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ABSTRACT

Chat assistants must handle diverse and often conflicting user preferences, re-
quiring adaptability to various user needs. We propose Hypothesis Reweighting
(HyRe), a method that enables real-time personalization by reweighting ensem-
ble members based on just 1-5 labeled examples from the target user or domain.
Our key insight is that uniform ensemble averaging, while effective on the training
distribution, often underperforms individual ensemble members under distribution
shift. HyRe trains a single network with multiple prediction heads that capture dif-
ferent valid interpretations of preference data, then performs a simple Bayesian up-
date to upweight heads that best match the target user’s preferences. This requires
only a single forward pass with negligible (<1%) computational overhead, making
it practical for inference-time alignment. We empirically validate HyRe in several
target evaluation distributions. With as few as five preference pairs from each
target distribution, adaptation via HyRe surpasses state-of-the-art reward models
on RewardBench at both the 2B and 8B parameter scales, and improves reward
model accuracy by 20% across 32 diverse personalization tasks.

1 INTRODUCTION

Task specification—describing precisely what a machine learning model should do—is inherently
iterative and fundamentally incomplete under any finite set of instructions or training examples. As
models grow more powerful and are applied to increasingly complex and nuanced tasks, this prob-
lem arises in many forms, from spurious correlations in the data to conflicting user preferences.
Consider a chatbot trained via Reinforcement Learning from Human Feedback (RLHF) [63] on a
broad distribution of user preferences. Such models often perform adequately in aggregate but sys-
temtically fail to address specific users’ needs, since different individuals have distinct, sometimes
contradictory, notions of desirable responses. Meeting these user-specific requirements necessitates
rapid model adaptation with minimal supervision. However, existing adaptation strategies, such as
prompt-based methods [21, 38, 76] and fine-tuning [27, 28, 49, 73], can be computationally heavy,
typically requiring multiple forward-backward passes or large-scale gradient updates. This renders
them unsuitable for on-the-fly adaptation at test time.

To efficiently resolve ambiguity at test time, we draw on recent progress in efficient ensemble ar-
chitectures [51]. These methods let a single backbone network represent a broad range of plausible
functions at a small overhead, capturing the different ways the model can interpret the training set.
While prior work focuses largely on using ensembles for uncertainty estimation, we propose using
them to disambiguate tasks in real time: by quickly assessing which members of the ensemble best
match a new distribution, we can “pick the right interpretation” for that scenario.

We introduce Hypothesis Reweighting (HYRE), a two-step approach that scales to large models.
First, we train an ensemble of function heads on top of a shared backbone, ensuring each head indi-
vidually fits the training data. Next, at inference time, we gather a few labeled examples from the
target distribution—either proactively queried or provided in advance—and measure each head’s
performance. We then reweight the ensemble using a generalized Bayesian update that favors the
heads performing best on the adaptation set. Crucially, this update supports non-differentiable met-
rics like 0-1 error, and it requires only a single forward pass over the adaptation set, making it far
more efficient than conventional fine-tuning.
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Figure 1: Overview of HYRE. We train multiple prediction heads on a shared backbone. (Left) At inference
time, we evaluate each head on a small labeled adaptation set drawn from the target distribution. (Right) We
reweight the heads according to the sum of their accuracies on the adaptation set, and use the weighted ensemble
to make predictions on new inputs.

Our key contributions are as follows. We introduce HYRE, a simple and efficient method for
inference-time adaptation that reweights ensemble members based on a few labeled examples from
the target distribution. We demonstrate that uniform ensemble averaging often fails under distri-
bution shift, motivating our adaptive reweighting approach. We achieve state-of-the-art results on
RewardBench at both 2B and 8B scales with just 1-5 adaptation examples, outperforming much
larger models. Finally, we show the method scales to large models with negligible overhead (< 1%)
and improves performance across 32 diverse preference learning tasks.

2 PRELIMINARIES

Problem setup. We consider a general supervised learning setting that includes classification, pref-
erence learning, and regression tasks. Let X represent the input space and Y the output space, with
training distribution Ptrain and evaluation distribution Peval defined over X ×Y . The training dataset
Dtrain = {(xi, yi)}Ni=1 consists of N examples drawn from Ptrain. We explore few-shot adaptation
settings such as chatbot personalization, where a small adaptation setDadapt ∼ Peval only partially in-
forms model performance under Peval. The adaptation setDadapt can be labeled in advance or actively
queried, and is much smaller than the training set (|Dadapt| � |Dtrain|). For instance, in our main
experiment, |Dadapt| = 16 compared to |Dtrain| > 300, 000, with adaptation occurring near-instantly
after a single forward pass through the network.

Ensemble architectures. We train an ensemble of K models f1, . . . , fK on the training data Dtrain.
We consider parameterizations of the ensemble that aim to represent a distribution over functions
by training multiple models on the same dataset Dtrain, ensuring diversity without computational
overhead beyond training a single model. To achieve this, we employ prior networks [51]: fixed,
randomly initialized models whose outputs are added to each ensemble member’s output. This
mechanism preserves diversity among ensemble members during training, even as individual models
converge. We consider two computationally efficient ensemble architectures:

1. Shared-Base Ensemble: A single neural network that parameterizes both the prior and ensemble
components by sharing a common base.

2. Epinet: A base network augmented by a small auxiliary network that introduces diversity via a
learned index.

We train all ensemble members jointly by minimizing
∑K

k=1 L(fk,Dtrain) using SGD. Note that
this simple training procedure does not explicitly encourage diversity and may lead to ensemble
collapse in some settings. However, we empirically observe that sufficient diversity emerges for
personalization tasks, likely due to random initialization and the high-dimensional parameter space
of large models. These architectures have negligible overhead—in our reward model experiments,
100 ensemble heads add only 550K parameters (0.03%) to the 2B-parameter Gemma backbone.
Please refer to Appendix D for architectural details.

3 INFERENCE-TIME ENSEMBLE RECALIBRATION

In this section, we motivate and describe Hypothesis Reweighting (HYRE), a simple and compu-
tationally efficient method for few-shot adaptation to new tasks. HYRE dynamically adjusts the
weights assigned to different ensemble members at test time based on a few labeled samples from
the new task. HYRE leverages the ensemble’s diversity—each member representing a different
function that fits the training data—to efficiently adapt without retraining any model parameters.
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Figure 2: Motivating observation: the ensemble average often performs worse than a single well-chosen
member. This tendency is particularly pronounced further away from the training distribution. HYRE goes
further than selecting the best head—it finds a continuous weighting of all heads.

Algorithm 1 HYRE (Inference Time)

Require: Ensemble members f1..K , unlabeled dataset x1..N , query budget B
1: Initialize weights w ← [ 1K , . . . , 1

K ], query set Q← ∅
2: for i← 1 to B do
3: (Optional) Query label yn for argmaxn c(xn) and add (xn, yn) to Q (Appendix B)
4: Compute accuracy acck =

∑
n∈Q acc(fk, xn, yn) for each k

5: Update ensemble weight wk ∝ exp(acck + p) (Section 3.2)
6: end for
7: Return final weighted ensemble function fw : x 7→

∑K
k=1 wkfk(x)

3.1 UNIFORM ENSEMBLE AVERAGING IS OFTEN SUBOPTIMAL

A long-held principle in machine learning is that a uniformly weighted ensemble of independently
trained models tends to outperform individual models, largely because averaging can smooth out
errors and mitigate individual biases [15, 24, 40, 41, 53]. By exploiting diversity among ensem-
ble members, the uniform average often reduces variance and improves predictive performance in
settings where the training data sufficiently specifies the task at hand.

However, settings with substantial distribution shifts or personalized requirements can render the
uniform ensemble average overly coarse. When ensemble members represent different valid inter-
pretations of the training data, averaging dilutes these meaningful distinctions. Recent work [44, 69]
shows that in such cases, selecting the best single model can outperform naive averaging, as individ-
ual models may better align with specific test conditions.

While prior studies have shown this phenomenon in controlled or synthetic tasks, we verify in Fig-
ure 2 that it persists in large-scale, real-world settings involving distribution shifts and personaliza-
tion. Uniform ensemble predictions indeed fall short of even the accuracy achieved by a suitably
chosen single model.

This observation motivates our approach: dynamically adjust ensemble weights based on alignment
with the target task. Using a small labeled set from the target distribution, we upweight the prediction
heads that best match target data. We detail this reweighting procedure in Section 3.2 and validate
its effectiveness on real-world tasks in Section 6.

Key insight: Uniform averaging fails under distribution shift

In distribution shift settings, the ensemble average often performs worse than the best single
member. HYRE exploits this by finding optimal weightings that select the right interpretation for
each context.

3.2 HYRE: FAST INFERENCE-TIME ENSEMBLE REWEIGHTING

Given an ensemble of K models f1, . . . , fK , we aim to dynamically update their weights based on
adaptation data. As a practical inference-time assumption in settings where we cannot further train
neural networks, we can think of the “best” model as being one of the K ensemble particles that
performs best on the evaluation distribution. Starting with uniform weights wk = 1

K , we update
them as new labeled data from Peval becomes available.

The weighted ensemble prediction is fw(x) =
∑K

k=1 wkfk(x), where each wk ≥ 0 and
∑K

k=1 wk =
1. We measure each member’s performance using a loss function l(fk, x, y) and compute their cu-
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Figure 3: Principal component analysis of an ensemble of regression models.
Left: Each gray line is the prediction of an ensemble member; the dashed line
shows the ensemble mean. Right: The top three principal components of the
ensemble’s predictions reveal distinct axes of variation in predictive behavior.
Searching among ensemble weights like HYRE acts as a strong inductive
bias towards simple functions consistent with the training data.
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Figure 4: HYRE vs. fine-tuning
with different amounts of adap-
tation data. Despite using only a
single forward pass, HYRE out-
performs fine-tuning in low-
data regimes.

mulative loss on adaptation data L(fk,Dadapt) =
∑

(x,y)∈Dadapt
l(fk, x, y). The weights are updated

using a softmax on negative cumulative loss:

wk =
exp(−L(fk,Dadapt))∑K
j=1 exp(−L(fj ,Dadapt))

. (1)

As the loss l(fk, x, y), we use 0-1 error for classification and mean squared error for regression,
though HYRE supports any performance metric since the weight update remains valid for non-
differentiable functions.

The complete adaptation procedure is summarized in Algorithm 1. Key practical considerations
include:

• Computational efficiency. Since we use efficient ensemble architectures (Section 2), training and
inference cost is comparable to that of a single network. Reweighting requires just one forward
pass.

• Coverage of f1, . . . , fK . The target function need not lie exactly in the ensemble’s linear span.
Restricting solutions to the ensemble’s convex hull provides a practical bias-variance tradeoff in
low-data regimes.

• Active selection of Dadapt. When unlabeled samples are available at test time, we can actively
select which to label, improving reweighting efficiency (Appendix B).

3.3 INTERPRETING HYRE AS GENERALIZED BAYESIAN INFERENCE

The weight update in (1) can be interpreted as a form of generalized Bayesian inference [7]. Given
an initial belief state π(w), the updated belief after observing Dadapt is:

π(w|Dadapt) ∝ exp (−L(w,Dadapt))π(w), (2)

which generalizes classical Bayesian inference by allowing arbitrary loss functions. Standard Bayes
is recovered when l(w, x) is the negative log-likelihood.

Under mild conditions like i.i.d. sampling, these updates are consistent and coherent: they converge
to the optimal weighting and yield identical posteriors whether applied incrementally or in batches.
For classification tasks, using 0-1 loss instead of log-likelihood provides more stable updates by
avoiding outlier dominance [30]. This makes HYRE particularly suitable for robust adaptation with
non-differentiable metrics.

Takeaway: HYRE performs Bayesian inference given adaptation data.

HYRE performs a simple weight update based on target data accuracy (1), which has a natural
interpretation as a generalized Bayesian inference procedure in the space of ensemble weights (2).

4 WHEN IS ENSEMBLE REWEIGHTING EFFECTIVE, AND WHY?

This section explores the conditions under which ensemble reweighting is effective through three
illustrative examples: analyzing ensemble diversity through PCA, examining decision boundaries in
classification, and comparing adaptation strategies.
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Figure 5: Ensemble behavior under label ambiguity. (Left) We simulate conflicting preferences between la-
belers on a synthetic dataset. (Center) Ensemble-averaged predictions approximate the consensus, smoothing
over disagreements. (Right) We measure the maximum agreement between an ensemble and a held-out labeler:
increasing model diversity improves alignment with individual labelers.

Ensemble diversity reflects task ambiguity. We visualize how an ensemble’s diversity reflects the
axes of task ambiguity. We consider a synthetic regression task where the training data is sampled
from a Gaussian Process (GP) prior. For target inputs x1, . . . , xM , each ensemble member fk pro-
duces predictions vk ∈ RM . We perform Principal Component Analysis (PCA) on the prediction
matrix V = (v1, . . . , vK) ∈ RM×K to yield components u1, . . . , um ∈ RM that capture the main
variations between ensemble members.

Using an ensemble of 100 models trained on 7 inputs and evaluated on 1000 test inputs, we visualize
the first three principal components in Figure 3. Each component represents a distinct mode of
variation while preserving smoothness and fit to training data. Like wavelets, these components
are localized in input space and form a basis for approximating the ensemble. See Appendix F for
further analysis of PCA applied to ensemble predictions.

Ensembles as diverse sharp decision boundaries. We build on an alternative interpretation of the
Bradley-Terry model, where the model can be seen as representing a population of deterministic
decision-makers. For items i and j with parameters θi, θj ∈ R, the preference probability under the
Bradley-Terry model is:

P (i � j) =
eθi

eθi + eθj
= P (θi + ϵi > θj + ϵj) , (3)

where ϵi, ϵj ∼ Gumbel(0, 1). Rather than a single stochastic decision-maker, the model can be seen
as representing a population of deterministic decision-makers. Each decision-maker is characterized
by a pair (ϵi, ϵj), and makes sharp choices based on which among θi + ϵi and θj + ϵj is larger. The
model’s probabilistic behavior emerges from averaging across this population.

We hypothesize that diverse ensembles can learn such sharp decision boundaries from aggregate
data across a population of annotators. To test this, we construct a synthetic preference learning task
with conflicting labelers. We sample inputs (x1, x2) from [0, 1]2 and generate diverse linear decision
boundaries w1x1+w2x2 > 0, with w1, w2 ∼ N(0, 1). As shown in Figure 5, our ensemble quickly
adapts to new decision boundaries, outperforming single models. The average ensemble prediction
matches the “average” decision-maker, while individual members capture distinct boundaries. In
particular, higher diversity coefficients for the prior network yields sharper boundaries per ensemble
member. In Section 6, we show this enables rapid personalization in real-world preference tasks.

HYRE outperforms fine-tuning in low-data regimes. We compare HYRE to model fine-tuning on
a synthetic binary classification task. The training set contains inputs from [0, 1]5 labeled as 1 and
inputs from [−1, 0]5 labeled as 0. The target distribution is uniform over [−1, 1]5 with a random lin-
ear decision boundary. Results in Figure 4 show that HYRE outperforms fine-tuning in the low-data
regime, achieving high accuracy with few queries. Fine-tuning eventually surpasses reweighting
with more data due to its higher capacity. This illustrates a bias-variance tradeoff: reweighting re-
duces variance by restricting solutions to the ensemble’s span, providing an advantage with limited
data. Additionally, HYRE requires only a single forward pass and negligible weight computation
cost (1), making it especially suitable for large models and resource-constrained settings.

Key insight: Ensembles capture multiple valid interpretations

Ensembles naturally capture multiple valid interpretations of training data. Reweighting selects
the right combination of interpretations for each new context without retraining.
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Method Energy Kin8nm CCPP
MC Dropout 0.3033 0.6494 0.3761

Vanilla 0.1664 0.4514 0.2920
+ HYRE 0.1572 (-0.0092) 0.4498 (-0.0016) 0.2902 (-0.0018)

Epinet 0.1396 0.4823 0.3068
+ HYRE 0.1345 (-0.0051) 0.4814 (-0.0009) 0.3036 (-0.0032)

Shared-Base 0.1508 0.5316 0.2976
+ HYRE 0.1431 (-0.0077) 0.5314 (-0.0002) 0.2955 (-0.0021)

Table 1: RMSE (lower is better) on test data with distribution
shifts across three UCI datasets. We compare the performance
of various ensemble architectures with test-time adaptation us-
ing HYRE. We find that for all three ensemble architectures,
HYRE is consistently able to adapt to the distribution shift
between training and test data.

Model Helpful Harmless
Fine-Tune (Helpful) 73.03 32.59
Fine-Tune (Harmless) 32.06 73.30

Pretrained RM 68.01 52.16
Ensemble 66.34 50.90
+ HYRE (Helpful) 68.44 51.21
+ HYRE (Harmless) 64.24 57.66

Table 2: Helpful vs harmless tradeoff. To es-
tablish an upper bound on performance, we
fine-tune the reward model on the helpful and
harmless datasets separately. Reweighting
an ensemble model with HYRE allows us to
flexibly trade off between the two desider-
ata.

5 RELATED WORK

Ensembles and mixture-of-experts. A long-standing theme in machine learning is using ensem-
bles to improve predictive performance and uncertainty estimates when different members make
independent mistakes [40, 41]. This principle underlies Mixture-of-Experts (MoE) models, where a
gating mechanism dynamically selects experts [31, 36, 77], recently scaled to large neural networks
via conditional activation [16, 33, 45, 60]. Our approach diverges from these methods in a fundamen-
tal way: rather than learning a routing function during training, we perform adaptive reweighting
of ensemble members at inference time. Recent work in multi-objective optimization [25, 47, 48]
uses Chebyshev scalarization with exponential weighting for balancing multiple training objectives;
while our weighting scheme is similar, we apply it to inference-time ensemble adaptation with min-
imal labeled data. Building on efficient ensemble methods with shared backbones [51], we extend
prior work on dynamic ensemble weighting [34, 58], though these typically focus on differentiable
loss-based objectives. In contrast, our method dynamically adjusts ensemble weights based on non-
differentiable evaluation metrics, allowing for more effective inference-time alignment.

Task underspecification and scalable alignment. In many machine learning tasks, the training data
fails to fully define desired model behavior [14, 22]. This challenge intensifies under limited data or
distribution shifts, where multiple hypotheses remain consistent with observations. Reinforcement
learning faces similar issues: reward specification is difficult in open-ended environments, and op-
timizing misspecified objectives can lead to unintended behaviors [20, 54, 64, 79]. Instead of fully
defining a task upfront, one can collect human demonstrations or pairwise preferences, framing
task specification as a cooperative game between agents and humans [23]. Reinforcement Learning
from Human Feedback (RLHF) operationalizes this idea by using user preferences to guide post-
training [11, 52, 56, 72], with some using ensembles [2, 12, 78]. Recent work on pluralistic align-
ment [65] uses explicit domain labels or per-user data to improve personalization [6, 10, 32, 46, 55].
However, these methods require explicit domain labels or per-user data. Specialized inference-time
alignment approaches [17, 29, 35, 50] focus on token-level steering or reranking but assume a single
fixed reward and cannot reconcile conflicting user preferences at test time. HYRE demonstrates that
this additional information is not necessary during training: a diverse ensemble trained on aggregate
data can capture ambiguity, which we can use to directly adapt to new users. Our experiments show
this insight generalizes across several problem settings.

6 EXPERIMENTS

We now empirically validate HYRE. We focus on three key questions: (1) Can HYRE effectively
handle mild covariate shift? (2) Does HYRE scale to large models? (3) How robust and computa-
tionally efficient is HYRE? We describe the detailed setup for each experiment in the appendix.

6.1 REGRESSION DATA WITH MILD COVARIATE SHIFT

We evaluate HYRE on three UCI regression datasets [37]—Energy Efficiency, Kin8nm, and CCPP—
using the protocol of Sharma et al. [59]: the top and bottom 5% of the data (sorted by mean input
features) form an OOD target set, while the central 90% is split into train and validation sets. All
methods employ 100 two-layer MLPs with 50 units each. As baselines, we consider a vanilla en-
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Figure 6: Average reward model accuracy as a function of adaptation set size. The dashed line shows the best
available static 2B reward model for each dataset group. HYRE consistently outperforms the state-of-the-art
reward model with as few as 1-5 examples per distribution.

Model Type Overall Chat Chat Hard Safety Reasoning

Tulu-2-DPO-70B DPO 79.1 97.5 60.5 84.5 74.1
Claude-3 Sonnet (June 2024) Gen 84.2 96.4 74.0 81.6 84.7
GPT-4 (Aug 2024) Gen 86.7 96.1 76.1 88.1 86.6
Gemini-1.5-Pro-0924 Gen 86.8 94.1 77.0 85.8 90.2
INF-ORM-Llama3.1-70B Seq 95.1 96.6 91.0 93.6 99.1

GRM-Gemma2-2B Seq 88.4 93.0 77.2 92.2 91.2
+ Ours (uniform) Seq 87.1 96.4 73.1 87.4 89.8
+ Ours (N=1) Seq + HYRE 86.5 92.4 71.5 85.1 92.5
+ Ours (N=5) Seq + HYRE 88.5 95.0 72.5 90.3 93.1
+ Ours (N=10) Seq + HYRE 89.7 96.4 74.7 92.4 93.5
+ Ours (best weight oracle)* Seq + Oracle 93.1 98.3 83.4 96.7 94.9

Skywork–Llama-3.1-8B Seq 94.0 94.7 88.6 92.7 96.7
+ Ours (uniform) Seq 94.0 95.0 87.2 93.0 96.8
+ Ours (N=1) Seq + HYRE 94.3 95.2 87.8 93.0 97.5
+ Ours (N=5) Seq + HYRE 94.7 95.5 88.6 93.2 97.8
+ Ours (N=10) Seq + HYRE 95.0 95.9 89.3 93.5 97.9
+ Ours (best weight oracle)* Seq + Oracle 97.2 99.2 93.0 96.5 98.8

∗ Oracle methods show an upper bound on performance, using the test set.

Table 3: Accuracy across tasks in RewardBench. We report overall performance and breakdowns by task
category for all models. HYRE improves upon the state-of-the-art models at the 2B and 8B parameter
scales with as few as 1-5 labeled samples per distribution.

semble of independently trained models and MC Dropout [18]. We report the best-performing MC
Dropout results across all architectures. Results in Table 1 demonstrate that uniform ensembles per-
form strongly in these OOD generalization settings and that HYRE consistently improves over the
uniform ensemble.

6.2 SCALABLE PERSONALIZATION OF PREFERENCE MODELS

Experimental setup. We evaluate personalization using four sets of human preference benchmarks:
Elix [62], RewardBench [42], PERSONA [9], and Anthropic HH [5]. Together, these benchmarks
contain 32 datasets, each encoding a different aspect of human preferences. To train HYRE on
preference data, we attach Shared-Base ensemble heads to a pretrained 2B reward model and fine-
tune it on the UltraFeedback [13] dataset, a standard dataset for reward model training. We use two
public finetune checkpoints of Gemma 2B models, which achieve state-of-the-art performance on
RewardBench at the 2B parameter scale, even outperforming GPT-4o [1]. Refer to Appendix C for
our detailed setup.

We first evaluate the effectiveness of HYRE in adapting our reward model ensemble to new distri-
butions at test time, comparing its performance to that of the original reward model. As shown
in Figure 6, a simple uniform ensemble initially underperforms the original model, indicating that
naive ensembling alone cannot ensure broad generalization. Nevertheless, HYRE quickly surpasses
the baseline with just a few labeled examples per distribution. We show detailed dataset-level results
in the appendix (Figure 9).

We compare HYRE against state-of-the-art reward models on the RewardBench leaderboard at both
the 2B and 8B parameter scales. As shown in Table 11, HYRE—with only 1-5 labeled examples
per distribution—exceeds the performance of many much larger reward models. We note that these
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Dataset N=0 N=1 N=5 N=10 N=20 N=40 N=80
GPT-4o-mini N-Shot Prompting
donotanswer 44.4 50.3 60.2 64.7 68.7 66.4 67.0
refusals 79.4 82.7 80.5 82.2 82.1 78.0 82.1

Llama-3.1-8B N-Shot Prompting
donotanswer 46.6 52.8 59.6 63.4 41.2 62.6 *
refusals 61.6 82.4 80.0 72.2 44.4 79.0 *

Llama-3.1-8B + HYRE
donotanswer 58.6 60.8 69.1 71.3
refusals 88.9 90.0 94.0 95.2

Table 4: Comparison with few-shot prompting on two
datasets from RewardBench. (*) exceeds Together AI API
token limit. We see a degradation in performance for both
GPT-4o-mini and Llama-3.1-8B as we increase the num-
ber of examples, whereas HYRE consistently outperforms
both across all sample sizes. HYRE provides reliable
test-time alignment, unlike few-shot prompting, which
can degrade with too much context.

donotanswer xstest-sr refusals

HYRE w/ Cross-Entropy
N=0 58.60 ± 4.93 82.80 ± 2.43 88.90 ± 3.25
N=1 62.53 ± 4.00 85.78 ± 3.06 92.49 ± 3.28
N=5 62.57 ± 1.88 87.38 ± 1.26 93.17 ± 2.19
N=10 62.25 ± 1.71 87.51 ± 1.19 93.21 ± 1.77

HYRE w/ Accuracy
N=0 58.60 ± 4.93 82.80 ± 2.43 88.90 ± 3.25
N=1 60.81 ± 5.29 85.80 ± 2.45 90.00 ± 3.63
N=5 69.12 ± 5.81 89.28 ± 2.86 94.00 ± 2.45
N=10 71.32 ± 6.33 90.32 ± 3.20 95.20 ± 2.32
Oracle 76.54 ± 2.35 90.32 ± 1.91 99.50 ± 0.87

Table 5: Cross-entropy ablation experiment. We
report average and std of accuracy (%) with vary-
ing numbers of adaptation examples (N) on three
datasets. Using accuracy as the adaptation ob-
jective for HYRE significantly improves post-
adaptation performance.

Method Win Rate

Random 50.0%
Uniform 61.4%
HYRE (n=1) 60.0%
HYRE (n=2) 61.7%
HYRE (n=4) 62.4%
HYRE (n=8) 63.1%
HYRE (n=16) 63.5%

Table 6: Best-of-N win rates on Sum-
marize from Feedback. HYRE im-
proves output quality with more
examples.

Ratio math-prm xstest-sr

0.0 : 1.0 72.57% 88.33%
0.1 : 0.9 98.94% 86.64%
0.2 : 0.8 96.73% 88.15%
0.5 : 0.5 98.52% 87.22%
0.8 : 0.2 99.38% 86.66%
0.9 : 0.1 99.52% 85.86%
1.0 : 0.0 99.72% 84.18%

Table 7: Accuracy with mixed adap-
tation data. HYRE recovers 97% ac-
curacy despite extreme imbalance.

Method Acc (%)

Single Model 59.03
Entropy Weighted 68.38
Logit Ensemble [34] 83.44
Majority Vote 83.71
GEM [58, N=40] 84.49
GEM [58, Oracle†] 89.51

HYRE (N=1) 83.88
HYRE (N=5) 85.73
HYRE (N=10) 86.26
HYRE (N=20) 87.11
HYRE (N=40) 87.74

Table 8: Comparison of en-
semble aggregation methods on
RewardBench. HYRE outper-
forms all methods with only 5
examples.

reward models outperform strong generative reward models including Claude 3.5 Sonnet, GPT-4,
and Gemini-1.5-Pro [1, 3, 68]. This indicates that inference-time alignment can be a powerful
alternative to naively scaling up reward models.

Takeaway: HYRE outperforms state-of-the-art reward models.

With just 1-5 labeled datapoints per distribution, HYRE outperforms state-of-the-art reward mod-
els on RewardBench at both the 2B and 8B parameter scales.

Beyond standard reward model accuracy, we validate that HYRE improves actual text generation
quality using best-of-N sampling on the OpenAI Summarize from Feedback dataset [66], where
multiple model-generated summaries are ranked by human Likert scores. As shown in Table 6,
HYRE consistently outperforms the uniform ensemble baseline and scales with adaptation examples,
translating reward model improvements into measurable downstream quality gains (McNemar’s test
p-values 10−16 to 10−3 across 4000+ comparisons).

6.3 COMPARISON WITH ALTERNATIVE ADAPTATION METHODS

Fine-tuning on target data. We compare HYRE against models fine-tuned on the helpful-base
and harmless-base training sets in the Anthropic-HH dataset. Results in Table 2 indicate that while
targeted fine-tuning models achieve higher performance in their respective target metrics, they signif-
icantly reduce performance in the other. In contrast, our HYRE-adapted ensemble not only increases
performance across each data distribution but also retains or slightly improves performance in the
other split. We emphasize that we show fine-tuning performance only as a point of comparison; fine-
tuning a model for a target distribution is usually too computationally expensive to be done at
inference time, and is thus not a practical solution for inference-time alignment.

Few-shot prompting. We compare HYRE with few-shot prompting using GPT-4o-mini on two
datasets from RewardBench. As shown in Table 4, HYRE consistently outperforms GPT-4o-mini

8
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across all sample sizes. Even in the zero-shot setting, specialized reward models like HYRE achieve
higher performance than general-purpose language models like GPT-4o-mini. Notably, we observe
that too many few-shot examples can actually harm performance, as seen with GPT-4o-mini’s per-
formance drop after N=10 for donotanswer and N=20 for refusals. These results demonstrate that
specialized reward models with inference-time adaptation can more efficiently leverage few-shot
examples than general-purpose language models.

6.4 ANALYSIS AND ABLATION STUDIES

Computational overhead. HYRE uses a single pre-trained backbone with K small prediction
heads, ensuring minimal parameter overhead. In our reward model experiments, 100 ensemble heads
(550K parameters) add only 0.03% to the Gemma-2B backbone. At inference time, reweighting re-
quires a single forward pass through the backbone and heads, with negligible weight computation.
The total cost increase in time and memory is less than 1%.

Ablation on reweighting criteria. We compare accuracy-based reweighting against binary cross-
entropy loss. Cross-entropy significantly degrades performance across three RewardBench datasets
(Table 5) because it is unbounded and sensitive to outliers, causing rapid overfitting to individual
heads.

Robustness to skewed adaptation data. We test HYRE on non-i.i.d. scenarios by mixing two
RewardBench datasets (math-prm and xstest-should-respond) at different ratios. We train on these
different mixtures, then evaluate the resulting ensemble on each distribution separately. Even with
highly skewed mixtures (e.g., only 10% from dataset A), HYRE recovers 97% of the accuracy gains
compared to adapting exclusively on dataset A (Table 7). This demonstrates robustness to noisy or
mixed adaptation signals.

Comparison with alternative reweighting methods. We compare HYRE against existing ensem-
ble weighting approaches: uniform weighting [34], confidence weighting, majority voting, and con-
vex optimization [58]. HYRE consistently outperforms all prior methods with just 1-5 examples per
distribution (Table 8).

Practical advantages of HYRE

HYRE adds only 0.03% parameters (100 heads on 2B model) and < 1% computational overhead.
Reweighting requires just one forward pass vs. hundreds of gradient steps for fine-tuning, making
it practical for real-time adaptation.

7 DISCUSSION

Our results demonstrate how efficient ensemble architectures can offer a practical path to inference-
time alignment in large models. By attaching lightweight ensemble “heads” to a shared backbone,
we can capture multiple plausible interpretations of the training distribution at negligible extra cost.
Then, through a simple reweighting step that leverages just a handful of target-domain examples, the
ensemble can effectively pick out the functions that align best with a new task. A natural next step
is to close the loop by pairing our approach with a parameterization of the reward model that allows
for direct behavior adjustments [56].

Our method currently relies on a small batch of labeled examples from the target distribution, and
does not address single-sample or online streaming adaptation. Furthermore, while relying on min-
imal data, our reweighting still assumes that the ensemble’s functional diversity covers the new do-
main’s core behaviors. Extending our framework to dynamically expand or augment the ensemble
as new tasks emerge is an exciting direction. Nevertheless, our results demonstrate that lightweight
ensembles with inference-time reweighting offer a promising and practical approach for aligning
large models at inference time.

Limitations. On the WILDS [39] benchmark, we observe limited gains over the uniform ensemble
in four out of the five datasets we tested(see Table 12). We attribute this to insufficient functional
diversity relevant to these specific natural distribution shifts. Thus, while HYRE significantly im-
proves performance on personalization tasks, its effectiveness is limited on settings with more severe
distribution shifts.

9
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research focuses on improving preference
learning methods through textual rationales, which have positive implications for AI alignment and
human-AI collaboration. The human evaluation studies described involve voluntary participation
with informed consent, and no sensitive personal data is collected or processed. The methods de-
veloped could potentially be misused to optimize for harmful content, but the same risk exists with
any preference learning approach. Our contribution lies in making such optimization more efficient
rather than enabling fundamentally new capabilities. We encourage responsible deployment of these
techniques with appropriate safety measures and content moderation systems.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. Complete experimental details,
including hyperparameters and evaluation protocols, are provided in the main text and appendix. All
datasets used in our experiments are either publicly available or will be released upon publication.
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Method N=0 N=1 N=5 N=10 N=20 N=40
HYRE + Random 84.40 85.33 86.97 87.34 88.01 88.83
HYRE + Entropy 84.40 84.25 86.73 87.54 88.60 89.76
HYRE + BALD 84.40 84.28 87.13 87.78 88.60 88.99

Table 9: Accuracies on RewardBench with different datapoint selection strategies. While active sampling

methods perform slightly better, even random sampling consistently improves performance with the HYRE
reweighting process.

Algorithm DL Test Acc

IRM O 64.2 (8.1)
CORAL O 59.5 (7.7)
Group DRO O 68.4 (7.3)
Fish O 74.7 (7.1)
LISA O 77.1 (6.9)

ERM X 70.3 (6.4)
Evading X 73.6 (3.7)
Ensemble X 71.5 (3.4)
Ensemble + HYRE X 75.2 (5.3)

Table 10: Test set accuracy on Camelyon17. HYRE achieves competitive performance without using domain
labels (DL).

A ADDITIONAL EXPERIMENTS

Effect of sampling strategy. In Table 9, we compare the performance of different active learning
criteria for selecting adaptation data points. We consider random sampling, BALD, and entropy,
measuring their performance over 0 to 40 target examples. Across the acquisition of 40 examples,
active learning methods (BALD and entropy) demonstrated slightly better performance compared
to random sampling. Even random sampling consistently improves performance, indicating that
HYRE can be used with data collected before inference without sacrificing performance.

WILDS experiments. We evaluate a trained Shared-Base ensemble, both with and without HYRE
on the WILDS-Camelyon17 dataset [39], comparing against several representative methods for
OOD generalization from the official WILDS benchmark. As shown in Table 10, test-time adapta-
tion with HYRE consistently outperforms other methods that do not use domain labels and remains
competitive with LISA [75], a strong method that leverages domain labels for targeted data augmen-
tation. We also test Shared-Base ensembles on four additional WILDS datasets (CivilComments,
Amazon, FMoW, iWildCam), but did not observe further improvements from ensemble reweighting
via HYRE, as detailed in Table 12. Nonetheless, training a diverse ensemble consistently improved
OOD generalization in these datasets. We attribute the limited benefit of ensemble reweighting in
these cases to some natural distribution shifts behaving similarly to in-distribution data in terms
of task underspecification. For further discussion on the conditions that can make a single model
outperform the ensemble, see Section 4.

We further compare the performance of HYRE with few-shot fine-tuning with the same amount of
adaptation data. We evaluate both HYRE and fine-tuning with {4, 8, 16, 32} datapoints from the
OOD test set. Our results in Figure 7 show that ensemble reweighting outperforms fine-tuning in
the low-data regime (4 and 8) examples, and fine-tuning eventually surpasses the performance of
ensemble reweighting.
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Figure 7: Comparison of HYRE and few-shot fine-tuning on the Camelyon17 OOD test set. HYRE outperforms
fine-tuning in the low-data regime despite requiring significantly less computational cost.

B ACTIVE LEARNING DETAILS

We also consider an active learning setup in which the N datapoints to label for HYRE are chosen
at test time from a larger unlabeled pool of data. Rather than choosing all datapoints at once, we
choose one datapoint at the time based on one of the following three criteria:

• Entropy (classification): H
(∑H

h=1 whfh(x)
)

. This criterion selects datapoints where the
weighted ensemble is most uncertain, promoting the exploration of ambiguous regions.

• BALD (classification): H
(∑H

i=1 wifi(x)
)
−
∑H

i=1 wiH(fi(x)). BALD considers both ensemble
uncertainty and disagreement among members, balancing exploration and exploitation [19, 26].

• Variance (regression):
∑H

i=1 wi(fi(x) − f̄(x))2, where f̄(x) =
∑H

i=1 wifi(x). This criterion
focuses on points where ensemble predictions have the highest variance, which is a good indicator
of uncertainty in regression tasks.

Each of these criteria can be computed quickly. Because the belief states w has a closed-form update
that can be computed very quickly, we can efficiently recompute the next best data point after each
active label query.

We note that the first criterion (Entropy) does not distinguish between so-called aleatoric uncertainty
and epistemic uncertainty. Therefore, this criterion is susceptible to the “noisy TV problem”, where
an agent fixates on a source of uncertainty that cannot be resolved [8, 43]. In practice, we find that
HYRE is robust to the choice of active learning criterion, and even random selection is effective at
adapting to the target distribution.

C EXPERIMENTAL DETAILS

Unless specified otherwise, we use the following configuration for the ensemble networks. We use
an ensemble of 100 models. The learnable and prior networks are each a one-hidden-layer MLP
with 128 units. For the epinet, the epistemic index is 10-dimensional. For ensemble reweighting
via HYRE, we use 32 examples from the target dataset, actively queried based on the BALD (classi-
fication) or Variance (regression) criterion. We found that final performance is not very sensitive to
the choice of active learning criterion, and even random sampling resulted in consistent benefits.

WILDS. We closely follow the reference WILDS implementation for each dataset [39], including
the choice of backbone, learning rate, and weight decay. We briefly describe the baseline methods
used in our experiments:

• CORrelation ALignment [67, CORAL]: CORAL is an unsupervised domain adaptation method
that aligns the second-order statistics (covariances) of source and target feature distributions.

• Invariant Risk Minimization [4, IRM]: IRM aims to learn data representations that capture in-
variant correlations across multiple training distributions.
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Model Type Overall Chat Chat Hard Safety Reasoning

Mixtral-8x7B-Instruct-v0.1 DPO 77.6 95.0 64.0 72.6 78.7
LLaMA-3-Tulu-2-DPO-70B DPO 77.2 96.4 57.5 74.9 80.2
Tulu-2-DPO-13B DPO 76.7 95.8 58.3 79.5 73.2
Tulu-2-DPO-70B DPO 79.1 97.5 60.5 84.5 74.1
StableLM-2-12B-Chat DPO 79.9 96.6 55.5 78.1 89.4
Claude-3 Sonnet (June 2024) Gen 84.2 96.4 74.0 81.6 84.7
GPT-4 (May 2024) Gen 84.6 96.6 70.4 86.5 84.9
GPT-4 (Aug 2024) Gen 86.7 96.1 76.1 88.1 86.6
Gemini-1.5-Pro-0924 Gen 86.8 94.1 77.0 85.8 90.2
Skywork-Reward-Gemma-2-27B Seq 94.3 96.1 89.9 93.0 98.1
INF-ORM-Llama3.1-70B Seq 95.1 96.6 91.0 93.6 99.1

GRM-Gemma-2B Seq 84.5 89.4 75.2 84.5 88.8
+ Ours (uniform) Seq 84.5 88.6 72.9 83.7 89.8
+ Ours (N=1) Seq + HYRE 85.3 88.5 72.7 85.5 91.4
+ Ours (N=5) Seq + HYRE 86.4 90.3 72.6 89.1 91.4
+ Ours (N=10) Seq + HYRE 87.2 90.4 72.5 90.0 92.3
+ Ours (best head oracle)* Seq + Oracle 88.6 91.1 78.1 91.9 92.3
+ Ours (best weight oracle)* Seq + Oracle 90.0 92.3 81.8 92.5 93.1

GRM-Gemma2-2B Seq 88.4 93.0 77.2 92.2 91.2
+ Ours (uniform) Seq 87.1 96.4 73.1 87.4 89.8
+ Ours (N=1) Seq + HYRE 86.5 92.4 71.5 85.1 92.5
+ Ours (N=5) Seq + HYRE 88.5 95.0 72.5 90.3 93.1
+ Ours (N=10) Seq + HYRE 89.7 96.4 74.7 92.4 93.5
+ Ours (best head oracle)* Seq + Oracle 91.8 97.2 80.0 96.2 94.2
+ Ours (best weight oracle)* Seq + Oracle 93.1 98.3 83.4 96.7 94.9

Skywork–Llama-3.1-8B Seq 94.0 94.7 88.6 92.7 96.7
+ Ours (uniform) Seq 94.0 95.0 87.2 93.0 96.8
+ Ours (N=1) Seq + HYRE 94.3 95.2 87.8 93.0 97.5
+ Ours (N=5) Seq + HYRE 94.7 95.5 88.6 93.2 97.8
+ Ours (N=10) Seq + HYRE 95.0 95.9 89.3 93.5 97.9
+ Ours (best head oracle)* Seq + Oracle 96.4 98.3 91.2 95.7 98.4
+ Ours (best weight oracle)* Seq + Oracle 97.2 99.2 93.0 96.5 98.8

∗ Oracle methods show an upper bound on performance, using the test set.

Table 11: Accuracy across tasks in RewardBench. We report overall performance and breakdowns by task
category for all models. HYRE improves upon the state-of-the-art models at the 2B and 8B parameter
scales with as few as 1-5 labeled samples per distribution.

• Group Distributionally Robust Optimization [57, Group DRO]: Group DRO seeks to minimize
the worst-case training loss over predefined groups within the data.

• Fish [61]: Fish is a domain generalization technique that approximates inter-domain gradient
matching by maximizing the inner product between gradients from different domains.

• LISA [75]: LISA builds on MixUp and selectively interpolates data samples to achieve domain
invariance.

LLM Preference Learning We finetune three reward model checkpoints [74]:

• https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft

• https://huggingface.co/Ray2333/GRM-Gemma2-2B-rewardmodel-ft

• https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2

Our ensemble architecture uses these networks as the backbone, and small MLPs for the learnable
and prior networks which take the backbone’s final embedding as input. We use the TRL codebase
for reward model training [71]. We train with bfloat16 mixed precision. We use a learning rate of
0.0001, no weight decay, a batch size of 16, and train for 5000 steps. We consider four collections
of preference datasets:

• Elix [62] is inspired by the “Explain like I’m 5” subreddit. It consists of questions answered at
five educational levels: elementary, middle, high, college, and expert. Preference pairs are created
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OOD Dataset Best Head, Scale=100 Best Head, Scale=102 Best Head, Scale=104

Figure 8: Additional visualizations for the toy conflicting classification example. Increasing the scale hyperpa-
rameter results produces heads with sharper decision boundaries.

by scoring how different pairs of GPT-4 generated responses meet the expected comprehension at
each level.

• RewardBench [42] is a suite of 27 preference datasets designed to test reward models on a broad
spectrum of tasks, including chat quality, safety, reasoning, coding, and refusal handling. In our
aggregate results Figure 6, we drop datasets with less than 100 examples. In our RewardBench
experiments Table 11, we use all datasets to ensure a fair comparison with existing methods.

• PERSONA [9] contains preference data derived from a collection of synthetic personas with
diverse demographic attributes and values. We sample 10 personas and treat each as a target
distribution. Further details are in Appendix G.

• Anthropic HH [5] contains human-labeled preferences focused on helpfulness and harmlessness.
We use the helpfulness-base and harmlessness-base splits as evaluation distributions to measure
the tradeoff between the two objectives.

For the few-shot prompting experiments, we use GPT-4o-mini. For each number of “shots”
N ∈ {0, 1, 5, 10, 20, 40, 80}, we sample 1000 examples from the target distribution and use them to
prompt GPT-4o-mini.
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Figure 9: Detailed results for the personalizing preference reward models experiment in Figure 6. Target
dataset accuracy (y-axis) after observing different numbers of adaptation samples (x-axis). The dashed line
represents the performance of the pretrained reward model.

D DIVERSE ENSEMBLE ARCHITECTURES

We describe the diverse ensemble architectures used in our experiments. Each architecture is de-
signed to parameterize an ensemble of H models, whose outputs are later combined to form an
ensemble prediction. The key goal of these architectures is to produce diverse predictions across the
ensemble at a low computational cost.

All architectures are trained end-to-end by minimizing the sum of a standard loss function (cross-
entropy for classification, MSE for regression) over all ensemble members:

H∑
h=1

L (fh(x), y) . (4)

Here, x is an input example, y is the true label, and f i is the i-th ensemble member. While each
individual model minimizes the training loss, we want the ensemble members to extrapolate to
unseen data in diverse ways. The specific ensemble parameterizations, which we describe below,
are designed to achieve this goal.
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CivilComments Amazon FMoW iWildCam
Algorithm DL Worst-Group Acc 10% Acc Worst-Reg Acc Macro F1

IRM O 66.3 (2.1) 52.4 (0.8) 32.8 (2.09) 15.1 (4.9)
IRMX O 73.4 (1.4) - 33.7 (0.95) 26.7 (1.1)
IRMX (PAIR) O 74.2 (1.4) - 35.4 (1.3) 27.9 (0.9)
CORAL O 65.6 (1.3) 52.9 (0.8) 32.8 (0.66) 32.7 (0.2)
Group DRO O 70.0 (2.0) 53.3 (0.0) 31.1 (1.66) 23.8 (2.0)
DFR O 72.5 (0.9) - 42.8 (0.42) -
Fish O 75.3 (0.6) 53.3 (0.0) 34.6 (0.18) 22.0 (1.8)
LISA O 72.9 (1.0) 54.7 (0.0) 35.5 (0.81) -

ERM X 56.0 (3.6) 53.8 (0.8) 31.3 (0.17) 30.8 (1.3)
Shared-Base X 58.1 (2.2) 54.2 (0.6) 32.8 (0.4) 30.9 (0.8)
Shared-Base + HYRE X 58.1 (0.2) 54.2 (0.6) 32.8 (0.4) 31.0 (0.8)

Table 12: Performance on additional WILDS benchmark datasets. The DL column indicates whether the algo-
rithm uses domain labels. Using a Shared-Base ensemble consistently results in gains in OOD generalization
metrics over prior methods. However, we observe no further benefits from reweighting the ensemble via HYRE
on these datasets.

D.1 VANILLA ENSEMBLE

A vanilla ensemble consists of H independently initialized and trained neural networks with identi-
cal architectures. Each network fh takes an input x and produces an output fh(x). No parameters are
shared. While simple to implement, this approach scales poorly as H increases since both memory
and computation scale linearly with H .

D.2 SHARED-BASE ENSEMBLE

We propose a scalable neural network architecture that can represent thousands of diverse ensemble
members. The network outputs H real-valued predictions in parallel, with the output space being
RH . The architecture comprises a frozen prior network fp and a learnable network fθ, both of
which produce outputs of shape RH . Although the architectures of fp and fθ are identical in our
experiments, this is not a requirement.

For a given input x, the network output is

fp(z) + fθ(z) =


fp
1 (z) + fθ

1 (z)
fp
2 (z) + fθ

2 (z)
...

fp
H(z) + fθ

H(z)

 ∈ RH (5)

where each prediction fp
i (z) + fθ

i (z) is compared against the ground-truth label y. The parameters
of fp are fixed at initialization and do not change during training; the parameters of fθ are learnable.

Using the frozen prior network fp is crucial to the diversity in this architecture. If we were to
only train fθ, the ensemble of the H predictions would have low diversity due to co-adaptation. To
understand why this architecture produces a diverse ensemble, note that each learnable head solves a
shifted task determined by the corresponding prior network head. Since we undo this shifting when
producing the final prediction, we can view the different learnable heads as solving a different yet
equivalent task.

D.3 EPINET

The epinet architecture combines a base model f base : X → RK with an epistemic network f epi :
Z × Rdftrs × X → RK . The base model can be any regular neural network, including a large
pretrained model, and is used to extract features through a feature extractor ϕ : X → Rdftrs . Here,
dftrs is the dimension of the extracted intermediate representations.
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The epistemic network (epinet) is composed of two parts:

• A frozen prior network f epi-frozen : X → R1,...,dindex×K . The parameters of this network are fixed
at initialization and do not change during training.

• A trainable network f epi-trainable : Z × Rdftrs ×X → RK .

Given an epistemic index z ∈ Rd and input x ∈ X , we compute the model output as:

f(z, x) = f base(x) + vf epi-frozen(x) · z + f epi-trainable(z, ϕ(x), x) · z (6)

where · is the dot product and v ∈ (0,∞) is the so-called prior scale. At each step, we sample
multiple epistemic indices z to form an ensemble, i.e., f1(x), . . . , fH(x) = f(z1, x), . . . , f(zH , x).
This architecture efficiently generates diverse predictions by sampling different epistemic indices z
while leveraging a potentially large pretrained base model.

E REPULSION VS RANDOM PRIORS FOR DIVERSITY

A line of prior work use repulsion for enforcing diversity between ensemble members. The high-
level idea is to add a regularization term to the loss function that is minimized when the ensemble
members are sufficiently “different” according to some distance metric. For example, Teney et al.
[69] uses a repulsion term that maximizes the cosine distance between the gradient of each ensemble
member, and Lee et al. [44] maximizes the mutual information of ensemble predictions on OOD
inputs. While these techniqueshave seen success in certain settings, our early experiments indicate
that such explicit regularization often results in a suboptimal ensemble. The repulsion term can
overpower the learning signal in the training data, leading to ensemble members that are diverse but
inaccurate.

In contrast, diversification via random priors [51] provides a more balanced approach. The key
idea is to initialize each ensemble member with a different random prior function which is fixed
throughout training. This introduces diversity from the start without explicitly optimizing for it
during training. This approach maintains diversity without sacrificing accuracy on the training data,
and the degree of diversification is easily controlled by scaling the prior functions.

F FUNCTION-SPACE DIMENSIONALITY REDUCTION

Here, we expand on the idea of PCA on ensemble predictions. A central challenge with large model
ensembles is understanding the commonalities and differences among the individual models. The
high-level idea is that PCA applied to ensemble predictions reveals the major direction of variation
within an ensemble of models. This dimensionality reduction allows us to clearly interpret model
behaviors and identify groups of related datapoints Additionally, PCA enables the generation of new
functions with similar statistical properties by parameterizing a low-rank Gaussian distribution in
the joint prediction space, which we can sample from.

F.1 MOTIVATING EXAMPLE

Consider three models f1, . . . , f3 and five inputs z1, . . . , z5. Denoting each model’s predicted prob-
ability for an input as pnh = σ(fh(zn)) ∈ [0, 1], assume that the matrix of predictions is(

p11 p12 p13 p14 p15
p21 p22 p23 p24 p25
p31 p32 p33 p34 p35

)
=

(
1 0 1 0 1/2
0 1 1/2 1/2 1/2
1/2 1/2 0 1 1/2

)
. (7)

Each row of this matrix shows one model’s prediction on the entire pool of inputs, and each column
shows every model’s prediction on a single input. We can analyze such a matrix of predictions on
three levels, each revealing increasing amounts of structure within the ensemble:

Level 1: Per-sample ensemble uncertainty. We can first compute the average prediction p̄(x) =
1
H

∑
h pnh for each datapoint. For the predictions in (7), the average prediction is p̄(x) = 1/2 for

every input x, and thus the collection of models may be viewed as equally uncertain about each of
the 5 inputs. This is the measure of ensemble uncertainty commonly used for ensembles [41].
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Level 2: Per-sample disagreement. We can further account for the amount of disagreement among
ensemble members for each datapoint. Note that for the four inputs z1, z2, z3, z4, there is strong
disagreement between two functions where one predicts 0 and the other predicts 1. This is not true
of z5, where all functions predict 1/2. Uncertainty metrics that take disagreement into account, such
as the BALD criterion [26], will reveal that the ensemble is more uncertain about z1, z2, z3, z4 than
it is about z5.

Level 3: Joint predictions. First, note that the two approaches above discard all information about
which ensemble member made which individual prediction for a given input, by (1) averaging all
predictions or (2) considering only the unordered set of predictions. There is additional structure to
the differences among ensemble members that we can extract by considering the joint predictions,
i.e., viewing each column of (7) as an object in itself. The pair of inputs (z1, z2) are closely related
since they deviate from the ensemble prediction in the same “direction” in the joint prediction space
(RH ). We can make the same observation about the pair (z3, z4). To see this structure more clearly,
consider the matrix of deviations from the ensemble prediction δnh = pnh − 1

H

∑
h pnh:

(
δ11 δ12 δ13 δ14 δ15
δ21 δ22 δ23 δ24 δ25
δ31 δ32 δ33 δ34 δ35

)
=

1

2

(
1 −1 1 −1 0
−1 1 0 0 0
0 0 −1 1 0

)
. (8)

This clearly shows that the vector of joint deviations (δ11, δ12, δ13) is the negative of that of
(δ21, δ22, δ23). More generally, we can view the vector of deviations (δ1n, δ2n, δ3n) as a representa-
tion of the datapoint zn in the joint prediction space. In this sense, the matrix of predictions {pnh}
can be explained by the mean prediction 0.5 for each datapoint, together with two factors of variation
(1,−1, 0) and (1, 0,−1) appropriately applied to each input. We next describe how to automatically
extract such consistent high-level factors in an ensemble from the matrix of predictions.

F.2 PCA ON ENSEMBLE PREDICTIONS

We propose to apply PCA to the H × N matrix of residual predictions to obtain P principal com-
ponents. Each principle component is a vector of size H that captures the orthogonal factors of
variation in how ensemble members extrapolated from the training data. Given a set of weights
w1, . . . , wP over principal components, we can “reconstruct” a set of joint predictions as

p(x) = p̄(x) + (w1 · · · wP )


c11 · · · c1H
c21 · · · c2H

...
. . .

...
cP1 · · · cPH




p1(x)− p̄(x)
p2(x)− p̄(x)

...
pH(x)− p̄(x)

 , (9)

where we denote the mean prediction as p̄(x) = 1
H

∑
h pnh and the P principal components as

C ∈ RP×H .

We highlight two known interpretations of PCA that have interesting implications for our goal of
summarizing ensemble predictions:

Maximum mutual information / variance after projection. PCA finds the linear projection
y = w⊤x with unit vector w that achieves maximum mutual information I(x; y), or equivalently,
maximum variance Var(y). Each principal component finds the linear combination of ensemble
members that preserves the most information about the set of joint ensemble predictions. This is
closely related to the disagreement term in Bayesian active learning [26].

Factor model. The principal components are maximum likelihood parameters under a linear Gaus-
sian factor model of the data [70]. Indeed, we can view our principal components as orthogonal
modifications to the mean prediction p̄(x). The distribution of ensemble members is closely approx-
imated by “reconstructed predictions” (9), where z1:P ∼ N (0, IP ). We can view each principal
component as a consistent high-level direction of functional variation in which the training data
provided insufficient information.
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G PERSONA DATASET DETAILS

Below, we list the personas used in our PERSONA [9] experiments. The dataset includes 1000
personas in total, each with 200 preference pairs. We subsampled 10 personas from the original
dataset of 1000, ensuring a diverse set of backgrounds, ages, and lifestyles.

Persona 1. Age: 1. Sex: Male. Race: White alone. Ancestry: Irish. Household language: En-
glish only. Education: Not applicable. Employment status: Not applicable. Class of worker: Not
applicable. Industry category: Not applicable. Occupation category: Not applicable. Detailed
job description: Not applicable. Income: Not applicable. Marital status: Too young to be mar-
ried. Household type: Cohabiting couple household with children of the householder less than 18.
Family presence and age: With related children under 5 years only. Place of birth: Missouri/MO.
Citizenship: Born in the United States. Veteran status: Not applicable. Disability: None. Health
insurance: With health insurance coverage. Fertility: Not applicable. Hearing difficulty: None. Vi-
sion difficulty: None. Cognitive difficulty: None. Ability to speak english: Not applicable. Big five
scores: Openness: High, Conscientiousness: High, Extraversion: Low, Agreeableness: Extremely
High, Neuroticism: Extremely Low. Defining quirks: Loves to play with his food. Mannerisms:
Waves hands when excited. Personal time: Spends most of his time playing, sleeping, and learning
to walk. Lifestyle: Lives a carefree and playful lifestyle. Ideology: Not applicable. Political views:
Not applicable. Religion: Other Christian.

Persona 2. Age: 11. Sex: Male. Race: White alone. Ancestry: Irish. Household language: English
only. Education: Grade 4. Employment status: Unemployed. Class of worker: Not applicable.
Industry category: Not applicable. occupation category: Not applicable Detailed job description:
Student. Income: 0. Marital status: Never married or under 15 years old. Household type: Co-
habiting couple household with children of the householder less than 18. Family presence and age:
With related children 5 to 17 years only. Place of birth: Louisiana/LA. Citizenship: Born in the
United States. Veteran status: Not applicable. Disability: None. Health insurance: With health
insurance coverage. Big five scores: Openness: Low, Conscientiousness: Low, Extraversion: High,
Agreeableness: High, Neuroticism: Average. defining quirks: Loves to draw and create stories Man-
nerisms: Often seen doodling or daydreaming. Personal time: Spends free time drawing or playing
video games. Lifestyle: Active and playful, enjoys school and spending time with friends. Ideology:
Undeveloped. Political views: Undeveloped. Religion: Religiously Unaffiliated.

Persona 3. Age: 19. Sex: Male. Race: Asian Indian alone. Ancestry: Indian. Household lan-
guage: Hindi. Education: 1 or more years of college credit, no degree. Employment status: Not
in labor force. Class of worker: Not Applicable. Industry category: Not Applicable. Occupation
category: Not Applicable. Detailed job description: Not Applicable. Income: -60000.0. Marital
status: Never married or under 15 years old. Household type: Living with parents. Family presence
and age: Living with two parents. Place of birth: India. Citizenship: Not a U.S. citizen. Veteran
status: Non-Veteran. Disability: None. Health insurance: With health insurance coverage. Big
five scores: Openness: Average, Conscientiousness: High, Extraversion: Extremely Low, Agree-
ableness: Extremely High, Neuroticism: Extremely Low. defining quirks: Passionate about music
Mannerisms: Expressive hand gestures when speaking. Personal time: Practicing music or studying.
Lifestyle: Student and Music Enthusiast. Ideology: Liberal. Political views: Liberal. Religion:
Other Christian.

Persona 4. Age: 29. Sex: Female. Race: Laotian alone. Ancestry: Laotian. Household language:
Asian and Pacific Island languages. Education: Some college, but less than 1 year. Employment
status: Armed forces, at work. Class of worker: Federal government employee. Industry category:
MIL-U.S. Navy. Occupation category: MIL-Military Enlisted Tactical Operations And Air/Weapons
Specialists And Crew Members. Detailed job description: Maintains and operates tactical weapons
systems. Income: 81000.0. Marital status: Married. Household type: Married couple household
with children of the householder less than 18. Family presence and age: With related children 5 to
17 years only. Place of birth: California/CA. Citizenship: Born in the United States. Veteran status:
Now on active duty. Disability: None. Health insurance: With health insurance coverage. Big five
scores: Openness: Average, Conscientiousness: High, Extraversion: Average, Agreeableness: High,
Neuroticism: Average. Defining quirks: Collects military memorabilia. Mannerisms: Frequently
uses military jargon. Personal time: Spends time with family and collecting military memorabilia.
Lifestyle: Disciplined and active. Ideology: Conservative. Political views: Republican. Religion:
Protestant.
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Persona 5. Age: 36. Sex: Female. Race: Some Other Race alone. Ancestry: Hispanic. House-
hold language: English. Education: Regular high school diploma. Employment status: Civilian
employed, at work. Class of worker: Employee of a private for-profit company or business, or of
an individual, for wages, salary, or commissions. Industry category: FIN-Insurance Carriers. Oc-
cupation category: OFF-Insurance Claims And Policy Processing Clerks. Detailed job description:
Processes insurance claims and policies. Income: 182000.0. Marital status: Married. Household
type: Married couple household with children of the householder less than 18. Family presence and
age: With related children under 5 years only. Place of birth: New Mexico/NM. Citizenship: Born
in the United States. veteran status: Non-Veteran Disability: None. Health insurance: With health
insurance coverage. Big five scores: Openness: Extremely Low, Conscientiousness: Extremely
High, Extraversion: Extremely High, Agreeableness: High, Neuroticism: Average. Defining quirks:
Enjoys bird-watching. Mannerisms: Often taps foot when thinking. Personal time: Spends free time
with family or in nature. Lifestyle: Active and family-oriented. Ideology: Conservative. Political
views: Republican. Religion: Other Christian.

Persona 6. Age: 44. Sex: Female. Race: Black or African American alone. Ancestry: Haitian.
household language: Other Indo-European languages education: Associate’s degree Employment
status: Civilian employed, at work. Class of worker: Employee of a private not-for-profit, tax-
exempt, or charitable organization. Industry category: FIN-Banking And Related Activities. Occu-
pation category: OFF-Tellers. Detailed job description: Handles customer transactions at the bank,
including deposits, withdrawals, and loan payments. Income: 40000.0. Marital status: Separated.
Household type: Female householder, no spouse/partner present, with children of the householder
less than 18. Family presence and age: With related children 5 to 17 years only. Place of birth:
Haiti. Citizenship: Not a U.S. citizen. Veteran status: Non-Veteran. Disability: None. Health
insurance: With health insurance coverage. Big five scores: Openness: High, Conscientiousness:
Extremely Low, Extraversion: Average, Agreeableness: Average, Neuroticism: Extremely Low.
Defining quirks: Loves to cook Haitian cuisine. Mannerisms: Often taps her foot when stressed.
Personal time: Taking care of her children, Pursuing further education. Lifestyle: Busy, Family-
oriented. Ideology: Egalitarian. Political views: Democrat. Religion: Protestant.

Persona 7. Age: 52. Sex: Female. Race: Korean alone. Ancestry: Korean. Household language:
Asian and Pacific Island languages. Education: Regular high school diploma. Employment status:
Civilian employed, at work. Class of worker: State government employee. Industry category: ENT-
Restaurants And Other Food Services. Occupation category: EAT-First-Line Supervisors Of Food
Preparation And Serving Workers. Detailed job description: Supervises food preparation and serv-
ing workers in a state government facility. Income: 133900.0. Marital status: Married. Household
type: Married couple household, no children of the householder less than 18. Family presence and
age: No related children. Place of birth: Korea. Citizenship: U.S. citizen by naturalization. Vet-
eran status: Non-Veteran. Disability: None. Health insurance: With health insurance coverage. big
five scores: Openness: Average, Conscientiousness: Extremely High, Extraversion: Extremely Low,
Agreeableness: Extremely Low, Neuroticism: Average defining quirks: Deep love for literature
and reading Mannerisms: Constantly adjusts her glasses. Personal time: Spends free time reading
or engaging in community activism. Lifestyle: Quiet and community-oriented. Ideology: Liberal.
Political views: Democratic. Religion: Protestant.

Persona 8. Age: 58. Sex: Male. Race: White. Ancestry: Scottish. Household language: English.
Education: Bachelor’s Degree. Employment status: Employed. Class of worker: Private. industry
category: Investigation And Security Services Occupation category: Sales Manager. Detailed job
description: Oversees sales teams, sets sales goals, and develops strategies to achieve these goals.
Income: 198200. Marital status: Married. Household type: Married couple household, no children
under 18. Family presence and age: No related children. Place of birth: Florida. Citizenship: US
Citizen. veteran status: Non-Veteran Disability: With a disability. Health insurance: With health
insurance coverage. Big five scores: Openness: High, Conscientiousness: Extremely High, Extraver-
sion: Average, Agreeableness: Average, Neuroticism: Average. Defining quirks: Keen interest in
security technology and crime novels. mannerisms: Constantly checks his surroundings Personal
time: Researching the latest security technologies or enjoying a round of golf. Lifestyle: Active and
health-conscious. Ideology: Conservative. Political views: Republican. Religion: Catholic.

Persona 9. Age: 65. Sex: Female. Race: White alone. Ancestry: Italian. Household language:
Other Indo-European languages. Education: Master’s degree. Employment status: Civilian em-
ployed, at work. Class of worker: Self-employed in own incorporated business, professional practice
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or farm. Industry category: ENT-Traveler Accommodation. Occupation category: FIN-Accountants
And Auditors. Detailed job description: Manages financial records and tax data for her own travel
accommodation business. Income: 188600.0. Marital status: Married. Household type: Married
couple household, no children of the householder less than 18. Family presence and age: No re-
lated children. Place of birth: Delaware/DE. Citizenship: Born in the United States. Veteran status:
Non-veteran. Disability: None. Health insurance: With health insurance coverage. ability to speak
english: Well. Big five scores: Openness: Average, Conscientiousness: Low, Extraversion: Low,
Agreeableness: Average, Neuroticism: Extremely High. Defining quirks: Has an extensive collec-
tion of vintage travel posters. Mannerisms: Tends to use Italian phrases in conversation. Personal
time: Spends her free time exploring new places, trying new cuisines, and learning about different
cultures. Lifestyle: Leads a busy lifestyle managing her business, but always finds time for her pas-
sion for travel and culture. Ideology: Believes in the importance of understanding and appreciating
different cultures. Political views: Liberal. Religion: Protestant.

Persona 10. Age: 75. Sex: Female. Race: White alone. ancestry: Scottish Household language:
English only. Education: Professional degree beyond a bachelor’s degree. Employment status: Not
in labor force. Class of worker: Retired. Industry category: Healthcare. Occupation category: Doc-
tor. Detailed job description: Retired pediatrician. Income: 98000.0. Marital status: Never married.
Household type: Female householder, no spouse/partner present, living alone. Family presence and
age: No family. Place of birth: Massachusetts/MA. citizenship: Born in the United States veteran
status: Non-Veteran Disability: None. Health insurance: With health insurance coverage. Big five
scores: Openness: Average, Conscientiousness: Average, Extraversion: High, Agreeableness: Ex-
tremely High, Neuroticism: Average. Defining quirks: Enjoys cooking traditional Scottish meals.
Mannerisms: Often hums traditional Scottish tunes. Personal time: Spends free time volunteering at
the local church and community center. Lifestyle: Active but relaxed, with a focus on maintaining
health and staying involved in the community. Ideology: Conservative. Political views: Republican.
Religion: Catholic.
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