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Abstract

Protein-ligand binding prediction is central to virtual screening and affinity ranking,
two fundamental tasks in drug discovery. While recent retrieval-based methods
embed ligands and protein pockets into Euclidean space for similarity-based search,
the geometry of Euclidean embeddings often fails to capture the hierarchical struc-
ture and fine-grained affinity variations intrinsic to molecular interactions. In this
work, we propose HypSeek, a hyperbolic representation learning framework that
embeds ligands, protein pockets, and sequences into Lorentz-model hyperbolic
space. By leveraging the exponential geometry and negative curvature of hyper-
bolic space, HypSeek enables expressive, affinity-sensitive embeddings that can
effectively model both global activity and subtle functional differences-particularly
in challenging cases such as activity cliffs, where structurally similar ligands ex-
hibit large affinity gaps. Our mode unifies virtual screening and affinity ranking
in a single framework, introducing a protein-guided three-tower architecture to
enhance representational structure. HypSeek improves early enrichment in virtual
screening on DUD-E from 42.63 to 51.44 (+20.7%) and affinity ranking corre-
lation on JACS from 0.5774 to 0.7239 (+25.4%), demonstrating the benefits of
hyperbolic geometry across both tasks and highlighting its potential as a power-
ful inductive bias for protein-ligand modeling. Our code is publicly available at
https://github.com/jianhuiwemi/HypSeek.

1 Introduction

Modeling protein-ligand interactions is critical for drug discovery, where accurate binding affinity
prediction underpins both large-scale virtual screening and fine-grained ligand prioritization. Virtual
screening seeks to identify molecules likely to bind a given protein target from large compound
libraries, often containing millions or even billions of candidates. Approaches such as molecular
docking [[1} 2] estimate binding compatibility by sampling ligand poses and scoring them with physics-
based functions. While effective in small-scale settings, these methods are computationally intensive
and scale poorly to modern library sizes. Unlike virtual screening, which emphasizes identifying
likely binders from vast libraries, affinity ranking focuses on ordering a smaller set of candidate
ligands by predicted binding strength, with physics-based techniques like free energy perturbation
(FEP+) [3] offering high accuracy at the cost of extensive molecular dynamics simulations. These
limitations restrict the practicality of traditional methods in early-stage drug discovery pipelines.

A notable shift in virtual screening came with DrugCLIP [4], which reframed the task as a dense
retrieval problem. Rather than predicting binding affinity or docking poses, DrugCLIP learns
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contrastive embeddings of ligands and protein pockets such that interacting pairs are close in a shared
Euclidean space. This design enables efficient similarity-based retrieval and allows for scalable
screening across billion-scale compound libraries. Despite its promising performance and efficiency,
DrugCLIP struggles to capture fine-grained interaction patterns which are essential for downstream
affinity ranking. Recently, LigUnity [5]] extends the retrieval-based framework by unifying virtual
screening and affinity ranking into a single training objective. It combines contrastive learning for
global interaction patterns with listwise ranking to model pocket-specific ligand preferences, aiming
to jointly learn both binding likelihood and relative affinity within a unified embedding space.

While retrieval-based methods have shown strong potential, they typically embed ligands and protein
pockets into Euclidean space, where distances grow linearly and the geometry does not explicitly
encourage separation based on functional or activity-related differences. As a result, standard
Euclidean training objectives may fail to emphasize fine-grained distinctions in binding strength,
especially when molecular structures are similar.
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Figure 1: Illustration of how hyperbolic geometry dis-
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tinguishes activity cliffs (PDB ID: SEHR). Left: Two
structurally similar ligands (Ligand ID: 50D vs. its
amino-substituent-removed derivative) show an ~80-
fold affinity difference. Right: The yellow and red
points denote the two ligands; the blue point is the
pocket. Dashed lines show distances in hyperbolic
(red/light blue) and Euclidean (dark blue) space. Eu-
clidean embeddings preserve structural similarity but
fail to reflect affinity gaps, while hyperbolic embed-
dings separate such pairs via both radial and angular
dimensions (Dyy, green), enabling affinity-sensitive
representations.

We evaluate HypSeek across both large-scale virtual screening and fine-grained affinity ranking
tasks. On the DUD-E [6] benchmark, HypSeek improves EF,¢, from 42.63 to 51.44 (+20.7%),
demonstrating strong retrieval performance across targets. For affinity ranking, it increases Spearman
correlation on the JACS [3] dataset from 0.5774 to 0.7239 (+25.4%), consistently outperforming
Euclidean baselines. These results highlight the benefits of hyperbolic geometry in capturing both
global activity and nuanced affinity variation within a unified embedding space.

In summary, our contributions are as follows:

* We propose a hyperbolic embedding framework for protein-ligand modeling, where the
geometry naturally captures hierarchical interactions and targets the critical challenge of
activity cliffs by enabling structured separation of similar ligands with divergent affinities.

* We introduce HypSeek, a dense retrieval model with a protein-guided three-tower architec-
ture that integrates structure and sequence information to learn affinity-aware representations
in hyperbolic space.



* HypSeek achieves strong performance on both virtual screening and affinity ranking, cap-
turing fine-grained binding differences more effectively than Euclidean baselines while
maintaining scalable inference.

2 Method

2.1 Problem Setting

Our goal is to predict the binding affinity between protein pockets and candidate ligands. The training
data are organized by assay, where each assay is an experimental setup designed to evaluate ligand
binding against a specific protein target. Each assay includes one protein and a subset of ligands from
the full compound library that have been experimentally screened, yielding binary activity labels and
optionally affinity values. Crucially, affinity values are only comparable within the same assay due
to differences in experimental conditions (e.g., pH, temperature, cofactors), assay protocols (e.g.,
cell-based or target-based), and measurement types (e.g., ICsg, K4, K;).

Therefore, the task is formulated as learning relative binding strength rankings within each assay
rather than predicting absolute affinities across assays. Let A denote the set of assays. For each
assay A; € A, let L, be the set of tested ligands, and v;(¢) be the affinity value of ligand ¢ € L;.
Each assay corresponds to a target protein, represented by both its amino acid sequence and a set
of candidate pocket structures P;. During training, one pocket from P; is sampled to represent the
structure, and combined with the sequence information to encode the full target. The model is trained
to embed both targets and ligands into a shared hyperbolic space, enabling retrieval of active ligands
and ranking them by relative binding strengths within each assay.

2.2 Multimodal Encoding and Lorentz Mapping

Let 2P and =™ denote the atom-based inputs (coordinates and types) for a protein pocket and ligand,
respectively, and let S = (s1, ..., sy,) denote the amino acid sequence of a target protein. We define
three encoder functions: g4 and fy as SE(3)-equivariant 3D graph transformers for pockets and
ligands (following DrugCLIP [4]]), and h,, as a protein sequence encoder based on ESM-2 [7]]. As
illustrated in Figure 2| each encoder maps its input to a vector in R%ue:

Epoc = g¢(xp)7 Emol = f@(x’m)wEseq = hw(S) (1)

We then lift these Euclidean embeddings to hyperbolic space via the exponential map defined in
Eq. 22):
hpoc = eng (Epoc)a hpo = EXPS (Emol) ’ hseq = eXPS (Eseq) . 2)

The resulting hyperbolic embeddings hy,o1, hyoc, hseq € L™ are subsequently employed in both the
training and the inference stage.

2.3 Contrastive and Ranking as the Foundation.

We retain the in-batch contrastive retrieval losses of DrugCLIP [4] and LigUnity’s listwise ranking
term [5], applied to the hyperbolic embeddings h,,. For each assay A; with query modality u €
{poc,seq} and its B candidate ligands {v; }, we compute similarity logits s;; = % (h,,,h,,).

We adopt a symmetric InfoNCE objective over each assay A;. Let L; C {1,..., B} denote the
indices of true binders for u;. We compute:
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The total contrastive loss is then

1
»Ccontrast = 5 Z (ﬁp_>1 + ﬁl—)p) (5)
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Figure 2: Overall architecture of HypSeek: three encoders lift ligands, pockets and protein sequences
to a shared hyperbolic space (left); contrastive and list-wise ranking losses align pocket/sequence
with ligands while the cone-hierarchy loss imposes radial-angular tiers around each pocket (right).

For each assay A; the screened ligands are sorted by measured affinity, yielding an ordered list
(vi1,-..,v; g). Following the Plackett-Luce model [8]], the probability of selecting ligand v; ;. at
step k& (from the remaining set R; , = {k,k+ 1,...,B})is

pia(oig) = —=Plsur) ©)

Z exp(sm) ,
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where s; ; = (hy,, Bv,k )/T. We use the decay p, = The listwise loss for assay A; is
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2.4 Hyperbolic Geometry as a Structural Prior

Beyond simply embedding pockets and ligands into a shared hyperbolic space, we aim to further
leverage the geometric structure of IL™ to encode fine-grained inductive biases about binding affinity.
The exponential capacity of hyperbolic space allows for natural modeling of hierarchical relationships,
while the Lorentz model enables cone-based entailment mechanisms. We therefore introduce a
cone-hierarchy learning process that exploits both the radial and angular dimensions of hyperbolic
space to reflect the graded nature of ligand binding strength.

Within an assay A;, the protein pocket is represented by a Lorentz-model vector hyo.; € L",
and every screened ligand j € L£; has its own embedding hy,,1;; € L". Each hyperbolic vector
splits into a time-like coordinate and an n-dimensional spatial part: hyoc; = (poﬂ-, f)z-), hiolij =
(m07ij, Ihij), with pg ;,m0; € R and p;, m;; € R™. These components satisfy the hyperboloid
constraint pg ; — [P 4[|> = m§ ;; — [[m;[|> = 1/k.

The geodesic distance d; ; = di.(hpoc,i, Dmot s,;) is computed via Eq. (20). The exterior angle at the
pocket,

mo,ij + £ ((Pir M ) — P0.iMo.i;)Do.i )
)

®)
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follows from the hyperbolic law of cosines and measures how far the ligand “leans” away from the
pocket direction.



Each pocket defines a surface of admissible directions. Its half-aperture angle is formulated as [9, [10]

L o 279
w; = arcsln(\/z”ﬁi”), O]
with a small constant 7y > 0 to keep the expression bounded near the origin; larger ||p;|| (a pocket
already pushed towards the boundary) therefore yields a narrower cone.

[Li]

Given the assay—specific affinity values {v; ; } j—1» we draw K thresholds tg <t <--- <t and

assign each ligand a bucket index
bi; = {kE{O,...,K} HEVENS [trs tit1) } (10)

Bucket 0 therefore collects the weakest binders and bucket K the strongest. For every ligand we
derive a bucket—specific radial limit 7; ; and angular—scaling factor 7;_;

Ti5 =10+ bij Ar, Nij = Mo — bij An, (1D

where rg and 79 are the base radius/angle for the weakest tier, and Ar, An > 0 are the per-tier
increments. Smaller b; ; thus yields a smaller radius cap and a larger cone. We penalise violations in
radius and angle:

1
Liad = ﬁ%:max(dm — 74, 0), (12)
1
Loy = N Zmax(mg‘ —mi,j wi, 0), (13)
i

and combine them as
£cone = /\rad Lrad + )\ang Lang~ (14)

We furthur introduce two regularization terms that operate on angular structure and intra-assay
heterogeneity, respectively. To prevent trivial angular collapse, we introduce a fixed angular margin
m > 0 beyond the cone boundary:

1

Rang = \/N

Z max(¢;,; — mi,jwi +m, 0), (15)
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We also re-weight active ligands within each assay using rank-based weights w; ; and intra-assay
softmax scores p; ;:

1
Rpet = m zl: zj: —Ws, 5 k’gpi,ja (16)

Vi, <Uth

where C' is the number of assays with at least one active ligand, and vy, is a predefined affinity
threshold.

2.5 Addressing Activity Cliffs with Hyperbolic Geometry

While structurally similar ligands often cluster in Euclidean space, such geometry can underrepresent
functional differences—especially in activity cliffs, where minor structural changes lead to large
affinity shifts. As formalized in Proposition [T} hyperbolic space provides exponentially greater
separation via angular variation, offering a principled mechanism for distinguishing such cases. The
theoretical derivation is provided in Appendix.

Proposition 1. (Hyperbolic Separation of Activity Cliffs) Let {1, {5 be structurally similar ligands
with large affinity differences. Under constant radial norm and small angular deviation, hyperbolic
embeddings yield significantly larger geodesic distance than their Euclidean counterparts:

du(hp(01), hi(€2)) > dp(he(6), he(l2)).

This highlights the capacity of hyperbolic geometry to distinguish functionally divergent ligands
without distorting local structural similarity.



2.6 Training and Inference

The core learning signal is driven by the pocket-ligand relationship. Accordingly, we apply hyperbolic
regularisation only to the structure-based (pocket) branch, where geometric alignment in Lorentz
space is both meaningful and effective. The sequence pathway provides complementary information
to enhance generalisation, but does not participate in hyperbolic supervision.

Our full training objective is given by:

_ poceilig poc seqelig seq
Lioal = apoc(ﬁcom + Arank £rank) + aseq(ﬁcom + Arank ['rank) + Yeone Leone + )\ang Rang + Anet Bhet -
pocket <+ ligand
(17)

At inference time, we simply embed a query pocket and each candidate ligand into hyperbolic space,
extract their~ spatial components hp. and hy,1 5, and compute similarity scores by their inner product
sj =h] . hmor; . We then rank all ligands in descending order of s;.

pocket <+ ligand sequence <> ligand

3 Experiments

3.1 Quantitative Results

Virtual Screening. As shown in Table [I] HypSeek substantially outperforms all baselines across
both DUD-E and LIT-PCBA. On DUD-E, HypSeek achieves an AUROC of 0.9435, improving over
the next best method (LigUnity) by more than 5 points, and delivers a BEDROCg 5 of 0.7892, nearly
0.14 higher than LigUnity. Its EF;¢, of 51.44 is more than 20 points above the highest competing
model, demonstrating exceptional early retrieval of actives. Similarly, on the more challenging LIT-
PCBA benchmark, HypSeek attains the top AUROC (0.6210), the highest BEDROCjg 5 (0.1196),
and an EF, ¢, of 6.81, consistently surpassing both docking-based and deep learning approaches.
These results highlight HypSeek’s superior ability to rank true binders early in the list, making it
particularly well suited for high-throughput virtual screening applications.

Table 1: Virtual-screening results on the DUD-E and LIT-PCBA benchmarks.

Method DUD-E (n=102) LIT-PCBA (n=15)
AUROC BEDROCg,; EFy AUROC BEDROCs); EFo
Glide-SP [T] 0.7670 0.4070 16.18 0.5315 0.4000 3.41
Surflex [1T] 0.7426 0.2387 13.35 0.5147 — 2.50
DeepDTA [12]  0.5836 0.0513 2.8 0.5627 0.0253 1.47
Gnina [13] 0.7817 0.2994 17.73 0.6093 0.0540 4.63
BigBind [14] 0.5014 0.0240 1.18 0.6278 0.0502 3.79
RTMScore [I5]  0.7529 0.4341 27.10 0.5247 0.0388 2.94
Tankbind [16]  0.7509 0.3300 13.00 0.5970 0.0389 2.90
DrugCLIP [4]  0.8093 0.5052 31.89 0.5717 0.0623 5.51
GenScore [I7]  0.8160 0.4726 28.53 0.5957 0.0654 5.14
Planet [18]] 0.7160 — 8.83 0.5731 — 3.87
EquiScore [19]  0.7760 0.4320 17.68 0.5678 0.0490 3.51
DrugHash [20]  0.8373 0.5716 37.18 0.5458 0.0714 6.14
LigUnity,oc [35]  0.8922 0.6526 42.63 0.5985 0.1133 6.47
HypSeek 0.9435 0.7892 51.44 0.6210 0.1196 6.81

Table |2 reports ROC Enrichment (RE) metrics on the DUD-E benchmark under the fine-tuning
setting. Notably, HypSeek achieves RE 54 = 137.15, surpassing even the few-shot DrugCLIPpr
result of 118.10, highlighting its exceptional ability to enrich actives early in the ranking.



Table 2: ROC—enrichment (RE) on the DUD-E benchmark.

Method AUROC REgs, REjy REsy REsy
Graph CNN [21] 0.8860 4441 2975 1941 10.74
DrugVQA [22] 09720  88.17 5871 3506 17.39
AttentionSiteDTI [23]  0.9710  101.74 59.92 3507 16.74
COSP [24] 09010  51.05 3598 23.68 1221
DrugCLIPs [4] 0.8093 7397 41.79 23.68 11.16
DrugCLIPp [4] 09659 118.10 67.17 37.17 16.59
LigUnity,oc 3] 0.8922  104.69 57.47 33.76 13.88
HypSeek 09435 13715 73.16 38.80 16.60

Affinity Ranking. We evaluate HypSeek on the JACS and Merck datasets using five independent
random seeds to assess both accuracy and robustness. We report two sets of our results: “ensemble,”
which averages the five models’ predictions before computing metrics, and “meangg,” which gives the
mean and standard deviation of Pearson’s r and Spearman’s p across the five runs. As shown in Table[3]
on JACS HypSeek (ensemble) achieves Pearson r = 0.7742 and Spearman p = 0.7819, closely
matching the physics-based FEP+ (Pearson r = 0.7811, Spearman p = 0.7595) and significantly
outperforming all deep-learning baselines. On Merck, HypSeek (ensemble) attains Pearson r =
0.6120 and Spearman p = 0.5447, leading the non-physics methods. Moreover, HypSeek’s standard
deviations are lower than those reported for LigUnity’s meangy results, indicating more consistent
performance across random seeds.

Table 3: Affinity ranking results on the JACS and MERCK benchmark datasets.

Type  Method JACS Merck

Pearson r Spearman p Pearson r Spearman p

Physics FEP+ [3] 0.7811 0.7595 0.6960 0.6798

Y MM-GB/SA [25] 0.1489 0.2011 0.1299 0.1299

PBCNet [26] 0.3939 0.3799 0.4058 0.4075

EHIGN [27] 0.5787 0.5814 0.4246 0.3830

GET [28] 0.4034 0.3753 0.4203 0.4214

DL BindNet [29] 0.5481 0.5368 0.4037 0.3477

Boltz-2 [30] 0.5231 0.5285 0.4298 0.4013

LigUnity,,. (ensemble) [S] 0.6454 0.6460 0.5997 0.5554
ngUnltYpoc (meanﬁld) [SJ 0'5705[).1955 0'5774[).2[)97 0‘5323(].1865 0‘4994(].1773

Ours HypSeek (ensemble) 0.7742 0.7819 0.6120 0.5447
HypSeek (meanyq) 0.71860.1157 0.72390 1321 0.5606 1755 0.5034¢ 1730

3.2 Ablation and Analysis of HypSeek

Impact of Key Components. As summarised in Table[d] switching off hyperbolic—specific terms
(no hyp) already degrades virtual-screening performance on DUD-E (BEDROCsg 5 drops from
0.7892 to 0.7671; EF, ¢, from 51.44 to 49.14), while the Euclidean baseline is markedly worse. The
advantage becomes even more pronounced for affinity ranking on JACS, where Pearson r falls from
0.7518 to 0.6839 without hyperbolic supervision and to 0.5978 in purely Euclidean space. In the
affinity ranking task, due to limited computational resources, we conducted each ablation with a
single random seed. Ablating either the angular or heterogeneity regulariser alone (no R,yg, N0 Ryet)
yields intermediate losses, confirming that both angle control and intra-assay weighting contribute
complementary signals beyond the core cone loss. Finally, removing the protein sequence pathway
(no Seq) also degrades performance, indicating that protein-sequence features serve mainly as an
auxiliary signal that further shapes the embeddings.



Table 4: Ablation results on the DUD-E and JACS benchmarks.

Setting \ Module | DUD-E(n=102) | JACS

‘ Leone Rang Rnet Seq ‘ BEDROCsgp5 EF;y ‘ Pearson r  Spearman p
Hyperbolic space
Full model v v v v 0.7892 5144 | 07518 0.7580
—no hyp X x x v 0.7671 49.14 | 0.6839 0.6906
—10 Rang v x v v 0.7856 50.52 | 0.7340 0.7529
—10 Ripet v v x v 0.7773 5042 | 0.7047 0.7074
— 10 Seq v v v X 0.7351 4770 | 0.7194 0.7050
Euclidean space
Contrastive + rank |  x X X x| 06565 42.87 | 05978 0.6060

Pairwise Affinity Prediction. Figure[3|(A)-(B) demonstrate the behavior of Euclidean and hyperbolic
models across varying ECFP4 [31]] similarity. Both models perform similarly on dissimilar ligand
pairs, but as the ligands become more structurally similar, Euclidean accuracy and correlation decrease
significantly. In contrast, the hyperbolic model maintains strong performance, even in these highly
similar pairs. This suggests that the richer geometry information in hyperbolic space, which better
accommodates relationships between molecules, is more effective at capturing subtle affinity shifts
typical of situations where structurally similar molecules exhibit significantly different biological
activity. These differences are often compressed in Euclidean space, where the geometry may fail to
distinguish between such subtle shifts.

Embedding Visualization. Ligand embeddings are first reduced via HoroPCA [32] and visualized
using CO-SNE [33]]. Without hyperbolic constraints (Figure[3|C), embeddings collapse near the origin
with overlapping targets. With the full HypSeek objective (Figure 3D), clear target-wise clusters
and radial affinity gradients emerge. This contrast illustrates how the cone—hierarchy constraints
introduced by HypSeek structure the hyperbolic manifold, enabling a more effective representation
of the complex relationships between ligands in hyperbolic space.
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Figure 3: Pairwise analysis and CO-SNE visualization on the JACS benchmark. (A) Accuracy of
affinity change prediction on ligand pairs with different ECFP4 similarity, comparing Euclidean and
hyperbolic spaces; (B) Pearson’s R between predicted score difference and ground truth affinity
gap; (C) CO-SNE visualization of ligand embeddings in hyperbolic space without the hyperbolic
constraint loss; (D) CO-SNE visualization of our HypSeek ligand embeddings.

4 Conclusion

We introduced HypSeek, a hyperbolic protein-ligand binding prediction model that embeds ligands,
protein pockets, and sequences into a shared hyperbolic space using a three-tower architecture. By
leveraging the negative curvature and exponential geometry of hyperbolic space, HypSeek captures
both global interaction patterns and fine-grained affinity differences—especially in challenging cases
like activity cliffs, where Euclidean embeddings often fail. Meanwhile, it retains efficient retrieval
through inner product similarity, enabling large-scale virtual screening. Extensive experiments show
that HypSeek consistently outperforms existing baselines across both screening and ranking tasks.
HypSeek provides a geometry-aware solution for binding prediction.
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A Related Work

Virtual Screening. Structure-based virtual screening traditionally relies on molecular docking meth-
ods such as Glide [[1] and AutoDock [2], which predict ligand binding poses and evaluate affinities
using physics-based scoring functions. Some predict binding affinity directly from protein—ligand
complex structures by learning scoring functions [34, 15} [19], while others infer interactions from raw
structural inputs [16}35]. A major shift occurred with DrugCLIP [4], which introduced contrastive
retrieval by aligning ligand and pocket embeddings in a shared Euclidean space for billion-scale
similarity search. This paradigm has since inspired a range of efficient retrieval methods. For example,
DrugHash [36]] employs binary hash codes for efficient retrieval with reduced memory cost, and
LigUnity [S] integrates listwise ranking with contrastive screening.

Affinity Ranking. Accurate ranking of ligand binding affinities is essential for lead optimization but
remains computationally challenging. Physics-based methods such as FEP+ [3] and MM-GB/SA [25]
deliver high accuracy via alchemical free-energy calculations and implicit solvent models, respectively,
yet they require extensive molecular dynamics sampling. Recent deep learning approaches seek
to reduce this cost: PBCNet [26] models pairwise ligand differences with graph neural networks,
EHIGN [27]] encodes heterogeneous protein—ligand interaction graphs, and LigUnity [S] combines
contrastive screening with listwise ranking to jointly address global retrieval and local prioritization.

Hyperbolic Representation Learning. Hyperbolic space has emerged as a powerful embedding man-
ifold for data with latent hierarchical or tree-like structure, owing to its exponential volume growth
that preserves hierarchy with low distortion [37} 38]]. Early works demonstrated that embedding
taxonomies or graphs in Poincaré or Lorentz models captures hierarchical relations more faithfully
than Euclidean counterparts [39,140]. This theoretical appeal led to specialized optimization methods
and the design of hyperbolic neural layers, including Riemannian gradient algorithms [41}42] and
Hyperbolic Neural Networks [43]], as well as adaptations of convolutional, attention, and graph
architectures [44} 45]]. Hyperbolic embeddings have demonstrated strong performance across diverse
modalities—knowledge graphs and recommender systems [46}47], vision tasks [48] such as classifi-
cation and few-shot learning [49, 50} 511, and language modeling [52,|53]]. Recent studies further
explore multimodal training in hyperbolic space for vision-language models to capture hierarchical
semantics [54} 55, 156]]. Our work is the first to bring hyperbolic space to protein-ligand retrieval,
leveraging its inductive bias to separate fine-grained affinity differences.

B Background

We perform all representation learning in an n-dimensional hyperbolic space of constant negative
curvature, using the Lorentz model [57} 158} 154]. This choice affords numerical stability and readily
supports geodesic and exponential-map operations.

Let L™ denote the Lorentz (hyperboloid) model, realized as the upper sheet of a two-sheeted hyper-
boloid in R™*!, We first equip R™*! with the Lorentzian inner product

<p7 q>]L = —DPoqo + <f)7 Q>]Ea (18)

where we write p = (po,D),po € R,p € R™ with pg the fime-coordinate and p the spatial-
coordinates, and (-, -)g denotes the standard Euclidean inner product.

The Lorentz model is then defined by
1 ~
L" = {p e R : (p,p) = ——.po = /2 + [BIP. 5 > 0}, (19)
where —k € R is the curvature of the space.

We can measure distances by integrating the metric along geodesics. The Riemannian metric induced
by the Lorentzian inner product gives the length of geodesics on L™, which in turn defines the
hyperbolic distance.

1
d(p,q) = 7 cosh™'(—x (p,q)), Pp.qeL" (20)

At each point p € L™, the tangent space T, ." provides a linear approximation of the manifold.
Concretely, any tangent vector v € TpL" C R™*! satisfy (p, v)r, = 0, so that

ToL" = {v e R""": (p,v)L = 0}. 21
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To transfer Euclidean encoder outputs into hyperbolic space, we apply the exponential map at a base
point. For any p € . and v € T,IL", the exponential map is

sinh(v/k [|v[|L) v
VE VL
where ||v||, = v/ (v, Vv)L. In practice, we interpret the output of a Euclidean encoder as a vector in

the tangent space at the point 0 = (ﬁ, 0,...,0)" on the hyperboloid, and then apply the exponential
map expyg to lift it onto L™ [59].

expp(v) = cosh(v/k ||[v||L) p + (22)

C Experimental Settings

Implemention Details. We adopt the same curated assay—level training dataset as LigUnity [5]],
which is constructed from ChEMBL [60], BindingDB [61]], and PDBBind [62]. For virtual screening,
we strictly exclude any target UniProt IDs present in the DUD-E [6], LIT-PCBA [63] test sets. For
affinity ranking tasks, we perform ligand-level deduplication by removing redundant small molecules
and non-redundant assay IDs. Training is run on four NVIDIA A100 GPUs for 50 epochs,, using the
Adam optimizer with an initial learning rate of 1 x 10~ and the curvature parameter » (absolute
value of negative curvature) fixed to 1.

Benchmark. In virtual screening, evaluations are performed on DUD-E [6]] and LIT-PCBA [63].
DUD-E includes 102 protein targets, each associated with experimentally verified actives and 50
property-matched decoys, designed to test enrichment capability under artificially constructed decoy
scenarios. LIT-PCBA, in contrast, contains 15 targets with over 400K experimentally confirmed
inactives, offering a more realistic and challenging setting without synthetic decoy bias. For affinity
ranking, the evaluation is conducted on JACS [3] and Merck [64]]. JACS consists of eight high-
quality congeneric series extracted from real lead optimization projects, emphasizing precise ranking
within narrow chemical series, while Merck serves as a large-scale benchmark for FEP-based lead
optimization with diverse chemical scaffolds and higher experimental noise.

Evaluation Metrics. For virtual screening, we use AUROC, BEDROCyj 5, Enrichment Factor
(EF), and ROC-enrichment (RE) to assess model performance. For fine-grained affinity ranking, we
evaluate using Pearson’s and Spearman’s rank correlation coefficients. More details are provided in

Appendix

Baselines. We compare our method against a broad spectrum of existing approaches, including
classical physics-based docking tools, empirical scoring functions, and modern deep learning models.
These baselines reflect diverse modeling paradigms, ranging from structure-based simulations to
neural networks trained on large protein—ligand datasets. For affinity ranking benchmarks, we
additionally include methods based on free energy perturbation, energy decomposition, and recent
representation learning techniques. All baselines are evaluated using their reported protocols or
open-source implementations, ensuring consistency with prior work.

D Theoretical Motivation for Hyperbolic Separation of Activity Cliffs

A key challenge in protein—ligand modeling is the presence of activity cliffs—cases where structurally
similar ligands exhibit large differences in binding affinity. We aim to show, from a geometric
perspective, why hyperbolic space is better suited than Euclidean space for separating such ligand
pairs.

D.1 Problem Setup

Let 41, ¢ € R™ be two ligands with high structural similarity, such that their Euclidean distance is
small:

161 — bl =¢, ex1 (23)
but their binding affinities differ significantly:
|f(€1) = f(£2)] >0 (24)
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Our goal is to learn an embedding h(-) such that:
|h(t1) — h(l2)| > e (25)

i.e., the embedding space should amplify functional differences despite structural similarity.

D.2 Limitations of Euclidean Geometry

In Euclidean space R?, distance grows linearly:

dp(z,y) = |z —yl2 (26)

Thus, structurally similar ligands must be mapped to nearby locations unless we distort the local
geometry, which harms generalization and smoothness.

D.3 Hyperbolic Geometry and Exponential Separation

We consider the Lorentz model of hyperbolic space H"” with curvature —x. The manifold is defined
as:

1
]HI":{xER"+1\<J;,m>L:—E,xO>O} 27)

where the Lorentzian inner product is:

n
(@, y)L = —Toyo + Y Tiyi (28)

i=1
The geodesic distance between x, y € H" is given by:

1
du(,y) = —= cosh™" (=K (z,y)1) (29)

VE

D.4 Angular Separation and Activity Cliffs

Let v1, vy € T,H™ be tangent vectors at the origin o, representing two structurally similar ligands.
Their exponential map into H" is:

exp, (v) = cosh(]|v]]) - 0+ sinh(][v]]) - W (30)

Assume both vectors have the same norm ||vy || & ||vz|| = 7 (i.e. equal radial depth) and a small
angular deviation § = Z(v1,v2) < 1. By applying the hyperbolic law of cosines and the expansion

arccosh(1 + ) = v/2¢ + O(e%/?), their geodesic distance satisfies

du(exp,(v1), exp,(v2)) =~ % 6 + 0. (31)

This implies that even small angular differences (e.g., from subtle functional changes) lead to large
separations if radial depth (i.e., binding strength) differs.

D.5 Conclusion

Proposition. Let {1,/ € R"™ be structurally similar ligands with different affinity labels. Let
hg : R™ — R? be a Euclidean embedding and hy : R™ — H? a hyperbolic embedding. Then under
constant radial norm r and small angular separation #, we have:

du(hw (1), b (2)) > dp(he (), he(l2)) (32)

This shows that hyperbolic geometry provides stronger capacity to distinguish activity cliff pairs, even
under tight structural similarity, without requiring large Euclidean displacement or model distortion.
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E Supplementary Analysis and Details

E.1 Analysis of Cross-Target Activity—Cliff Pairs

Table [5] lists 21 ligand pairs whose ECFP [31] similarity is greater than 0.60 yet display large
differences in experimental binding free energy Exp AG making them representative activity—cliff
cases for evaluating our embedding space. For comparison, the Euclidean scores in the table are
produced by the current state-of-the-art pocket-ligand model LigUnityy,o. [Sl], whereas the hyperbolic
scores come from our method.

Directional Agreement with Experimental Affinity. Recall that a smaller (more negative) ex-
perimental AG indicates a stronger binder, whereas a larger model score indicates stronger bind-
ing. Hence, for every pair in Table [5| we expect the sign of A(score) to be opposite to the sign
of A(Exp AG). This correspondence is clearly visible: whenever the experimental gap favours
molecule B, the hyperbolic score is higher for B (positive AHyp), and vice-versa. Euclidean scores
occasionally match the sign but the margin is often negligible. Several pairs show that even free-
energy perturbation (FEP) [3] predicts the wrong direction of the affinity change, yet the hyperbolic
score still aligns with the experimental ordering.

Separation Magnitude. The Euclidean score differences are typically tiny (many are < 0.05),
making it hard to tell the two ligands apart. In contrast, the hyperbolic score differences are an order
of magnitude larger, providing an immediate visual cue of which ligand the model prefers. This
numerical gap illustrates how the hyperbolic embedding stretches activity-cliff pairs, whereas the
Euclidean embedding leaves them almost collapsed.

Table 5: Cross-Target Activity-Cliff Cases.

Molecule A Molecule B PDBID ECFP  Exp AG (A/B) FEP AG (A/B) Euc (A/B) Hyp (A/B) A(Exp AG) AFEP AEuc AHyp
Q\A'\XQ f (9 4HW3 0.6731 -6.66/ -8.67 -3.5197/ -8.0306 +0.5356/ +0.5490  +1.5055/ +1.7663 -2.01 -4.5109 +0.0132  +0.2608
&Q}* O*QA 4GIH 0.7674 -7.42/ -9.54 -6.1068/ -9.8942 +0.7420/ +0.7476  +1.1878/ +1.7734 -2.12 -3.7874  +0.0054 +0.5855
L}&Q Q(?cr‘ 6HVI 0.7097  -10.24/ -7.19 -11.3100/ -7.1480  +0.6760/ +0.6830  +1.9901/ +1.5151 +3.05 +4.16 +0.0073  -0.4750
e o8 =~
wf{ mﬁ:{ 2GMX  0.6500 -8.11/ -9.99 -7.8979/ -9.9855 +0.8066/ +0.7866  +1.8717/ +2.2653 -1.88 -2.0876  -0.0200 +0.3936

N / N
"I(Y\Q_1 g rO 1HIQ 0.7273  -11.25/-8.18 -9.8937/ -8.1376 +0.5684/ +0.5700  +2.0705/ +1.7103 +3.07 +1.7561  +0.0015 -0.3601
o g
)O\(;(;( /O\C‘Jl’g 4DIW 0.7719 947/ -11.35 -9.9357/ -11.1010  +0.9110/ +0.9175 +2.1507/ +2.3914 -1.88 -1.1653  +0.0063  +0.2407
Q,({FP Q(ﬂf 4GIH 0.9048 -11.31/ -9.70 -10.5581/ -9.4767  +0.7390/ +0.7446  +1.8883/ +1.6953 +1.61 +1.0814  +0.0059 -0.1930
Q~8‘Q‘\ Q‘é?c( 6HVI 0.7213 -9.771 -7.19 -11.1920/ -7.1480  +0.6953/ +0.6830 +2.0241/ +1.5151 +2.58 +4.0440 -0.0122  -0.5090
CO/Q;, e @ 1HIQ 0.7018 -11.11/-8.18 -9.8570/ -8.1376 +0.5645/ +0.5700  +2.0925/ +1.7103 +2.93 +1.7194  +0.0054 -0.3822
3 ¥
Q&% > Q%B 6HVI 0.6515 -7.69/ -10.71 -8.6460/ -10.5600  +0.7173/ +0.7380  +1.5800/ +2.2676 -3.02 -1.9140  +0.0205 +0.6876
Q*IY m){)’ 2GMX  0.6897 -7.51/ -9.68 -8.8421/ -10.7494  +0.7437/ +0.7650  +1.9024/ +2.3753 217 -1.9073  +0.0215 +0.4729
o J <
Q-O-Cx Q{}@ 5EHR 0.6667 -7.15/ -9.75 -8.7560/ -8.5590 +0.8203/ +0.7920 +1.6715/ +2.0898 -2.60 +0.1970 -0.0283 +0.4183
\,9% éfN& 4HW3 0.7872 -6.66/ -8.90 -3.5197/ -7.2962 +0.5356/ +0.5435  +1.5055/ +1.7195 -2.24 -3.7765  +0.0078 +0.2141
/O‘Oq’g )%/é 4DIW 0.8103 -11.35/ -9.42 -11.1010/ -9.4110  +0.9175/ +0.9263 +2.3914/ +2.1834 +1.93 +1.6900 +0.0088 -0.2080
A s}
- 6HVI 0.7458 -7.93/ -10.24 -6.5430/ -11.3100  +0.6113/ +0.6760  +1.5235/ +1.9901 -2.31 -4.7670  +0.0644  +0.4666
SIS
:}xﬁc ge) A, - 2QBS 0.7385 -11.42/ -8.72 -9.6890/ -8.8168 +0.9224/ +0.8660  +2.4139/ +2.0398 +2.70 +0.8722  -0.0561 -0.3741
Qfl*b Q 3FLY 0.6351 -10.23/-12.26  -9.8951/ -12.1479  +0.2379/ +0.2490 +1.7866/ +2.1387 -2.03 -2.2528 +0.0111 +0.3522
jebecpel
{?)\O‘/' ng 4UI5 0.7234 -10.05/ -12.08 -9.7050/ -11.9640  +0.9090/ +0.9380 +1.9309/ +2.2185 -2.03 -2.2590 +0.0288 +0.2876
£ s
a gﬂc, 4PV0 0.8000 -6.82/ -11.83 -10.7470/ -11.1020  +0.6660/ +0.7170  +1.9251/ +2.1345 -5.01 -0.3550 +0.0508 +0.2094
RCVON

CHCMP @CP 4GIH 0.7347  -11.70/ -9.00 -10.9067/ -8.8033  +0.7450/ +0.7090  +1.9382/ +1.4873 +2.70 +2.1034  -0.0361 -0.4510

O&*‘O OC‘U‘O 3FLY 0.6571 -11.85/-10.23 -12.8311/ -9.8951 +0.2678/ +0.2379  +2.1754/ +1.7866 +1.62 +2.9360 -0.0299 -0.3889
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E.2 Evaluation Metrics

Virtual screening asks whether a model can place a handful of true binders at the very top of a
ranked list that may contain millions of inactives; affinity ranking asks whether it can preserve the
fine-grained order of binding strengths within a chemically related series. Accordingly we employ
different metrics.

(1) Virtual Screening Metrics.

AUROC. The area under the ROC curve is the probability that a randomly chosen active (a) scores
higher than a randomly chosen inactive (d): Pr[s(a) > s(d)]. Values range from 0.5 (random) to 1.0
(perfect) but treat the whole ranked list uniformly.

BEDROCj 5. To emphasise the earliest part of the ranked list, we adopt the Boltzmann-enhanced
discrimination of ROC (BEDROC) with focus parameter a« = 80.5, for which roughly the top 2 %
of ranks account for 80 % of the score. Let N be the library size, NV, the number of actives, and
r; € [1, N] the rank of active ¢. The normalised form is

Ny
Ze—oﬂ‘,;/N
BEDROC, = —“1
R < 1—e@ >
“\ea/N —1 (33)
y R, sinh(a/2)
cosh(a/2) — cosh(a/2 — aR,)
1

+

where R, = N;/N is the active fraction. Equation is bounded in [0, 1]; higher values indicate
stronger early enrichment.

Enrichment Factor. The factor at a cut-off % quantifies how many actives the model retrieves

relative to random ranking:
NTB,,

~ NTB; /100
where NTB,, is the number of true binders in the top a% of the list and NTB; the total binders.

EF,, (34

ROC Enrichment (RE). At a false-positive-rate threshold x% we report

TP/P TP N
RE(2%) = /N = PTP.y (35)

where N is the library size, P the number of actives, TP the true positives among the top-ranked
compounds, and FP ¢, the false positives observed before the FPR reaches ©%. A larger RE means
stronger early discrimination.

(2)Affinity-ranking metrics.

Within a congeneric series we measure linear and rank agreement between predicted (y) and experi-
mental (y) affinities.

> — 9) (@i —9)

Pearson r = —, (36)
2 —4)? /22 — 9)?
Spearman p = 1 — lef 37
p p - n(nQ _ 1)7

where d; is the rank difference for compound 4 and n the series size. Both metrics lie in [—1, 1];
higher values indicate better agreement (1 is perfect correlation).
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