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Abstract

Previous work on long-term video action recognition re-
lies on deep 3D-convolutional models that have a large tem-
poral receptive field (RF). We argue that these models are
not always the best choice for temporal modeling in videos.
A large temporal receptive field allows the model to en-
code the exact sub-action order of a video, which causes a
performance decrease when testing videos have a different
sub-action order. In this work, we investigate whether we
can improve the model robustness to the sub-action order
by shrinking the temporal receptive field of action recogni-
tion models. For this, we design Video BagNet, a variant of
the 3D ResNet-50 model with the temporal receptive field
size limited to 1, 9, 17 or 33 frames. We analyze Video Bag-
Net on synthetic and real-world video datasets and exper-
imentally compare models with varying temporal receptive
fields. We find that short receptive fields are robust to sub-
action order changes, while larger temporal receptive fields
are sensitive to the sub-action order.

1. Introduction

Long-term action videos naturally have different sub-
action combinations and orders. For instance, the action of
’making coffee’ may contain either order of ’add sugar, add
milk’, or ’add milk, add sugar’, or people can drink their
coffee black. With such diversity in sub-action orders it
is nearly impossible to sample representative data contain-
ing all possible permutations for training a long-term ac-
tion recognition classifier. Thus, the training set in current
long-term classification datasets like MultiTHUMOS [30]
and Charades [24] may contain different sub-action orders
than the test set. The specific sub-action order and dura-
tion is exploited by current video action recognition models
due to their large temporal receptive field size. Thus, If the
models encode the specific sub-action order at training time,
it might cause misclassification of a video action when the
sub-action order differs at test time.

In this paper, we focus on encoding sub-action order.
We refer to the temporal receptive field (RF) as the number
of input frames within a shifting kernel that a network can
make use of in its last convolutional layer. Usually, the last
convolutional layer is followed by global temporal pooling,
which collapses the temporal dimension into one unit, and
a final fully connected layer. These operations do not affect
the temporal RF size and the sensitivity to order, as they
cannot model temporal dependencies. For this reason, we
do not consider the final pooling and classification layers in
our calculation of the temporal RF size. Networks with tem-
poral RF size larger than the sub-action duration (as shown
in Fig. 1 (a)) might overfit on the exact sub-action order seen
at training time. In cases where the available training sam-
ples are not sufficiently representative of all possible sub-
action orders, misclassifications occur at test time.

We introduce Video BagNet, a model with a small tem-
poral RF size that is less sensitive to the exact sub-action
order. Our model is inspired by BagNet [2], which reduces
the spatial receptive field size for easier network interpreta-
tion. We use Video BagNet to investigate the role of the
temporal RF in encoding the sub-action order. Our pro-
posed Video BagNet is modified from 3D ResNet-50 [8].
We reduce the temporal RF size by shrinking the kernels in
the temporal dimension and using less down-sampling. As
shown in Fig. 1 (b), our Video BagNet with small tempo-
ral RF sizes is less sensitive to the exact sub-action order
by seeing occurrences of single sub-actions rather than the
combinations of ordered sub-actions. This results in bet-
ter sub-action detection performance than 3D ResNet-50 on
our synthetic Directional Moving MNIST dataset and Mul-
tiTHUMOS. We also provide a measurement of model sen-
sitivity to the sub-action order.

2. Related Work
2.1. Temporal extent of recent models for action

recognition

Recent action recognition architectures can model long
temporal extents [11, 14, 19, 28, 29, 31]. This is achieved
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(a) Model with large temporal RF (b) Model with small temporal RF
Figure 1. Large (a) versus small (b) temporal RF compared to the sub-action duration. The temporal RF size in the last convolutional layer
is represented by the size of the convolutional shifting windows. Models with large temporal RF see sub-actions in ordered co-occurrences,
while models with small temporal RF are more likely to see single sub-action occurrences. Because of this, models with small temporal
RFs encode sub-action occurrences but not strict sub-action orders.

through two main approaches. The first one is by extending
the temporal receptive field of convolutional models, either
by stacking strided convolutional layers, thus making the
model deeper [3, 27], or by harnessing auxiliary temporal
modules [11, 12, 28]. The second approach is by means of
transformer architectures, whose design entails a temporal
receptive field which spans over the whole input duration
[1, 18, 21]. Large temporal extents make it possible to learn
dependencies in videos over time. This allows for modeling
the order of the sub-actions that are seen at training time,
which is considered useful to capture the inner structure of
complex, long-term activities [13].

However, models with large temporal RF have a draw-
back: they are prone to overfitting on the order when the
available training data is limited [7]. This is the case for
most of the current long-term action recognition datasets,
which only consist of a few hundred or thousand videos
[16, 25, 30]. In this work, we investigate whether mod-
eling large temporal extents is always beneficial to solve
long-term action recognition. In particular, we investigate
whether models with large temporal RF overfit on the order
of the sub-actions seen at training time, causing misclassifi-
cations at test time.

2.2. Order invariant networks

In [12], it is empirically shown that the classification per-
formance of order-aware methods drops significantly when
new sub-action orders are presented at test time. On the
other hand, order invariant methods, like ActionVLAD [6],
are robust to sub-actions permutations. Hussein et al. [13]
propose a permutation invariant convolutional module, PIC,
to model temporal dynamics in long-range activities. The
PIC module performs self-attention across pre-extracted vi-
sual features and can be stacked on top of convolutional
backbones. PIC is robust to sub-action permutation com-
pared to ordered-aware convolutional baselines [11], while
maintaining a large temporal RF.

Our approach deviates from ActionVLAD and PIC.
While ActionVLAD is completely order unaware, we main-
tain order information within short receptive fields. This al-
lows modeling fine-grained motions, which is proven bene-
ficial for action recognition [10, 23]. Differently than PIC,
we investigate sensitivity to sub-action order by looking at
the temporal RF size of spatio-temporal convolutional net-
works, commonly used as backbones in long-term action
recognition models [11, 12, 28]. Our method only requires
simple modification to the spatio-temporal convolutional
networks.

2.3. Reducing the receptive field size: BagNet

Our idea of reducing the temporal receptive field size is
inspired by Brendel et al. [2], who investigated how bag-of-
local-features can be used for image classification. Bag-of-
local-features can be obtained by restricting the spatial re-
ceptive field of the image classifier to a small number of pix-
els. In Brendel et al.’s model, the BagNet, this is achieved
by replacing a set of 3×3 convolutions with 1×1 convolu-
tions and removing the first downsampling layer. The prop-
erty of this architecture is that the image feature representa-
tion is given by a collection of local features, corresponding
to small image patches, that do not take into account the
global spatial structure. Surprisingly, ignoring global struc-
tures does not hurt substantially the classification accuracy
of BagNet. Using bag-of-local-features has been taken on
for other visual classification tasks. Some examples are ex-
ploring local features for face anti-spoofing [22], and pre-
dicting the histogram of visual words of a discretized image
as part of a self-supervision task [5]. To the best of our
knowledge, our method is the first work that relies on bag-
of-temporal-features models to learn video representations.

3. Method
We study how the size of the temporal RF effects model

sensitivity to sub-action order. To this end, we compare
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3D ResNet-50 (RN) Video BagNet-1/9/17/33 (BN)
# parameters
for 3 classes 46.2 M 45.9/46.7/45.6/46.5 M Output sizes T × S2

conv1 7× 72, 64, stride (1, 2, 2) 1/3/3/3× 72, 64× k, stride (1, 2, 2)
RN: 64× 322

BN: 64× 322

downsampling Max pool (3, 3, 3), stride 2 Max pool (1, 3, 3), stride (1, 2, 2)
RN: 32× 162

BN: 62× 162

conv2 x

1× 12, 64
3× 32, 64
1× 12, 64

,1× 12, 256
3× 32, 64
1× 12, 64

× 2

 1× 12, 64× k
1/3/3/3× 32, 64× k

1× 12, 64× k

, 1× 12, 256× k
1/1/1/1× 32, 64× k

1× 12, 64× k

× 2

RN: 32× 162

BN: 60× 162

conv3 x

1× 12, 256
3× 32, 128
1× 12, 128

,1× 12, 512
3× 32, 128
1× 12, 128

× 3

 1× 12, 256× k
1/3/3/3× 32, 128× k

1× 12, 128× k

, 1× 12, 512× k
1/1/1/1× 32, 128× k

1× 12, 128× k

× 3,

RN: 16× 82

BN: 29× 82

conv4 x

1× 12, 512
3× 32, 256
1× 12, 256

,1× 12, 1024
3× 32, 256
1× 12, 256

× 5

 1× 12, 512× k
1/1/3/3× 32, 256× k

1× 12, 256× k

, 1× 12, 1024× k
1/1/1/1× 32, 256× k

1× 12, 256× k

× 5

RN: 8× 42

BN: 14× 42

conv5 x

1× 12, 1024
3× 32, 512
1× 12, 512

,1× 12, 2048
3× 32, 512
1× 12, 512

× 2

 1× 12, 1024× k
1/1/1/3× 32, 512× k

1× 12, 512× k

, 1× 12, 2048× k
1/1/1/1× 32, 512× k

1× 12, 512× k

× 2

RN: 4× 22

BN: 6× 22

Average pool, n classes-d fc, softmax
Table 1. Network architectures: 3D ResNet-50 (RN) vs Video BagNet-1, 9, 17 and 33 (BN). In the first row, we report the number of
parameters. The next rows correspond to the network layers, which contain convolutions and downsampling. For the convolutional layers,
we report the kernel size T × S2, in the temporal (T ) and spatial (S2) dimensions, and the number of channels. The rightmost column of
the table reports the output sizes at each layer, given an input clip of size 64×642. The convolutional blocks follow the structure of ResNet
Bottleneck blocks [9]. We widen the channels of Video BagNet with factor k, equal to 1.40, 1.40, 1.35 and 1.25, to keep the number of
parameters comparable among the different models. In both architectures, each layer is followed by Batch Norm [15] and a ReLU [17].

long-term action recognition performance of 3D convolu-
tional networks with variable temporal RF size.

3.1. Video BagNet

Inspired by the 2D BagNet for image classification [2],
we design Video BagNet, a 3D convolutional network that
reasons over short temporal extents. The key idea behind
Video BagNet is to harness bag-of-feature representations
for video classification. Specifically, the word vocabulary
is composed of short video segments. Although this repre-
sentation does not allow to model long-term temporal de-
pendencies, it prevents learning strict temporal orders that
can lead to the misclassification of a video if unseen permu-
tations between sub-actions occur at test time.

Our Video BagNet is based on the 3D ResNet-50 de-
scribed in Hara et al. [8]. We apply a set of modifications to
3D ResNet-50 to restrict the size of its temporal receptive
field, while leaving the computation in the spatial dimen-
sions unchanged. In particular, we propose four variants of
Video BagNet, with temporal RF sizes of 1, 9, 17, and 33
input frames. We choose these temporal extents following
the design choice of Brendel et al. [2] in the image domain.
Video BagNet is sensitive to order within its small temporal
RF, allowing for fine-grained motion modeling.

The set of modifications that we apply to 3D ResNet-50
can be summarized as follows.

First, we restrict the size of some of the convolutional
kernels in the temporal dimensions. This is done to adap-

3
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Class 1
Vertical translation Horizontal translation

Class 2
Vertical translation Diagonal translation

Class 3
Horizontal translation Diagonal translation

Figure 2. Example of videos of digit 2 from the Directional Mov-
ing MNIST dataset. The videos are composed of two sub-actions,
i.e. vertical, horizontal or diagonal translation. Sub-action co-
occurrences determine the video class. We explicitly superim-
posed multiple frames with shading to show the movement.

tively control the expansion of the RF in the temporal di-
mension through the convolutional layers, without chang-
ing the depth of the network. We express the size of the
convolutional kernels in the temporal (T ) and spatial (S2)
dimensions as T × S2. The 7 × 72 convolutional kernel in
the first layer is replaced with a convolutional kernel of size
3×72 (1×72 for Video BagNet-1). In the following layers,
we modify a set of 3D ResNet-50 bottleneck blocks. Bottle-
neck blocks consist of three consecutive convolutional lay-

ers of size

1× 12,
3× 32,
1× 12

. We replace them with

1× 12,
1× 32,
1× 12

.

In addition, to prevent the temporal RF size from grow-
ing in the first layer, we alter the MaxPool operator that
follows layer conv1 to perform pooling only in the spatial

dimensions. To maintain a comparable amount of param-
eters between 3D ResNet-50 and the different Video Bag-
Net models, we widen the number of channels. Finally, to
keep the input size equal to the video length, we remove the
padding. An overview of the architecture design of Video
BagNet and the differences from 3D ResNet-50 is provided
in Table 1.

4. Experiments

4.1. Datasets

We study the effect of the temporal RF size on two long-
term datasets, namely the Directional Moving MNIST, that
we propose, and MultiTHUMOS [30]. These datasets con-
tain multiple sub-actions and can last up to several minutes.
For these datasets, the classification task consists of recog-
nizing the sub-actions that compose the videos.

Directional Moving MNIST is a dataset composed of
videos of one single moving digit, randomly sampled from
the original MNIST dataset [4]. It contains 3 classes and
1000 videos per class. In this dataset, the digit translations
correspond to sub-actions and the co-occurrence of two sub-
actions determines the video class. More specifically, verti-
cal and horizontal translation form class 1, vertical and di-
agonal translation form class 2 and horizontal and diagonal
translation form class 3.

Within each class, digit appearance and starting position
have been randomized. In addition, the translations occur
at two possible speeds. All sub-actions have equal duration
and there are no pauses between consecutive sub-actions.

One fixed sub-action order appears in the training set.
At test time we use two sets: in the test set without permu-
tations, the sub-action order is the same as training time;
while in the test set with permutations the sub-action order
is permuted with 50% probability. An example of the Di-
rectional Moving MNIST dataset is provided in Fig. 2.

MultiTHUMOS [30] is a multi-label video dataset for
long-term action recognition. It is a collection of 400 com-
plex, unconstrained, sports videos that have been densely
annotated with sub-action time steps. The dataset contains
a total of 65 possible sub-actions and each video contains,
on average, 84.03 ± 113.56 sub-actions. The small size
of the dataset prevents from training classification mod-
els using all the possible sub-action combinations and or-
ders that usually occur in sports videos. For example, the
dataset contains 20 basketball videos of which 15 videos
contain the sub-actions BasketballDribble, Run, Basketball-
Pass. Only 4 videos contain the order BasketballDribble -
Run - BasketballPass.

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

VIPrior
#10

VIPrior
#10

VIPrior 2023 Submission #10. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

16 32 64
Sub-action duration

60

65

70

75

80

85

90

95

100
Te

st
 a

cc
. (

%
)

3D ResNet-50
Video BagNet-9

Video BagNet-17
Video BagNet-33

16 32 64
Sub-action duration

60

65

70

75

80

85

90

95

100

Te
st

 a
cc

. (
%

)

3D ResNet-50
Video BagNet-9

Video BagNet-17
Video BagNet-33

(a) Test set with no permutations (b) Test set with permutations
Figure 3. Sensitivity to sub-action order on the Directional Moving MNIST dataset. Models with different temporal RF are tested on two
test sets with the same order (a) and different order (b) w.r.t. training time. The models with small temporal RF compared to the sub-action
duration, namely Video BagNet 9, 17 and 33, perform well on the two sets. Differently, 3D ResNet, with temporal RF larger than 100
frames, overfits the temporal order at training time and fails to classify the test set with permutations.

4.2. The size of the temporal RF affects model sen-
sitivity to sub-action order

We design a simple controlled experiment to investigate
whether spatio-temporal models encode the sub-action or-
der through their temporal RF. For this, we deploy the Di-
rectional Moving MNIST dataset. We vary the size of sub-
actions to relate it with different temporal RF sizes. Specifi-
cally, we use sub-action duration of 16, 32 or 64 frames and
temporal RF size equal to 217 frames for 3D ResNet-50 and
9, 17 and 33 frames for our Video BagNet.

The results of this experiment are summarized in Fig. 3.
Irrespectively of the temporal RF size and the sub-action
duration, all the models perform well when the order of
sub-actions of the training and test sets match, that is in the
test set without permutations. However, on the test set with
permutations, the models with large temporal RF size com-
pared to the sub-action duration, e.g. 3D ResNet-50, and,
in some instances, Video BagNet-17 and Video BagNet-
33, perform poorly. In particular, 3D ResNet-50 always
achieves an accuracy of ≈ 66%, which is equivalent to clas-
sifying correctly the videos with no permutations (≈ 50%
of the test set with permutations) and randomly the videos
with sub-action permutations. Our Video BagNet-9, which
has the shortest temporal RF among the analyzed models,
performs above 98.5% on all the different test videos.

These results show that sensitivity to sub-action order
depends on the sub-action duration and temporal RF size.
We quantify the sensitivity to order by relating the sub-
action size to the temporal RF size. For this, we analyze
the convolutional shifting windows in the last convolutional
layer of the 3D ResNet-50 and Video BagNet models, rep-
resented in Fig. 1. In particular, we measure the sensitivity

by a ratio of the amount of shifting windows that contain
single sub-actions (# single sub-action windows) over the
total amount of convolutional windows (# total windows).
When the ratio is high, the sensitivity to the sub-action or-
der is low.

As shown in Fig. 1, models with very large temporal
RF size, like 3D ResNet-50, always see sub-action co-
occurrences rather than single sub-actions. Therefore, in
Fig. 4, their ratio # single sub-action windows / # total win-
dows is always low, which leads to low performance on the
test sets with permutations. On the other hand, models with
small temporal RF size, e.g. Video BagNet-9, have a large
ratio of # single sub-action windows / # total windows and
low sensitivity to the sub-action order, achieving good per-
formance on the test set with permutations.

4.3. Small vs. large temporal RF for long-term
video action recognition

In our controlled experiment, we show that models with
large temporal RF encode the sub-action order at training
time. We argue that this causes misclassification when the
distributions of sub-actions order are different in the train-
ing and test sets. This is the case for the commonly used
MultiTHUMOS dataset, which only consists of 400 videos
with high variability in sub-actions composition and order.

We evaluate the effect of the temporal RF size on Mul-
tiTHUMOS. Again, we deploy 3D ResNet-50 and Video
BagNet with temporal RF 1, 9, 17 and 33. We train the
models from scratch, without using either pre-training or
data augmentation. We train with 512 input frames, with
batch size 4. We do this to limit the computational effort
of our experiments. Since we train the models from scratch
and without data augmentation, our results are not compara-
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Figure 4. Accuracy on the Directional Moving MNIST test set with
permutations in terms of models sensitivity to sub-action order.
Sensitivity to sub-action order depends on the sub-action duration
and temporal RF size, as shown in Fig. 1. It can be expressed by
counting the amount of convolutional shifting windows that con-
tain single sub-actions (# single sub-action windows) over the total
convolutional windows (# total windows). Models with large ratio
# single sub-action windows / # total windows, like Video BagNet-
9, are less sensitive to order and achieve good performance. Mod-
els with very large temporal RF sizes, like 3D ResNet-50, al-
ways see sub-action co-occurrences rather than single sub-actions.
Therefore, their ratio # single sub-action windows / # total win-
dows is low and their order sensitivity is high, thus performing
poorly on the test set with permutations.

Model Temporal RF mAP
Single-frame CNN [26] 1 25.4
MultiLSTM [30] 15 29.7

3D ResNet-50 [8] >100 22.45
Video BagNet-33 33 26.37
Video BagNet-17 17 28.97
Video BagNet-9 9 30.21
Video BagNet-1 1 12.60

Table 2. Classification accuracies of models with small and large
temporal RF on the MultiTHUMOS dataset. We compared our
evaluated models (bottom rows) to the baselines proposed in [30]
(top rows). Despite being trained from scratch, our Video Bag-
Net models with temporal RF 9, 17 and 33 perform comparably
to the ImageNet [20] pretrained baselines. Models with smaller
temporal RF, e.g. Video BagNet-9, recognize sub-action occur-
rences and ignore temporal order, achieving the best performance.
Video BagNet-1 cannot model motion by seeing just single frames,
which has the lowest mean average precision.

ble to current state-of-the-art [32]. Nevertheless, employing
this fixed experimental setup for all the analyzed models al-
lows us to fairly compare different temporal RF sizes.

The results in Table 2 show that models with small

temporal RF size outperform models with large temporal
RF size on this dataset. The highest accuracy is obtained
with Video BagNet-9. These results suggest that encoding
long-term information, including sub-action order, is hurt-
ing the classification of MultiTHUMOS. This long-term
information could correspond to the precise order of sub-
actions or to the varying durations of different sub-actions.
This is sensible: the multi-label classification problem of
MultiTHUMOS consists in recognizing all the single sub-
actions occurring in a video. Sub-action classification can
be achieved by looking at short temporal extents that con-
tain the sub-action. Because of the high variation in the tem-
poral composition of sports videos, overemphasizing long-
term information is not necessary or even decreases the sub-
action recognition accuracy. On the other hand, for Video
BagNet-1 it shows that if the model encodes neither long-
term nor short-term information, the accuracy decreases.
The results indicate that the short-term information cap-
tured by small temporal RF seems essential for good classi-
fication performance.

We find that our results are comparable to the baseline
models proposed in [30], as illustrated in Table 2. It is
worth noting that the single-frame CNN [26], which cannot
model temporal information by design, has the advantage
of being pre-trained on ImageNet [20], thus explaining the
superior performance compared to Video BagNet-1. Sim-
ilarly, the MultiLSTM model [26] uses pre-trained image
features. Despite the lack of pre-training, Video BagNet-9
and 17 achieve 28.97% and 30.21% mAP, which is similar
to mAP of 29.7% mAP obtained by Video MultiLSTM.

5. Conclusions
In this paper, we investigate whether spatio-temporal

models for long-term action recognition encode sub-action
order through their temporal RF. Our experiments reveal
that when the temporal RF size is larger than the sub-action
duration, the models are sensitive to the sub-action order.
We provide a measure for the sensitivity to the sub-action
order by a ratio of the number of convolutional windows
that contain single sub-actions over the total number of con-
volutional windows. A higher ratio makes the models less
sensitive to the sub-action order.

Sensitivity to sub-action order causes misclassification
when the order of sub-actions are different during training
and test time. This might occur in long-term action recog-
nition, since it is difficult to collect training samples con-
taining all the sub-action permutations that exist in natural
videos. We show that small temporal RFs are robust to per-
mutations of sub-actions, which is beneficial when limited
sub-action orders are available at training time. Our study is
conducted on 3D convolutional networks. Nevertheless, the
conclusions could be generalizable to other spatio-temporal
models that use the RF to encode temporal dependencies.
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