,i,hmol,i,j) is computed via Eq. (20). The exterior angle at the142

pocket,143

ϕi,j = arccos
( m0,i,j + κ

(
⟨p̃i, m̃i,j⟩ − p0,im0,i,j

)
p0,i

∥p̃i∥
√[

κ(⟨p̃i, m̃i,j⟩ − p0,im0,i,j)
]2 − 1

)
, (8)

follows from the hyperbolic law of cosines and measures how far the ligand “leans” away from the144

pocket direction.145
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Each pocket defines a surface of admissible directions. Its half-aperture angle is formulated by [9, 10]146

as147

ωi = arcsin
(

2r0√
κ ∥p̃i∥

)
, (9)

with a small constant r0 > 0 to keep the expression bounded near the origin; larger ∥p̃i∥ (a pocket148

already pushed towards the boundary) therefore yields a narrower cone.149

Given the assay–specific affinity values {vi,j}|Li|
j=1, we draw K thresholds t0 < t1 < · · · < tK and150

assign each ligand a bucket index151

bi,j =
{
k ∈ {0, . . . ,K} : vi,j ∈ [tk, tk+1)

}
. (10)

Bucket 0 therefore collects the strongest binders and bucket K the weakest. For every ligand we152

derive a bucket–specific radial limit ri,j and angular–scaling factor ηi,j153

ri,j = r0 + bi,j ∆r, ηi,j = η0 − bi,j ∆η, (11)

where r0 and η0 are the base radius/angle for the strongest tier, and ∆r,∆η > 0 are the per-tier154

increments. Smaller bi,j thus yields both a smaller radius cap and a narrower cone. We penalise155

violations in radius and angle:156

Lrad =
1√
N

∑
i,j

max
(
di,j − ri,j , 0

)
, (12)

Lang =
1√
N

∑
i,j

max
(
ϕi,j − ηi,j ωi, 0

)
, (13)

and combine them as157

Lcone = λrad Lrad + λang Lang. (14)

We furthur introduce two regularization terms that operate on angular structure and intra-assay158

heterogeneity, respectively. To prevent trivial angular collapse, we introduce a fixed angular margin159

m > 0 beyond the cone boundary:160

Rang =
1√
N

∑
i,j

max
(
ϕi,j − ηi,jωi +m, 0

)
, (15)

We also re-weight active ligands within each assay using rank-based weights wi,j and intra-assay161

softmax scores pi,j :162

Rhet =
1

max(C, 1)

∑
i

∑
j

vi,j<vth

−wi,j log pi,j , (16)

where C is the number of assays with at least one active ligand, and vth is a predefined affinity163

threshold.164

2.5 Training and Inference165

The core learning signal is driven by the pocket–ligand relationship. Accordingly, we apply hyperbolic166

regularisation only to the structure-based (pocket) branch, where geometric alignment in Lorentz167

space is both meaningful and effective. The sequence pathway provides complementary information168

to enhance generalisation, but does not participate in hyperbolic supervision.169

Our full training objective is given by:170

Ltotal = αpoc

(
Lpoc↔lig

cont + λrank Lpoc
rank

)
︸ ︷︷ ︸

pocket ↔ ligand

+αseq

(
Lseq↔lig

cont + λrank Lseq
rank

)
︸ ︷︷ ︸

sequence ↔ ligand

+ γcone Lcone + λang Rang + λhet Rhet︸ ︷︷ ︸
pocket ↔ ligand

.

(17)

At inference time, we simply embed a query pocket and each candidate ligand into hyperbolic space,171

extract their spatial components h̃poc and h̃mol,j , and compute similarity scores by their inner product172

sj = h̃⊤
poc h̃mol,j . We then rank all ligands in descending order of sj .173
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3 Experiments174

3.1 Experimental Settings175

Implemention Details. We adopt the same curated assay–level training dataset as LigUnity [5],176

which is constructed from ChEMBL [11], BindingDB [12], and PDBBind [13]. For virtual screening,177

we strictly exclude any target UniProt IDs present in the DUD-E [6], LIT-PCBA [14] test sets. For178

affinity ranking tasks, we perform ligand-level deduplication by removing redundant small molecules179

and non-redundant assay IDs. Training is run on four NVIDIA A100 GPUs for 50 epochs„ using the180

Adam optimizer with an initial learning rate of 1 × 10−4 and the curvature parameter κ (absolute181

value of negative curvature) fixed to 1.182

Benchmark. In virtual screening, evaluations are performed on DUD-E [6] and LIT-PCBA [14].183

DUD-E includes 102 protein targets, each associated with experimentally verified actives and 50184

property-matched decoys, designed to test enrichment capability under artificially constructed decoy185

scenarios. LIT-PCBA, in contrast, contains 15 targets with over 400K experimentally confirmed186

inactives, offering a more realistic and challenging setting without synthetic decoy bias. For affinity187

ranking, the evaluation is conducted on JACS [3] and Merck [15]. JACS consists of eight high-188

quality congeneric series extracted from real lead optimization projects, emphasizing precise ranking189

within narrow chemical series, while Merck serves as a large-scale benchmark for FEP-based lead190

optimization with diverse chemical scaffolds and higher experimental noise.191

Evaluation Metrics. For virtual screening, we use AUROC, BEDROC80.5, Enrichment Factor192

(EF), and ROC-enrichment (RE) to assess model performance. For fine-grained affinity ranking, we193

evaluate using Pearson’s and Spearman’s rank correlation coefficients. More details are provided in194

Appendix D.2.195

Baselines. We compare our method against a broad spectrum of existing approaches, including196

classical physics-based docking tools, empirical scoring functions, and modern deep learning models.197

These baselines reflect diverse modeling paradigms, ranging from structure-based simulations to198

neural networks trained on large protein–ligand datasets. For affinity ranking benchmarks, we199

additionally include methods based on free energy perturbation, energy decomposition, and recent200

representation learning techniques. All baselines are evaluated using their reported protocols or201

open-source implementations, ensuring consistency with prior work.202

3.2 Quantitative Results203

Virtual Screening. As shown in Table 1, HypSeek substantially outperforms all baselines across204

both DUD-E and LIT-PCBA. On DUD-E, HypSeek achieves an AUROC of 0.9435, improving over205

the next best method (LigUnity) by more than 5 points, and delivers a BEDROC80.5 of 0.7892, nearly206

0.14 higher than LigUnity. Its EF1% of 51.44 is more than 20 points above the highest competing207

model, demonstrating exceptional early retrieval of actives. Similarly, on the more challenging LIT-208

PCBA benchmark, HypSeek attains the top AUROC (0.6210), the highest BEDROC80.5 (0.1196),209

and an EF1% of 6.81, consistently surpassing both docking-based and deep learning approaches.210

These results highlight HypSeek’s superior ability to rank true binders early in the list, making it211

particularly well suited for high-throughput virtual screening applications.212

Affinity Ranking. We evaluate HypSeek on the JACS and Merck datasets using five independent213

random seeds to assess both accuracy and robustness. We report two sets of our results: “ensemble,”214

which averages the five models’ predictions before computing metrics, and “meanstd,” which gives the215

mean and standard deviation of Pearson’s r and Spearman’s ρ across the five runs. As shown in Table 2,216

on JACS HypSeek (ensemble) achieves Pearson r = 0.7742 and Spearman ρ = 0.7819, closely217

matching the physics-based FEP+ (Pearson r = 0.7811, Spearman ρ = 0.7595) and significantly218

outperforming all deep-learning baselines. On Merck, HypSeek (ensemble) attains Pearson r =219

0.6120 and Spearman ρ = 0.5447, leading the non-physics methods. Moreover, HypSeek’s standard220

deviations are lower than those reported for LigUnity’s meanstd results, indicating more consistent221

performance across random seeds.222
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Table 1: Virtual-screening results on the DUD-E and LIT-PCBA benchmarks.

Method DUD-E (n = 102) LIT-PCBA (n = 15)
AUROC BEDROC80.5 EF1% AUROC BEDROC80.5 EF1%

Glide-SP [1] 0.7670 0.4070 16.18 0.5315 0.4000 3.41
Surflex [16] 0.7426 0.2387 13.35 0.5147 — 2.50
DeepDTA [17] 0.5836 0.0513 2.28 0.5627 0.0253 1.47
Gnina [18] 0.7817 0.2994 17.73 0.6093 0.0540 4.63
BigBind [19] 0.5014 0.0240 1.18 0.6278 0.0502 3.79
RTMScore [20] 0.7529 0.4341 27.10 0.5247 0.0388 2.94
Tankbind [21] 0.7509 0.3300 13.00 0.5970 0.0389 2.90
DrugCLIP [4] 0.8093 0.5052 31.89 0.5717 0.0623 5.51
GenScore [22] 0.8160 0.4726 28.53 0.5957 0.0654 5.14
Planet [23] 0.7160 — 8.83 0.5731 — 3.87
EquiScore [24] 0.7760 0.4320 17.68 0.5678 0.0490 3.51
DrugHash [25] 0.8373 0.5716 37.18 0.5458 0.0714 6.14
LigUnitypoc [5] 0.8922 0.6526 42.63 0.5985 0.1133 6.47

HypSeek 0.9435 0.7892 51.44 0.6210 0.1196 6.81

Table 2: Affinity ranking results on the JACS and MERCK benchmark datasets.

Type Method JACS Merck

Pearson r Spearman ρ Pearson r Spearman ρ

Physics FEP+ [3] 0.7811 0.7595 0.6960 0.6798
MM-GB/SA [26] 0.1489 0.2011 0.1299 0.1299

DL

PBCNet [27] 0.3939 0.3799 0.4058 0.4075
EHIGN [28] 0.5787 0.5814 0.4246 0.3830
GET [29] 0.4034 0.3753 0.4203 0.4214
BindNet [30] 0.5481 0.5368 0.4037 0.3477
Boltz-2 [31] 0.5231 0.5285 0.4298 0.4013
LigUnitypoc (ensemble) [5] 0.6454 0.6460 0.5997 0.5554
LigUnitypoc (meanstd) [5] 0.57050.1955 0.57740.2097 0.53230.1865 0.49940.1773

Ours HypSeek (ensemble) 0.7742 0.7819 0.6120 0.5447
HypSeek (meanstd) 0.71860.1157 0.72390.1321 0.56060.1738 0.50340.1739

3.3 Ablation and Analysis of HypSeek223

Impact of Key Components. As summarised in Table 3, switching off hyperbolic–specific terms224

(no hyp) already degrades virtual–screening performance on DUD-E (BEDROC80.5 drops from225

0.7892 to 0.7671; EF1% from 51.44 to 49.14), while the Euclidean baseline is markedly worse. The226

advantage becomes even more pronounced for affinity ranking on JACS, where Pearson r falls from227

0.7518 to 0.6839 without hyperbolic supervision and to 0.5978 in purely Euclidean space. In the228

affinity ranking task, due to limited computational resources, we conducted each ablation with a229

single random seed. Ablating either the angular or heterogeneity regulariser alone (no Rang, no Rhet)230

yields intermediate losses, confirming that both angle control and intra-assay weighting contribute231

complementary signals beyond the core cone loss. Finally, removing the protein sequence pathway232

(no Seq) also degrades performance, indicating that protein-sequence features serve mainly as an233

auxiliary signal that further shapes the embeddings.234

Pairwise Affinity Prediction. Figure 3 (A)-(B) demonstrate the behavior of Euclidean and hyperbolic235

models across varying ECFP4 [32] similarity. Both models perform similarly on dissimilar ligand236

pairs, but as the ligands become more structurally similar, Euclidean accuracy and correlation decrease237

significantly. In contrast, the hyperbolic model maintains strong performance, even in these highly238
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Table 3: Ablation results on the DUD-E and JACS benchmarks.

Setting Module DUD-E (n = 102) JACS

Lcone Rang Rhet Seq BEDROC80.5 EF1% Pearson r Spearman ρ

Hyperbolic space
Full model ✓ ✓ ✓ ✓ 0.7892 51.44 0.7518 0.7580
– no hyp × × × ✓ 0.7671 49.14 0.6839 0.6906
– no Rang ✓ × ✓ ✓ 0.7856 50.52 0.7340 0.7529
– no Rhet ✓ ✓ × ✓ 0.7773 50.42 0.7047 0.7074
– no Seq ✓ ✓ ✓ × 0.7351 47.70 0.7194 0.7050

Euclidean space
Contrastive + rank × × × × 0.6565 42.87 0.5978 0.6060

similar pairs. This suggests that the richer geometry information in hyperbolic space, which better239

accommodates relationships between molecules, is more effective at capturing subtle affinity shifts240

typical of situations where structurally similar molecules exhibit significantly different biological241

activity. These differences are often compressed in Euclidean space, where the geometry may fail to242

distinguish between such subtle shifts.243

Embedding Visualization. Ligand embeddings are first reduced via HoroPCA [33] and visualized244

using CO-SNE [34]. Without hyperbolic constraints (Figure 3C), embeddings collapse near the origin245

with overlapping targets. With the full HypSeek objective (Figure 3D), clear target-wise clusters246

and radial affinity gradients emerge. This contrast illustrates how the cone–hierarchy constraints247

introduced by HypSeek structure the hyperbolic manifold, enabling a more effective representation248

of the complex relationships between ligands in hyperbolic space.249

(A) (B) (C) (D)

Figure 3: Pairwise analysis and CO-SNE visualization on the JACS benchmark. (A) Accuracy of
affinity change prediction on ligand pairs with different ECFP4 similarity, comparing Euclidean and
hyperbolic spaces; (B) Pearson’s R between predicted score difference and ground truth affinity
gap; (C) CO-SNE visualization of ligand embeddings in hyperbolic space without the hyperbolic
constraint loss; (D) CO-SNE visualization of our HypSeek ligand embeddings.

4 Conclusion250

We introduced HypSeek, a hyperbolic protein–ligand binding prediction model that embeds ligands,251

protein pockets, and sequences into a shared hyperbolic space using a three-tower architecture. By252

leveraging the negative curvature and exponential geometry of hyperbolic space, HypSeek captures253

both global interaction patterns and fine-grained affinity differences—especially in challenging cases254

like activity cliffs, where Euclidean embeddings often fail. Meanwhile, it retains efficient retrieval255

through inner product similarity, enabling large-scale virtual screening. Extensive experiments show256

that HypSeek consistently outperforms existing baselines across both screening and ranking tasks.257

HypSeek provides a geometry-aware solution for binding prediction.258

8



References259

[1] Richard A. Friesner, Jay L. Banks, Robert B. Murphy, Thomas A. Halgren, Jasna J. Klicic,260

Daniel T. Mainz, Matthew P. Repasky, Eric H. Knoll, Mee Shelley, Jason K. Perry, David E.261

Shaw, Perry Francis, and Peter S. Shenkin. Glide: A New Approach for Rapid, Accurate262

Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal263

Chemistry, 47(7):1739–1749, March 2004.264

[2] Oleg Trott and Arthur J. Olson. AutoDock Vina: improving the speed and accuracy of docking265

with a new scoring function, efficient optimization and multithreading. Journal of computational266

chemistry, 31(2):455–461, January 2010.267

[3] Lingle Wang, Yujie Wu, Yuqing Deng, Byungchan Kim, Levi Pierce, Goran Krilov, Dmitry268

Lupyan, Shaughnessy Robinson, Markus K Dahlgren, Jeremy Greenwood, et al. Accurate and269

reliable prediction of relative ligand binding potency in prospective drug discovery by way of270

a modern free-energy calculation protocol and force field. Journal of the American Chemical271

Society, 137(7):2695–2703, 2015.272

[4] Bowen Gao, Bo Qiang, Haichuan Tan, Yinjun Jia, Minsi Ren, Minsi Lu, Jingjing Liu, Wei-Ying273

Ma, and Yanyan Lan. Drugclip: Contrastive protein-molecule representation learning for virtual274

screening. Advances in Neural Information Processing Systems, 36:44595–44614, 2023.275

[5] Bin Feng, Zijing Liu, Mingjun Yang, Junjie Zou, He Cao, Yu Li, Lei Zhang, and Sheng Wang.276

A foundation model for protein-ligand affinity prediction through jointly optimizing virtual277

screening and hit-to-lead optimization. bioRxiv, pages 2025–02, 2025.278

[6] Michael M Mysinger, Michael Carchia, John J Irwin, and Brian K Shoichet. Directory of279

useful decoys, enhanced (dud-e): better ligands and decoys for better benchmarking. Journal of280

medicinal chemistry, 55(14):6582–6594, 2012.281

[7] Zeming Lin, Hakan Akin, Roshan M. Rao, Rajan Das, Phineus Doshi, Tristan Bepler, et al.282

Evolutionary-scale prediction of atomic-level protein structure with a language model. Science,283

379(6637):1123–1130, 2023.284

[8] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise285

approach to listwise approach. In Proceedings of the 24th International Conference on Machine286

Learning, ICML ’07, page 129–136, New York, NY, USA, 2007. Association for Computing287

Machinery.288

[9] Matt Le, Stephen Roller, Laetitia Papaxanthos, Douwe Kiela, and Maximilian Nickel. Inferring289

concept hierarchies from text corpora via hyperbolic embeddings. In Anna Korhonen, David R.290

Traum, and Lluís Màrquez, editors, Proceedings of the 57th Conference of the Association for291

Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long292

Papers, pages 3231–3241. Association for Computational Linguistics, 2019.293

[10] Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakr-294

ishna Vedantam. Hyperbolic image-text representations. In Andreas Krause, Emma Brunskill,295

Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Interna-296

tional Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA,297

volume 202 of Proceedings of Machine Learning Research, pages 7694–7731. PMLR, 2023.298

[11] David Mendez, Anna Gaulton, A. Patrícia Bento, Jon Chambers, Marleen De Veij, Eloy299

Félix, María Paula Magariños, Juan F. Mosquera, Prudence Mutowo, Michał Nowotka, María300

Gordillo-Marañón, Fiona Hunter, Laura Junco, Grace Mugumbate, Milagros Rodriguez-Lopez,301

Francis Atkinson, Nicolas Bosc, Chris J. Radoux, Aldo Segura-Cabrera, Anne Hersey, and302

Andrew R. Leach. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids303

Research, 47(D1):D930–D940, 2018.304

[12] Michael K. Gilson, Tiqing Liu, Michael Baitaluk, George Nicola, Linda Hwang, and Jenny305

Chong. Bindingdb in 2015: A public database for medicinal chemistry, computational chemistry306

and systems pharmacology. Nucleic Acids Research, 44(D1):D1045–D1053, 10 2015.307

9



[13] Zhihai Liu, Minyi Su, Li Han, Jie Liu, Qifan Yang, Yan Li, and Renxiao Wang. Forging the basis308

for developing protein–ligand interaction scoring functions. Accounts of chemical research,309

50(2):302–309, 2017.310

[14] Viet-Khoa Tran-Nguyen, Célien Jacquemard, and Didier Rognan. LIT-PCBA: An Unbiased311

Data Set for Machine Learning and Virtual Screening. Journal of Chemical Information and312

Modeling, April 2020. Publisher: American Chemical Society.313

[15] Christina EM Schindler, Hannah Baumann, Andreas Blum, Dietrich Bose, Hans-Peter Buch-314

staller, Lars Burgdorf, Daniel Cappel, Eugene Chekler, Paul Czodrowski, Dieter Dorsch, et al.315

Large-scale assessment of binding free energy calculations in active drug discovery projects.316

Journal of Chemical Information and Modeling, 60(11):5457–5474, 2020.317

[16] Russell Spitzer and Ajay N Jain. Surflex-dock: Docking benchmarks and real-world application.318

Journal of computer-aided molecular design, 26:687–699, 2012.319

[17] Hakime Öztürk, Arzucan Özgür, and Elif Ozkirimli. Deepdta: deep drug–target binding affinity320

prediction. Bioinformatics, 34(17):i821–i829, 2018.321

[18] Andrew T McNutt, Paul Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew322

Ragoza, Jocelyn Sunseri, and David Ryan Koes. Gnina 1.0: molecular docking with deep323

learning. Journal of cheminformatics, 13(1):1–20, 2021.324

[19] Michael Brocidiacono, Paul Francoeur, Rishal Aggarwal, Konstantin Popov, David Koes, and325

Alexander Tropsha. Bigbind: Learning from nonstructural data for structure-based virtual326

screening. 2022.327

[20] Chao Shen, Xujun Zhang, Yafeng Deng, Junbo Gao, Dong Wang, Lei Xu, Peichen Pan, Tingjun328

Hou, and Yu Kang. Boosting Protein-Ligand Binding Pose Prediction and Virtual Screening329

Based on Residue-Atom Distance Likelihood Potential and Graph Transformer. Journal of330

Medicinal Chemistry, 65(15):10691–10706, August 2022.331

[21] Wei Lu, Qifeng Wu, Jixian Zhang, Jiahua Rao, Chengtao Li, and Shuangjia Zheng. TANKBind:332

Trigonometry-Aware Neural NetworKs for Drug-Protein Binding Structure Prediction. Advances333

in Neural Information Processing Systems, 35:7236–7249, December 2022.334

[22] C. Shen, X. Zhang, C.-Y. Hsieh, Y. Deng, D. Wang, L. Xu, J. Wu, D. Li, Y. Kang, T. Hou,335

and P. Pan. A generalized protein-ligand scoring framework with balanced scoring, docking,336

ranking and screening powers. Chemical Science, 14(30):8129–8146, July 2023.337

[23] Xiangying Zhang, Haotian Gao, Haojie Wang, Zhihang Chen, Zhe Zhang, Xinchong Chen, Yan338

Li, Yifei Qi, and Renxiao Wang. PLANET: A Multi-objective Graph Neural Network Model for339

Protein–Ligand Binding Affinity Prediction. Journal of Chemical Information and Modeling,340

64(7):2205–2220, April 2024. Publisher: American Chemical Society.341

[24] Duanhua Cao, Geng Chen, Jiaxin Jiang, Jie Yu, Runze Zhang, Mingan Chen, Wei Zhang, Lifan342

Chen, Feisheng Zhong, Yingying Zhang, Chenghao Lu, Xutong Li, Xiaomin Luo, Sulin Zhang,343

and Mingyue Zheng. Generic protein–ligand interaction scoring by integrating physical prior344

knowledge and data augmentation modelling. Nature Machine Intelligence, 6(6):688–700, June345

2024. Publisher: Nature Publishing Group.346

[25] Jin Han, Yun Hong, and Wu-Jun Li. Drughash: Hashing based contrastive learning for virtual347

screening. Proceedings of the AAAI Conference on Artificial Intelligence, 39(16):17041–17049,348

Apr. 2025.349

[26] Samuel Genheden and Ulf Ryde. The mm/pbsa and mm/gbsa methods to estimate ligand-binding350

affinities. Expert opinion on drug discovery, 10(5):449–461, 2015.351

[27] Jie Yu, Zhaojun Li, Geng Chen, Xiangtai Kong, Jie Hu, Dingyan Wang, Duanhua Cao, Yanbei352

Li, Ruifeng Huo, Gang Wang, et al. Computing the relative binding affinity of ligands based on353

a pairwise binding comparison network. Nature Computational Science, 3(10):860–872, 2023.354

10



[28] Ziduo Yang, Weihe Zhong, Qiujie Lv, Tiejun Dong, Guanxing Chen, and Calvin Yu-Chian355

Chen. Interaction-based inductive bias in graph neural networks: enhancing protein-ligand356

binding affinity predictions from 3d structures. IEEE Transactions on Pattern Analysis and357

Machine Intelligence, 2024.358

[29] Xiangzhe Kong, Wenbing Huang, and Yang Liu. Generalist equivariant transformer towards 3D359

molecular interaction learning. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian360

Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the361

41st International Conference on Machine Learning, volume 235 of Proceedings of Machine362

Learning Research, pages 25149–25175. PMLR, 21–27 Jul 2024.363

[30] Shikun Feng, Minghao Li, Yinjun Jia, Wei-Ying Ma, and Yanyan Lan. Protein-ligand binding364

representation learning from fine-grained interactions. In The Twelfth International Conference365

on Learning Representations, 2024.366

[31] Saro Passaro, Gabriele Corso, Jeremy Wohlwend, Mateo Reveiz, Stephan Thaler, Vignesh Ram367

Somnath, Noah Getz, Tally Portnoi, Julien Roy, Hannes Stark, David Kwabi-Addo, Dominique368

Beaini, Tommi Jaakkola, and Regina Barzilay. Boltz-2: Towards accurate and efficient binding369

affinity prediction. bioRxiv, 2025.370

[32] David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of Chemical371

Information and Modeling, 50(5):742–754, 2010. PMID: 20426451.372

[33] Ines Chami, Albert Gu, Dat P Nguyen, and Christopher Re. Horopca: Hyperbolic dimensionality373

reduction via horospherical projections. In Marina Meila and Tong Zhang, editors, Proceedings374

of the 38th International Conference on Machine Learning, volume 139 of Proceedings of375

Machine Learning Research, pages 1419–1429. PMLR, 18–24 Jul 2021.376

[34] Yunhui Guo, Haoran Guo, and Stella X. Yu. Co-sne: Dimensionality reduction and visualization377

for hyperbolic data. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition378

(CVPR), pages 11–20, 2022.379

[35] Andrew T. McNutt, Paul Francoeur, Rishal Aggarwal, Tomohide Masuda, Rocco Meli, Matthew380

Ragoza, Jocelyn Sunseri, and David Ryan Koes. GNINA 1.0: molecular docking with deep381

learning. Journal of Cheminformatics, 13(1), June 2021.382

[36] Dejun Jiang, Chang-Yu Hsieh, Zhenxing Wu, Yu Kang, Jike Wang, Ercheng Wang, Ben Liao,383

Chao Shen, Lei Xu, Jian Wu, Dongsheng Cao, and Tingjun Hou. InteractionGraphNet: A Novel384

and Efficient Deep Graph Representation Learning Framework for Accurate Protein–Ligand385

Interaction Predictions. Journal of Medicinal Chemistry, 64(24):18209–18232, 2021. Publisher:386

American Chemical Society.387

[37] Xujun Zhang, Odin Zhang, Chao Shen, Wanglin Qu, Shicheng Chen, Hanqun Cao, Yu Kang,388

Zhe Wang, Ercheng Wang, Jintu Zhang, Yafeng Deng, Furui Liu, Tianyue Wang, Hongyan Du,389

Langcheng Wang, Peichen Pan, Guangyong Chen, Chang-Yu Hsieh, and Tingjun Hou. Efficient390

and accurate large library ligand docking with KarmaDock. Nature Computational Science,391

3(9):789–804, September 2023. Publisher: Nature Publishing Group.392

[38] J. Han, Y. Hong, and W.-J. Li. Drughash: Hashing based contrastive learning for virtual393

screening. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages394

17041–17049, 2025.395

[39] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-396

tations. 30, 2017.397

[40] Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embeddings of398

graphs in hyperbolic space. arXiv preprint arXiv:1705.10359, 2017.399

[41] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks. In400

NeurIPS, 2018.401

[42] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. arXiv402

preprint arXiv:1810.00760, 2018.403

11



[43] Silvère Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Trans. Autom.404

Control., 58(9):2217–2229, 2013.405

[44] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In406

7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,407

May 6-9, 2019. OpenReview.net, 2019.408

[45] Ryohei Shimizu, Yusuke Mukuta, and Tatsuya Harada. Hyperbolic neural networks++. In ICLR,409

2021.410

[46] Caglar Gulcehre, Misha Denil, Mateusz Malinowski, Ali Razavi, Razvan Pascanu, Karl Moritz411

Hermann, Peter Battaglia, Victor Bapst, David Raposo, Adam Santoro, and Nando de Freitas.412

Hyperbolic attention networks. In ICLR, 2019.413

[47] Ahmad Bdeir, Kristian Schwethelm, and Niels Landwehr. Fully hyperbolic convolutional neural414

networks for computer vision. In ICLR, 2024.415

[48] Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. In NeurIPS,416

2019.417

[49] Liping Wang, Fenyu Hu, Shu Wu, and Liang Wang. Fully hyperbolic graph convolution network418

for recommendation. In Proceedings of the 30th ACM international conference on information419

& knowledge management, pages 3483–3487, 2021.420

[50] P. Mettes, M. Ghadimi Atigh, M. Keller-Ressel, et al. Hyperbolic deep learning in computer vi-421

sion: A survey. International Journal of Computer Vision, 132:3484–3508, 2024.422

[51] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lem-423

pitsky. Hyperbolic image embeddings. pages 6418–6428, 2020.424

[52] Luca Franco, Paolo Mandica, Bharti Munjal, and Fabio Galasso. Hyperbolic self-paced learning425

for self-supervised skeleton-based action representations. In ICLR, 2023.426

[53] Yuanpei Liu, Zhenqi He, and Kai Han. Hyperbolic category discovery, 2025.427

[54] Bhuwan Dhingra, Christopher J Shallue, Mohammad Norouzi, Andrew M Dai, and George E428

Dahl. Embedding text in hyperbolic spaces. arXiv preprint arXiv:1806.04313, 2018.429

[55] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincare glove: Hyperbolic430

word embeddings. In 7th International Conference on Learning Representations, ICLR 2019,431

New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.432

[56] Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakr-433

ishna Vedantam. Hyperbolic image-text representations. pages 7694–7731. PMLR, 2023.434

[57] Avik Pal, Max van Spengler, Guido Maria D’Amely di Melendugno, Alessandro Flaborea, Fabio435

Galasso, and Pascal Mettes. Compositional entailment learning for hyperbolic vision-language436

models. arXiv preprint arXiv:2410.06912, 2024.437

[58] Tobia Poppi, Tejaswi Kasarla, Pascal Mettes, Lorenzo Baraldi, and Rita Cucchiara. Hyperbolic438

safety-aware vision-language models. In Proceedings of the IEEE/CVF Conference on Computer439

Vision and Pattern Recognition (CVPR), 2025.440

[59] Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of441

hyperbolic geometry. pages 3779–3788. PMLR, 2018.442

[60] Ya-Wei Eileen Lin, Ronald R Coifman, Gal Mishne, and Ronen Talmon. Hyperbolic diffusion443

embedding and distance for hierarchical representation learning. pages 21003–21025. PMLR,444

2023.445

[61] Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempit-446

sky. Hyperbolic image embeddings. In Proceedings of the IEEE/CVF conference on computer447

vision and pattern recognition, pages 6418–6428, 2020.448

12



[62] Wen Torng and Russ B. Altman. Graph convolutional neural networks for predicting drug-target449

interactions. Journal of Chemical Information and Modeling, 59(10):4131–4149, 2019. PMID:450

31580672.451

[63] Shuangjia Zheng, Yongjian Li, Sheng Chen, Jun Xu, and Yuedong Yang. Predicting drug–protein452

interaction using quasi-visual question-answering system. Nature Machine Intelligence,453

2(2):134–140, 2020.454

[64] Mehdi Yazdani-Jahromi, Niloofar Yousefi, Aida Tayebi, Elayaraja Kolanthai, Craig J Neal,455

Sudipta Seal, and Ozlem Ozmen Garibay. Attentionsitedti: an interpretable graph-based model456

for drug-target interaction prediction using nlp sentence-level relation classification. Briefings457

in Bioinformatics, 23(4):bbac272, 07 2022.458

[65] Zhangyang Gao, Cheng Tan, Jun Xia, and Stan Z. Li. Co-supervised pre-training of pocket and459

ligand. In Machine Learning and Knowledge Discovery in Databases: Research Track, ECML460

PKDD 2023, volume 13956 of Lecture Notes in Computer Science, pages 405–421, Turin, Italy,461

2023. Springer.462

13



A Related Work463

Virtual Screening. Structure-based virtual screening traditionally relies on molecular docking meth-464

ods such as Glide [1] and AutoDock [2], which predict ligand binding poses and evaluate affinities465

using physics-based scoring functions. Some predict binding affinity directly from protein–ligand466

complex structures by learning scoring functions [35, 36, 20, 24], while others infer interactions467

from raw structural inputs [21, 37]. A major shift occurred with DrugCLIP [4], which introduced468

contrastive retrieval by aligning ligand and pocket embeddings in a shared Euclidean space for469

billion-scale similarity search. This paradigm has since inspired a range of efficient retrieval methods.470

For example, DrugHash [38] employs binary hash codes for efficient retrieval with reduced memory471

cost, and LigUnity [5] integrates listwise ranking with contrastive screening.472

Affinity Ranking. Accurate ranking of ligand binding affinities is essential for lead optimization but473

remains computationally challenging. Physics-based methods such as FEP+ [3] and MM-GB/SA [26]474

deliver high accuracy via alchemical free-energy calculations and implicit solvent models, respectively,475

yet they require extensive molecular dynamics sampling. Recent deep learning approaches seek476

to reduce this cost: PBCNet [27] models pairwise ligand differences with graph neural networks,477

EHIGN [28] encodes heterogeneous protein–ligand interaction graphs, and LigUnity [5] combines478

contrastive screening with listwise ranking to jointly address global retrieval and local prioritization.479

Hyperbolic Representation Learning. Hyperbolic space has emerged as a powerful embedding man-480

ifold for data with latent hierarchical or tree-like structure, owing to its exponential volume growth481

that preserves hierarchy with low distortion [39, 40]. Early works demonstrated that embedding482

taxonomies or graphs in Poincaré or Lorentz models captures hierarchical relations more faithfully483

than Euclidean counterparts [41, 42]. This theoretical appeal led to specialized optimization methods484

and the design of hyperbolic neural layers, including Riemannian gradient algorithms [43, 44] and485

Hyperbolic Neural Networks [45], as well as adaptations of convolutional, attention, and graph486

architectures [46, 47]. Hyperbolic embeddings have demonstrated strong performance across diverse487

modalities—knowledge graphs and recommender systems [48, 49], vision tasks [50] such as classifi-488

cation and few-shot learning [51, 52, 53], and language modeling [54, 55]. Recent studies further489

explore multimodal training in hyperbolic space for vision–language models to capture hierarchical490

semantics [56, 57, 58]. Our work is the first to bring hyperbolic space to protein–ligand retrieval,491

leveraging its inductive bias to separate fine-grained affinity differences.492

B Background493

We perform all representation learning in an n-dimensional hyperbolic space of constant negative494

curvature, using the Lorentz model [59, 60, 56]. This choice affords numerical stability and readily495

supports geodesic and exponential-map operations.496

Let Ln denote the Lorentz (hyperboloid) model, realized as the upper sheet of a two-sheeted hyper-497

boloid in Rn+1. We first equip Rn+1 with the Lorentzian inner product498

⟨p,q⟩L = − p0 q0 +
〈
p̃, q̃

〉
E, (18)

where we write p = (p0, p̃), p0 ∈ R, p̃ ∈ Rn with p0 the time-coordinate and p̃ the spatial-499

coordinates, and ⟨·, ·⟩E denotes the standard Euclidean inner product.500

The Lorentz model is then defined by501

Ln =
{
p ∈ Rn+1 : ⟨p,p⟩L = − 1

κ
, p0 =

√
1
κ + ∥p̃∥2, κ > 0

}
, (19)

where −κ ∈ R is the curvature of the space.502

We can measure distances by integrating the metric along geodesics. The Riemannian metric induced503

by the Lorentzian inner product gives the length of geodesics on Ln, which in turn defines the504

hyperbolic distance.505

dL(p,q) =
1√
κ

cosh−1
(
−κ ⟨p,q⟩L

)
, p,q ∈ Ln. (20)

At each point p ∈ Ln, the tangent space TpLn provides a linear approximation of the manifold.506

Concretely, any tangent vector v ∈ TpLn ⊂ Rn+1 satisfy ⟨p,v⟩L = 0, so that507

TpLn =
{
v ∈ Rn+1 : ⟨p,v⟩L = 0

}
. (21)
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To transfer Euclidean encoder outputs into hyperbolic space, we apply the exponential map at a base508

point. For any p ∈ Ln and v ∈ TpLn, the exponential map is509

expκp(v) = cosh
(√

κ ∥v∥L
)
p+

sinh
(√

κ ∥v∥L
)

√
κ ∥v∥L

v, (22)

where ∥v∥L =
√
⟨v,v⟩L. In practice, we interpret the output of a Euclidean encoder as a vector in510

the tangent space at the point 0 = ( 1√
κ
, 0, . . . , 0)⊤ on the hyperboloid, and then apply the exponential511

map expκ0 to lift it onto Ln [61].512

C Theoretical Motivation for Hyperbolic Separation of Activity Cliffs513

A key challenge in protein–ligand modeling is the presence of activity cliffs—cases where structurally514

similar ligands exhibit large differences in binding affinity. We aim to show, from a geometric515

perspective, why hyperbolic space is better suited than Euclidean space for separating such ligand516

pairs.517

C.1 Problem Setup518

Let ℓ1, ℓ2 ∈ Rn be two ligands with high structural similarity, such that their Euclidean distance is519

small:520

∥ℓ1 − ℓ2∥E = ε, ε ≪ 1 (23)

but their binding affinities differ significantly:521

|f(ℓ1)− f(ℓ2)| ≫ 0 (24)

Our goal is to learn an embedding h(·) such that:522

∥h(ℓ1)− h(ℓ2)∥ ≫ ε (25)

i.e., the embedding space should amplify functional differences despite structural similarity.523

C.2 Limitations of Euclidean Geometry524

In Euclidean space Rd, distance grows linearly:525

dE(x, y) = ∥x− y∥2 (26)

Thus, structurally similar ligands must be mapped to nearby locations unless we distort the local526

geometry, which harms generalization and smoothness.527

C.3 Hyperbolic Geometry and Exponential Separation528

We consider the Lorentz model of hyperbolic space Hn with curvature −κ. The manifold is defined529

as:530

Hn = {x ∈ Rn+1 | ⟨x, x⟩L = − 1

κ
, x0 > 0} (27)

where the Lorentzian inner product is:531

⟨x, y⟩L = −x0y0 +

n∑
i=1

xiyi (28)

The geodesic distance between x, y ∈ Hn is given by:532

dH(x, y) =
1√
κ
cosh−1 (−κ⟨x, y⟩L) (29)
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C.4 Angular Separation and Activity Cliffs533

Let v1, v2 ∈ ToHn be tangent vectors at the origin o, representing two structurally similar ligands.534

Their exponential map into Hn is:535

expo(v) = cosh(∥v∥) · o+ sinh(∥v∥) · v

∥v∥
(30)

Assume both vectors have the same norm ∥v1∥ ≈ ∥v2∥ = r (i.e. equal radial depth) and a small536

angular deviation θ = ∠(v1, v2) ≪ 1. By applying the hyperbolic law of cosines and the expansion537

arccosh(1 + ε) =
√
2ε+O(ε3/2), their geodesic distance satisfies538

dH
(
expo(v1), expo(v2)

)
≈ sinh r√

κ
θ + O(θ3). (31)

This implies that even small angular differences (e.g., from subtle functional changes) lead to large539

separations if radial depth (i.e., binding strength) differs.540

C.5 Conclusion541

Proposition. Let ℓ1, ℓ2 ∈ Rn be structurally similar ligands with different affinity labels. Let542

hE : Rn → Rd be a Euclidean embedding and hH : Rn → Hd a hyperbolic embedding. Then under543

constant radial norm r and small angular separation θ, we have:544

dH(hH(ℓ1), hH(ℓ2)) ≫ dE(hE(ℓ1), hE(ℓ2)) (32)

This shows that hyperbolic geometry provides stronger capacity to distinguish activity cliff pairs, even545

under tight structural similarity, without requiring large Euclidean displacement or model distortion.546

D Supplementary Analysis and Details547

D.1 Analysis of Cross-Target Activity–Cliff Pairs548

Table 4 lists 21 ligand pairs whose ECFP [32] similarity is greater than 0.60 yet display large549

differences in experimental binding free energy Exp∆G making them representative activity–cliff550

cases for evaluating our embedding space. For comparison, the Euclidean scores in the table are551

produced by the current state-of-the-art pocket–ligand model LigUnitypoc [5], whereas the hyperbolic552

scores come from our method.553

Directional Agreement with Experimental Affinity. Recall that a smaller (more negative) ex-554

perimental ∆G indicates a stronger binder, whereas a larger model score indicates stronger bind-555

ing. Hence, for every pair in Table 4 we expect the sign of ∆(score) to be opposite to the sign556

of ∆(Exp∆G). This correspondence is clearly visible: whenever the experimental gap favours557

molecule B, the hyperbolic score is higher for B (positive ∆Hyp), and vice-versa. Euclidean scores558

occasionally match the sign but the margin is often negligible. Several pairs show that even free-559

energy perturbation (FEP) [3] predicts the wrong direction of the affinity change, yet the hyperbolic560

score still aligns with the experimental ordering.561

Separation Magnitude. The Euclidean score differences are typically tiny (many are < 0.05),562

making it hard to tell the two ligands apart. In contrast, the hyperbolic score differences are an order563

of magnitude larger, providing an immediate visual cue of which ligand the model prefers. This564

numerical gap illustrates how the hyperbolic embedding stretches activity-cliff pairs, whereas the565

Euclidean embedding leaves them almost collapsed.566

D.2 Evaluation Metrics567

Virtual screening asks whether a model can place a handful of true binders at the very top of a568

ranked list that may contain millions of inactives; affinity ranking asks whether it can preserve the569

fine-grained order of binding strengths within a chemically related series. Accordingly we employ570

different metrics.571

(1) Virtual Screening Metrics.572
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Table 4: Cross-Target Activity-Cliff Cases.
Molecule A Molecule B PDB ID ECFP Exp∆G (A/B) FEP∆G (A/B) Euc (A/B) Hyp (A/B) ∆(Exp∆G) ∆FEP ∆Euc ∆Hyp

4HW3 0.6731 -6.66 / -8.67 -3.5197 / -8.0306 +0.5356 / +0.5490 +1.5055 / +1.7663 -2.01 -4.5109 +0.0132 +0.2608

4GIH 0.7674 -7.42 / -9.54 -6.1068 / -9.8942 +0.7420 / +0.7476 +1.1878 / +1.7734 -2.12 -3.7874 +0.0054 +0.5855

6HVI 0.7097 -10.24 / -7.19 -11.3100 / -7.1480 +0.6760 / +0.6830 +1.9901 / +1.5151 +3.05 +4.16 +0.0073 -0.4750

2GMX 0.6500 -8.11 / -9.99 -7.8979 / -9.9855 +0.8066 / +0.7866 +1.8717 / +2.2653 -1.88 -2.0876 -0.0200 +0.3936

1H1Q 0.7273 -11.25 / -8.18 -9.8937 / -8.1376 +0.5684 / +0.5700 +2.0705 / +1.7103 +3.07 +1.7561 +0.0015 -0.3601

4DJW 0.7719 -9.47 / -11.35 -9.9357 / -11.1010 +0.9110 / +0.9175 +2.1507 / +2.3914 -1.88 -1.1653 +0.0063 +0.2407

4GIH 0.9048 -11.31 / -9.70 -10.5581 / -9.4767 +0.7390 / +0.7446 +1.8883 / +1.6953 +1.61 +1.0814 +0.0059 -0.1930

6HVI 0.7213 -9.77 / -7.19 -11.1920 / -7.1480 +0.6953 / +0.6830 +2.0241 / +1.5151 +2.58 +4.0440 -0.0122 -0.5090

1H1Q 0.7018 -11.11 / -8.18 -9.8570 / -8.1376 +0.5645 / +0.5700 +2.0925 / +1.7103 +2.93 +1.7194 +0.0054 -0.3822

6HVI 0.6515 -7.69 / -10.71 -8.6460 / -10.5600 +0.7173 / +0.7380 +1.5800 / +2.2676 -3.02 -1.9140 +0.0205 +0.6876

2GMX 0.6897 -7.51 / -9.68 -8.8421 / -10.7494 +0.7437 / +0.7650 +1.9024 / +2.3753 -2.17 -1.9073 +0.0215 +0.4729

5EHR 0.6667 -7.15 / -9.75 -8.7560 / -8.5590 +0.8203 / +0.7920 +1.6715 / +2.0898 -2.60 +0.1970 -0.0283 +0.4183

4HW3 0.7872 -6.66 / -8.90 -3.5197 / -7.2962 +0.5356 / +0.5435 +1.5055 / +1.7195 -2.24 -3.7765 +0.0078 +0.2141

4DJW 0.8103 -11.35 / -9.42 -11.1010 / -9.4110 +0.9175 / +0.9263 +2.3914 / +2.1834 +1.93 +1.6900 +0.0088 -0.2080

6HVI 0.7458 -7.93 / -10.24 -6.5430 / -11.3100 +0.6113 / +0.6760 +1.5235 / +1.9901 -2.31 -4.7670 +0.0644 +0.4666

2QBS 0.7385 -11.42 / -8.72 -9.6890 / -8.8168 +0.9224 / +0.8660 +2.4139 / +2.0398 +2.70 +0.8722 -0.0561 -0.3741

3FLY 0.6351 -10.23 / -12.26 -9.8951 / -12.1479 +0.2379 / +0.2490 +1.7866 / +2.1387 -2.03 -2.2528 +0.0111 +0.3522

4UI5 0.7234 -10.05 / -12.08 -9.7050 / -11.9640 +0.9090 / +0.9380 +1.9309 / +2.2185 -2.03 -2.2590 +0.0288 +0.2876

4PV0 0.8000 -6.82 / -11.83 -10.7470 / -11.1020 +0.6660 / +0.7170 +1.9251 / +2.1345 -5.01 -0.3550 +0.0508 +0.2094

4GIH 0.7347 -11.70 / -9.00 -10.9067 / -8.8033 +0.7450 / +0.7090 +1.9382 / +1.4873 +2.70 +2.1034 -0.0361 -0.4510

3FLY 0.6571 -11.85 / -10.23 -12.8311 / -9.8951 +0.2678 / +0.2379 +2.1754 / +1.7866 +1.62 +2.9360 -0.0299 -0.3889

AUROC. The area under the ROC curve is the probability that a randomly chosen active (a) scores573

higher than a randomly chosen inactive (d): Pr[s(a) > s(d)]. Values range from 0.5 (random) to 1.0574

(perfect) but treat the whole ranked list uniformly.575

BEDROC80.5. To emphasise the earliest part of the ranked list, we adopt the Boltzmann-enhanced576

discrimination of ROC (BEDROC) with focus parameter α = 80.5, for which roughly the top 2 %577

of ranks account for 80 % of the score. Let N be the library size, Nt the number of actives, and578

ri ∈ [1, N ] the rank of active i. The normalised form is579

BEDROCα =

Nt∑
i=1

e−αri/N

Rα

(
1− e−α

eα/N − 1

)
× Rα sinh(α/2)

cosh(α/2)− cosh
(
α/2− αRα

)
+

1

1− eα(1−Rα)
,

(33)

where Rα = Nt/N is the active fraction. Equation (33) is bounded in [0, 1]; higher values indicate580

stronger early enrichment.581
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Enrichment Factor. The factor at a cut-off α% quantifies how many actives the model retrieves582

relative to random ranking:583

EFα =
NTBα

NTBt α/100
, (34)

where NTBα is the number of true binders in the top α% of the list and NTBt the total binders.584

ROC Enrichment (RE). At a false-positive-rate threshold x% we report585

RE(x%) =
TP/P

FPx%/N
=

TPN

P FPx%
, (35)

where N is the library size, P the number of actives, TP the true positives among the top-ranked586

compounds, and FPx% the false positives observed before the FPR reaches x%. A larger RE means587

stronger early discrimination.588

(2)Affinity-ranking metrics.589

Within a congeneric series we measure linear and rank agreement between predicted (ŷ) and experi-590

mental (y) affinities.591

Pearson r =

∑
i(yi − ȳ)(ŷi − ¯̂y)√∑

i(yi − ȳ)2
√∑

i(ŷi − ¯̂y)2
, (36)

Spearman ρ = 1−
6
∑
i d

2
i

n(n2 − 1)
, (37)

where di is the rank difference for compound i and n the series size. Both metrics lie in [−1, 1];592

higher values indicate better agreement (1 is perfect correlation).593

D.3 Complementary Virtual Screening Results594

Table 5: Complementary results.

Method EF0.5% EF2% EF5%

LigUnitypoc 48.44 29.01 13.57
HypSeek 55.19 36.42 16.30

We present complementary results for HypSeek on the DUD-595

E benchmark in Table 5, including EF0.5%, EF2%, and EF5%.596

As shown, HypSeek outperforms LigUnitypoc in all three EF597

metrics, demonstrating superior early retrieval of actives. Ta-598

ble 6 reports ROC Enrichment (RE) metrics on the DUD–E599

benchmark under the fine-tuning setting. Notably, HypSeek600

achieves RE0.5% = 137.15, surpassing even the few-shot DrugCLIPFT result of 118.10, highlighting601

its exceptional ability to enrich actives early in the ranking.602

Table 6: ROC–enrichment (RE) on the DUD–E benchmark.

Method AUROC RE0.5% RE1% RE2% RE5%

Graph CNN [62] 0.8860 44.41 29.75 19.41 10.74
DrugVQA [63] 0.9720 88.17 58.71 35.06 17.39
AttentionSiteDTI [64] 0.9710 101.74 59.92 35.07 16.74
COSP [65] 0.9010 51.05 35.98 23.68 12.21
DrugCLIPZS [4] 0.8093 73.97 41.79 23.68 11.16
DrugCLIPFT [4] 0.9659 118.10 67.17 37.17 16.59
LigUnitypoc [5] 0.8922 104.69 57.47 33.76 13.88

HypSeek 0.9435 137.15 73.16 38.80 16.60

18


	Introduction
	Method
	Problem Setting
	Multimodal Encoding and Lorentz Mapping
	Contrastive and Ranking as the Foundation.
	Hyperbolic Geometry as a Structural Prior
	Training and Inference

	Experiments
	Experimental Settings
	Quantitative Results
	Ablation and Analysis of HypSeek

	Conclusion
	Related Work
	Background
	Theoretical Motivation for Hyperbolic Separation of Activity Cliffs
	Problem Setup
	Limitations of Euclidean Geometry
	Hyperbolic Geometry and Exponential Separation
	Angular Separation and Activity Cliffs
	Conclusion

	Supplementary Analysis and Details
	Analysis of Cross-Target Activity–Cliff Pairs
	Evaluation Metrics
	Complementary Virtual Screening Results


