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ABSTRACT

Selection bias in Large Language Models (LLMs) for multiple-choice question
(MCQ) answering occurs when models show a preference for specific answer
choices based on factors like their position or symbolic representation, rather than
their content. This bias can undermine the fairness and reliability of LLM-based
systems. In this paper, we first introduce a granular label-free selection bias met-
ric that enables efficient and robust evaluation of selection bias without requiring
the answer distributions. Although majority voting, which aggregates predictions
across all possible permutations of answer choices, has proven effective in mit-
igating this bias, its computational cost increases factorially with the number of
choices. We then propose Batch Question-Context KV caching (BaQCKV), an
efficient majority voting technique, which reduces computational overhead while
maintaining the effectiveness of bias mitigation. Our methods provide an effi-
cient solution for addressing selection bias, enhancing fairness, and improving the
reliability of LLM-based MCQ answering systems.

1 INTRODUCTION

Selection bias in Large Language Models (LLMs) has been increasingly recognized as a significant
challenge, particularly in multiple-choice question (MCQ) answering tasks (Wei et al., 2024b; Zheng
et al., 2024; Zong et al., 2023). This bias occurs when models exhibit a preference for certain an-
swer choices based on factors like their position or symbolic representation, rather than the content
itself (Wei et al., 2024b). Such bias can distort the reliability and fairness of LLM-based evaluation
systems, which are widely used in real-world applications ranging from education to professional
testing. Zheng et al. (2024) highlighted the presence of selection bias in LLMs, demonstrating
how factors like answer position and symbolic representation can lead to systematic errors in MCQ
answering. Several metrics have been proposed to measure the selection bias such as the Choice
Kullback-Leibler Divergence (CKLD) (Choi et al., 2024), Standard Deviation of Recalls (RStd)
(Zheng et al., 2024), and Relative Standard Deviation (RSD) (Croce et al., 2021; Reif & Schwartz,
2024), which primarily evaluate bias in terms of divergence from ground truth distributions (CKLD)
or variability in class-wise performance (RStd and RSD). However, they do not adequately capture
the bias exhibited by models to option permutations. Also, the Fluctuation Rate proposed by (Wei
et al., 2024a) only considers two permutations of the options, which may not capture the full bias.
The primary intuition behind our metric is that logically, an answer’s correctness does not change
based on its position in a list of options and we therefore want language models to possess this be-
haviour. Addressing the problem of bias requires not just quantifying but also mitigating bias. Prior
mitigation strategies like majority voting proposed by Zong et al. (2023) that aggregates predictions
across all permutations of answer choices - has been shown to reduce bias, its computational cost
increases factorially with the number of choices, making it impractical for large-scale tasks. Thus, a
key challenge is to develop an efficient method for bias quantification and bias mitigation that can be
integrated into real-world systems. We therefore introduce a novel bias quantification metric that
evaluates selection bias in LLMs without requiring ground-truth distributions, providing a scalable
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assessment method. Additionally, we propose Batch Question-Context KV caching (BaQCKV),
an efficient implementation of majority voting that reduces computational cost while preserving bias
mitigation effectiveness.

2 METHODOLOGY

Bias Metric: Reducing bias fundamentally requires that a model maintain its confidence in selecting
an option regardless of how the options are permuted. We propose a bias quantification metric that
accounts for a model’s prediction under all possible option permutations. The input prompt for an
MCQ is designed such that each option is assigned an ID that the model selects. For example,
these IDs can be letters like A, B, C, or D for an MCQ with 4 options. The permutation of options
reorders the options, assigning them to different IDs. The proposed metric computes the variance of
the probability assigned to each of the n options under all possible permutations without reference
to the ground-truth labels and reports the average of this variance across all options:

Bias =
1

n

n∑
i=1

Var[Pi], where Var[Pi] =
1

m

m∑
j=1

(Pi,j − P̄i)
2

Here, Pi is the set of predicted probabilities of option i across all m possible permutations, Pi,j

represents the probability assigned to option i in permutation j, and P̄i is the mean probability of
option i across permutations.

Majority Voting: A possible mitigation strategy for selection bias is to enumerate the predictions
for all possible option permutations and obtain the average prediction for each option. This scheme
ensures that an option is always selected with the same confidence regardless of the order in which
the options are presented, and can be seen as a majority vote on all options Zong et al. (2023);
Guda et al. (2025). Predictions made by the majority vote should have zero bias since all possible
option permutations are considered, masking the inherent selection bias of the model and making
the majority vote an ideal selection bias mitigation strategy. With the majority voting, the output
probability, pi, for an option i is expressed as;

pi =
1

m

m∑
j=1

pji

where m = n! is the number of possible permutations for n options and pji is the probability
assigned to option i in the jth permutation.

Reducing Computational Costs: The computational complexity of making predictions on all pos-
sible permutations is n! for an MCQ, with n options. This can be easily reduced by defining a fixed
number k and considering only k permutations instead of n! reduces the computational cost (Guda
et al., 2025). Thus, pi = 1

k

∑k
j=1 pji. However, this scheme can be made even more efficient,

without a corresponding loss in bias, by employing a KV cache. To do so, we leverage the insight
that while an MCQ consists of a question Q (with or without a context), and a set of options, O, the
question, Q, remains the same across all possible option permutations.

For k permutations of the options, the original formulation of the majority voting (Guda et al., 2025)
requires k passes through the LLM, resulting in an additional overhead of (k − 1)× |Questions⊕
Context⊕ Options| tokens per question ( ⊕ is a concatenation operation). We however, note that
the set of Questions⊕ Context tokens remains constant across all k passes for each question in a
batch. To eliminate the redundant computation of these tokens across the batch, we are motivated
by the KV cache in (Pope et al., 2023) to introduce the BaQCKV, which caches and reuses the KV
states of the Questions ⊕ Context tokens for a set of k permutations. This cached KV state is
pre-pended to the KV states of the k permuted options. The attention mask of the permuted options
is then expanded based on the length of the Questions⊕Context tokens to ensure that the LLM’s
attention is correctly computed.

We show in Appendix A.1 that the percentage of tokens by using the BaQCKV is defined by Equa-
tion (1).

Token savings (%) =
(k − 1)× |Q⊕ C|
k × |Q⊕ C ⊕O|

× 100 (1)
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Algorithm 1 Efficient Majority Inference with BaQCKV
1: procedure BAQCKVINFERENCE(QC , Ok,M)
2: Input: QC - Question⊕ Context tokens, Ok - k permutations of options,M - Language Model, Output: Yk - Model outputs
3:
4: Step 1: Cache Question-Context KV States
5: KVQC

←M.encode(QC)

6: Step 2: Compute KV States for Permuted Options
7: for i = 1 to k do
8: KVOi

, maski ←M.encode(Oi)

9: end for
10: Step 3: Merge and Adjust KV States
11: for i = 1 to k do
12: KVi ← KVQC

⊕ KVOi
, maski ← 1|QC | ⊕ maski

13: end for
14: Step 4: Compute Batch Outputs
15: Yk ← {M.decode(KVi, maski) | i = 1, 2, . . . , k}
16: return Yk

17: end procedure

In Equation (1), the savings are maximized when |C| is large, as in Retrieval-Augmented Generation
(RAG), where redundant computation is minimized. Even when |C| = 0, savings persist due to the
shared |Q| tokens. Larger permutation sizes k further amplify savings by increasing redundancy
in |Q ⊕ C| across permutations. Thus, BaQCKV is most effective in tasks with substantial shared
context, multiple options, and large permutation sizes.

3 RESULTS

Model Name TeleQnA MedMCQA QASC Time Savings (%) Tokens Saved (%)
Acc Bias Acc Bias Acc Bias

Qwen2.5-3B-Instruct 0.801 0.021 0.479 0.058 0.737 0.011 - -
Qwen2.5-3B-Instruct + MV 0.841 0.000 0.487 0.000 0.947 0.000 50.9% 90.45%

Phi-2 0.760 0.069 0.359 0.082 0.630 0.024 - -
Phi-2 + MV 0.810 0.000 0.361 0.000 0.940 0.000 64.3% 90.45%

Llama3.2-3B 0.469 0.023 0.370 0.010 0.724 0.005 - -
Llama3.2-3B + MV 0.656 0.000 0.339 0.000 0.862 0.000 88.6% 90.00%

Table 1: Accuracy and bias values for different models across datasets, along with computational
efficiency improvements using Majority Voting (MV).

We evaluated three models (Qwen2.5-3B-Instruct (Bai et al., 2023), Phi-2 (Javaheripi et al., 2023),
and Llama3.2-3B(Grattafiori et al., 2024)) models on the TeleQnA (Maatouk et al., 2023), MedM-
CQA(Pal et al., 2022) and QASC(Khot et al., 2020) datasets. The results in Table 1 demonstrate
the importance of the developed bias metric in effectively quantifying selection bias in LLM-based
multiple-choice question (MCQ) answering. The models exhibit varying degrees of bias correlating
with the difficulty of the problem, with the highest bias in the MedMCQA benchmark due to its
difficulty. This confirms that selection bias is present and measurable using our proposed metric.
Notably, after applying majority voting (MV), the bias value consistently drops to 0.00. Addi-
tionally, models with majority voting show substantial improvements in accuracy, particularly in
QASC, where scores increase significantly (e.g., from 0.630 to 0.940 for Phi-2 and 0.724 to 0.862
for Llama3.2-3B), validating the effectiveness of our metric in capturing and mitigating bias.

Beyond bias reduction, our efficient majority voting method enhances real-world applicability by
significantly reducing computational costs. As shown in Table 1, our optimized approach for the
majority voting with the KV cache results in token and time savings. The Time Savings metric
shows that majority voting with BaQCKV reduces inference time by up to 88.6% (Llama3.2-3B)
and 64.3% (Phi-2), while also cutting token usage by over 90% across all models. This efficiency
gain is crucial for deploying bias-mitigation strategies at scale, making our approach feasible for
real-world applications where computational cost is a limiting factor. In summary, our bias metric
provides an effective way to diagnose and measure selection bias, while efficient majority voting
ensures that bias mitigation can be applied in practice without excessive resource consumption.
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A APPENDIX

A.1 PROOF OF TOKEN SAVINGS IN BAQCK

In the original Majority Voting (MV) framework, each question undergoes k passes through the
LLM, processing the full sequence of Q⊕ C ⊕O each time. The total token cost per question is:

CostMV = k × |Q⊕ C ⊕O| (2)

In BaQCK, the shared Q ⊕ C tokens are processed only once, while the O tokens are processed k
times. Thus, the total token cost per question is:

CostMV = |Q⊕ C|+ k × |O| (3)

The token savings is computed as:
Savings = CostMV − CostBaQCK (4)

= k × |Q⊕ C ⊕O| − (|Q⊕ C|+ k × |O|) (5)
= k × |Q⊕ C|+ k × |O| − |Q⊕ C| − k × |O| (6)
= (k − 1)× |Q⊕ C| (7)
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Expressing this as a percentage of the original cost:

Token savings (%) =
(k − 1)× |Q⊕ C|
k × |Q⊕ C ⊕O|

× 100 (8)

This result shows that BaQCK significantly reduces token computations, particularly when |C| is
large (e.g., in Retrieval-Augmented Generation). Even for small or zero-context cases (|C| = 0),
savings persist due to shared |Q| tokens. Increasing k further amplifies efficiency by reducing re-
dundant recomputation across shuffled options.
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