
Dataset distillation for offline reinforcement learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Offline reinforcement learning often requires a quality dataset that we can train1

a policy on. However, in many situations, it is not possible to get such a dataset,2

nor is it easy to train a policy to perform well in the actual environment given3

the offline data. We propose using data distillation to train and distill a better4

dataset which can then be used for training a better policy model. We show that5

our method is able to synthesize a dataset where a model trained on it achieves6

similar performance to a model trained on the full dataset or a model trained using7

percentile behavioral cloning.8

1 Introduction9

A significant challenge in reinforcement learning (RL) is that the data generation process is coupled10

with the training process, and data generation requires frequent online interaction with the environ-11

ment, which is not possible in many settings. Offline RL aims to solve this problem by decoupling the12

two and training the agent on a given a static, fixed dataset ([17],[20]). However, offline RL relies on13

a dataset generated by a good expert policy. We often do not have access to data generated by good14

policies, only mediocre ones. Offline training also means we face the distributional shift problem,15

where the policy trained on the dataset is produces a different data distribution than the one in the16

dataset.17

Instead of taking the usual offline RL approach of finding a better way to train a model given the18

offline dataset, we take an alternate approach of asking, is there a way to distill a better offline dataset19

to train on? We believe that this approaches offers several advantages over finding a better training20

method. First of all, it is easier to interpret a distilled dataset vs a better trained model. Secondly,21

distillation tends to lead to better generalization capabilities since we learn the key features of the22

input space ([25], [22]). Thirdly, a distilled dataset is much smaller than the original offline dataset,23

which improves sample efficiency.24

We propose using a method from data distillation [31] known as gradient matching to train a25

smaller synthetic dataset on the offline dataset. We evaluated the effectiveness of such our method,26

SYNTHETIC, on the Pro We evaluated the students trained using our procedure on the Procgen27

environment [5], which consists of procedurally generated games. Specifically, the student is only28

given access to offline expert policy data on some of the procedurally generated maps, and must29

generalize the knowledge they learn on those maps to other unseen, out-of-distribution settings. We30

show that students trained using synthetic data are able to perform similarly or better than students31

trained on the original offline policy dataset or students trained using percentile behavorial cloning32

both in distribution and out of distribution, despite the fact that they are trained on a smaller dataset.33

Why does training on a smaller dataset help in RL settings specifically? RL is a learning paradigm34

that is natural very prone to randomness and over-fitting due to the fact that the agent also has control35

of the data generation process. The insight that we have here is that a smaller and well controlled36

dataset can reduce randomness and overfitting. Just like how humans learn more effectively when37

read a well written book instead of reading many low quality articles, reinforcement learning agents38

can also learn a better, more generalizable policy by training on a high quality dataset.39

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

To summarize, our main contributions are as follows:40

• We propose a new method SYNTHETIC that synthesizes a new dataset given a offline dataset41

of trajectories generated by an expert policy using dataset distillation.42

• We show that a RL-model trained on a dataset synthesized using our method is able to43

perform similarly or better in the environment than directly training on the expert data or44

other techniques such as percentile behavioral cloning45

• We demonstrate how we are able to achieve similar performance with a far smaller dataset46

when training the RL-model on our synthesized dataset47

2 Methodology48

We describe our general problem setting, the baseline methods of tackling the problem, and our49

method here.50

2.1 Offline reinforcement learning problem setting51

In our reinforcement learning setting, the environment is modelled as a Markov decision process52

(MDP) M = ⟨S,A, T,R, s0, s−1⟩ with state space S, action space A, T (st+1|st, a) is the prob-53

abilistic transition function, R(st, a) ∈ R is the immediate transition reward, s0 is the start state,54

and s−1 is the end state since we are in an episodic setting. A policy function π : S → ∆(A) is a55

mapping from a state to a probability distribution over the action space. We will assume that both the56

S and A are discrete in our setting. When a policy can be parameterized by some parameter θ, we57

denote the policy as πθ. Since we are using deep reinforcement learning, πθ will be a neural network58

with weights θ.59

The goal of parametrized reinforcement learning is to learn the optimal θ∗ that maximizes the60

cumulative of an episode. We define the cumulative reward in terms of the trajectory distribution61

induced by the policy πθ. A trajectory τ is a sequence of states and actions that starts with s0 and ends62

with s−1, i.e. τ = ((s0, a0), (s1, a1), ..., (s−1, a−1)). Then the trajectory distribution pπ induced by63

policy π and environment M is given by64

pπ(τ) =
∏

(st,at)∈τ

π(at|st)T (st+1|st, at)

The expected cumulative reward is then65

J(π) = Eτ∼pπ

 ∑
(s,a)∈τ

R(s, a)

and our goal is to find66

θ∗ = argmax
θ

J(πθ), max
θ

J(πθ) ≈ max
π

J(π)

In offline reinforcement learning, the agent is not allowed to interact with the environment and collect67

data through that. Instead, we are given a static data set D = {(sit, ait, sit+1, r
i
t)} of transitions to68

learn the best policy πθ from, where (sit, a
i
t) ∈ τ i are part of the trajectory of episode i. Sometimes69

the dataset also includes the future return Gi
t =

∑
(sik,a

i
k)∈τ i,k≥t R(s, a) at both the current state70

and for the whole episode, so D = {(sit, ait, sit+1, r
i
t, G

i
t, G

i
0)}. We assume that the data is generated71

using some policy πβ , i.e. τ i ∼ pπβ
.72

2.2 Behavioral cloning73

A common way to approach offline RL is to simply attempt to train a policy πθ to imitate πβ . This is74

done in a supervised learning fashion by training πθ to predict ait given sit and minimizing the loss75

LBC(θ|D) =
∑

(sit,a
i
t,...)∈D

w(sit, a
i
t, ...)||πθ(s

i
t)− ait|| (1)

2

where || is some notion of distance and w is some weighting on the data-points in D. Usually we76

take the uniform weighting w(∗) = 1. Since we usually use stochastic gradient descent (SGD) to77

minimize the loss, in this case we can simply use p(∗) = w(∗)∑
(sit,a

i
t,...)∈D w(sit,a

i
t,...)

as the probability78

of selecting the sample.79

Since πβ might not be optimal, we can attempt to train a better policy πθ by filtering out observations80

in D that lead to poor outcomes. In other words, we let w(sit, a
i
t, ..., G

i
0) = IGi

0≥b where b is some81

threshold on good vs bad outcomes. We call the method of choosing b such that we only end up with82

x% of the initial dataset, and training a policy πθ using BC on it as BCx%, or percentile behavior83

cloning. In other words, the goal of percentile behavior cloning is to filter out a better training dataset.84

2.3 Synthetic dataset85

Instead of filtering out bad samples in order to create a good training dataset, our method directly86

learns a good training sample instead. This is done through dataset distillation, a technique used in87

supervised learning [31]. We described how we ‘train’ a synthesized dataset Dϕ here, parameterized88

by ϕ, given the offline dataset Dreal. Our method aims to reduce the gradient matching loss of ϕ with89

respect to some random initialization of the model weights θ according to some distribution θ ∼ pθ.90

Given some model parameters θ, we first get the gradient of θ with respect to the BC loss we defined91

in 1 on both the real dataset, ∇θLBC(θ|Dreal), and our synthetic one, ∇θLBC(θ|Dϕ). Then we define92

the gradient matching loss as93

Lgrad match(ϕ|θi) = Eθ∼pθ

[
||∇θLBC(θ|Dreal)−∇θLBC(θ|Dϕ)||

]
(2)

We then use SDG to minimize this loss. This method helps guarantee that the synthesized dataset94

Dsyn will produce a gradient similar to that of D when a model is trained on it.95

Figure 1: Overview of our dataset distillation process. On the left we train the dataset by taking the
matching gradient loss between the real offline dataset and our synthetic dataset. On the right we then
use the trained synthetic dataset to train a RL model, which we then evaluate on the real environment.

3 Experimental Setup96

We provide details on how we implemented our experiments below, including what environments we97

tested our method on, the architecture for our models, and how we trained the models.98

3.1 Environment99

We used the Procgen environment developed by OpenAI, a suite of 16 procedurally generated100

environments that allow the creation of adaptive environments with the use of different seeds [5].101

3

The inherent mechanics of these environments serve as an ideal platform for evaluating a student102

model’s ability to learn and adapt to variations introduced by different seeds. Furthermore, the diverse103

environments help our study as the agent is trained for a variety of challenges that may not occur104

during standard training procedures. This way we are allowed to scrutinize the agents’ performance105

across different scenarios that could arise in practical implementations. Some sample games from the106

Procgen environment are shown in Figure 2.107

Figure 2: Screenshots of games in Procgen Benchmark [5]
In Procgen environments, the state space, consists of 64x64 pixel images (RGB array with three108

channels and values 0 to 255). The action space is discrete in nature and usually includes movements109

(up, down, left, right) and interactions like collecting items or opening doors. For our experiments, we110

consider three procedurally generated games: Bigfish, Starpilot, and Jumper. In Starpilot for example,111

the player must navigate a space ship to avoid being hit by bullets and shoot down enemies in an112

arcade game fashion. Enemies and obstacles are procedurally generated, so each ‘map’ is different.113

The key characteristic of the Procgen benchmark is that, given a different seed, the player encounters114

a different ‘map’ though the game rules are unchanged. A key challenge for AI agents lies in how115

well they can adapt to seeds that they have not seen before.116

3.2 Model architectures and training117

3.2.1 Model training118

There are two model architectures that we consider – the expert policy model and the student policy119

model. The expert model is the neural network that we use as an expert policy, which is then used to120

produce the offline dataset D. The student model is the neural network which we train on the offline121

data to produce a policy πθ. Recall that the goal of offline RL is to optimize the parameters θ in order122

to produce a good policy, as described in section 2.1.123

The expert model is an agent with convolutional architecture found in IMPALA [8], following the124

convention in Procgen paper [5]. We trained the expert policy on the environment using proximal125

policy optimization (PPO) [23]. We used the PFRL package and followed one community-created126

pytorch implementation on GitHub [9, 16]. We trained the expert model for 25 million steps on127

200 seeds until it achieved a satisfying level of performance on the environment. Hence, we trained128

three expert models in total for each of the three environments. This IMPALA network has three129

convolutional blocks. The first convolutional block has the output channel 16, the next two blocks has130

the output channel 32. This setup has a total number of 9712+41632+41632+524544+3855+257 =131

621632 trainable parameters. Table 1 shows more details regarding expert model.132

For the student (the model that tries to mimic the expert), we use CNN (convolutional neural network)133

as our base model. The CNN model has 4 convolutional modules followed by a fully connected layer134

to the logits. The convolutional layers utilize a 3× 3 kernel with 3 output channels and coupled with135

a ReLU activation and a average 2 dimensional pooling layer with pool kernal size 2 and stride 2. For136

first 2 layers, the dimension of output channel is 4 times larger than that of the input channel. For the137

last 2 layers, the dimension of output channel is 4 times smaller than that of the input channel. So the138

output channel of the last layer is the same as the input channel of the first layer. The output of the139

convolutional layers is then passed to a fully connected layer, which maps to the logits. This leaner140

setup has a total number of 336 + 5232 + 336 + 327 + 735 = 6966 trainable parameters, reducing141

4

the size of the fully connect layer. Student model has much fewer trainable parameters comparing to142

that of the expert model. Table 1 contains hyperparameters of training student models.143

For each database collection method, we train 10 students and take the average of reward mean and144

reward standard deviation. We use Adam optimizer with learning rate 5e-3 [12]. For behavioral145

cloning students, we train them with 1000 steps and batch size 256. For SYNTHETIC students, we146

train them with only 100 steps and batch size 15.147

Expert BC Student SYNTHETIC Student

Model Params 621632 6966 6966
Optimizer Adam Adam Adam

Learning Rate 1e-5 5e-3 5e-3
Batch Size 8 256 15

Steps 25M 1000 100
Table 1: Hyperparameters: Expert V.S. BC Student V.S. SYNTHETIC Student

3.2.2 Data construction148

To construct offline RL dataset, we ran 100 episodes of our trained experts on all three environments,149

and store the data as mentioned in Section 2.1. To construct the synthetic data, given the synthetic150

data size, we sample data randomly from the offline RL data generated by expert, and then use151

gradient matching loss to udpate the synthetic data as illustrated in Figure 1. We use our experts to152

the RL Model to obtain gradients and compute the loss. Here, we use SGD optimizer with learning153

rate 0.1 and momentum 0.5, training with 1000 epochs.154

4 Results155

We compare our method to (1) the expert policy that we trained in an online fashion by interacting156

with the environment until we achieved good performance, which was then used to generate the157

offline dataset D and (2) a student trained on datasets with different levels of filtering using percentile158

behavioral cloning as described in section 2.2. In other words, we want to benchmark how well our159

method performs at generating a quality dataset that can be used for training an offline RL model.160

The student model was trained with the same number of stochastic gradient descent steps and same161

batch size for all baseline methods. We show the in-distribution performance, i.e. the performance on162

seeds contained in the offline dataset D, of the various methods in table 2 and figure 3. We see here163

that SYNTHETIC outperforms all percentile behavior cloning methods in both Jumper and Bigfish164

environments. SYNTHETIC does not outperform percentile BC on Starpilot. We observed that the165

Starpilot expert mainly takes one action during game – the ‘shoot’ action – compared to Bigfish and166

Jumper where the expert takes a more even distribution of actions. Hence the dataset is hard to distill167

because of the imbalanced samples of different actions.168

Since we can procedurally generate out of distribution (OOD) scenarios in Procgen, we also tested169

the OOD performance of the various dataset generation methods, as shown in table 3 and figure 4.170

We see here that similar, SYNTHETIC outperforms percentile behavior cloning methods in Jumper171

environment. SYNTHETIC also matches all percentile BC performances on Bigfish. SYNTHETIC172

does not outperform percentile BC on Starpilot since the dataset of Starpilot is imbalanced.173

Our student model trained by SYNTHETIC only use 150 data samples, as shown in table 4. Given174

much smaller dataset size (less than half of BC10%) and much fewer training steps as mentioned175

in table 1, SYNTHETIC achieves competitive results compared to behavioral cloning in different176

setups. SYNTHETIC also generalizes well out of distribution as the OOD performances matches the177

ID results, and often times in both Starpilot and Jumper outperforms the ID results.178

5 Related work179

5.1 Deep Reinforcement Learning180

Deep reinforcement learning has seen incredible success recently in tackling wide-ranging problems,181

from chess and Go to Atari games and robotics [24]. We have also seen great improvements in the182

5

ID Performance
Environment Expert BC 10% BC 25 % BC 40 % BC 100 % SYNTHETIC

Bigfish 14.27 ± 15.53 0.90 ± 1.44 0.93 ± 1.47 1.01 ± 1.62 1.00 ± 1.67 1.03 ± 1.99
Starpilot 28.88 ± 19.41 1.73 ± 2.20 2.10 ± 2.66 2.17 ± 2.58 1.85 ± 2.22 1.5 ± 1.96
Jumper 8.79 ± 3.26 1.79 ± 3.54 2.15 ± 4.12 1.95 ± 3.86 2.32 ± 4.13 2.76 ± 4.40

Table 2: Average in distribution performance of student trained on various data collection
methods.

OOD Performance
Environment Expert BC 10% BC 25 % BC 40 % BC 100 % SYNTHETIC

Bigfish 6.03 ± 9.84 0.93 ± 1.38 0.85 ± 1.19 0.83 ± 1.28 0.87 ± 1.32 0.83 ± 1.04
Starpilot 23.34 ± 18.30 1.83 ± 2.39 1.95 ± 2.39 2.12 ± 2.35 1.82 ± 2.20 1.54 ± 1.93
Jumper 5.61 ± 4.96 1.81 ± 3.51 1.8 ± 3.73 1.82 ± 3.70 2.50 ± 4.26 2.86 ± 4.43

Table 3: Average out of distribution performance of student trained on various data collection
methods.

Dataset Size
Environment BC 10% BC 25 % BC 40 % BC 100 % SYNTHETIC

Bigfish 2027 5014 7336 10450 150
Starpilot 1116 2796 4192 6830 150
Jumper 392 919 1337 4837 150

Table 4: Dataset size used on various data collection methods with respect to different environ-
ments.

architecture used to design such agents, from PPO [23] to decision transformers [4]. As deep neural183

networks have shown their effectiveness in various tasks, researchers in reinforcement learning have184

increasingly turned their attention to them. Many complex reinforcement learning situations require185

these versatile neural networks for tasks such as encoding the states of the agents, learning complex186

policies, and assessing their performance. [1] give a good overview of various ways deep neural187

networks were incorporated into reinforcement learning settings.188

5.2 Knowledge Distillation189

As using large deep neural networks started bringing remarkable success in multiple real-world190

scenarios related to large-scale data, it became important to deploy deep models within mobile191

devices and embedded systems. [2] first addressed this issue and proposed compression of large192

models for transferring the information from large models to train a small model such that accuracy193

is not hampered. [10] popularized the term ’knowledge distillation’ as the process of learning a194

small model from a large model (teacher) to a small student model. In recent times, there have been195

many extensions to knowledge distillation where the focus is on compressing deep neural networks.196

The lightweight student models have paved the way for integrating knowledge distillation in various197

applications like adversarial attacks [19], security and privacy of data [30], data augmentation [13]198

etc. KD has been a key instrument in the study of natural language processing (NLP) [7]. [26] and199

[27] have used some lightweight variations of BERT (called BERT model compression) through200

knowledge distillation. [11] proposed a TinyBERT, a two-stage transformer knowledge distillation,201

to make the framework even lighter.202

5.3 Policy distillation203

There have also been attempts to distill the policy of a expert (teacher) network down to a student204

network directly [21], known as policy distillation. Policy distillation is a specialized application of205

knowledge distillation where it adapts the principles of KD in the context of Reinforcement Learning.206

It is used to transfer knowledge from one policy to another in deep RL. [6]identified three techniques207

6

Figure 3: In distribution performance of various data collection methods

Figure 4: Out of distribution performance of various data collection methods
for distillation in DRL, making comparisons of their motivations and strengths through theoretical and208

empirical analysis, including expected entropy regularized distillation, which ensures convergence209

while learning quickly. Policy distillation can also be used to extract an RL agent’s policy to train a210

more efficient and smaller network that performs expertly [21].211

While our work also teaches a student a policy based on some teacher policy, we take more indirect,212

offline approach where the student is only allowed to see offline data generated by the expert (teacher).213

5.4 Dataset Distillation214

Dataset distillation is a dataset reduction method that synthesizes a smaller. In the original work,215

this is by feeding a randomly initialized model with samples from the real data and samples from216

the synthetic dataset and taking the gradient of the model with respect to these two data samples217

[31]. The difference between the two gradients is taken as the loss, and the values of the data in218

the synthetic dataset are updated using SGD (while keeping the model weights fixed) Since then,219

a wide variety of different distillation methods have been proposed ([33], [15]). In one such work,220

instead of matching the gradients for a single sample, the sum of the gradients (total change in model221

parameters) after training on a series of samples is matched instead ([3]). Despite recent interest in222

this technique, to the best of the author’s knowledge, there have not been any applications of dataset223

distillation to reinforcement learning yet.224

5.5 Task Generalization225

The goal of task generalization is to transfer what is learned from doing one task to other tasks,226

broadening the capabilities of the model. In the ideal scenario, the learned model should be able227

to apply its knowledge to changing tasks by using the core knowledge learned. ([29]) suggests228

a new transfer method called "Rule Transfer" which aims to learn the rules of a source task and229

apply them to other target tasks. ([28]) aims to learn mappings between the transitions from the230

source to the target task. In the problem suggested in ([18]), agents are required to learn to execute231

sequences of instructions after mastering subtask-solving skills. The problem gives out a good basis232

for generalizing to unseen tasks. In ([14]), authors suggest that using reward predictions gives the233

agents better generalization capabilities.234

7

5.6 Other Works235

In the work ([34]), the authors propose a Reinforcement Learning based method for Knowledge236

Distillation for scenarios where multiple teachers are available. Their work is focused on NLPs237

and uses large pre-trained models like BERT and RoBERTa, where the framework dynamically238

assigns weights to different teacher models on each training instance, in order to maximize the239

performance of the distilled student model. In ([32]), the authors present a novel framework (DRL-240

Rec) for knowledge distillation between RL-based models in list-wise recommendation, where they241

introduce one module by which the teacher decides on which lesson to teach to the student and242

another confidence-guided distillation through which it is determined how much the student should243

learn from each lesson.244

6 Conclusion and limitations245

There are several limitations to our study. The first one is that, limited by the computation resources246

and time we had, we only tested on three environments in Procgen. However, we believe that the247

experiments on these environments demonstrate the potential of our method, and we look forward to248

future work on other environments. We also focus on imitation policy learning in our work since our249

emphasis is on the dataset distillation, not the policy learning method. However, it is also possible to250

use other RL methods such as q-learning or actor-critic to train policies on the synthetic dataset. We251

mainly benchmark against percentile behavior cloning, since that is that is the closest method in the252

existing literature that ‘filters’ for a better quality training dataset.253

In conclusion, we proposed and tested a method that synthesizes a better quality training dataset254

for offline reinforcement learning. The performance of our method suggests that the quality of the255

dataset a key component to training a better model, and a smaller but higher quality dataset can lead256

to similar or better performance compared to a larger one. We believe that these methods can be257

highly effective in settings with low amounts of data or noisy data, and where data cannot be collected258

online. There is still much to explore in this research space.259

References260

[1] Kai Arulkumaran et al. “Deep reinforcement learning: A brief survey”. In: IEEE Signal261

Processing Magazine 34.6 (2017), pp. 26–38.262

[2] C Bucilua, R Caruana, and A Niculescu-Mizil. “Model compression, in proceedings of the 12263

th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining”. In:264

New York, NY, USA 4 (2006).265

[3] George Cazenavette et al. “Dataset distillation by matching training trajectories”. In: Pro-266

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,267

pp. 4750–4759.268

[4] Lili Chen et al. Decision Transformer: Reinforcement Learning via Sequence Modeling. 2021.269

arXiv: 2106.01345 [cs.LG].270

[5] Karl Cobbe et al. “Leveraging Procedural Generation to Benchmark Reinforcement Learning”.271

In: Proceedings of the 37th International Conference on Machine Learning. Ed. by Hal Daumé272

III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, 13–18 Jul273

2020, pp. 2048–2056. URL: https://proceedings.mlr.press/v119/cobbe20a.html.274

[6] Wojciech M Czarnecki et al. “Distilling policy distillation”. In: The 22nd international confer-275

ence on artificial intelligence and statistics. PMLR. 2019, pp. 1331–1340.276

[7] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for language under-277

standing”. In: arXiv preprint arXiv:1810.04805 (2018).278

[8] Lasse Espeholt et al. IMPALA: Scalable Distributed Deep-RL with Importance Weighted279

Actor-Learner Architectures. 2018. arXiv: 1802.01561 [cs.LG].280

[9] Yasuhiro Fujita et al. “ChainerRL: A Deep Reinforcement Learning Library”. In: Journal of281

Machine Learning Research 22.77 (2021), pp. 1–14. URL: http://jmlr.org/papers/v22/282

20-376.html.283

[10] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network.284

2015. arXiv: 1503.02531 [stat.ML].285

8

https://arxiv.org/abs/2106.01345
https://proceedings.mlr.press/v119/cobbe20a.html
https://arxiv.org/abs/1802.01561
http://jmlr.org/papers/v22/20-376.html
http://jmlr.org/papers/v22/20-376.html
http://jmlr.org/papers/v22/20-376.html
https://arxiv.org/abs/1503.02531

[11] Xiaoqi Jiao et al. “Tinybert: Distilling bert for natural language understanding”. In: arXiv286

preprint arXiv:1909.10351 (2019).287

[12] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv:288

1412.6980 [cs.LG].289

[13] Hankook Lee, Sung Ju Hwang, and Jinwoo Shin. “Self-supervised label augmentation via290

input transformations”. In: International Conference on Machine Learning. PMLR. 2020,291

pp. 5714–5724.292

[14] Lucas Lehnert, Michael L Littman, and Michael J Frank. “Reward-predictive representations293

generalize across tasks in reinforcement learning”. In: PLoS computational biology 16.10294

(2020), e1008317.295

[15] Shiye Lei and Dacheng Tao. “A comprehensive survey of dataset distillation”. In: IEEE296

Transactions on Pattern Analysis and Machine Intelligence (2023).297

[16] Lerrytang. Lerrytang/train-procgen-PFRL: Pytorch code to train and evaluate Procgen tasks.298

URL: https://github.com/lerrytang/train-procgen-pfrl/tree/main.299

[17] Sergey Levine et al. “Offline reinforcement learning: Tutorial, review, and perspectives on300

open problems”. In: arXiv preprint arXiv:2005.01643 (2020).301

[18] Junhyuk Oh et al. “Zero-shot task generalization with multi-task deep reinforcement learning”.302

In: International Conference on Machine Learning. PMLR. 2017, pp. 2661–2670.303

[19] Nicolas Papernot et al. “Distillation as a defense to adversarial perturbations against deep neural304

networks”. In: 2016 IEEE symposium on security and privacy (SP). IEEE. 2016, pp. 582–597.305

[20] Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. “A survey on306

offline reinforcement learning: Taxonomy, review, and open problems”. In: IEEE Transactions307

on Neural Networks and Learning Systems (2023).308

[21] Andrei A Rusu et al. “Policy distillation”. In: arXiv preprint arXiv:1511.06295 (2015).309

[22] Noveen Sachdeva and Julian McAuley. Data Distillation: A Survey. 2023. arXiv: 2301.04272310

[cs.LG].311

[23] John Schulman et al. Proximal Policy Optimization Algorithms. 2017. arXiv: 1707.06347312

[cs.LG].313

[24] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In:314

Nature 529 (Jan. 2016), pp. 484–489. DOI: 10.1038/nature16961.315

[25] Samuel Stanton et al. “Does knowledge distillation really work?” In: Advances in Neural316

Information Processing Systems 34 (2021), pp. 6906–6919.317

[26] Siqi Sun et al. “Patient knowledge distillation for bert model compression”. In: arXiv preprint318

arXiv:1908.09355 (2019).319

[27] Raphael Tang et al. “Distilling task-specific knowledge from bert into simple neural networks”.320

In: arXiv preprint arXiv:1903.12136 (2019).321

[28] Matthew E Taylor, Gregory Kuhlmann, and Peter Stone. “Autonomous transfer for reinforce-322

ment learning.” In: AAMAS (1). 2008, pp. 283–290.323

[29] Matthew E Taylor and Peter Stone. “Cross-domain transfer for reinforcement learning”. In:324

Proceedings of the 24th international conference on Machine learning. 2007, pp. 879–886.325

[30] Ji Wang et al. “Private model compression via knowledge distillation”. In: Proceedings of the326

AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 1190–1197.327

[31] Tongzhou Wang et al. “Dataset distillation”. In: arXiv preprint arXiv:1811.10959 (2018).328

[32] Ruobing Xie et al. “Explore, filter and distill: Distilled reinforcement learning in recommenda-329

tion”. In: Proceedings of the 30th ACM International Conference on Information & Knowledge330

Management. 2021, pp. 4243–4252.331

[33] Ruonan Yu, Songhua Liu, and Xinchao Wang. “Dataset distillation: A comprehensive review”.332

In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).333

[34] Fei Yuan et al. “Reinforced multi-teacher selection for knowledge distillation”. In: Proceedings334

of the AAAI Conference on Artificial Intelligence. Vol. 35. 16. 2021, pp. 14284–14291.335

9

https://arxiv.org/abs/1412.6980
https://github.com/lerrytang/train-procgen-pfrl/tree/main
https://arxiv.org/abs/2301.04272
https://arxiv.org/abs/2301.04272
https://arxiv.org/abs/2301.04272
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1038/nature16961

	Introduction
	Methodology
	Offline reinforcement learning problem setting
	Behavioral cloning
	Synthetic dataset

	Experimental Setup
	Environment
	Model architectures and training
	Model training
	Data construction

	Results
	Related work
	Deep Reinforcement Learning
	Knowledge Distillation
	Policy distillation
	Dataset Distillation
	Task Generalization
	Other Works

	Conclusion and limitations

