
Rethinking Time Encoding via Learnable Transformation Functions

Xi Chen 1 Yateng Tang 2 Jiarong Xu 3 Jiawei Zhang 4 Siwei Zhang 1 Sijia Peng 1 Xuehao Zheng 2 Yun Xiong 1

Abstract
Effectively modeling time information and incor-
porating it into applications or models involving
chronologically occurring events is crucial. Real-
world scenarios often involve diverse and complex
time patterns, which pose significant challenges
for time encoding methods. While previous meth-
ods focus on capturing time patterns, many rely
on specific inductive biases, such as using trigono-
metric functions to model periodicity. This nar-
row focus on single-pattern modeling makes them
less effective in handling the diversity and com-
plexities of real-world time patterns. In this pa-
per, we investigate to improve the existing com-
monly used time encoding methods and introduce
Learnable Transformation-based Generalized
Time Encoding (LeTE). We propose using deep
function learning techniques to parameterize non-
linear transformations in time encoding, making
them learnable and capable of modeling general-
ized time patterns, including diverse and complex
temporal dynamics. By enabling learnable trans-
formations, LeTE encompasses previous methods
as specific cases and allows seamless integration
into a wide range of tasks. Through extensive
experiments across diverse domains, we demon-
strate the versatility and effectiveness of LeTE.

1. Introduction
Time-related data are commonly observed in real-world ap-
plications, such as user transaction data in financial institu-
tions (Kazemi et al., 2020; Lezmi & Xu, 2023), purchase be-
havior sequences in e-commerce (Kang & McAuley, 2018;
Rossi et al., 2020; Skarding et al., 2021), and climate obser-

1Shanghai Key Laboratory of Data Science, College of Com-
puter Science and Artificial Intelligence, Fudan University, Shang-
hai, China 2Tencent Weixin Group, Shenzhen, China 3School of
Management, Fudan University, Shanghai, China 4IFM Lab, Uni-
versity of California, Davis, CA, USA. Correspondence to: Yun
Xiong <yunx@fudan.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

vations in weather forecasting (Murat et al., 2018; Neumann
et al., 2024). Adopting time series models and dynamic
graph models to handle time-related data are two common
approaches (Wu et al., 2023; Yu et al., 2023). In both cases,
effectively incorporating time information is crucial for mak-
ing accurate predictions. To achieve this, existing research
works typically employ time encoding methods to capture
and represent time information, with the resulting time em-
bedding being treated as an independent feature in time
series forecasting and dynamic graph representation learn-
ing models.

Early studies represent time by using hand-crafted temporal
features designed specifically for downstream tasks (Choi
et al., 2016; Baytas et al., 2017; Kwon et al., 2018). A
prominent example is the time encoding method illustrated
in Figure 1 (a), which is widely used in existing time se-
ries processing work (Wang et al., 2023; Wu et al., 2023).
Such methods typically involve manually splitting times-
tamps into components (e.g., month, day, etc.), assigning
a embedding to each component, and adding these embed-
dings to form the final time embedding. However, these
methods are resource-intensive and often rely on domain
expertise, which may limit their abilities to capture only
specific pre-defined time patterns (Kazemi et al., 2019).

With the rapid development of attention mechanisms, which
offer advantages such as better handling of long-range de-
pendencies and adaptive weighting of time-related infor-
mation, subsequent research on time series and dynamic
graphs has increasingly leveraged these mechanisms (Xu
et al., 2020; Yu et al., 2023; Liu et al., 2023). To better
model time and ensure compatibility between time encod-
ing methods and self-attention, Functional Time Encod-
ing (FTE) methods were proposed, with two representative
works: Functional Time Representation (Xu et al., 2019)
and Time2Vec (Kazemi et al., 2019), as illustrated in Figure
1 (b). Nearly all subsequent dynamic graph representation
learning research employs these methods to encode time
(Yu et al., 2023). These techniques transform time input
into multi-dimensional time embeddings by applying mul-
tiple linear transformations followed by pre-defined non-
linear transformation functions. Due to their reliance on pre-
defined non-linear transformations—such as trigonometric
functions to capture periodic patterns—these methods are
inherently limited to capturing fixed, specific time patterns.

1

Rethinking Time Encoding via Learnable Transformation Functions

Time Encoding Hand-Crafted Time Encoding (HCTE) Functional Time Encoding (FTE) LeTE (Ours)

Patterns
Capturing Pre-defined Pre-defined Diverse

Formula

Architecture

TE(t)[i] = Emonth(tmonth)[i] + Eday(tday)[i]+
Eweekday(tweekday)[i] + Ehour(thour)[i]+Emin(tmin)[i] TE(t)[i] = si ⋅ LayerNorm (ϕi(ωit + φi))TE(t)[i] = {sin(ωit + φi) or ωit + φi, if i = 1,

sin(ωit + φi), if 2 ≤ i ≤ d

(a) (b) (c)
Time Embedding

t

Fixed Non-linear
Transformation

(ωit + φi)

sin(ωit + φi)

Extract Features
t

[tmonth, tday, tweekday, thour, tminute]

Time Embedding

Embedding and
Element-wise Addition

Linear Transformation

Time Embedding

Learnable Non-linear
Transformation

t

LayerNorm and Scaling

(ωit + φi)
(ωit + φi)ϕi

Linear Transformation

Figure 1. A comparison of previous time encoding methods and proposed LeTE.

As a result, they often struggle to represent more complex,
non-linear temporal dynamics (Kazemi et al., 2019; Wu
et al., 2023) and require additional dimensions to account
for diverse periodic components (Xu et al., 2020; Rossi
et al., 2020; Zeng et al., 2024). Furthermore, these encoding
methods frequently lack the capacity to effectively model
non-periodic patterns, such as trends, irregularities.

We observe that previous time encoding methods—whether
hand-crafted or functional—primarily introduce a strong
inductive bias rooted in the periodic nature of human behav-
ior and natural phenomena (Li et al., 2017; Xu et al., 2019;
Kazemi et al., 2019). They mainly focus on capturing pre-
defined periodic patterns, often struggling to capture more
complex ones, such as non-periodic and mixed patterns.

However, in real-world scenarios, data often exhibits a com-
plex interplay of mixed patterns, making accurate modeling
more challenging. For instance, in financial risk control,
periodic patterns—such as daily transaction peaks, weekly
spending habits, and seasonal trends around holidays or
salary payments—offer valuable insights into predictable
behaviors. On the other hand, non-periodic events, such as
sudden spikes in transactions caused by market fluctuations,
regulatory changes, or potential fraudulent activities, neces-
sitate flexible and adaptive modeling techniques. Moreover,
different patterns often coexist. For example, fraudsters
may blend regular periodic transactions with abnormal non-
periodic activities to evade the detection by regulators. To
illustrate the presence of complex mixed time patterns in
real-world data, we conduct extensive investigations in this
paper, with partial results in Appendix G.1.

This motivates us to rethink the design of time encodings.
We argue that an effective time encoding method should
adhere to a key principle to enable comprehensive and accu-
rate analysis: Capacity for modeling diverse and complex
time patterns, i.e., the method should be capable of cap-
turing a wide range of time patterns, including periodic,
non-periodic, and mixed patterns.

To better encode time information and simultaneously
capture diverse time patterns, we propose Learnable
Transformation-based Generalized Time Encoding, ab-
breviated as LeTE—a simple yet effective time encoding
method. Instead of hand-crafting time encoding or relying
on pre-defined non-linear transformations, we draw inspira-
tion from deep function learning, which is known for its gen-
eralizability, interpretability, and reusability (Zhang, 2024;
Liu et al., 2025), and propose to use learnable non-linear
transformations for time encoding. Specifically, we parame-
terize non-linear transformation functions using techniques
derived from deep function learning. This parameterization
makes the transformations learnable and jointly optimizable
with the model’s parameters under supervision from down-
stream tasks, allowing them to flexibly adapt to both linear
and arbitrary non-linear forms. With learnable transforma-
tions, LeTE adaptively models time information, enabling
different dimensions of time encoding to capture complex
time patterns—such as irregular trends, abrupt changes, and
overlapping periodicities—that are commonly encountered
in real-world scenarios and beyond the capabilities of pre-
vious methods. This generalization also allows our method
to encompass previous approaches as specific cases. An
illustration of LeTE is in Figure 1 (c).

LeTE also offers following advantages (cf. Section 3.2).
Since time can be measured on different scales, its rep-
resentation should be invariant to time rescaling (Kazemi
et al., 2019). We prove that LeTE satisfies this property
(cf. Appendix C.3). Furthermore, we prove that LeTE is a
generalized version of previous methods and can integrate
seamlessly with various models (cf. Section 3.2). By em-
ploying an interpretable deep function learning approach,
LeTE achieves a high degree of interpretability (cf. Ap-
pendix G.3). Additionally, experimental results demonstrate
that LeTE achieves superior results with fewer dimensions
than previous time encodings, as the learnable transforma-
tions capture part of the complexity that would otherwise
require higher-dimensional embeddings (cf. Section 4.5).

2

Rethinking Time Encoding via Learnable Transformation Functions

We highlight our contributions as follows:

• We reinvestigate the design of the existing time encod-
ing methods, highlighting their limitations in handling
real-world data and propose LeTE, a generalized time
encoding method that allows the entire encoding pro-
cess, including both linear and non-linear transforma-
tions, fully parameterized and learnable.

• LeTE has the capacity to model diverse and complex
time patterns, and it offers additional benefits, includ-
ing invariance to time rescaling, plug-and-play func-
tionality, enhanced interpretability and improved di-
mensional efficiency.

• Through extensive experiments across diverse do-
mains—including event-based image classification,
time series forecasting, dynamic graph representation
learning and real-world applications-we demonstrate
the effectiveness and versatility of LeTE.

2. Preliminaries
2.1. Functional Time Encodings

Functional Time Encoding (FTE) methods can be viewed as
feature mappings from 1-dimensional input time to a high-
dimensional time embedding: Φ : t ∈ R1 → TE ∈ Rd,
where t ∈ [0, tmax] is from the value range bounded by tmax.
Two representative works of FTE are Functional Time Rep-
resentation (FTR) (Xu et al., 2019) and Time2Vec (T2V)
(Kazemi et al., 2019). Although these methods construct
time encodings from different perspectives, they are math-
ematically nearly identical (the only difference is that a
separate dimension that undergoes only a linear transfor-
mation is used by T2V to capture non-periodic patterns).
We state the following proposition, with details of the two
methods and the proof provided in Appendix C.1.
Proposition 2.1. Mathematically, with selected values for
ωi and φi, the aforementioned FTR and T2V can be unified
into the following forms:

Including the first dimension:

TE(t)[i] =

{
sin (ωit+ φi) or ωit+ φi, if i = 1,

sin (ωit+ φi), if 2 ≤ i ≤ d.

(1)
Or excluding the first dimension:

TE(t)[i] = sin (ωit+ φi), (2)

or

TE(t) = [sin(ω1t+ φ1), · · · , sin(ωdt+ φd)] (3)

For simplicity, we use Functional Time Encoding (FTE) to
refer to both the FTR and T2V throughout the paper.

2.2. Deep Function Learning

Deep Function Learning refers to the approach of learn-
ing target functions by optimizing parameterized functions,
such as polynomials, sinusoidal functions, or splines. This
method leverages the flexibility of parameterized functions
and optimizes their parameters using deep learning frame-
works to approximate complex functions (Zhang, 2024).

Fourier Series Expansion: The Fourier series expresses
a target function f(x) as a combination of sine and cosine
functions:

f(x) = a0 +

N∑
n=1

(an cos(nωx) + bn sin(nωx)) (4)

Here, an and bn are learnable coefficients, and ω is the fun-
damental frequency. By optimizing a0, an and bn through a
learning process, the function f(x) can approximate com-
plex patterns (cf. Appendix B.1 for details). Unlike fixed
sine functions, parameterized functions adjust their ampli-
tude, frequency, and phase through downstream supervisory
signals, enabling them to effectively model a wider range of
patterns.

Spline Functions: Spline functions approximate a target
function f(x) using a sum of piecewise polynomial basis
functions:

f(x) =

n∑
i=1

ciBi(x) (5)

Here, ci are control points, and Bi(t) are the basis functions
(e.g., B-splines). By learning and optimizing the control
points, knot positions, and weights (cf. Appendix B.2 for
details), splines provide a smooth and accurate represen-
tation of diverse functions. Their piecewise and localized
structure makes them highly adaptable for complex function
modeling.

3. Methods
3.1. LeTE

To address the limitations of previous time encod-
ings—specifically, their restricted capacity to model fixed
or pre-defined time patterns—we propose Learnable
Transformation-based Generalized Time Encoding (re-
ferred to as LeTE). To capture diverse and complex patterns
in time-related data, we propose techniques that make non-
linear transformations learnable. This approach allows the
model to dynamically adapt its transformations, enabling
more precise representations of time patterns. To achieve
this, we employ two distinct approaches for constructing
learnable transformation functions: Fourier series expan-
sion and Spline functions. Both methods share the ability to
effectively capture and model complex, non-linear temporal
patterns while maintaining flexibility in handling various

3

Rethinking Time Encoding via Learnable Transformation Functions

Combined LeTE

t

[si] ⋅ LayerNorm [ϕi(ωit + φi)]

xi = ωit + φi
Fourier-based Spline-based

ϕ1(x1) = a0 +
K

∑
k=1

(ak cos(kx1) + bk sin(kx1))
ϕd(xd) =

M

∑
j=1

cjBj(xd)

B1(x) B2(x) B3(x) B4(x) B5(x)

Figure 2. An illustration of Combined LeTE: the first dimension is parameterized by Fourier series expansion and the last dimension is
parameterized by B-Splines.

time dynamics. Based on these methods, we propose three
variations of LeTE. First, we construct the learnable transfor-
mation functions using these two approaches, categorizing
them as Fourier-based LeTE and Spline-based LeTE ac-
cording to their respective construction methods. We then
integrate these two variations to develop a more generalized
version, referred to as Combined LeTE, which leverages the
strengths of both approaches.

For a scalar timestamp input t, LeTE for t, denoted as
LeTE(t), is a d-dimensional time embedding vector:

LeTE(t)[i] = ϕi(ωit+ φi), (6)

where ωi and φi are learnable parameters, and ϕi are learn-
able functions that can be parameterized by either Fourier
series expansion or B-splines.

Fourier-based LeTE: This method assumes that ϕi are
parameterized by Fourier series expansion:

ϕi(x) = a0 +

K∑
k=1

(ak cos(kx) + bk sin(kx)) , (7)

where a0, ak, and bk are the parameters to be learned, andK
represents the number of terms in the expansion. LeTE can
then be expressed as:

LeTE(t)[i] = ai,0 +

K∑
k=1

(
ai,k cos(k(ωit+ φi))

+ bi,k sin(k(ωit+ φi))
) (8)

Spline-based LeTE: This method assumes that ϕi are pa-
rameterized by B-splines:

ϕi(x) =

M∑
j=1

cjBj(x), (9)

where M is the number of B-spline basis functions, and
Bj(x) is the j-th B-spline basis function. LeTE can then be
expressed as:

LeTE(t)[i] =
M∑
j=1

ci,jBj(ωit+ φi). (10)

Comparing these two approaches for constructing ϕi, the
Fourier series expansion in LeTE enforces periodicity in ϕi,
while the B-spline approach provides flexibility to model
more complex ϕi functions, including both periodic and
non-periodic patterns.

Recall that we neglect the first dimension of the linear trans-
formation of time in Equations (2) and (3), which models
the non-periodic patterns for Time2Vec. However, in LeTE ,
by allowing ϕi to be learnable, different ϕi at different di-
mensions can capture more complex non-periodic patterns
based on the supervision signals from downstream tasks.

Combined LeTE: To enhance the capability of the time
encoding to capture diverse and complex time patterns and
to build a more generalized version of LeTE, we further pro-
pose a straightforward extension: applying Fourier-based
LeTE to a portion of the time encoding dimensions and
Spline-based LeTE to the remaining dimensions. The pro-
portion of Fourier-based LeTE and Spline-based LeTE used
can be controlled by a hyperparameter p. To address po-
tential differences in the output scales of Fourier-based and
Spline-based LeTE, we introduce a Layer Normalization
layer followed by a learnable scaling weight for the time
encoding. For a d-dimensional LeTE, the time embedding
is formulated as:

LeTE(t)[i] = si · LayerNorm (ϕi(ωit+ φi)) , (11)

where [si] is a d-length learnable scaling weight vector, and

ϕi(x) =

{
Equation(7), if i ≤ ⌊p · d⌋,
Equation(9), if i > ⌊p · d⌋.

(12)

4

Rethinking Time Encoding via Learnable Transformation Functions

When p = 1, the method corresponds to Fourier-based
LeTE, and when p = 0, it corresponds to Spline-based
LeTE. For the remainder of this paper, unless otherwise
specified, LeTE will refer to the Combined LeTE, where p
is set to 0.5. An illustration of LeTE is shown in Figure 2,
and the implementation details are provided in Appendix D.

3.2. Properties of LeTE

In this subsection, we present the properties of our method
from the perspective of theoretical analysis. Specifically,
we discuss the strengths of Fourier-based LeTE and Spline-
based LeTE individually. Since Combined LeTE integrates
these two variations, it naturally inherits their respective
properties.

Generalizability: Compared with previous methods, which
can only capture pre-defined time patterns—usually periodic
ones—our method offers greater generalizability, enabling
it to capture a wider range of diverse and complex patterns,
including periodic, non-periodic and mixed ones. Naturally,
Fourier-based LeTE (as formulated in Equation (8), the ϕi
functions are parameterized by Fourier series expansion) can
model periodicity, as it resembles a Fourier series expansion
with weighted sums of sine and cosine terms at different fre-
quencies and phases. By learning appropriate values for ωi

and incorporating different harmonics k, the function can ap-
proximate complex periodic patterns and capture repeating
structures in time. The learnable parameters ωi and φi en-
able the model to adapt to various periodic characteristics in
the data. Although the Fourier series is inherently periodic,
non-periodic patterns can also be modeled: the learnable
parameters ai,0, ai,k, bi,k, ωi, and φi provide flexibility to
approximate non-periodic behaviors. By using very small
or large values for ωi, the model can fit signals with long
or slow-varying cycles, effectively creating non-repeating
patterns over a finite interval. Additionally, the combination
of learned frequencies, phases, and amplitudes can produce
complex patterns that do not repeat over the observed range,
thereby approximating non-periodic signals. For similar
reasons, and given the generality of functions formed by
splines, Spline-based LeTE (Equation (10), the ϕi are pa-
rameterized by B-splines) can also model both periodic and
non-periodic patterns. Naturally, through multi-dimensional
encoding, both Fourier-based and Spline-based LeTE are
capable of capturing mixed time patterns. Although Fourier-
based LeTE can capture non-periodic patterns, its inherent
periodicity makes it particularly effective at modeling the
periodicity of time. Conversely, while Spline-based LeTE is
also capable of capturing periodic patterns, it exhibits a
stronger ability to model non-periodic patterns. Therefore,
by combining Fourier-based LeTE and Spline-based LeTE,
the resulting Combined LeTE achieves enhanced capability
to capture diverse patterns. Intuitively, the previous FTEs
are special cases of LeTE; we present the following propo-

sition with its corresponding proof to demonstrate this.

Proposition 3.1. For an arbitrary input t, the network can
learn a set of parameters such that LeTE can replicate the
effects of previous time encodings, making previous time
encodings specific cases of LeTE.

Proof. For Equations (8) and (10), we only need to find a
set of coefficients for Equations (7) and (9) to approximate
the sine function, respectively. By selectingK =1, ai,0 = 0,
ai,1 = 0, and bi,1 = 1, Equation (8) becomes:

LeTE(t)[i] = 0 +
(
0 · cos

(
1 · (ωit+ φi)

)
+ 1 · sin

(
1 · (ωit+ φi)

))
= sin(ωit+ φi).

(13)

Thus, sin(ωit + φi) is indeed a special case of the more
general formula in Equation (8). The proof continues in
Appendix C.2, which demonstrates that sin(ωit + φi) is
also a special case of Equation (10).

Moreover, since Xu et al. claim that absolute position encod-
ing is a special case of functional time representation (Xu
et al., 2019; 2020), it is straightforward to see that absolute
position encoding is also a special case of our LeTE.

Invariance to Time Rescaling: Since time can be repre-
sented on various scales (such as days, hours, or seconds), a
key characteristic of a time representation is its invariance
to rescaling (Kazemi et al., 2019; Tallec & Ollivier, 2018).
Similar to FTE, our proposed time encoding is also invariant
to time rescaling, as shown in the following proposition with
proof provided in Appendix C.3.

Proposition 3.2. LeTE is invariant to time rescaling.

Plug-and-Play: LeTE is designed in a plug-and-play man-
ner, ensuring seamless compatibility with various models
and architectures. By producing a d-dimensional time em-
bedding vector similar to previous time encodings, it can be
easily integrated without requiring significant modifications
to existing frameworks. Unlike prior methods that rely on
fixed non-linear transformation functions, LeTE employs
parameterized and learnable transformations, enabling it to
capture additional information and complexity. This design
allows LeTE to achieve superior performance even with
lower-dimensional time encodings compared to traditional
methods (see Section 4.5 for experimental results).

Interpretability: Previous time encodings exhibit natural
interpretability because they use a fixed non-linear activa-
tion function, i.e., the sine function, which has obvious
periodicity. Our proposed time encoding uses a learnable
non-linear transformation function. However, by examining

5

Rethinking Time Encoding via Learnable Transformation Functions

the learned parameters, we can reconstruct these transforma-
tion functions, enabling our method to also achieve strong
interpretability. A visualization of our proposed time encod-
ing is provided in Appendix G.3.

3.3. Use of Time Encoding

In time series forecasting research, time embeddings calcu-
lated by time encoding modules are usually directly added
to feature embeddings and fed into the attention mechanism
or Transformer (Vaswani et al., 2017). As a result, they typi-
cally share the same dimensions as the feature embeddings:

x = TokenEncode(x) + TE(t) ∈ Rd. (14)

Here, x represents the input, TokenEncode denotes a token
encoding function, TE denotes the time encoding, and d
represents the dimension of both feature embeddings and
time embeddings.

In dynamic graph representation learning research, time
embeddings are usually concatenated with node features
and edge features as part of the input. This allows for more
flexibility in the choice of time embedding dimensions:

x = Node Features∥Edge Features∥TE(t) ∈ Rdn+de+d.
(15)

Here, ∥ denotes the concatenation operation, while dn, de,
and d represent the dimensions of node features, edge fea-
tures, and time embeddings, respectively.

4. Experiments
4.1. Time as the Only Input

To evaluate the performance of the time encoding method in
scenarios where the only input is time, and to compare dif-
ferent time representations while minimizing the influence
of extraneous variables, we follow (Kazemi et al., 2019) and
create a sequential (event-based) MNIST dataset (Fatahi
et al., 2016; Campos et al., 2018; Bellec et al., 2018) and
conduct image classification task (more details are shown
in Appendix E.1).

0 50 100 150 200
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

LSTM
LSTM+FTE
LSTM+LeTE

(a) Testing Accuracy

0 50 100 150 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

LSTM
LSTM+FTE
LSTM+LeTE

(b) Testing Loss

Figure 3. Time as the only input: Comparison of time encodings
on sequential MNIST.

We then apply an LSTM with a 32-dimensional learnable
embedding for the time input and compare it to models
where the FTE or our LeTE is used for encoding time. The
results, shown in Figure 3, indicate that the FTE achieves
testing accuracy comparable to that of the LSTM with-
out any time encoding method applied. However, our
LeTE achieves significantly higher image classification ac-
curacy. This simple experiment demonstrates that LeTE can
efficiently encode time information for models. Next, we
present experiments applying LeTE to time series tasks,
dynamic graph tasks, and real-world applications.

4.2. Experiments on Time Series Tasks

For time series forecasting tasks, we select 5 baseline mod-
els where we can directly replace the time encoding meth-
ods with LeTE: vanilla Transformer (Vaswani et al., 2017),
Pyraformer (Liu et al., 2021), Non-stationary Transformer
(Liu et al., 2022), MICN (Wang et al., 2023), and TimesNet
(Wu et al., 2023). We conduct long-term forecasting tasks
on these baseline models using 4 datasets: ETT, Weather,
Exchange (Lai et al., 2018), and Electricity, covering various
real-world scenarios. Implementation details and introduc-
tions to baselines and datasets are provided in Appendix E.2.
We apply LeTE and adjust the hyperparameter p in all ex-
periments to capture more comprehensive time information.
We report the results in the multivariate setting, as shown
in Table 1 and 5. Because the time embeddings need to be
added to the feature embeddings, they must have the same
dimensions as the feature embeddings. Baseline models
commonly apply hand-crafted time encoding (HCTE) with
Date-Time Format inputs (e.g., ISO 8601 format, YYYY-
MM-DD HH:mm:ss). Since our method, like FTE, takes
UNIX timestamps as input, we include FTE in our experi-
ments for comparison. In our approach, we transform the
Date-Time Format timestamps into UNIX timestamps, en-
code them with our proposed LeTE , and feed the resulting
time embeddings into the models in the same manner as
the baselines. In this context, the input consists of abso-
lute timestamps, and the time encoding can therefore be
regarded as an absolute time encoding.

From the experimental results, we observe that: (1) When
applying different time encoding methods to baseline mod-
els for time series forecasting, LeTE outperforms the bench-
mark in most cases, achieving an average win rate of 98%
on MAE (Mean Absolute Error) and 95% on MSE (Mean
Squared Error) across all baseline, dataset, and prediction
length combinations, highlighting the effectiveness of the
proposed time encoding. This demonstrates that our method
can be seamlessly transferred to time series models, reliably
achieving strong performance. (2) The improvements on
baselines are considerable. For instance, applying LeTE to
the Transformer model reduces the average MAE and MSE
across all datasets by 25.1% and 46.5%, respectively. This

6

Rethinking Time Encoding via Learnable Transformation Functions

Table 1. Time series prediction: multivariate long-term forecasting task. The past sequence length is set to 96, while the prediction lengths
are {96, 192, 336, 720}. The results are reported in terms of MAE, where lower values indicate better performance. HCTE (Hand-Crafted
Time Encoding) is a method widely adopted in time series research. FTE stands for Functional Time Encoding. The win rate represents
the percentage of cases where LeTE outperforms the HCTE. The best results for each baseline, dataset and prediction length combinations
are in bold. ETT consists of 4 subsets. Here, we present the average results across these subsets, with the full results provided in Table 7.

MAE Transformer Pyraformer NS Trans. MINC TimesNet Win

TE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE Rate

96 0.797 0.803 0.550 0.642 0.720 0.583 0.405 0.435 0.377 0.405 0.367 0.350 0.355 0.362 0.352
192 1.139 0.916 0.712 0.899 0.924 0.738 0.445 0.478 0.414 0.445 0.423 0.395 0.385 0.400 0.388
336 1.119 0.938 0.821 1.043 1.038 0.863 0.478 0.539 0.449 0.478 0.486 0.448 0.421 0.424 0.413E

T
T

720 1.070 1.146 0.878 1.196 1.189 0.959 0.526 0.557 0.490 0.526 0.561 0.505 0.455 0.455 0.429
95%

96 0.357 0.375 0.347 0.376 0.375 0.365 0.273 0.275 0.265 0.269 0.263 0.254 0.272 0.272 0.267
192 0.367 0.402 0.353 0.391 0.385 0.372 0.286 0.292 0.278 0.285 0.278 0.271 0.289 0.281 0.277
336 0.370 0.425 0.357 0.399 0.401 0.369 0.304 0.300 0.293 0.304 0.298 0.294 0.300 0.308 0.291

E
le

ct
ri

ci
ty

720 0.374 0.453 0.363 0.390 0.394 0.380 0.321 0.330 0.317 0.321 0.330 0.317 0.320 0.363 0.316
100%

96 0.575 0.705 0.547 0.570 0.641 0.624 0.237 0.261 0.237 0.235 0.233 0.203 0.234 0.237 0.230
192 0.747 0.791 0.744 0.803 0.815 0.786 0.335 0.369 0.319 0.316 0.332 0.289 0.344 0.339 0.332
336 0.945 1.123 0.879 0.903 0.991 0.859 0.476 0.501 0.439 0.407 0.472 0.402 0.448 0.472 0.446

E
xc

ha
ng

e

720 1.329 1.147 1.066 1.075 1.046 0.938 0.769 0.901 0.612 0.658 0.710 0.622 0.746 0.756 0.751
95%

96 0.422 0.257 0.245 0.303 0.296 0.267 0.223 0.222 0.221 0.229 0.258 0.225 0.220 0.221 0.215
192 0.523 0.308 0.295 0.336 0.317 0.311 0.285 0.271 0.260 0.281 0.306 0.261 0.261 0.263 0.253
336 0.607 0.355 0.365 0.403 0.377 0.349 0.338 0.321 0.308 0.331 0.335 0.295 0.306 0.302 0.299

W
ea

th
er

720 0.690 0.459 0.429 0.434 0.417 0.415 0.410 0.357 0.349 0.356 0.387 0.339 0.359 0.350 0.348
100%

Win Rate 100% 94% 100% 100% 94% 98%

Table 2. Dynamic graph link prediction task: The results are reported in AP, where higher values indicate better performance. The better
results are in bold. Here, we present the top-performing results across variations of LeTE, with the full results provided in Table 9. FTE
represents Functional Time Encoding which is commonly used in dynamic graph research.

AP Wikipedia Reddit MOOC LastFM

TE Transductive Inductive Transductive Inductive Transductive Inductive Transductive Inductive

TGAT FTE 96.95 ± 0.24 96.33 ± 0.26 98.53 ± 0.04 97.01 ± 0.05 85.34 ± 0.19 84.94 ± 0.04 72.73 ± 0.11 77.78 ± 0.13
LeTE 97.82 ± 0.09 97.34 ± 0.08 98.56 ± 0.01 97.05 ± 0.06 88.31 ± 0.10 88.37 ± 0.12 76.22 ± 0.25 81.32 ± 0.14

TGN FTE 98.45 ± 0.06 97.83 ± 0.04 98.63 ± 0.06 97.50 ± 0.07 89.15 ± 1.60 89.04 ± 1.17 77.07 ± 3.97 81.45 ± 4.29
LeTE 98.78 ± 0.07 98.19 ± 0.09 98.74 ± 0.00 97.65 ± 0.04 91.41 ± 0.55 90.87 ± 0.83 83.64 ± 2.00 87.55 ± 1.88

TCL FTE 96.47 ± 0.16 96.22 ± 0.17 97.53 ± 0.02 94.09 ± 0.07 82.38 ± 0.24 80.60 ± 0.22 67.27 ± 2.16 73.53 ± 1.66
LeTE 98.19 ± 0.04 97.89 ± 0.03 97.78 ± 0.03 94.99 ± 0.07 84.24 ± 0.10 82.72 ± 0.12 76.08 ± 0.79 80.68 ± 0.70

DyG-
Former

FTE 99.03 ± 0.02 98.59 ± 0.03 99.22 ± 0.01 98.84 ± 0.02 87.52 ± 0.49 86.96 ± 0.43 93.00 ± 0.12 94.23 ± 0.09
LeTE 99.13 ± 0.02 98.73 ± 0.00 99.24 ± 0.01 98.86 ± 0.01 88.70 ± 0.21 88.39 ± 0.15 93.64 ± 0.10 94.69 ± 0.12

illustrates that our method can be applied to various time se-
ries forecasting models, consistently achieving strong perfor-
mance. (3) FTE can occasionally outperform benchmarks;
however, it also fails in many cases, whereas LeTE steadily
outperforms benchmarks in such situations. This demon-
strates our method’s capability to model diverse time pat-
terns, including periodic, non-periodic, and mixed, high-
lighting its generalizability across different models and data.

4.3. Experiments on Dynamic Graph Tasks

FTEs are widely used in dynamic graph representation learn-
ing models. Representative works include TGAT (Xu et al.,
2020), TGN (Rossi et al., 2020), TCL (Wang et al., 2021),
and DyGFormer (Yu et al., 2023). Thus, we apply these
models as baselines and replace their time encodings with
our LeTE. We conduct link prediction experiments on 4 real-
world datasets: Wikipedia, Reddit, MOOC, and LastFM
(Kumar et al., 2019). The details of the implementation,

baseline methods and datasets are in Appendix E.3. The
results are reported in both transductive and inductive set-
tings, as shown in Tables 2 and 6. In this context, the time
encoding module takes the relative time difference between
the current edge and the most recent previous edge, and can
therefore be regarded as a relative time encoding.

As shown in the experimental results, our proposed
LeTE surpasses the benchmark results on all combinations
of baselines and datasets, regardless of transductive or induc-
tive settings, achieving state-of-the-art (SOTA) performance.
This strongly demonstrates the effectiveness of our proposed
time encoding and highlights its potential for improving the
representation learning of dynamic graphs. The dimensions
for the main experiments are set to 100, following the origi-
nal settings in previous work (Rossi et al., 2020; Yu et al.,
2023). However, since time embeddings are concatenated
with node and edge features in dynamic graph models, this
provides significant flexibility in setting their dimensions.

7

Rethinking Time Encoding via Learnable Transformation Functions

AUC-ROC(%)
63.0

63.5

64.0

64.5

65.0

65.5

66.0

66.5

67.0

64.75

65.26

65.81

w.o. Time Encoding
FTE
LeTE (Ours)

TP10
150

160

170

180

190

200

175

182

192

Recall@10(%)
20

21

22

23

24

25

22.06

22.95

24.21

Figure 4. Results evaluated by AUC-ROC, TP10 and Recall@10
on real business datasets.

We compare the effects of time embeddings with different
dimensions in Section 4.5. A comparison and analysis of
the variations of LeTE are also provided in Appendix G.2.

4.4. Experiments on Real-World Application

Time information plays a crucial role in many real-world
fields. We apply our proposed LeTE in a real-world finan-
cial risk control scenario to demonstrate its effectiveness
in practical applications. In financial risk control, a user’s
historical transaction data is typically used to predict their
credit risk, which can be framed as a classification problem
based on historical transaction information. However, in
this scenario, users’ transaction behaviors often exhibit a
combination of complex periodic and non-periodic patterns.
For instance, users may regularly receive salary deposits and
purchase daily necessities, whereas peer-to-peer transfers
may lack strong periodicity. Using financial risk control
data from Tencent Mobile Payment 1, we conduct compar-
ative experiments without time information, with the FTE,
and with LeTE to encode time information. The backbone
model treats the time embedding as a feature, concatenates
it with the user’s raw features, and takes the concatenated
features as input. The objective is to use users’ historical
transaction data to predict whether they have default risk.
Details of the dataset are provided in Appendix E.4. The
results are presented in Figure 4. The results indicate that
the model without time encoding performs the worst, as it
completely ignores time information. With FTE, the peri-
odicity of user behavior at different frequencies is captured,
resulting in improved performance compared to the case
without time information. Using LeTE yields the best per-
formance, as our time encoding effectively models periodic,
non-periodic and mixed patterns in a more general manner.

1The data used in these experiments are properly sampled
only for testing purposes and does not imply any commercial
information. All users’ private information is removed from the
dataset. Moreover, the experiments were conducted locally on
Tencent’s server by formal employees who strictly followed data
protection regulations.

2 8 16 32 64 100
95.50

96.20

96.90

97.60

98.30

99.00

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

(a) Wikipedia/TGN

2 8 16 32 64 100
84.00

85.60

87.20

88.80

90.40

92.00

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

(b) MOOC/TGN

Figure 5. Average Precision results comparing different dimen-
sions of the FTE and Spline-based LeTE on Wikipedia/TGN and
MOOC/TGN.

4.5. Dimensions of Time Encoding

Compared to the previous FTE methods, our LeTE takes
a step forward by making the non-linear transformation
learnable, thereby generalizing the time encoding. Since
part of the information from the data is captured by the
learnable non-linear transformation, we hypothesize that us-
ing lower-dimensional LeTE may still outperform the FTE
(which relies on a fixed non-linear transformation). There-
fore, we conduct experiments with lower-dimensional time
encodings. Since the dimensionality of time encoding in
dynamic graph tasks is more flexible, we conduct exper-
iments on dynamic graph link prediction tasks, with the
results presented in Figures 5, 6, and 7. As illustrated in
the results, models using the FTE suffer from severe per-
formance degradation as the dimension decreases, whereas
models with LeTE demonstrate more stable performance
and consistently outperform those using the FTE, even at
lower dimensions. Notably, models using LeTE with sig-
nificantly lower dimensions (e.g., 2, 8 or 16) outperform
models with the 100-dimensional FTE. This demonstrates
the effectiveness and generalizability of our method.

4.6. Additional Experiments

We provide the complete experimental results for the ex-
periments mentioned in the main text in Appendix F. Ad-
ditionally, we conduct further experiments to analyze the
complex time patterns in real-world data (cf. Appendix
G.1); compare different variants of LeTE (cf. Appendix
G.2); illustrate the interpretability of LeTE (cf. Appendix
G.3); demonstrate LeTE’s ability to simultaneously cap-
ture diverse time patterns, including periodic, non-periodic,
and mixed ones (cf. Appendix G.4); and assess LeTE’s
capability to fit various functions (cf. Appendix G.5).

5. Conclusion
In this paper, we propose a effective time encod-
ing method—Learnable Transformation-based Generalized
Time Encoding (LeTE)—designed to accept both absolute

8

Rethinking Time Encoding via Learnable Transformation Functions

timestamps and relative time differences as inputs, depend-
ing on the specific requirements of different models, en-
abling it to function as either an absolute or a relative time
encoding method. Through comprehensive analysis, we
demonstrate that our proposed LeTE is capable of model-
ing diverse and complex time patterns, including periodic,
non-periodic, and mixed patterns. It is invariant to time
rescaling, sufficiently simple for integration with various
backbone models, and exhibits good interpretability and di-
mensional efficiency. Extensive experiments on event-based
image classification, time-series forecasting tasks, dynamic
graph link prediction tasks, and real-world financial risk con-
trol applications demonstrate the superior performance and
generalizability of our method across various application
scenarios.

Acknowledgements
This work is partially supported by the Noncommunicable
Chronic Diseases-National Science and Technology Major
Project (NO. 2024ZD0532400 and NO. 2024ZD0532403),
the National Key Research and Development Plan Project
2022YFC3600901. This work is sponsored by the Tencent
Rhino-Bird Focused Research Program. This work is par-
tially supported by NSF through grant IIS-2106972.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Baytas, I. M., Xiao, C., Zhang, X., Wang, F., Jain, A. K., and

Zhou, J. Patient subtyping via time-aware lstm networks.
In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 65–74, 2017.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and
Maass, W. Long short-term memory and learning-to-
learn in networks of spiking neurons. Advances in Neural
Information Processing Systems, 31, 2018.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35
(8):1798–1828, 2013.

Braun, J. and Griebel, M. On a constructive proof of kol-
mogorov’s superposition theorem. Constructive approxi-
mation, 30:653–675, 2009.

Campos, V., Jou, B., Giró-i Nieto, X., Torres, J., and Chang,

S.-F. Skip rnn: Learning to skip state updates in recurrent
neural networks. In The Sixth International Conference
on Learning Representations, 2018.

Chen, X., Liao, Y., Xiong, Y., Zhang, Y., Zhang, S., Zhang,
J., and Sun, Y. Speed: Streaming partition and parallel
acceleration for temporal interaction graph embedding.
arXiv preprint arXiv:2308.14129, 2023.

Chen, X., Xiong, Y., Zhang, S., Zhang, J., Zhang, Y., Zhou,
S., Wu, X., Zhang, M., Liu, T., and Wang, W. Dtformer:
A transformer-based method for discrete-time dynamic
graph representation learning. In Proceedings of the
33rd ACM International Conference on Information and
Knowledge Management, pp. 301–311, 2024a.

Chen, X., Zhang, S., Xiong, Y., Wu, X., Zhang, J., Sun,
X., Zhang, Y., Zhao, F., and Kang, Y. Prompt learn-
ing on temporal interaction graphs. arXiv preprint
arXiv:2402.06326, 2024b.

Cho, K. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. In Proceed-
ings of the 2014 Conference on Empirical Methods in
Natural Language Processing, pp. 1724–1734, 2014.

Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., and
Sun, J. Doctor ai: Predicting clinical events via recurrent
neural networks. In Machine learning for Healthcare
Conference, pp. 301–318. PMLR, 2016.

Fatahi, M., Ahmadi, M., Shahsavari, M., Ahmadi, A., and
Devienne, P. evt mnist: A spike based version of tra-
ditional mnist. In 1st International Conference on New
Research Achievements in Electrical and Computer Engi-
neering, 2016.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin,
Y. N. Convolutional sequence to sequence learning. In
International Conference on Machine Learning, pp. 1243–
1252. PMLR, 2017.

Graves, A. and Graves, A. Long short-term memory. Su-
pervised Sequence Labelling with Recurrent Neural Net-
works, pp. 37–45, 2012.

Kang, W.-C. and McAuley, J. Self-attentive sequential
recommendation. In 2018 IEEE International Conference
on Data Mining, pp. 197–206. IEEE, 2018.

Kazemi, S. M., Goel, R., Eghbali, S., Ramanan, J., Sa-
hota, J., Thakur, S., Wu, S., Smyth, C., Poupart, P., and
Brubaker, M. Time2vec: Learning a vector representation
of time. arXiv preprint arXiv:1907.05321, 2019.

Kazemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A.,
Forsyth, P., and Poupart, P. Representation learning for
dynamic graphs: A survey. Journal of Machine Learning
Research, 21(70):1–73, 2020.

9

Rethinking Time Encoding via Learnable Transformation Functions

Kolmogorov, A. N. On the representation of continuous
functions of many variables by superposition of contin-
uous functions of one variable and addition. In Dok-
lady Akademii Nauk, volume 114, pp. 953–956. Russian
Academy of Sciences, 1957.

Kolmogorov, A. N. On the representation of continuous
functions of several variables by superpositions of contin-
uous functions of a smaller number of variables. Ameri-
can Mathematical Society, 1961.

Kumar, S., Zhang, X., and Leskovec, J. Predicting dynamic
embedding trajectory in temporal interaction networks.
In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 1269–1278, 2019.

Kwon, B. C., Choi, M.-J., Kim, J. T., Choi, E., Kim, Y. B.,
Kwon, S., Sun, J., and Choo, J. Retainvis: Visual ana-
lytics with interpretable and interactive recurrent neural
networks on electronic medical records. IEEE Transac-
tions on Visualization and Computer Graphics, 25(1):
299–309, 2018.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. Modeling long-
and short-term temporal patterns with deep neural net-
works. In The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, pp.
95–104, 2018.

Lezmi, E. and Xu, J. Time series forecasting with trans-
former models and application to asset management.
Available at SSRN 4375798, 2023.

Li, Y., Du, N., and Bengio, S. Time-dependent representa-
tion for neural event sequence prediction. arXiv preprint
arXiv:1708.00065, 2017.

Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A. X., and Dust-
dar, S. Pyraformer: Low-complexity pyramidal attention
for long-range time series modeling and forecasting. In
The Ninth International Conference on Learning Repre-
sentations, 2021.

Liu, Y., Wu, H., Wang, J., and Long, M. Non-stationary
transformers: Exploring the stationarity in time series
forecasting. Advances in Neural Information Processing
Systems, 35:9881–9893, 2022.

Liu, Y., Hu, T., Zhang, H., Wu, H., Wang, S., Ma, L.,
and Long, M. itransformer: Inverted transformers are
effective for time series forecasting. In The Twelfth Inter-
national Conference on Learning Representations, 2023.

Liu, Z., Wang, Y., Vaidya, S., Ruehle, F., Halverson,
J., Soljačić, M., Hou, T. Y., and Tegmark, M. Kan:
Kolmogorov-arnold networks. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025.

Misra, D. Mish: A self regularized non-monotonic activa-
tion function. arXiv preprint arXiv:1908.08681, 2019.

Murat, M., Malinowska, I., Gos, M., and Krzyszczak, J.
Forecasting daily meteorological time series using arima
and regression models. International Agrophysics, 32(2),
2018.

Neumann, O., Beichter, M., Heidrich, B., Friederich, N.,
Hagenmeyer, V., and Mikut, R. Intrinsic explainable
artificial intelligence using trainable spatial weights on
numerical weather predictions. In Proceedings of the 15th
ACM International Conference on Future and Sustainable
Energy Systems, pp. 551–559, 2024.

Pennebaker, J. W. Linguistic inquiry and word count: Liwc
2001, 2001.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti,
F., and Bronstein, M. Temporal graph networks for
deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637, 2020.

Shannon, C. E. A mathematical theory of communication.
The Bell System Technical Journal, 27(3):379–423, 1948.

Skarding, J., Gabrys, B., and Musial, K. Foundations and
modeling of dynamic networks using dynamic graph neu-
ral networks: A survey. IEEE Access, 9:79143–79168,
2021.

Tallec, C. and Ollivier, Y. Can recurrent neural networks
warp time? In The Sixth International Conference on
Learning Representations, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

Wang, H., Peng, J., Huang, F., Wang, J., Chen, J., and Xiao,
Y. Micn: Multi-scale local and global context model-
ing for long-term series forecasting. In The Eleventh
International Conference on Learning Representations,
2023.

Wang, L., Chang, X., Li, S., Chu, Y., Li, H., Zhang, W., He,
X., Song, L., Zhou, J., and Yang, H. Tcl: Transformer-
based dynamic graph modelling via contrastive learning.
arXiv preprint arXiv:2105.07944, 2021.

Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and Long,
M. Timesnet: Temporal 2d-variation modeling for gen-
eral time series analysis. In The Eleventh International
Conference on Learning Representations, 2023.

10

Rethinking Time Encoding via Learnable Transformation Functions

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., and Achan,
K. Self-attention with functional time representation
learning. Advances in Neural Information Processing
Systems, 32, 2019.

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., and Achan, K.
Inductive representation learning on temporal graphs. In
The Eighth International Conference on Learning Repre-
sentations, 2020.

Yu, L., Sun, L., Du, B., and Lv, W. Towards better dynamic
graph learning: New architecture and unified library. Ad-
vances in Neural Information Processing Systems, 36:
67686–67700, 2023.

Zeng, C., Tian, Y., Zheng, G., and Gao, Y. How much
can time-related features enhance time series forecasting?
arXiv preprint arXiv:2412.01557, 2024.

Zhang, J. Rpn: Reconciled polynomial network towards
unifying pgms, kernel svms, mlp and kan. arXiv preprint
arXiv:2407.04819, 2024.

Zhang, S., Xiong, Y., Zhang, Y., Sun, Y., Chen, X., Jiao,
Y., and Zhu, Y. Rdgsl: Dynamic graph representation
learning with structure learning. In Proceedings of the
32nd ACM International Conference on Information and
Knowledge Management, pp. 3174–3183, 2023a.

Zhang, S., Chen, X., Xiong, Y., Wu, X., Zhang, Y., Fu, Y.,
Zhao, Y., and Zhang, J. Towards adaptive neighborhood
for advancing temporal interaction graph modeling. In
Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 4290–4301,
2024.

Zhang, S., Xiong, Y., Tang, Y., Chen, X., Jia, Z., Gu, Z., Xu,
J., and Zhang, J. Unifying text semantics and graph struc-
tures for temporal text-attributed graphs with large lan-
guage models. arXiv preprint arXiv:2503.14411, 2025.

Zhang, Y., Xiong, Y., Liao, Y., Sun, Y., Jin, Y., Zheng, X.,
and Zhu, Y. Tiger: Temporal interaction graph embedding
with restarts. In Proceedings of the ACM Web Conference
2023, pp. 478–488, 2023b.

11

Rethinking Time Encoding via Learnable Transformation Functions

A. Related Work
Currently, commonly used time encoding methods or strategies for modeling temporal information can be broadly categorized
into two types: Hand-Crafted Time Encodings (HCTE) and Functional Time Encodings (FTE).

HCTE involves manually designed temporal encodings tailored to specific downstream tasks. These methods rely on specific
design choices and incorporate various inductive biases to capture fixed periodic patterns, constructing hand-crafted temporal
features. These features are typically fed into models such as RNNs (Cho, 2014) or sequential architectures (Liu et al., 2021;
2022; Wang et al., 2023; Wu et al., 2023) to meet specific modeling requirements (Choi et al., 2016; Baytas et al., 2017;
Kwon et al., 2018), as illustrated in Figure 1(a). Such approaches are often employed to address particular challenges in
time series tasks.

Additionally, some methods in this category integrate time encoding directly with attention mechanisms (Vaswani et al.,
2017), simplifying temporal modeling by adopting position encoding strategies (Gehring et al., 2017). Others embed discrete
events into a continuous vector space to better capture event contexts in attention-based models (Bengio et al., 2013; Li
et al., 2017). These methods, while effective, are often limited to representing fixed or narrowly defined temporal patterns.

FTE represents an advanced and generalized version of time encoding, designed to overcome part of the limitations of
Hand-Crafted Time Encodings. Two representative works in this category are functional time representation, proposed by
(Xu et al., 2019), and Time2Vec, proposed by (Kazemi et al., 2019), as shown in Figure 1(b). Importantly, the previously
mentioned position encoding methods integrated with attention mechanisms can be considered a simplified version of FTE.

Both functional time representation and Time2Vec adopt similar implementation methods, which resemble a one-dimensional-
to-d-dimensional MLP with a specially designed trigonometric non-linear activation function. In Time2Vec, experiments
comparing different non-linear activation functions demonstrate that the sine function performs best across various down-
stream tasks. Despite limitations in modeling restricted aspects of time, FTE is widely adopted in dynamic graph representa-
tion learning due to its ease of application and effectiveness (Rossi et al., 2020; Zhang et al., 2023b;a; Chen et al., 2023; Yu
et al., 2023; Chen et al., 2024b; Zhang et al., 2024; Chen et al., 2024a; Zhang et al., 2025).

Time encodings can be directly applied to sequential models such as RNNs and LSTMs (Graves & Graves, 2012), or
easily integrated into attention-based architectures. In time series forecasting, for instance, many models now employ
transformer-based structures (Vaswani et al., 2017), where time encoding is often treated similarly to position encoding.
This is usually achieved by adding it to the input of the attention mechanism (Liu et al., 2021; 2022; Wu et al., 2023).

Dynamic graph representation learning models also require precise temporal modeling. For example, TGAT (Xu et al.,
2020) directly replaces position encoding with functional time representation within its attention mechanism. Subsequent
methods, such as TGN and TIGER (Rossi et al., 2020; Zhang et al., 2023b), have adopted similar approaches. DyGFormer
(Yu et al., 2023), which applies a Transformer to dynamic graph representation learning, uses the same encoding method by
concatenating it with node and edge features before processing them with a Transformer-based model.

B. Methods of Parameterize Continuous Functions
B.1. Fourier Series Expansion

A function f(x) that is periodic with period T and satisfies certain conditions (Dirichlet conditions) can be represented as a
Fourier Series. This series represents f(x) as an infinite sum of sines and cosines (or, equivalently, complex exponentials)
with specific coefficients. The series takes the form:

f(x) = a0 +

∞∑
n=1

(
an cos

2πnx

T
+ bn sin

2πnx

T

)
. (16)

Here, a0 is the average value of the function over one period, and an and bn are Fourier coefficients that can be calculated
by integrating f(x) over the interval [0, T].

These coefficients are given by:

an =
2

T

∫ T

0

f(x) cos
2πnx

T
dx, (17)

bn =
2

T

∫ T

0

f(x) sin
2πnx

T
dx. (18)

12

Rethinking Time Encoding via Learnable Transformation Functions

Under these conditions, the Fourier Series converges to f(x) at all points where f is continuous and converges to the average
of the left-hand and right-hand limits at points of discontinuity.

B.2. KAN and Spline Functions

The Kolmogorov–Arnold Theorem (Kolmogorov, 1961; 1957; Braun & Griebel, 2009) states that for any continuous
multivariate function f(x1, x2, . . . , xn) on the unit cube [0, 1]n, there exist continuous functions ϕi and ψij such that:

f(x1, x2, . . . , xn) =

2n+1∑
i=1

ϕi

 n∑
j=1

ψij(xj)

 , (19)

where ϕi are continuous functions of a single variable, enabling dimensionality reduction, and ψij are continuous functions
mapping each input variable xj to a single output, contributing to the superposition structure. This theorem implies that
every continuous function of multiple variables can be represented as a sum of compositions of univariate functions.

Building on the Kolmogorov–Arnold Theorem and the advantages of splines for function fitting, Liu et al. propose using
splines to construct learnable non-linear activation functions for neural networks (Liu et al., 2025). We briefly introduce
B-splines here. Given a knot vector T = t0, t1, . . . , tm with non-decreasing values, the basis functions Ni,p(x) for a
B-spline of degree p are defined recursively as follows: For degree p = 0:

Ni,0(x) =

{
1 if ti ≤ x < ti+1

0 otherwise.
(20)

For higher degrees p > 0:

Ni,p(x) =
x− ti
ti+p − ti

Ni,p−1(x) +
ti+p+1 − x

ti+p+1 − ti+1
Ni+1,p−1(x). (21)

The B-spline curve C(x) of degree p with control points {P0, P1, . . . , Pn} is given by:

C(x) =

n∑
i=0

Ni,p(x)Pi. (22)

Here, Ni,p(x) are the B-spline basis functions of degree p , and Pi are the control points that influence the shape of the
curve.

C. Proofs
C.1. Proof of Proposition 2.1

C.1.1. DETAILS OF FUNCTIONAL TIME REPRESENTATION AND TIME2VEC

FTR is designed to use the time difference t = ti − tj , where 0 ≤ tj ≤ ti ≤ tmax, as input. For the input time difference, a
learnable frequency parameter is first applied. Next, a non-linear transformation is applied, using the cosine function on the
odd dimensions and the sine function on the even dimensions. This method is mathematically represented as follows:

TE(t)[i] =

{
cos (ωit), if i is odd,
sin (ωit), if i is even,

(23)

where d is the dimension of the time encoding, 1 ≤ i ≤ d, and ωi are learnable parameters representing the frequency of
the trigonometric functions. Since this time encoding uses time differences as input, it can be considered as a relative time
encoding.

T2V is designed to use timestamps t as input. A linear transformation is applied to the first dimension to capture non-periodic
time patterns. For the remaining dimensions, a linear transformation is followed by a sine-based non-linear transformation
to model periodic time patterns: Mathematically, this method is represented as follows:

TE(t)[i] =

{
ωit+ φi, if i = 1,

sin (ωit+ φi), if 2 ≤ i ≤ d,
(24)

13

Rethinking Time Encoding via Learnable Transformation Functions

where TE(t)[i] is the ith element of the time encoding, and ωi and φi are learnable parameters representing frequency and
phase-shift of the sine function, respectively. Since this time encoding takes timestamps as input, it can be considered as an
absolute time encoding.

C.1.2. PROOF OF PROPOSITION 2.1

Proof. Since Equation (23) can be written as TE(t) = [cos(ω1t), sin(ω1t), . . . , cos(ωdt), sin(ωdt)], we show that the
vector [cos(ω1t), sin(ω1t), . . . , cos(ωdt), sin(ωdt)] can be expressed in the form sin(ωit+ φi) with suitable phase shifts
φi. Recall the trigonometric identity:

cos(θ) = sin
(
θ +

π

2

)
. (25)

Applying this identity, each cosine term in the vector can be rewritten as:

cos(ωit) = sin
(
ωit+

π

2

)
, for i = 1, 2, . . . , d. (26)

The sine terms are already in the desired form with a zero phase shift:

sin(ωit) = sin (ωit+ 0) , for i = 1, 2, . . . , d. (27)

With these transformations, the original vector becomes:

TE(t) =
[
sin

(
ω1t+

π

2

)
, sin (ω1t+ 0) , . . . , sin

(
ωdt+

π

2

)
, sin (ωdt+ 0)

]
, (28)

or equivalently,
TE(t) = [sin (ωit+ φi)]

2d
i=1 , (29)

where the phase shifts φi are defined as follows:

φi =

{
π
2 , if i is odd
0, if i is even.

C.2. Continued Proof of Proposition 3.1

Proof. The function sin(θ) is continuous and infinitely differentiable (i.e., C∞) on R. Thus, it is continuous on any closed
interval [a, b].

B-spline basis functions of degree k form a basis for the space of piecewise polynomial functions of degree k with continuity
Ck−1 at the knots. By the Weierstrass Approximation Theorem, any continuous function on a closed interval can be
uniformly approximated by polynomials to any desired degree of accuracy.

Since B-splines are piecewise polynomials, they can uniformly approximate any continuous function on [a, b]. Specifically,
for any ϵ > 0, there exists a linear combination of B-spline basis functions that approximates sin(θ) within ϵ over [a, b].

To build the approximation of sin(ωit + φi) using B-spline basis functions, we first select a knot vector T =
{t0, t1, . . . , tn+k+1} that partitions the interval [a, b] appropriately. The choice of the knot vector determines the placement
and spacing of the knots, which in turn affect the flexibility and local support of the B-spline basis functions.

Next, we choose the degree k of the B-spline basis functions based on the desired smoothness and approximation quality.
A higher degree allows for smoother basis functions, potentially improving the approximation at the cost of increased
computational complexity.

With the knot vector and degree specified, we generate the B-spline basis functions {Bj(θ)}Mj=1 of degree k using standard
recursive definitions. These basis functions possess local support and satisfy the partition of unity property, making them
suitable for approximating functions over [a, b].

To determine the coefficients cij that yield the best approximation of sin(ωit+ φi), we formulate an optimization problem.
Specifically, we set up a minimization problem that seeks to minimize the squared difference between the sine function and

14

Rethinking Time Encoding via Learnable Transformation Functions

the weighted sum of B-spline basis functions over the interval [a, b]:

min
ci,1,ci,2,...,ci,M

∫ b

a

sin(ωit+ φi)−
M∑
j=1

ci,j Bj(ωit+ φi)

2

dt. (30)

This minimization problem is a standard least squares problem, where the objective is to find the coefficients ci,j that
minimize the integral of the squared error. Solving this problem can be accomplished using numerical methods such as the
normal equations or singular value decomposition, leading to the optimal coefficients for the approximation.

By leveraging the properties of B-spline basis functions and the Weierstrass Approximation Theorem, we can assert that, for
any ϵ > 0, there exists a sufficiently large M and appropriate coefficients ci,j such that:

sup
t∈[a,b]

∣∣∣∣∣∣sin(ωit+ φi)−
M∑
j=1

ci,j Bj(ωit+ φi)

∣∣∣∣∣∣ < ϵ. (31)

This inequality indicates that the maximum deviation between the sine function and its B-spline approximation over [a, b] is
less than ϵ, satisfying the condition of uniform approximation.

Since ϵ > 0 is arbitrary, we can make the approximation as accurate as desired by increasing M and choosing appropriate
coefficients ci,j . Therefore, the sine function sin(ωit+ φi) can be represented as a sum of B-spline basis functions, making
it a special case of Equation (10) in the limit as M → ∞.

C.3. Proof of Proposition 3.2

A class C of models is considered invariant to time rescaling if, for any model M1 ∈ C and any scalar α > 0, there exists a
model M2 ∈ C that responds to αt (where t is scaled by α) in the same way that M1 responds to the original t values. We
provide the following proof to show that LeTE is invariant to time rescaling.

Proof. Consider time encoding M1, mapped by LeTE:

LeTE(t)[i] = ϕi(ωit+ φi). (32)

If we replace t with α · t (where α > 0), the time encoding updates as follows:

LeTE(α · t)[i] = ϕi(ωi(α · t) + φi). (33)

To preserve the behavior of the original model M1 under time rescaling, consider a new time encoding M2 with adjusted
frequencies ω′

i =
ωi

α . With this frequency adjustment, M2 behaves identically to M1 on α · t, demonstrating that LeTE is
invariant to time rescaling.

D. Implementation Details of LeTE
Previous implementations of FTEs can be summarized as inputting a timestamp or time difference between events into a
single-layer MLP with a fixed trigonometric function as the non-linear activation function. Inspired by this, our method can
be viewed as making the fixed activation function learnable by parameterizing it with a Fourier series expansion or B-spline
functions. Following KAN (Liu et al., 2025), which makes activation functions in deep learning models trainable, we use a
similar implementation method.

D.1. Fourier-based LeTE

The implementation of Fourier-based LeTE is straightforward and is given by:

ϕj(x) =

D∑
i=1

K∑
m=1

(
W

(cos)
j,i,m cos(mxi) +W

(sin)
j,i,m sin(mxi)

)
+ bj , (34)

where i = 1, 2, . . . , D indexes the input dimension, j = 1, 2, . . . ,M indexes the output dimension (with D = M in our
method), and m = 1, 2, . . . ,K indexes the Fourier frequencies. Here, K is a hyper-parameter that determines the grid size.
The parameters W(cos) ∈ RM×D×K , W(sin) ∈ RM×D×K , and b ∈ RM are learnable weights and biases.

15

Rethinking Time Encoding via Learnable Transformation Functions

D.2. Spline-based LeTE

By using B-spline functions, we make the ϕi functions in Equation (6) learnable as follows:

ϕi(x) = bi(x) + splinei(x), (35)

b(x) = Tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
, (36)

splinei(x) =
∑
j

cijBj(x), (37)

where cij are learnable. Unlike the original KAN, we use Tanh as the basis function here, as we found it performs better in
practice.

E. More Details for Experimental Setting
E.1. Details for “Time as the Only Input” Experiments

Following (Kazemi et al., 2019), We generate a sequential event-based version of MNIST by flattening the images and
recording the positions of pixels with intensities greater than a threshold (0.9 in our experiment). After this transformation,
each image is represented as an array of increasing numbers, such as [t1, t2, t3, . . . , tm]. These values are treated as event
times and can be used for image classification task. The backbone model we used is a 128-dimensional LSTM, with a batch
size of 512, aligned with the settings in (Kazemi et al., 2019).

E.2. Time Series Baselines and Datasets

E.2.1. EXPERIMENT IMPLEMENTATION DETAILS

Our experiments setting on time series tasks aligns with the definition of long-term forecasting. The baseline results for
Transformer and Pyraformer are based on our implementation, while the results for the other baselines are taken from their
original papers. Baseline models typically use a hand-crafted time encoding method that applies date and timestamps to
represent various time features—including minutes, hours, weekdays, days, and months. The mapped vectors are then added
together and added to the feature embeddings and fed into the models. The results are evaluated using MAE (Mean Absolute
Error) (Table 1) and MSE (Mean Squared Error) (Table 5), both of which are widely used metrics in time series forecasting
research.

E.2.2. BASELINES

We select 5 commonly used time series prediction baselines—Transformer (Vaswani et al., 2017), Pyraformer (Liu et al.,
2021), Non-stationary Transformer (Liu et al., 2022), MICN (Wang et al., 2023), and TimesNet (Wu et al., 2023)—and
replace their original hand-crafted time encodings with our proposed LeTE to demonstrate that LeTE can be effectively
applied to time series prediction models and improve the performance of downstream tasks. A brief introduction to these
baseline models is provided below:

• Transformer (Vaswani et al., 2017) leverages the self-attention mechanism to model long-range dependencies in
sequences, making it a powerful tool for time series forecasting, especially in cases with complex time patterns. Its
global context modeling capability enables it to capture intricate relationships between time steps effectively.

• Pyraformer (Liu et al., 2021) introduces a pyramid attention mechanism that hierarchically reduces the computational
burden while preserving the ability to model both local and global dependencies. This design makes it particularly
well-suited for handling long time series with improved efficiency and scalability.

• Non-stationary Transformer (Liu et al., 2022): addresses challenges in forecasting non-stationary time series by
incorporating dynamic feature adjustments and context-aware attention mechanisms. This allows the model to adapt to
evolving data distributions, ensuring robust and accurate predictions in dynamic environments.

• MICN (Wang et al., 2023) integrates multi-scale architectures to capture both short-term patterns and long-term
dependencies in time series data. By combining local convolutional operations and global attention, it provides a
balanced approach to handling diverse temporal characteristics.

16

Rethinking Time Encoding via Learnable Transformation Functions

• TimesNet (Wu et al., 2023) innovatively models time series data in the frequency domain, leveraging discrete Fourier
transformations to capture periodicity and trends. This approach enhances its ability to predict time series with
prominent seasonal and cyclical behaviors efficiently.

E.2.3. DATASETS

We utilize 4 real-world datasets to evaluate the effectiveness of our method on time series prediction tasks, encompassing
various real-world scenarios. The dataset statistics are presented in Table 3, with detailed descriptions provided below.

Table 3. Time Series Dataset Statistics: The dataset size is organized in (Train, Validation, Test). Please refer to (Wu et al., 2023) for the
original table.

Dataset Dim Series Length Dataset Size Information (Frequency)

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (15 mins)

Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (Hourly)

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (Daily)

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)

• ETT2 dataset includes time series data for oil temperature and power load measurements from electricity transformers,
collected between July 2016 and July 2018. Specifically, the subsets ETTm1 and ETTm2 are sampled at 15-minute
intervals, while ETTh1 and ETTh2 are recorded hourly.

• Electricity3 dataset provides hourly electricity consumption data for 321 clients, spanning the period from 2012 to
2014.

• Exchange (Lai et al., 2018) dataset offers daily panel data on exchange rates from eight countries, covering the years
1990 to 2016.

• Weather4 dataset contains meteorological time series data, comprising 21 weather indicators recorded at 10-minute
intervals in 2020 by the Weather Station of the Max Planck Biogeochemistry Institute.

E.3. Dynamic Graph Baselines and Datasets

E.3.1. EXPERIMENT IMPLEMENTATION DETAILS

The hyper-parameters are based on the best configurations reported in the papers, and we keep them unchanged across
different experiments for each baseline model to ensure a fair comparison. We rerun the baseline models TGAT with batch
size 100 and reuse the baseline results reported in the DyGFormer paper for other baselines. The results are evaluated using
Average Precision, i.e., AP (Table 2) and Area Under the Receiver Operating Characteristic Curve, i.e., AUC-ROC (Table 6),
both of which are widely used metrics in dynamic graph representation learning research.

E.3.2. BASELINES

We select 4 commonly used continuous dynamic graph representation learning baselines—TGAT (Xu et al., 2020), TGN
(Rossi et al., 2020), TCL (Wang et al., 2021), and DyGFormer (Yu et al., 2023)—and replace the Functional Time Encoding
methods (Kazemi et al., 2019; Xu et al., 2019) with LeTE to demonstrate its optimal performance on the dynamic graph link
prediction task. A brief introduction to these baseline models is provided below:

• TGAT (Xu et al., 2020) introduces a temporal attention mechanism to aggregate information from temporal-topological
neighbors, thereby generating temporal node representations in temporal graphs. Additionally, it proposes a trainable

2https://github.com/zhouhaoyi/ETDataset
3https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
4https://www.bgc-jena.mpg.de/wetter/

17

https://github.com/zhouhaoyi/ETDataset
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://www.bgc-jena.mpg.de/wetter/

Rethinking Time Encoding via Learnable Transformation Functions

time encoding function to capture distinguishable temporal information, which has been widely adopted in subsequent
dynamic graph network architectures.

• TGN (Rossi et al., 2020) integrates key ideas from previous models and introduces a memory module that maintains a
state vector for each node. The memory is updated dynamically whenever nodes participate in interactions. Additionally,
TGN incorporates a message-passing module, a memory update module, and a temporal embedding module to generate
effective temporal representations for nodes within temporal graphs.

• TCL (Wang et al., 2021) utilizes a breadth-first search algorithm to construct a temporal dependency interaction sub-
graph, extracting interaction sequences. It employs a Transformer encoder that integrates both topological and temporal
information to learn representations of central nodes. Additionally, TCL introduces a cross-attention mechanism within
the Transformer to model the inter-dependencies between interacting node pairs.

• DyGFormer (Yu et al., 2023) leverages 1-hop neighbor information for learning temporal graph representations. It
employs a Transformer encoder enhanced with a patching technique to effectively capture long-term dependencies
among nodes in temporal graphs. Furthermore, DyGFormer incorporates a Neighbor Co-occurrence Feature to preserve
the correlation information between source and target nodes.

E.3.3. DATASETS

We utilize 4 real-world datasets (Kumar et al., 2019) to evaluate the effectiveness of our method on dynamic graph
representation learning tasks, encompassing various real-world scenarios. The dataset statistics are presented in Table 4,
with detailed descriptions provided below.

Table 4. Dynamic Graph Dataset Statistics: Dimn and Dime represent the dimensions of node features and edge features, respectively. For
non-attributed graphs, we follow previous studies (Xu et al., 2020; Rossi et al., 2020) and use 172-dimensional zero vectors as padding.

Dataset Dimn Dime # Nodes # Edges Information Duration Time Granularity

Wikipedia - 172 9,227 157,474 Social 1 month Unix timestamps

Reddit - 172 10,984 672,447 Social 1 month Unix timestamps

MOOC - 4 7,144 411,749 Interaction 17 months Unix timestamps

LastFM - - 1,980 1,293,103 Interaction 1 month Unix timestamps

• Wikipedia records editing activities on Wikipedia pages over a one-month timeframe. Nodes in this graph represent
users or pages, and temporal links with timestamps capture the edits. Each link is associated with a 172-dimensional
feature vector based on LIWC (Linguistic Inquiry and Word Count) (Pennebaker, 2001).

• Reddit captures user activity across subreddits over a one-month period. In this dataset, nodes represent users or
subreddits, while timestamped links denote posting actions. Each link is further characterized by a 172-dimensional
feature vector derived from LIWC.

• MOOC captures the interactions of users on a widely used MOOC platform, structured as a directed, temporal network.
In this representation, nodes correspond to users and course activities (referred to as targets), while edges denote the
actions performed by users on these targets

• LastFM records interaction data where users listen to songs over a month. In LastFM, nodes correspond to users and
songs, and the links represent listening activities performed by users.

E.4. Real-World Application Dataset

The dataset used for real-world application experiments is a financial risk control dataset, containing records of 483,379
users’ transaction behavior at various merchants over a 60-day period. It includes a total of 26,850,000 transactions. Each
user is represented by a 585-dimensional feature, each merchant by a 128-dimensional feature, and each transaction by a
202-dimensional feature, with all transactions labeled with UNIX timestamps. The ratio of positive users (with default risk)
to negative users (without default risk) is 1:9.92 in the training dataset and 1:20.25 in the test dataset. The backbone model

18

Rethinking Time Encoding via Learnable Transformation Functions

employs a specially designed Transformer-based architecture to aggregate users’ historical transaction features, merchant
features, user features, and an optional time embedding into user embeddings, which are then used to predict whether the
user has default risk.

F. Additional Experimental Results
Here, we provide the complete results of the experiments discussed in the main text.

F.1. Results of multivariate time series long-term forecasting task evaluated using MSE

The results of the multivariate time series long-term forecasting task, evaluated using MSE, are presented in Table 5. These
results are organized in the same manner as those in Table 1.

Table 5. Time series prediction: multivariate long-term forecasting task. The past sequence length is set to 96, while the prediction lengths
are {96, 192, 336, 720}. The results are reported in terms of MSE, where lower values indicate better performance. HCTE (Hand-Crafted
Time Encoding) is a method widely adopted in time series research. FTE stands for Functional Time Encoding. The win rate represents
the percentage of cases where LeTE outperforms the HCTE. The best results for each baseline, dataset and prediction length combinations
are in bold. ETT consists of 4 subsets. Here, we present the average results across these subsets, with the full results provided in Table 8.

MSE Transformer Pyraformer NS Trans. MICN TimesNet Win

TE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE Rate

96 1.219 1.204 0.568 0.794 0.960 0.650 0.392 0.486 0.347 0.392 0.310 0.296 0.312 0.322 0.305
192 2.601 1.643 0.959 1.667 1.812 1.058 0.446 0.548 0.410 0.446 0.396 0.357 0.365 0.390 0.368
336 2.438 1.557 1.192 1.981 1.962 1.297 0.492 0.651 0.467 0.492 0.487 0.430 0.419 0.422 0.404E

T
T

720 1.998 2.217 1.313 2.589 2.442 1.612 0.552 0.660 0.531 0.552 0.630 0.517 0.467 0.468 0.441

95%

96 0.258 0.280 0.252 0.285 0.281 0.267 0.169 0.171 0.163 0.164 0.156 0.150 0.168 0.168 0.164
192 0.266 0.310 0.259 0.298 0.288 0.274 0.182 0.192 0.178 0.177 0.170 0.166 0.184 0.179 0.179
336 0.275 0.339 0.265 0.307 0.306 0.274 0.200 0.201 0.190 0.193 0.189 0.184 0.198 0.210 0.193

E
le

ct
ri

ci
ty

720 0.288 0.395 0.276 0.304 0.304 0.293 0.222 0.237 0.226 0.212 0.228 0.208 0.220 0.287 0.220

95%

96 0.545 0.788 0.464 0.505 0.616 0.584 0.111 0.137 0.102 0.102 0.098 0.080 0.107 0.108 0.103
192 0.950 1.028 0.903 1.015 0.983 0.904 0.219 0.273 0.193 0.172 0.186 0.152 0.226 0.217 0.211
336 1.462 1.866 1.114 1.263 1.420 1.056 0.421 0.463 0.342 0.272 0.356 0.265 0.367 0.413 0.367

E
xc

ha
ng

e

720 2.569 2.002 1.736 1.762 1.714 1.316 1.092 1.546 0.682 0.714 0.833 0.636 0.964 0.989 0.958

95%

96 0.393 0.184 0.172 0.225 0.207 0.181 0.173 0.172 0.168 0.161 0.198 0.166 0.172 0.172 0.166
192 0.547 0.249 0.220 0.252 0.238 0.230 0.245 0.224 0.215 0.220 0.243 0.209 0.219 0.221 0.212
336 0.678 0.328 0.309 0.362 0.324 0.284 0.321 0.295 0.277 0.278 0.285 0.251 0.280 0.278 0.274

W
ea

th
er

720 0.844 0.480 0.425 0.411 0.394 0.383 0.414 0.350 0.338 0.311 0.350 0.303 0.365 0.354 0.352

95%

Win Rate 100% 94% 94% 94% 94% 95%

F.2. Results of dynamic graph link prediction task evaluated using AUC-ROC

The results of the dynamic graph link prediction task, evaluated using AUC-ROC, are presented in Table 6.

Table 6. Dynamic graph link prediction task: The results are reported in AUC-ROC, where higher values indicate better performance. The
better results are in bold. Here, we present the top-performing results across variations of LeTE, with the full results provided in Table 10.
FTE represents Functional Time Encoding which is commonly used in dynamic graph research.

AUC Wikipedia Reddit MOOC LastFM

TE Transductive Inductive Transductive Inductive Transductive Inductive Transductive Inductive

TGAT FTE 96.69 ± 0.26 95.95 ± 0.33 98.48 ± 0.04 96.90 ± 0.07 86.44 ± 0.24 86.04 ± 0.19 70.89 ± 0.10 76.11 ± 0.11
LeTE 97.63 ± 0.11 97.07 ± 0.10 98.51 ± 0.01 96.96 ± 0.05 89.46 ± 0.08 89.50 ± 0.05 74.24 ± 0.28 79.63 ± 0.14

TGN FTE 98.37 ± 0.07 97.72 ± 0.03 98.60 ± 0.06 97.39 ± 0.07 91.21 ± 1.15 91.24 ± 0.99 78.47 ± 2.94 82.61 ± 3.15
LeTE 98.73 ± 0.07 98.11 ± 0.10 98.72 ± 0.00 97.55 ± 0.05 92.68 ± 0.37 92.41 ± 0.73 83.94 ± 1.85 87.74 ± 1.75

TCL FTE 95.84 ± 0.18 95.57 ± 0.20 97.42 ± 0.02 93.80 ± 0.07 83.12 ± 0.18 81.43 ± 0.19 64.06 ± 1.16 70.84 ± 0.85
LeTE 97.84 ± 0.06 97.56 ± 0.02 97.68 ± 0.03 94.63 ± 0.05 84.73 ± 0.13 83.25 ± 0.23 70.17 ± 0.47 75.86 ± 0.44

DyG-
Former

FTE 98.91 ± 0.02 98.48 ± 0.03 99.15 ± 0.01 98.71 ± 0.01 87.91 ± 0.58 87.62 ± 0.51 93.05 ± 0.10 94.08 ± 0.08
LeTE 99.04 ± 0.01 98.67 ± 0.02 99.17 ± 0.00 98.74 ± 0.01 89.18 ± 0.21 89.16 ± 0.30 93.65 ± 0.07 94.52 ± 0.08

19

Rethinking Time Encoding via Learnable Transformation Functions

F.3. Full results of the multivariate long-term forecasting task on 4 ETT subsets

We present the full results of the multivariate long-term forecasting task on the 4 ETT subsets in Tables 7 and 8, as Tables 1
and 5 report the average results.

Table 7. Time series prediction: multivariate long-term forecasting task on 4 subsets of ETT. The past sequence length is set to 96, while
the prediction lengths are {96, 192, 336, 720}. The results are reported in terms of MAE. The best results for each baseline, dataset and
prediction length combinations are in bold.

MAE Transformer Pyraformer NS Trans. MINC TimesNet

TE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE

E
T

T
m

1 96 0.621 0.601 0.507 0.581 0.522 0.521 0.398 0.409 0.389 0.398 0.376 0.372 0.375 0.389 0.378
192 0.703 0.550 0.526 0.577 0.547 0.531 0.444 0.427 0.417 0.444 0.393 0.399 0.387 0.418 0.404
336 0.795 0.755 0.596 0.675 0.637 0.610 0.464 0.496 0.439 0.464 0.425 0.426 0.411 0.418 0.418
720 0.798 0.782 0.663 0.760 0.700 0.645 0.516 0.498 0.470 0.516 0.467 0.465 0.450 0.456 0.454

E
T

T
m

2 96 0.506 0.451 0.420 0.458 0.756 0.411 0.274 0.304 0.278 0.274 0.287 0.271 0.267 0.268 0.262
192 0.908 0.700 0.558 0.649 0.611 0.625 0.339 0.379 0.325 0.339 0.349 0.321 0.309 0.306 0.302
336 0.796 0.806 0.753 0.811 0.902 0.775 0.361 0.400 0.353 0.361 0.439 0.364 0.351 0.351 0.342
720 1.192 1.301 0.851 1.416 1.491 1.137 0.413 0.446 0.420 0.413 0.506 0.432 0.403 0.409 0.399

E
T

T
h1

96 0.739 0.814 0.524 0.637 0.613 0.593 0.491 0.616 0.452 0.491 0.413 0.409 0.402 0.425 0.408
192 0.762 0.815 0.632 0.738 0.778 0.647 0.504 0.631 0.483 0.504 0.465 0.452 0.429 0.457 0.439
336 0.772 0.786 0.679 0.794 0.758 0.736 0.535 0.730 0.541 0.535 0.511 0.502 0.469 0.469 0.453
720 0.800 0.878 0.724 0.776 0.804 0.782 0.616 0.792 0.610 0.616 0.598 0.565 0.500 0.490 0.421

E
T

T
h2

96 1.323 1.349 0.752 0.892 0.989 0.806 0.458 0.413 0.390 0.458 0.392 0.349 0.374 0.367 0.359
192 2.184 1.599 1.133 1.632 1.760 1.150 0.493 0.475 0.434 0.493 0.485 0.408 0.414 0.418 0.406
336 2.113 1.405 1.256 1.893 1.856 1.330 0.551 0.528 0.463 0.551 0.569 0.500 0.452 0.458 0.438
720 1.488 1.623 1.276 1.832 1.761 1.274 0.560 0.492 0.460 0.560 0.673 0.558 0.468 0.466 0.443

Table 8. Time series prediction: multivariate long-term forecasting task on 4 subsets of ETT. The past sequence length is set to 96, while
the prediction lengths are {96, 192, 336, 720}. The results are reported in terms of MSE. The best results for each baseline, dataset and
prediction length combinations are in bold.

MSE Transformer Pyraformer NS Trans. MINC TimesNet

TE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE HCTE FTE LeTE

E
T

T
m

1 96 0.713 0.667 0.511 0.708 0.581 0.584 0.386 0.430 0.370 0.386 0.329 0.325 0.338 0.365 0.339
192 0.866 0.592 0.573 0.693 0.621 0.560 0.459 0.464 0.418 0.459 0.364 0.373 0.374 0.430 0.392
336 1.063 1.035 0.692 0.848 0.754 0.689 0.495 0.651 0.451 0.495 0.403 0.396 0.410 0.412 0.412
720 1.075 1.062 0.788 1.009 0.855 0.777 0.585 0.584 0.510 0.585 0.469 0.463 0.478 0.482 0.477

E
T

T
m

2 96 0.486 0.354 0.327 0.384 1.047 0.310 0.192 0.246 0.195 0.192 0.190 0.187 0.187 0.191 0.182
192 1.499 0.834 0.522 0.730 0.653 0.672 0.280 0.378 0.266 0.280 0.271 0.241 0.249 0.253 0.248
336 1.107 1.113 0.949 1.144 1.377 1.023 0.334 0.387 0.315 0.334 0.398 0.307 0.321 0.327 0.310
720 2.609 2.931 1.104 3.624 3.708 2.195 0.417 0.491 0.431 0.417 0.525 0.414 0.408 0.427 0.408

E
T

T
h1

96 0.876 1.032 0.535 0.727 0.664 0.632 0.513 0.841 0.470 0.513 0.381 0.379 0.384 0.412 0.387
192 0.919 1.083 0.710 0.903 0.949 0.734 0.534 0.786 0.522 0.534 0.452 0.434 0.436 0.461 0.433
336 0.960 1.003 0.805 1.011 0.931 0.887 0.588 0.941 0.638 0.588 0.520 0.501 0.491 0.483 0.470
720 1.030 1.183 0.856 0.992 1.012 0.961 0.643 1.052 0.735 0.643 0.646 0.578 0.521 0.509 0.455

E
T

T
h2

96 2.802 2.762 0.897 1.357 1.548 1.074 0.476 0.427 0.355 0.476 0.339 0.294 0.340 0.319 0.313
192 7.123 4.066 2.030 4.342 5.025 2.268 0.512 0.563 0.436 0.512 0.495 0.380 0.402 0.416 0.398
336 6.621 3.078 2.322 4.922 4.786 2.589 0.552 0.625 0.466 0.552 0.625 0.516 0.452 0.464 0.422
720 3.279 3.695 2.502 4.733 4.191 2.516 0.562 0.513 0.448 0.562 0.880 0.615 0.462 0.456 0.426

F.4. Dimensions of Time Embedding

We present the AUC-ROC results for Wikipedia/TGN and MOOC/TGN with different time embedding dimensions (for
both FTE and LeTE) in Figure 6. To cover a broader range of scenarios, we also include the results for DyGFormer on the
Wikipedia dataset in Figure 7.

G. More Experiments
G.1. Statistic Analysis of the Complex Time Patterns in Data

Time-related data often contains mixed and complex patterns, which can primarily be categorized as periodic and non-
periodic. To investigate the periodic and non-periodic patterns in the data, we analyze four dynamic graph datasets

20

Rethinking Time Encoding via Learnable Transformation Functions

2 8 16 32 64 100
95.50

96.20

96.90

97.60

98.30

99.00

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

(a) Wikipedia/TGN

2 8 16 32 64 100
86.50

88.00

89.50

91.00

92.50

94.00

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

(b) MOOC/TGN

Figure 6. AUC-ROC results comparing different dimensions of the FTE and Spline-based LeTE on Wikipedia/TGN and MOOC/TGN.

2 8 16 32 64 100
98.00

98.26

98.52

98.78

99.04

99.30

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

(a) AP

2 8 16 32 64 100
98.00

98.24

98.48

98.72

98.96

99.20

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

LeTE Trans.
FTE Trans.
LeTE Induc.
FTE Induc.

(b) AUC-ROC

Figure 7. AP and AUC-ROC results comparing different dimensions of the FTE and Spline-based LeTE on Wikipedia/DyGFormer.

using spectral entropy (Shannon, 1948). First, we normalize the time or time differences (since previous dynamic graph
representation learning methods typically use time differences as inputs to the time encoding, we include this analysis here
as well) for each node with more than five interactions, mapping the values to the range [0, 1]. We then treat each node’s
interaction times as a signal sequence. The spectral entropy for each node is computed as follows: We begin by applying
the Fast Fourier Transform (FFT) to the normalized signal sequences: X(f) = FFT(tnorm), where X(f) is the frequency-
domain representation of the signal. Next, we calculate the magnitude of the frequency components M(f) = |X(f)|.
The magnitudes are then normalized to form a probability distribution: P (f) = M(f)∑

f M(f) . Finally, the spectral entropy

is computed as: H(P) = −
∑

f P (f) logP (f), which measures the uniformity of the frequency components. A lower
entropy value indicates periodicity, while a higher entropy value suggests randomness.

We present the density plots of the spectral entropy in Figure 8. As shown in the figures, only a small portion of the nodes
exhibit strong periodicity in their interaction times or time differences, while most nodes show high entropy, indicating
non-periodic behavior. This suggests that capturing periodic patterns alone is insufficient; it is also important to model
non-periodic patterns to enhance the efficiency and expressiveness of the time encoding.

0 2 4 6 8 10 12

Spectral Entropy
0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

Density Plot of Spectral Entropy (Timestamp of Interactions)
Wikipedia
Reddit
Mooc
Lastfm

0 2 4 6 8 10 12

Spectral Entropy
0.0

0.2

0.4

0.6

0.8

1.0

1.2

De
ns

ity

Density Plot of Spectral Entropy (Time Difference between Interactions)
Wikipedia
Reddit
Mooc
Lastfm

Figure 8. Density plots of spectral entropy for dynamic graph datasets.

21

Rethinking Time Encoding via Learnable Transformation Functions

G.2. Comparative Analysis of Different Variants of LeTE

We conducted a set of additional experiments on dynamic graph link prediction tasks, applying different variants of LeTE and
comparing their downstream task performance, evaluated by AP and AUC-ROC. The results, presented in Tables 9 and 10,
indicate that, in most cases, Combined LeTE achieves the best performance among the three variants of LeTE. This outcome
is intuitive, as Combined LeTE leverages the strengths of both Fourier-based LeTE and Spline-based LeTE, enabling it to
effectively model diverse time patterns.

Due to differences in the periodicity and non-periodicity of node interactions across datasets, the effectiveness of Fourier-
based LeTE and Spline-based LeTE varies. Nonetheless, in most cases, both methods outperform the benchmark. This
demonstrates that even when using only Fourier-based LeTE or Spline-based LeTE, they can effectively model different
patterns, including periodic, non-periodic and mixed patterns, in the data.

Table 9. Comparing Functional Time Encoding (FTE), Fourier-based LeTE (F-LeTE), Spline-based LeTE (S-LeTE) and Combined
LeTE (C-LeTE): Dynamic graph link prediction results in AP. The best results are in bold.

AP Wikipedia Reddit MOOC LastFM

TE Transductive Inductive Transductive Inductive Transductive Inductive Transductive Inductive

TGAT

FTE 96.95 ± 0.24 96.33 ± 0.26 98.53 ± 0.04 97.01 ± 0.05 85.34 ± 0.19 84.94 ± 0.04 72.73 ± 0.11 77.78 ± 0.13
F-LeTE 96.82 ± 0.16 96.31 ± 0.13 98.54 ± 0.03 97.03 ± 0.02 85.25 ± 0.29 85.08 ± 0.29 72.31 ± 0.30 77.19 ± 0.38
S-LeTE 97.54 ± 0.06 97.06 ± 0.05 98.56 ± 0.01 97.05 ± 0.06 88.31 ± 0.10 88.13 ± 0.28 75.68 ± 0.55 80.61 ± 0.42
C-LeTE 97.82 ± 0.09 97.34 ± 0.08 98.56 ± 0.01 96.99 ± 0.06 88.30 ± 0.05 88.37 ± 0.12 76.22 ± 0.25 81.32 ± 0.14

TGN

FTE 98.45 ± 0.06 97.83 ± 0.04 98.63 ± 0.06 97.50 ± 0.07 89.15 ± 1.60 89.04 ± 1.17 77.07 ± 3.97 81.45 ± 4.29
F-LeTE 98.57 ± 0.09 97.94 ± 0.08 98.66 ± 0.01 97.39 ± 0.07 90.04 ± 0.67 89.94 ± 0.49 77.58 ± 5.22 82.82 ± 6.53
S-LeTE 98.55 ± 0.06 97.98 ± 0.08 98.74 ± 0.00 97.65 ± 0.04 91.09 ± 0.20 90.87 ± 0.83 82.26 ± 2.27 86.46 ± 0.77
C-LeTE 98.78 ± 0.07 98.19 ± 0.09 98.74 ± 0.01 97.52 ± 0.12 91.41 ± 0.55 90.17 ± 0.69 83.64 ± 2.00 87.55 ± 1.88

TCL

FTE 96.47 ± 0.16 96.22 ± 0.17 97.53 ± 0.02 94.09 ± 0.07 82.38 ± 0.24 80.60 ± 0.22 67.27 ± 2.16 73.53 ± 1.66
F-LeTE 97.83 ± 0.05 97.58 ± 0.10 97.74 ± 0.03 94.75 ± 0.20 83.40 ± 1.32 81.75 ± 1.43 76.08 ± 0.79 80.68 ± 0.70
S-LeTE 97.33 ± 0.06 97.05 ± 0.13 97.78 ± 0.03 94.99 ± 0.07 83.87 ± 0.30 82.34 ± 0.31 69.92 ± 0.46 76.44 ± 0.42
C-LeTE 98.19 ± 0.04 97.89 ± 0.03 97.75 ± 0.09 94.83 ± 0.20 84.24 ± 0.10 82.72 ± 0.12 72.76 ± 4.64 78.70 ± 3.67

DyG-
Former

FTE 99.03 ± 0.02 98.59 ± 0.03 99.22 ± 0.01 98.84 ± 0.02 87.52 ± 0.49 86.96 ± 0.43 93.00 ± 0.12 94.23 ± 0.09
F-LeTE 99.04 ± 0.01 98.66 ± 0.05 99.22 ± 0.01 98.85 ± 0.02 87.60 ± 0.26 87.15 ± 0.22 93.06 ± 0.05 94.11 ± 0.09
S-LeTE 99.12 ± 0.01 98.72 ± 0.03 99.17 ± 0.10 98.78 ± 0.13 88.66 ± 0.20 88.37 ± 0.25 93.50 ± 0.12 94.57 ± 0.15
C-LeTE 99.13 ± 0.02 98.73 ± 0.00 99.24 ± 0.01 98.86 ± 0.01 88.70 ± 0.21 88.39 ± 0.15 93.64 ± 0.10 94.69 ± 0.12

Table 10. Comparing Functional Time Encoding (FTE), Fourier-based LeTE (F-LeTE), Spline-based LeTE (S-LeTE) and Combined
LeTE (C-LeTE): Dynamic graph link prediction results in AUC-ROC. The best results are in bold.

AUC Wikipedia Reddit MOOC LastFM

TE Transductive Inductive Transductive Inductive Transductive Inductive Transductive Inductive

TGAT

FTE 96.69 ± 0.26 95.95 ± 0.33 98.48 ± 0.04 96.90 ± 0.07 86.44 ± 0.24 86.04 ± 0.19 70.89 ± 0.10 76.11 ± 0.11
F-LeTE 96.53 ± 0.17 95.94 ± 0.20 98.48 ± 0.03 96.91 ± 0.03 86.36 ± 0.29 86.18 ± 0.33 70.53 ± 0.18 75.61 ± 0.22
S-LeTE 97.33 ± 0.07 96.76 ± 0.06 98.51 ± 0.02 96.96 ± 0.05 89.38 ± 0.14 89.14 ± 0.24 73.89 ± 0.51 79.17 ± 0.44
C-LeTE 97.63 ± 0.11 97.07 ± 0.10 98.51 ± 0.01 96.88 ± 0.05 89.46 ± 0.08 89.50 ± 0.05 74.24 ± 0.28 79.63 ± 0.14

TGN

FTE 98.37 ± 0.07 97.72 ± 0.03 98.60 ± 0.06 97.39 ± 0.07 91.21 ± 1.15 91.24 ± 0.99 78.47 ± 2.94 82.61 ± 3.15
F-LeTE 98.50 ± 0.10 97.86 ± 0.09 98.63 ± 0.02 97.27 ± 0.10 91.71 ± 0.65 91.53 ± 0.33 78.24 ± 4.86 83.16 ± 6.28
S-LeTE 98.47 ± 0.06 97.86 ± 0.06 98.72 ± 0.00 97.55 ± 0.05 92.68 ± 0.37 92.41 ± 0.73 82.48 ± 2.17 86.49 ± 0.62
C-LeTE 98.73 ± 0.07 98.11 ± 0.10 98.72 ± 0.02 97.43 ± 0.11 92.65 ± 0.48 91.27 ± 0.85 83.94 ± 1.85 87.74 ± 1.75

TCL

FTE 95.84 ± 0.18 95.57 ± 0.20 97.42 ± 0.02 93.80 ± 0.07 83.12 ± 0.18 81.43 ± 0.19 64.06 ± 1.16 70.84 ± 0.85
F-LeTE 97.35 ± 0.07 97.14 ± 0.13 97.62 ± 0.03 94.42 ± 0.22 83.73 ± 0.92 82.11 ± 0.98 70.17 ± 0.47 75.86 ± 0.44
S-LeTE 96.90 ± 0.08 96.62 ± 0.15 97.68 ± 0.03 94.63 ± 0.05 84.50 ± 0.20 83.02 ± 0.23 67.32 ± 0.50 74.37 ± 0.51
C-LeTE 97.84 ± 0.06 97.56 ± 0.02 97.64 ± 0.08 94.49 ± 0.17 84.73 ± 0.13 83.25 ± 0.23 69.16 ± 3.21 75.85 ± 2.64

DyG-
Former

FTE 98.91 ± 0.02 98.48 ± 0.03 99.15 ± 0.01 98.71 ± 0.01 87.91 ± 0.58 87.62 ± 0.51 93.05 ± 0.10 94.08 ± 0.08
F-LeTE 98.94 ± 0.02 98.55 ± 0.03 99.16 ± 0.01 98.72 ± 0.03 88.09 ± 0.16 87.89 ± 0.14 93.09 ± 0.03 94.00 ± 0.04
S-LeTE 99.04 ± 0.01 98.67 ± 0.02 99.08 ± 0.13 98.61 ± 0.19 89.18 ± 0.21 89.16 ± 0.30 93.56 ± 0.06 94.46 ± 0.06
C-LeTE 99.04 ± 0.02 98.65 ± 0.01 99.17 ± 0.00 98.74 ± 0.01 89.17 ± 0.20 89.14 ± 0.09 93.65 ± 0.07 94.52 ± 0.08

G.3. Visualization and Interpretability

As mentioned in Section 3.2, the learned parameters of our proposed method can be used to reconstruct the time embedding
feature map or the non-linear transformations. Since the previous time encoding method (FTE) uses fixed non-linear
transformation functions, we present an example of its feature map and compare it with the Fourier-based LeTE in Figure 9.

22

Rethinking Time Encoding via Learnable Transformation Functions

(b) Fourier-Based LeTE (Ours)

Larger input range

Larger input range

(a) Functional Time Encoding (FTE)

Figure 9. Example of feature map for the FTE and Fourier-based LeTE at different dimensions (the total dimension is 8, the parameters
weight are based on a learned TGN model on Wikipedia dataset).

Tim
e Embedding Dimension

0
1

2
3

4
5

6
7

Linear Transformed Value

-4
-2

0
2

4

Non-Linear Transform
ed Value

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

Dim 0

Dim 1

Dim 2Dim 3

Dim 4

Dim 5

Dim 6

Dim 7

Figure 10. Example of non-linear transformation for Spline-based LeTE at different dimensions.

23

Rethinking Time Encoding via Learnable Transformation Functions

�
 � � 	�� 	
 	� 	�
��

�(!0

�

	

�

�

�

�

�
'
*&
%./

 !

�)'*�,%-)(�)"��,%#%(�&��(��!�)(-.,/�.! ��!+/!(�!-���')).$! ��1���/--%�(��%&.!,��2�
�
�1(.$!.%����.�
�!����!�)(-.,/�.!
�����!�)(-.,/�.!
�!����!-% /�&-
�����!-% /�&-
�,�%(��!-.��*&%.

� �� ��
� ��� ��� ��� �
� ���

����#

�

�

�

	

�

��

��

��

�
�
��
��

��

������������������!�����"���������

� 	� �� � ��� �	� ��� �� 	��

�"��*

�

�

	

�

�

�
!

$
�()

��

�#!$�&�'#"�#���&���"� ��"�����#"'(&)�(�����%)�"��'���!##(�����+���)''��"��� (�&��,�	�

	 � 	 �
		
�
	
� �		
�"��(

	

�

�

�

�
!

$
�&'

��

��$$�"�"���%#��
�

	 � 	 �
		
�
	
� �		
�"��(

	

�

�

�

�
!

$
�&'

��

��$$�"�"���%#��
�
	

	 � 	 �
		
�
	
� �		
�"��(

	

�

�

�

�
!

$
�&'

��

��%�#���

	 � 	 �
		
�
	
� �		
�"��(

	

�

�

�

�
!

$
�&'

��

��%�#��
�

	 � 	 �
		
�
	
� �		
�"��(

	

�

�

�

�
!

$
�&'

��

�#"� �"��%���"����($#"�"&��)�

	 � 	 �
		
�
	
� �		
�"��(

	

�

�

�

�
!

$
�&'

��

�#"� �"��%���"���#%�������'��%�&���)�

� �� ��
� ��� ��� ��� �
� ���

����"

�

�

�

	

�

�
�
��
���

��

���������������� �����!���������

� 	� �� �� ��� �	� ��� ��� 	��

�#��+

�

�

	

�

�

�
"

%!
)*

��

�$"%�' ($#�$���' � #�!��#�����$#()'*�)�����&*�#��(���"$$)�����,���*((�#�� !)�'��-�	�

� �� ��
� ��� ��� ��� �
� ���

����!

�

�

�

	

�

��

��

�
�
��
���
��

����������!���������� ���������

Synthetic Periodic Data Synthetic Non-Periodic Data Synthetic “Mixed” Data

� �	 	� �	 ��� ��	 �	� ��	 ���
�����

�

�

�

�

��
���

��

�������	

� �	 	� �	 ��� ��	 �	� ��	 ���
�����

�

�

�

�

��
���

��

��������

� �	 	� �	 ��� ��	 �	� ��	 ���
�����

�

�

�

�

��
���

��

���������

� �	 	� �	 ��� ��	 �	� ��	 ���
�����

�

�

�

�

��
���

��

���������

� �

� �
 ��� ��
 �
� ��
 ���
����

�

�

	

�

�
�
��
���

��

����������������

� �

� �
 ��� ��
 �
� ��
 ���
����

�

�

	

�

�
�
��
���

��

������������������

� �

� �
 ��� ��
 �
� ��
 ���
����

�

�

	

�

�
�
��
���

��

������������������

� �

� �
 ��� ��
 �
� ��
 ���
����

�

�

	

�

�
�
��
���

��

������������������

Figure 11. Capturing periodic, non-periodic and mixed patterns in synthetic data.

� 	� �� �� ��� �	� ��� ��� 	��
�&,�*��,#'&��&��.

���

	��

��

���

���

��

�#
%

�

�'%(�*#+'&�' ��*#!#&�$��&�����'&+,*-�,����#%����)-�&��+���%'',"����/���-++#�&��#$,�*��0�
�
�'�����	�
��������'&+,*-�,��
�������'&+,*-�,��

� ���� ���� ���� ���� 	���
�����

�

�	���

	����

	���

������

��	���

�	����

�
��

�����	��	
���
���

� ���� ���� ���� ���� 	���

����

�

������

������

������

������

��
��

�������
���

��

� 	� �� � �� ��� �	�
�'- +��-$('��'� /

	��

��

���

���

��

���

���

�$
&

�(&)�+$,('�(!��+$"$'�%��'��� �(',-+.�- ���$& �� *. '� ,���&((-# ���0���.,,$�'��$%- +��1�
�
�(� �	��
� ���� �(',-+.�- �
����� �(',-+.�- �

� ���� ���� ���� ���� 	���
�����

�

�	���

	����

	���

������

��	���

�	����

�
	���

������

�
��

������
���
���

� 	� �� �� ��� �	� ��� ���
�'- +��-$('��'� /

���

	��

��

���

���

��

���

���

�$
&

�(&)�+$,('�(!��+$"$'�%��'��� �(',-+.�- ���$& �� *. '� ,���&((-# ���0���.,,$�'��$%- +��1�
�
�(� ��
� ���� �(',-+.�- �
����� �(',-+.�- �

� ���� ���� ���� ���� 	���
�����

�

�����

�����

����

�����

������

������

������

��
��

������
����
��

� �� ��� ��� 	�� 	��
�$*�(��*!%$��$��,

���

	��

��

���

�!
#
�

�%#&�(!)%$�%���(!�!$�"��$�����%$)*(+�*����!#����'+�$��)���#%%* ����-���+))!�$��!"*�(��.
�
�%���	
��������%$)*(+�*��
�������%$)*(+�*��

Figure 12. Capturing periodic, non-periodic and mixed patterns in real data.

We compare the local and global mappings of the two time encoding methods. As shown in the figure, our method captures
richer and more detailed time patterns in different dimensions of the time encoding for local mappings. By contrast, the
FTE method exhibits periodicity in only one dimension. This occurs because the learned frequency parameters in other
dimensions are too small to capture sufficient periodicity locally. Similarly, for global mappings, strong periodicity is still
observed in the feature map of our method, alongside varying degrees of non-periodicity. The FTE continues to exhibit
periodicity in only one dimension. In other dimensions, the similar frequency parameters result in insufficient periodicity
modeling and a lack of non-periodic pattern representation.

We also present the non-linear transformation sketches of Spline-based LeTE in Figure 10. The figure shows that the learned
non-linear activation functions vary across dimensions, significantly enhancing the model’s expressiveness. Additionally,
it demonstrates the modeling of both periodic and non-periodic patterns at local and global scales. Since Combined
LeTE is a combination of Fourier-based LeTE and Spline-based LeTE, it is intuitive that Combined LeTE inherits the same
interpretability as its components. Furthermore, as our method supports the reconstruction of non-linear activation functions,
it retains strong interpretability.

G.4. Capturing Periodic, Non-Periodic and Mixed Patterns in Data

Complex periodic and non-periodic patterns often coexist in real-world data, forming mixed time patterns. To demonstrate
that our method surpasses previous methods in modeling such patterns, we design a mini reconstruction task using both
synthetic data and real data from the Wikipedia dataset. Specifically, we construct an encoder-decoder model to reconstruct
the data. The encoder is either (d-dimensional) our LeTE or the FTE, while the decoder is a simple linear layer mapping a
d-dimensional vector to a 1-dimensional output. The reconstruction objective minimizes the MSE loss, which also quantifies
the modeling capability of the time encodings. Additionally, the reconstructed time sequence plots visually indicate the
models’ ability to fit the data.

To isolate periodic and non-periodic patterns, we first generate synthetic data containing purely periodic signals, purely

24

Rethinking Time Encoding via Learnable Transformation Functions

�
 �� �� � � �

���	

����

���	

���

��	

���

��	

�
 �� �� � � �

����

���	

���

��	

���

�
 �� �� � � �

�

�

�

�

�

	

�
 �� �� � � �

�

�

�

�

�

	

�
 �� �� � � �

���	

����

���	

���

��	

���

��	

�
 �� �� � � �

����

���	

���

��	

���

�
 �� �� � � �

�

�

�

�

�

	

�
 �� �� � � �

�

�

�

�

�

	

y = sin(x)

Fourier-based
LeTE

y = (1 + sin(x))sin(2x) y = log(1 + ex)

�
 �� �� � � �

����

���	

���

��	

���

�
 �� �� � � �

�

�

�

�

�

	

�
 �� �� � � �

�

�

�

�

�

	

�
 �� �� � � �

���	

����

���	

���

��	

���

��	

Spline-based
LeTE

FTE

y = x
1 + e−x

Target Function
} Learned Function

Figure 13. FTE, Fourier-based LeTE and Spline-based LeTE fitting different functions.

non-periodic signals, and mixed signals. These data is used to evaluate the performance of different encoders (LeTE or FTE).
The ground truth and reconstructed sequences are shown in Figure 11. As illustrated, the FTE method performs reasonably
well on periodic data but struggles with non-periodic and mixed data. In contrast, our method consistently outperforms FTE,
demonstrating its capability to model both periodic and non-periodic patterns effectively.

Real-world data often exhibit complex combinations of periodic and non-periodic patterns, i.e., mixed patterns. To further
evaluate our method, we randomly select 4 nodes’ interaction sequences from the Wikipedia dataset and perform the same
reconstruction experiments. The results are presented in Figure 12, where the time sequences are smoothed using a 1D
Gaussian filter for clarity. As shown, the time sequences reconstructed using our LeTE align more closely with the original
data compared to those reconstructed using FTE. Additionally, the loss of our LeTE is significantly lower than that of FTE,
further validating our method’s ability to capture complex periodic and non-periodic patterns in real-world data.

The experimental results show that, regardless of whether the sequence is periodic or non-periodic, our method consistently
outperforms better. This is primarily due to the incorporation of learnable non-linear transformations into our time encoding
approach.

G.5. Fitting Ability

We conduct a simple toy experiment to further demonstrate that both Fourier-based LeTE and Spline-based LeTE are
capable of capturing different patterns. Consequently, Combined LeTE inherits this ability as well. To illustrate this, we
generate a set of training data using 4 different non-linear transformation functions. Two of these functions are periodic: the
sine function y = sin(x), and a more complex periodic function y = (1 + sin(x)) sin(2x). The other two functions are
non-periodic: the Softplus activation function y = log(1 + ex) (Misra, 2019), and the Swish activation function y = x

1+e−x

(Radford et al., 2019).

We fit the data using simple 1-dimensional FTE, Fourier-based LeTE and Spline-based LeTE, evaluating their ability to
capture complex patterns, including both periodic and non-periodic. The learned non-linear transformation functions are
plotted in Figure 13. As shown in the figure, both Fourier-based LeTE and Spline-based LeTE successfully capture diverse

25

Rethinking Time Encoding via Learnable Transformation Functions

patterns. We also compare our method with FTE. Due to the fixed non-linear transformation functions used in FTE, it fails
to capture the complex periodic and non-periodic patterns present in the data. These results demonstrate that our proposed
LeTE has the capability to model complex patterns in data effectively and is more general than previous time encoding
methods.

H. More Explanations and Examples about Interpretability
We choose to use a 4-dimensional Combined LeTE to present our analysis related to interpretability of LeTE. The experiments
are conducted on the Wikipedia and MOOC datasets, with TGN and DyGFormer as backbone models. The training process
and settings are consistent with those used in the main experiments. We will demonstrate the interpretability of our model
from the following perspectives:

1. Reconstructing the learned non-linear transformation functions and plotting them to provide a clear and intuitive
analysis.

2. Analyzing each dimension to understand what information it represents. Specifically, the first two dimensions of the
time encoding are Fourier-based, while the last two dimensions are Spline-based.

3. Comparing different datasets under the same backbone model.

4. Comparing different backbone models’ LeTE under the same dataset.

5. Comparing the plots of low- vs. high-dimensional LeTE to assess the impact of dimensionality on interpretability.

H.1. Reconstructing

As previously discussed, the previous time encoding methods exhibit a degree of interpretability by using fixed sinusoidal
functions, which inherently reflect periodic patterns. However, this strong inductive bias also limits their expressiveness and
generalization to complex or non-periodicity.

In contrast, our proposed LeTE is a fully learnable time encoding, and the learnable non-linear functions can still be
reconstructed and visualized from learned parameters, allowing for interpretability analysis through function inspection.

We demonstrate this interpretability using a 4-dimensional Combined LeTE, trained on the Wikipedia/TGN. Figure 14
shows the learned transformation functions for each dimension. The first two dimensions are Fourier-based, and the last two
are Spline-based.

H.2. Analyzing Each Dimension

Fourier-based: The Fourier coefficients explicitly encode frequency components, offering a clear, intuitive view of
the captured periodicity. Compared to fixed sinusoidal functions, our learnable Fourier-based time encoding captures
periodic patterns with finer granularity and greater flexibility, enabling the representation of both periodic signals and subtle
non-periodicities within specific ranges.

For a single dimension, low-frequency components capture long-term trends, while high-frequency components focus on
short-term fluctuations. This allows the model to encode both long-term dynamics and short-term variations simultaneously.
As an example, we apply this to the Wikipedia dataset, which records editing activities, where nodes represent users or
pages, and edges with timestamps capture editing events (frequency magnitude spectrum is shown in Figure 15, note that the
inputs are time differences in this case).

Specifically, Dim 0 shows a strong high-frequency response. The learned coefficients include cos(3x′) : +0.29, cos(4x′) :
−0.16, cos(5x′) : −0.42. This suggests that Dim 0 is sensitive to short-term repetitive edits, i.e., high-frequency editing
behavior.

Dim 1 captures low- to mid-frequency patterns, with large coefficients: sin(1x′) : +0.96, sin(4x′) : +0.61, cos(4x′) :
+0.29. These reflect longer-term periodic behaviors. For example, frequency-1 may correspond to daily or weekly editing
cycles, while frequency-4 may capture sub-daily repeated interactions. This dimension may reflect user habits or regular
community editing patterns. Thus, LeTE’s Fourier-based dimensions not only retain the periodic interpretability of sine

26

Rethinking Time Encoding via Learnable Transformation Functions

-0.6

-0.4

Dim 0 (Fourier-based)

0

1
Dim 1 (Fourier-based)

0.0

0.5

Dim 2 (Spline-based)

-4 -2 0 2 4
Time

-0.38

-0.36

Dim 3 (Spline-based)

Figure 14. Plots of the four dimensions of the non-linear transformation functions of a 4-dimensional LeTE trained on Wikipedia/TGN.
We further present the four functions here, the parameters are learned and read from the trained model:

f0(x) = −0.0444 · cos(1 · x′
0) + 0.0758 · sin(1 · x′

0) + 0.0875 · cos(2 · x′
0) + 0.0704 · sin(2 · x′

0) + 0.0712 · cos(3 ·
x′
0)− 0.0327 · sin(3 · x′

0) + 0.0040 · cos(4 · x′
0)− 0.0340 · sin(4 · x′

0) + 0.0150 · cos(5 · x′
0)− 0.0220 · sin(5 · x′

0) + 0.0710 · cos(1 ·
x′
1) + 0.1506 · sin(1 · x′

1)− 0.1483 · cos(2 · x′
1) + 0.2502 · sin(2 · x′

1) + 0.2938 · cos(3 · x′
1) + 0.0878 · sin(3 · x′

1)− 0.1641 · cos(4 ·
x′
1) + 0.0640 · sin(4 · x′

1)− 0.4155 · cos(5 · x′
1) + 0.0395 · sin(5 · x′

1)− 0.0762,

f1(x) = +0.1860 · cos(1 · x′
0) + 0.0267 · sin(1 · x′

0) + 0.1971 · cos(2 · x′
0) − 0.0510 · sin(2 · x′

0) − 0.0225 · cos(3 ·
x′
0)− 0.0909 · sin(3 · x′

0)− 0.0501 · cos(4 · x′
0) + 0.1460 · sin(4 · x′

0) + 0.0952 · cos(5 · x′
0) + 0.2974 · sin(5 · x′

0)− 0.1604 · cos(1 ·
x′
1) + 0.9609 · sin(1 · x′

1) + 0.2323 · cos(2 · x′
1)− 0.3430 · sin(2 · x′

1)− 0.0441 · cos(3 · x′
1)− 0.1428 · sin(3 · x′

1) + 0.2930 · cos(4 ·
x′
1) + 0.6073 · sin(4 · x′

1) + 0.0330 · cos(5 · x′
1)− 0.1345 · sin(5 · x′

1)− 0.0130,

here, for both f0(x) and f1(x), x′
0 = 1.0069 · x+ 0.0069 and x′

1 = 0.0054 · x+ 0.0108.

f2(x) = +0.0013 ·B0(x) (support: [-2.20,-1.80])+0.0047 ·B1(x) (support: [-1.80,-1.40])−0.0353 ·B2(x) (support: [-1.40,-1.00])−
0.0321 ·B3(x) (support: [-1.00,-0.60]) − 0.0455 ·B4(x) (support: [-0.60,-0.20]) − 0.0273 ·B5(x) (support: [-0.20, 0.20]) + 0.0211 ·
B6(x) (support: [0.20, 0.60]) + 0.0248 ·B7(x) (support: [0.60, 1.00]) + 0.4133 · Tanh(x),

f3(x) = −0.0008 ·B0(x) (support: [-2.20,-1.80])−0.0072 ·B1(x) (support: [-1.80,-1.40])−0.0040 ·B2(x) (support: [-1.40,-1.00])+
0.0227 ·B3(x) (support: [-1.00,-0.60]) − 0.0067 ·B4(x) (support: [-0.60,-0.20]) + 0.0248 ·B5(x) (support: [-0.20, 0.20]) + 0.0165 ·
B6(x) (support: [0.20, 0.60]) + 0.0078 ·B7(x) (support: [0.60, 1.00]) + 0.0100 · Tanh(x).

27

Rethinking Time Encoding via Learnable Transformation Functions

1 2 3 4 5
Frequency (k)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ag

ni
tu

de
Frequency Magnitude Spectrum (Dim 0)

Magnitude (x'_0)
Magnitude (x'_1)

(a) Dim 0 (Fourier-based)

1 2 3 4 5
Frequency (k)

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ni
tu

de

Frequency Magnitude Spectrum (Dim 1)

Magnitude (x'_0)
Magnitude (x'_1)

(b) Dim 1 (Fourier-based)

Figure 15. Frequency Magnitude Spectrum for the first two dimensions of the non-linear transformation functions of LeTE trained on
Wikipedia/TGN. These two dimensions are Fourier-based.

functions but also exhibit richer frequency composition, allowing it to simultaneously capture both short-term bursts and
long-term rhythms.

In addition, this approach could be extended to analyze more complex patterns. However, as our goal here is to present the
underlying idea, we will not go deeper here.

Spline-based: The Spline-based functions offer complementary advantages, particularly for non-periodicity.

In our spline-based dimensions, where we applied a basis function (Tanh), if the weight of the basis function is higher,
it may dominate a specific dimension—such as Dim 2 in Figure 14. However, there are other dimensions where splines
dominate, such as Dim 3. To further clarify this, we combine the specific Wikipedia dataset and explain:

Dim 2: The output increases monotonically with time difference, indicating a time-decay-like effect — the longer the time
since last edit, the stronger the encoding response. This may suggest the time encoding has learned that re-activation after
long inactivity is a significant event in this specific case.

Dim 3: The function exhibits sharp peaks and local bumps, indicating that the model assigns particular importance to
certain time intervals. These may correspond to known active editing windows or reaction delays. The sharpness of some
coefficients suggests the model has captured rare but important temporal phenomena, such as one-off campaigns or anomaly
spikes.

The Spline coefficients inherently capture local temporal features, indicating specific time intervals that the model considers
critical or active. Sharp peaks coefficients within these curves suggest the occurrence of sudden events or anomalies. This
local characteristic is advantageous for identifying rare phenomena.

H.3. Different Datasets

We reconstructed and plotted the four non-linear functions for a 4-dimensional LeTE trained on MOOC/TGN (shown in
Figure 16). By comparing these results to those from the Wikipedia (Figure 14), it can be seen that the Dim 0 exhibit a
lack of periodicity. From the reconstructed equations of Dim 0, the higher-frequency terms do have coefficients with some
magnitude, but they are generally small. For instance, the coefficients of cos(5x′) and sin(5x′) are relatively small (e.g.,
−0.0134 and −0.0136), suggesting that their contribution is minimal and insufficient to generate significant fluctuations. As
a result, the overall function primarily exhibits slow oscillations, making the plot appear to be predominantly non-periodic
within a certain input window.

This observation aligns with the findings in Appendix G.1 and Figure 8, where the spectral entropy statistics also show that
the Wikipedia exhibits stronger periodicity compared to the MOOC.

Thus, by comparing the non-linear functions of LeTE across different datasets, we can indirectly explore the periodic or
non-periodic nature of the data present.

28

Rethinking Time Encoding via Learnable Transformation Functions

-0.2

0.0

0.2

Dim 0 (Fourier-based)

-0.4

-0.2

0.0

Dim 1 (Fourier-based)

0.00

0.25

Dim 2 (Spline-based)

-4 -2 0 2 4
Time

-0.2

0.0

Dim 3 (Spline-based)

Figure 16. Plots of the four dimensions of the non-linear transformation functions of a 4-dimensional LeTE trained on MOOC/TGN. We
further present the four functions here, the parameters are learned and read from the trained model:

f0(x) = −0.0186 · cos(1 · x′
0) − 0.0131 · sin(1 · x′

0) − 0.0173 · cos(2 · x′
0) + 0.0039 · sin(2 · x′

0) + 0.0019 · cos(3 · x′
0) +

0.0013 · sin(3 · x′
0) + 0.0032 · cos(4 · x′

0)− 0.0096 · sin(4 · x′
0)− 0.0134 · cos(5 · x′

0)− 0.0136 · sin(5 · x′
0) + 0.3140 · cos(1 · x′

1) +
0.5998 · sin(1 · x′

1)− 0.2781 · cos(2 · x′
1) + 0.4591 · sin(2 · x′

1) + 0.1376 · cos(3 · x′
1) + 0.2296 · sin(3 · x′

1)− 0.0880 · cos(4 · x′
1)−

0.0198 · sin(4 · x′
1)− 0.2621 · cos(5 · x′

1) + 0.0030 · sin(5 · x′
1) + 0.0016,

f1(x) = +0.0816 · cos(1 · x′
0) + 0.0362 · sin(1 · x′

0) + 0.0588 · cos(2 · x′
0) − 0.0046 · sin(2 · x′

0) − 0.0199 · cos(3 ·
x′
0)− 0.0082 · sin(3 · x′

0)− 0.0121 · cos(4 · x′
0) + 0.0325 · sin(4 · x′

0) + 0.0591 · cos(5 · x′
0) + 0.0609 · sin(5 · x′

0)− 0.4787 · cos(1 ·
x′
1) + 1.1011 · sin(1 · x′

1) + 0.0467 · cos(2 · x′
1)− 0.4438 · sin(2 · x′

1)− 0.1300 · cos(3 · x′
1)− 0.2972 · sin(3 · x′

1) + 0.3344 · cos(4 ·
x′
1) + 0.1396 · sin(4 · x′

1) + 0.0593 · cos(5 · x′
1)− 0.0841 · sin(5 · x′

1) + 0.1166,

here, for both f0(x) and f1(x), x′
0 = 0.9857 · x+ 0.0971 and x′

1 = −0.0187 · x+ 0.0885.

f2(x) = +0.0020·B0(x) (support: [-2.20, -1.80])+0.0071·B1(x) (support: [-1.80, -1.40])−0.0979·B2(x) (support: [-1.40, -1.00])−
0.0916 ·B3(x) (support: [-1.00, -0.60])− 0.1039 ·B4(x) (support: [-0.60, -0.20])− 0.3442 ·B5(x) (support: [-0.20, 0.20])− 0.3597 ·
B6(x) (support: [0.20, 0.60]) − 0.3093 ·B7(x) (support: [0.60, 1.00]) + 0.2827 · Tanh(x),

f3(x) = −0.0011·B0(x) (support: [-2.20, -1.80])−0.0099·B1(x) (support: [-1.80, -1.40])+0.0364·B2(x) (support: [-1.40, -1.00])+
0.0712 ·B3(x) (support: [-1.00, -0.60])+0.0169 ·B4(x) (support: [-0.60, -0.20])+0.2372 ·B5(x) (support: [-0.20, 0.20])+0.2886 ·
B6(x) (support: [0.20, 0.60]) + 0.2155 ·B7(x) (support: [0.60, 1.00]) + 0.0947 · Tanh(x).

29

Rethinking Time Encoding via Learnable Transformation Functions

-1

0

Dim 0 (Fourier-based)

-1

0

1
Dim 1 (Fourier-based)

-1

0

1
Dim 2 (Spline-based)

-4 -2 0 2 4
Time

-0.5

0.0

0.5
Dim 3 (Spline-based)

Figure 17. Plots of the four dimensions of the non-linear transformation functions of a 4-dimensional LeTE trained on Wikipedia/TGN.
The y-axes have been scaled to the same level as 18 to facilitate a direct comparison. The reconstructed functions are the same as in the
Figure 14.

H.4. Different Backbones

We provide plots of the same dataset trained with TGN and DyGFormer, shown in Figure 17 and Figure 18, with the y-axes
set to the same level for each backbone to facilitate a direct comparison). As the figures demonstrate, despite using different
backbone models, the learned functions exhibit similar trends and shapes for each dimension. This illustrates the stability of
our method and makes the interpretability process more reliable.

Of course, there may be some detailed differences between LeTEs trained on different backbones. This is intuitively due to
the presence of various influencing factors, such as the model architecture, the interaction of LeTE with other modules, the
optimization process and etc. However, we can validate the idea by inspecting the plot in a simplified manner.

H.5. Comparing Lower- and Higher-dimensional LeTE

We further compare the lower- and higher-dimensional LeTE by reconstructing the non-linear functions and plotting them
(please refer to and compare Figure 14 and 19). Intuitively, the higher-dimensional representation will provide more
information. As seen from the plots, Dim 2 in Figure 19 is dominated by the basis function, partially losing the information
captured by Dim 3 in Figure 14.

From the perspective of the reconstructed functions, for the Fourier-based dimensions, the LeTE with only one Fourier-based
dimension has a single input transformation, x′0, and all frequency components are computed based on this transformation.
This means the LeTE encodes on a broader time scale (reminder: we used the Wikipedia dataset) and models the time
difference variations of editing activities without distinguishing patterns at different scales. Since there is only one Fourier-
based dimension, all frequency components are controlled by the same input transformation, making it harder for the model
to interpret editing patterns at different time scales. In contrast, for the LeTE with two Fourier-based dimensions, each
dimension has different input transformations (x′0 and x′1), enabling the model to capture more detailed editing behaviors
at different scales. For example, Dim 0 might rely more on x′0 (with a larger scaling factor), focusing on short-term
fluctuations (high-frequency components), while Dim 1 might rely more on x′1 (with a smaller scaling factor), focusing

30

Rethinking Time Encoding via Learnable Transformation Functions

-1

0

Dim 0 (Fourier-based)

-1

0

1
Dim 1 (Fourier-based)

-1

0

1
Dim 2 (Spline-based)

-4 -2 0 2 4
Time

-0.5

0.0

0.5
Dim 3 (Spline-based)

Figure 18. Plots of the four dimensions of the non-linear transformation functions of a 4-dimensional LeTE trained on Wikipedia/TGN.
The y-axes have been scaled to the same level as 17 to facilitate a direct comparison. We further present the four functions here, the
parameters are learned and read from the trained model:

f0(x) = −0.0727 · cos(1 · x′
0) + 0.0704 · sin(1 · x′

0) + 0.1529 · cos(2 · x′
0) + 0.1720 · sin(2 · x′

0) + 0.1554 · cos(3 ·
x′
0)− 0.0320 · sin(3 · x′

0)− 0.0385 · cos(4 · x′
0)− 0.0220 · sin(4 · x′

0)− 0.0086 · cos(5 · x′
0)− 0.1107 · sin(5 · x′

0) + 0.0758 · cos(1 ·
x′
1) + 0.2909 · sin(1 · x′

1)− 0.2430 · cos(2 · x′
1) + 0.3166 · sin(2 · x′

1) + 0.2097 · cos(3 · x′
1) + 0.0334 · sin(3 · x′

1)− 0.3308 · cos(4 ·
x′
1)− 0.0664 · sin(4 · x′

1)− 0.4329 · cos(5 · x′
1)− 0.1351 · sin(5 · x′

1)− 0.0009,

f1(x) = +0.2232 · cos(1 · x′
0) + 0.1531 · sin(1 · x′

0) + 0.2963 · cos(2 · x′
0) − 0.0852 · sin(2 · x′

0) − 0.0409 · cos(3 ·
x′
0)− 0.1263 · sin(3 · x′

0)− 0.0938 · cos(4 · x′
0) + 0.1772 · sin(4 · x′

0) + 0.1431 · cos(5 · x′
0) + 0.3435 · sin(5 · x′

0)− 0.2795 · cos(1 ·
x′
1) + 1.0935 · sin(1 · x′

1) + 0.1297 · cos(2 · x′
1)− 0.4577 · sin(2 · x′

1)− 0.0711 · cos(3 · x′
1)− 0.3519 · sin(3 · x′

1) + 0.4151 · cos(4 ·
x′
1) + 0.5552 · sin(4 · x′

1) + 0.0696 · cos(5 · x′
1)− 0.1653 · sin(5 · x′

1)− 0.0245,

here, for both f0(x) and f1(x), x′
0 = 0.9936 · x− 0.0016 and x′

1 = 0.0009 · x− 0.0678.

f2(x) = +0.0012·B0(x) (support: [-2.20, -1.80])+0.0043·B1(x) (support: [-1.80, -1.40])−0.0096·B2(x) (support: [-1.40, -1.00])−
0.0071 ·B3(x) (support: [-1.00, -0.60])− 0.0197 ·B4(x) (support: [-0.60, -0.20])− 0.0075 ·B5(x) (support: [-0.20, 0.20])+0.0045 ·
B6(x) (support: [0.20, 0.60]) + 0.0038 ·B7(x) (support: [0.60, 1.00]) + 0.4794 · Tanh(x),

f3(x) = −0.0008·B0(x) (support: [-2.20, -1.80])−0.0074·B1(x) (support: [-1.80, -1.40])+0.0026·B2(x) (support: [-1.40, -1.00])+
0.0294 ·B3(x) (support: [-1.00, -0.60])− 0.0009 ·B4(x) (support: [-0.60, -0.20])+0.0179 ·B5(x) (support: [-0.20, 0.20])+0.0037 ·
B6(x) (support: [0.20, 0.60]) + 0.0031 ·B7(x) (support: [0.60, 1.00]) − 0.0395 · Tanh(x).

31

Rethinking Time Encoding via Learnable Transformation Functions

0

2
Dim 0 (Fourier-based)

-4 -2 0 2 4
Time

-0.2

0.0

0.2
Dim 1 (Spline-based)

Figure 19. Plots of the two dimensions of the non-linear transformation functions of a 2-dimensional LeTE trained on Wikipedia/TGN.
We further present the four functions here, the parameters are learned and read from the trained model:

f0(x) = −0.9560 · cos(1 · (x′)) + 0.3821 · sin(1 · (x′)) + 0.2430 · cos(2 · (x′)) − 0.3138 · sin(2 · (x′)) − 0.4807 · cos(3 ·
(x′))− 0.1918 · sin(3 · (x′))− 0.6372 · cos(4 · (x′))− 0.2811 · sin(4 · (x′))+ 0.1555 · cos(5 · (x′))+ 0.0840 · sin(5 · (x′))+ 0.0334,

here, x′ = 0.9963 · x− 0.0092.

f1(x) = −0.0020 ·B0(x) (support: [-2.20,-1.80])−0.0022 ·B1(x) (support: [-1.80,-1.40])+0.0097 ·B2(x) (support: [-1.40,-1.00])−
0.0636 ·B3(x) (support: [-1.00,-0.60]) − 0.0556 ·B4(x) (support: [-0.60,-0.20]) − 0.0123 ·B5(x) (support: [-0.20, 0.20]) − 0.0054 ·
B6(x) (support: [0.20, 0.60]) − 0.0011 ·B7(x) (support: [0.60, 1.00]) − 0.1945 · Tanh(x).

more on long-term trends (low-frequency components). Thus, higher dimensions allow the model to handle editing behaviors
at different time scales, providing higher interpretability.

Similarly, for the LeTE with only one Spline-based dimension, it primarily focuses on adjusting a single level, potentially
describing how time affects editing behaviors. However, relying on just one Spline-based dimension may make it difficult to
capture relatively complex time dynamics. For the LeTE with two Spline-based dimensions, the weights of the coefficients
are more distributed, granting the overall LeTE stronger local adjustment capabilities. Moreover, since a dimension may be
dominated by basis function or Spline functions, higher dimensions naturally have stronger expressive power.

Although higher-dimensional LeTEs offer stronger performance and better explain the information captured by the model,
the interpretability analysis of such higher-dimensional LeTEs becomes more complex and may require a dimension-by-
dimension analysis.

I. Limitation and Future Work
In this paper, we introduce LeTE, a general time encoding method. Generally, Combined LeTE offers better performance as
it leverages the strengths of both Fourier-based LeTE and Spline-based LeTE, enabling it to effectively capture both the
periodicity and non-periodicity of time. However, in practical scenarios, the choice of the hyperparameter p or among the
three variants may depend on the characteristics of the data and the specific task requirements.

We also explore the impact of the time encoding dimension on downstream task performance. Similarly, selecting an
appropriate time encoding dimension may vary depending on the data and tasks. Notably, we observe that even with a small
dimension, LeTE can achieve acceptable results in downstream tasks.

Additionally, we mention that certain position encoding methods can be considered special cases of our approach. However,
as position encoding is not the primary focus of this paper, we did not provide formal proofs. We believe that extending the
ideas proposed in this paper to models that use position encoding could yield improved results, making this a promising
direction for future research.

J. Code Implementation
The codes are available at a GitHub Repository.

32

https://github.com/chenxi1228/LeTE

