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ABSTRACT

Training-free diffusion guidance provides a flexible way to leverage off-the-shelf
classifiers without additional training. Yet, current approaches hinge on poste-
rior approximations via Tweedie’s formula, which often yield unreliable guid-
ance, particularly in low-density regions. Stochastic optimal control (SOC), in
contrast, provides principled posterior simulation but is prohibitively expensive
for fast sampling. In this work, we reconcile the strengths of these paradigms
by introducing Stein Diffusion Guidance (SDG), a novel training-free framework
grounded in a surrogate SOC objective. We establish a theoretical bound on the
value function, demonstrating the necessity of correcting approximate posteriors
to faithfully reflect true diffusion dynamics. Leveraging Stein variational infer-
ence, SDG identifies the steepest descent direction that minimizes the Kullback-
Leibler divergence between approximate and true posteriors. By incorporating a
principled Stein correction mechanism and a novel running cost functional, SDG
enables effective guidance in low-density regions. Experiments on molecular low-
density sampling tasks suggest that SDG consistently surpasses standard training-
free guidance methods, highlighting its potential for broader diffusion-based sam-
pling beyond high-density regions.

1 INTRODUCTION

SOC

Tweedie

Stein

Figure 1: SDG provides a computationally effi-
cient alternative to SOC-based diffusion guidance
for molecular sampling in low-density regions.

In many scientific domains, key discoveries of-
ten depend on identifying rare samples buried
within large data distributions. For instance,
while billions of molecules exist in chemistry
(Polishchuk et al., 2013), only a minute frac-
tion possesses properties relevant to drug dis-
covery. We posit that such high-value samples
frequently reside in low-density regions, mak-
ing their identification both difficult and error-
prone. This challenge has fueled growing in-
terest in methods that accelerate the search for
rare, property-rich samples. Generative meth-
ods, particularly diffusion models (Ho et al.,
2020; Song et al., 2021), have demonstrated
strong performance in modeling complex, high-
dimensional distributions. However, when
trained on unlabeled data, diffusion models pre-
dominantly sample from high-density data re-
gions, thereby overlooking the low-density ar-
eas where high-value samples are likely to ex-
ist. This limitation hinders their effectiveness
in tasks that require discovery beyond high-
density regions. Numerous studies have been
proposed to address this challenge. A particu-
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lar class of methods leverages an auxiliary classifier, (Dhariwal & Nichol, 2021; Sehwag et al.,
2022; Lee et al., 2023), to guide pretrained diffusion models toward regions of interest. However,
classifier-based diffusion guidance introduces additional complexity by requiring classifiers trained
on multiple noise levels. Moreover, recent studies suggest that noisy classifier gradients can mis-
guide samples, causing them to fall off generative manifolds (Chung et al., 2023; Guo et al., 2024).
This issue can be even severe in low-data regimes, where diffusion models are already less accurate
and gradients tend to be less reliable (Sehwag et al., 2022).

Stochastic optimal control (SOC) (Nüsken & Richter, 2021; Domingo-Enrich et al., 2024) has re-
cently been explored to fine-tune diffusion models for a variety of downstream tasks (Uehara et al.,
2024; Wang et al., 2025; Domingo-Enrich et al., 2025). These approaches steer the diffusion pro-
cess towards desired targets by incorporating an auxiliary controller into the stochastic differential
equation (SDE) that governs the generative reverse diffusion dynamics. Uehara et al. (2024) further
relate SOC to classifier-based guidance, where the reward functions are classifiers trained on clean
data, which are readily available across many domains. This enables SOC-based diffusion guidance
to leverage off-the-shelf classifiers directly. However, computing the optimal control value requires
backpropagating reward signals through entire neural-SDE sampling trajectories (Tzen & Raginsky,
2019; Uehara et al., 2024), which presents a significant drawback restricting the scalability and prac-
ticality of SOC-based sampling methods. To circumvent this problem, recent works have proposed
approximating the diffusion posterior through Tweedie’s formula (Robbins, 1992). This avenue has
been primarily explored in the contexts of general inverse problems (Chung et al., 2023; MOUFAD
et al., 2025), and image diffusion finetuning applications (Yu et al., 2023; Ma et al., 2024; Rout et al.,
2025; Janati et al., 2025; Dinh et al., 2025). These methods are often referred to as training-free dif-
fusion guidance, as they leverage off-the-shelf classifiers without requiring additional training across
noise levels. However, the posterior approximation via Tweedie’s formula is biased and inherently
suboptimal, which frequently leads to unreliable guidance, particularly in low-density data regions.

Here, we summarize our contributions: (i) we propose a low-density diffusion guidance framework
formulated under stochastic optimal control, which introduces a novel cost-to-go function; (ii) we
theoretically prove that approximating the diffusion posterior via Tweedie’s formula is inferior and
requires further correction steps; (iii) we introduce a Stein correction mechanism for surrogate SOC-
based diffusion sampling, which leverages Stein variational inference tools (Liu & Wang, 2016; Liu,
2017) to iteratively minimize the Kullback-Leibler (KL) divergence between approximate and true
posteriors. Our experimental results suggest that the proposed Stein correction is critical for enhanc-
ing training-free diffusion guidance in molecular sampling problems, particularly in low-density
regions, leading to the discovery of molecules with higher binding affinities to target proteins.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Song et al. (2021) introduce a continuous-time, continuous-state diffusion framework, ∀t ∈ [0, T ],
x ∈ Rd, utilizing a pair of forward and backward SDEs. The forward process diffuses data samples,
xT ∼ pT , towards an easy-to-sample prior, x0 ∼ p0. Its dynamic is the solution to an Itô SDE:
dxt = b(xt, t)dt + σ(t)dw, where dt < 0 is an infinitesimal timestep, w is the Weiner process,
and b(xt, t), σ(t) denote the drift and diffusion coefficient, respectively. A backward process grad-
ually denoises samples from the prior p0 and back to the data distribution pT ; the reverse dynamic
corresponds to another Itô SDE of the form:

P : dxt =
(
−b(xt, t) + σ(t)2∇xt

log pt(xt)
)
dt+ σ(t)dw (1)

where the marginal data score, ∇xt
log pt(xt), can be estimated by the score-matching technique

(Hyvärinen & Dayan, 2005) via a time-dependent score-based network, sθ (xt) ≈ ∇xt
log pt(xt);

for simplicity, we omit the explicit t-dependence in the score model notation. Unlike Song et al.
(2021), we employ a positive infinitesimal reverse timestep to facilitate our theoretical development
of novel diffusion guidance in subsequent sections. In sampling, diffusion models can incorpo-
rate a classifier r(·) to guide samples toward regions with desired properties, a technique known as
classifier-based diffusion guidance (Dhariwal & Nichol, 2021). The conditional score can be fac-
torized into∇xt log pt(xt|y) ∝ ∇xt log pt(xt) +∇xtr(y|xt), which requires training the classifier
r(·) on noisy data of multiple noise levels, xt ∼ pt(xt|xT ), ∀t ∈ [0, T ].
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2.2 STEIN VARIATIONAL GRADIENT DESCENT

Variational inference (VI) approximates a complex target distribution p using a simpler tractable
distribution q ∈ Q, by minimizing the KL divergence, argminq DKL (q∥p). Stein variational gra-
dient descent (SVGD) (Liu & Wang, 2016) provide a nonparametric approach, representing q as a
set of interacting particles that are deterministically evolved along a direction ϕ to most efficiently
decrease the KL divergence. Liu & Wang (2016) solve the steepest descent problem in the unit ball
of reproducing kernel Hilbert space (RKHS)H. The following lemma summarizes their core result:

Lemma 2.1 −∇xDKL (q∥p) steepest direction maximizes Stein discrepancy in the RKHS unit ball.
ϕ∗ = argmax

ϕ∈H
Ex∼q [trace (Apϕ (x))] st ∥ϕ∥H ≤ 1

with Apϕ(x) = ∇x log p(x)ϕ(x) +∇xϕ(x)

where Ap is the Stein operator, ϕ is the Stein class of the target density p. Liu et al.
(2016) solve the problem 2.1 as kernelized Stein discrepancy (KSD) that yields ϕ∗(xi) =
Exj∼q(x)

[
∇xj log p(xj)k(xi,xj) +∇xjk(xi,xj)

]
, where k(xi,xj) is Radial Basic Function

(RBF) kernel, k(xi,xj) = exp
(
− 1

h∥x
i − xj∥22

)
. SVGD can approximate the intractable target

density p by gradually transporting a set of N initial particles {xi
0}Ni=0 ∼ q0 along the direction ϕ∗,

which relies on the computable score∇x log p(x). The first term of ϕ∗ represents a kernel-weighted
gradient ascent direction that pushes the particles toward the high-density regions. The second term
denotes the repulsive force that prevents the particles from collapsing into the local modes of p(x).

2.3 STOCHASTIC OPTIMAL CONTROL

Stochastic optimal control (Nüsken & Richter, 2021) seeks an optimal controller that steers the
behavior of a given stochastic system to minimize a pre-specified cost function. For the stochastic
dynamical diffusion system in Equation 1, we formalize an affine-control problem as follows:

inf
u∈U

E

[∫ T

t

(
1

2
∥u (xu

t , t) ∥2 + f (xu
t , t)

)
dt+ g(xu

T )

]
s.t. Pu : dxu

t =
(
−b(xu

t , t) + σ(t)2∇xu
t
log pt(x

u
t ) + σ(t)u (xu

t , t)
)
dt+ σ(t)dw (2)

where the feedback control u : Rd × [0, T ] 7→ Rd drives the system dynamics, f : Rd × [t, T ] 7→
[0,∞) specifies the state cost, g : Rd 7→ [0,∞) is the terminal cost, and Pu denotes the con-
trolled probability path measure induced from P. The control objective minimizes the cost functional
J (u,x, t) = EPu

[∫ T

t

(
1
2∥u (xu

s , s) ∥2 + f (xu
s , s)

)
ds+ g(xu

T )|xt = x
]
, whose minimum defines

the value function or optimal cost-to-go (Fleming & Soner, 2006), V (x, t) = infu∈U J (u,x, t).
Moreover, verification theorem (Fleming & Soner, 2006; Pham, 2009) relates the optimal control
and value function via u∗ = −σ∇xV . The affine stochastic control problem with a quadratic cost is
closely connected to an iterative diffusion optimization using a relative entropy loss (Powell, 2021;
Kappen et al., 2012; Hartmann & Schütte, 2012), which involves simulating multiple controlled tra-
jectories, computing their cumulative costs, and backpropagating through the trajectories to update
a parameterized controller; a more extensive treatment of SOC problem can be found in (Nüsken &
Richter, 2021; Domingo-Enrich et al., 2024). Here, we summarize their essential results as follows:

Lemma 2.2 Optimal controller and value function for the control problem in Equation 2.
u∗ (x, t) = −σ(t)∇xV (x, t)

V (x, t) = − logEP

[
exp

(
−
∫ T

t

f (xs, s) ds− g (xT )

)
|xt = x

]
As observed, obtaining the value function requires integrating diffusion trajectories from xt = x
under P, and computing the gradients ∇xV (x, t) within these simulation trajectories to recover
the optimal controller. Both operations are computationally expensive and substantially slow for
practical applications. Moreover, the state cost is often omitted, i.e, f(xs, s) = 0 ∀s. Under
this setting, Uehara et al. (2024) establish a connection with classifier-based diffusion guidance,
u∗ = σ(t)∇x logEP [exp (−g (xT )) |xt = x] ∝ ∇xEP [r(xT )|xt = x] , wherein r = −g, due to
the minimization problem, corresponds to an off-the-shelf classifier or a differential reward model.
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3 STEIN DIFFUSION GUIDANCE

Tweedie Stein

Figure 2: Back-and-forth Stein correc-
tion: Particles are mapped backward to
MT to obtain posterior samples, which
are corrected via Stein correction, and
then mapped forward toMt for reward-
based guidance. Dashed arrows indicate
the standard training-free method, while
solid arrows denote SDG.

We introduce a novel training-free diffusion guidance
framework derived from a surrogate stochastic optimal
control (SOC) formulation. Section 3.1 presents a new
SOC cost functional that enables diffusion models to ex-
plore low-density regions. Section 3.2 establishes a vari-
ational bound on the SOC value function, showing that
existing training-free guidance methods require posterior
correction. Section 3.3 proposes a back-and-forth Stein
correction, a low-cost alternative to SOC that regularizes
posterior samples for effective low-density exploration.
Detailed proofs are deferred to Appendix B.

3.1 LOW DENSITY DIFFUSION
SAMPLING AS STOCHASTIC OPTIMAL CONTROL

We consider the controlled reverse SDE (Equation 2) and
its associated probability path measure Pu. We introduce
a novel cost functional J̃ (u,x, t) that progressively an-
neals the marginal density pt(xt) of the uncontrolled SDE
(Equation 1) under P to low-density regions:

J̃ (u,x, t) = EPu

[∫ T

t

(
1

2
∥u (xu

s , s) ∥2 + α(s) log ps (x
u
s ) δ(s− t)

)
ds− β(t)r(xu

T )|xt = x

]
(3)

where α(t) and β(t) denote the schedules controlling low-density annealing and guidance strength,
respectively. We formulate low-density diffusion guidance as a stochastic optimal control problem.

Proposition 3.1 Consider the SOC problem in Equation 2 with the novel functional cost J̃ (u,x, t)
defined in Equation 3. By Lemma 2.2, the marginal density put (xt), the value function V (x, t), and
the optimal control u∗ (x, t) of the controlled-reverse SDE under Pu are given as

put (xt) = p
1−α(t)
t (xt) exp(β(t)r(xT ))

u∗ (x, t) = σ(t)∇x logEP

[
put (x)

pt(x)
|xt = x

]
and V (x, t) = − logEP

[
put (x)

pt(x)
|xt = x

]

The induced marginal density is the product of the annealed density term p
1−α(t)
t and the guid-

ance term exp(β(t)r(xT )). The latter is an un-normalized energy density with the energy function
−β(t)r(xT ). In Section 2.3, SOC constitutes a computationally expensive simulation problem. In
particular, obtaining the optimal control u∗(x, t) requires backpropagating through sampling tra-
jectories (Uehara et al., 2024; Wang et al., 2025). To alleviate the computational burden, one can
directly approximate posterior samples via Tweedie’s formula xT ≈ ((xt + γ2(t)sθ(xt, t))/η(t),
assuming a forward kernel pt|T (xt|xT ) = N (η(t)xT , γ

2(t)I). This one-step approximation has
been explored in many prior works. However, using Tweedie-based proposal distribution is inher-
ently suboptimal. As illustrated in Figure 1, the Tweedie-based approximation significantly deviates
from the endpoint sample given by the SOC simulation. In the following sections, we analyze the
sub-optimality of the Tweedie-based posterior and propose a novel Stein correction mechanism.

3.2 VALUE FUNCTION VARIATIONAL BOUND

We consider the target posterior pT |t(xT | xt), defined as the terminal distribution of xt un-
der the uncontrolled process P from Equation 1. By Proposition 3.1, the low-density reward-
guided value function can be written as V (x, t) = − logExT∼pT |t(xT |x)

[
pu
t (x)
pt(x)

|xt = x
]
, where

put (x) = p
1−α(t)
t (x) exp(β(t)r(xT )). To ensure computational tractability, we introduce a surro-

gate objective V̄ (x, t, q) with q ∈ Q, which serves as an upper bound on the value function V (x, t).

4
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Proposition 3.2 Let q ∈ Q be any traceable family of proposal distributions. Then, the value
function in Proposition 3.1 admits the following upper bound:

V (x, t) ≤ V̄ (x, t, q)

= −ExT∼qT |t(xT |x)

[
log

(
put (x)

pt(x)

)
|xt = x

]
+DKL (q(xT |xt)∥p(xT |xt)) |xt=x

= α(t) log pt(x)− β(t)ExT∼qT |t(xT |x) [r(xT )|xt = x]

+DKL (q(xT |xt)∥p(xT |xt)) |xt=x

The first term on the RHS drives samples toward low-density regions, while the second term
guides them toward regions with desired properties. When posterior samples xT are estimated
via Tweedie’s formula, these two terms together reproduce the training-free diffusion guidance ex-
plored in prior works (Chung et al., 2023; MOUFAD et al., 2025; Yu et al., 2023; Ma et al., 2024;
Shen et al., 2024; Rout et al., 2025; Janati et al., 2025; Dinh et al., 2025). The last term serves as
a KL regularization that minimizes the divergence between the proposal posterior q(xT |xt) and the
true posterior p(xT |xt). This reveals that optimizing only the first two terms of V̄ (x, t, q) under
the Tweedie-based approximation is suboptimal, since the resulting controller neglects the KL term
and thus fails to remain close to the true posterior. To overcome this limitation, we introduce a Stein
correction mechanism that refines the approximate diffusion posterior before sampling for guidance.

3.3 STEIN MEETS TWEEDIE FOR SURROGATE STOCHASTIC OPTIMAL CONTROL

Given the variational upper bound of the value function, we derive the optimal controller that mini-
mizes this bound, which we term the surrogate stochastic optimal control problem. By Lemma 2.2,
the optimal control ū∗(xt, t) for the surrogate value function V̄ (x, t, q) can be obtained as follows:

ū∗(xt, t)

σ(t)
= −∇xt

V̄ (xt, t, q)

= −α(t)sθ (xt) + β(t)∇xtExT∼qT |t(xT |xt) [r(xT )]︸ ︷︷ ︸
I

+−∇xt
DKL (q(xT |xt)∥p(xT |xt))︸ ︷︷ ︸

II

(4)

As observed, the first control component (I) recovers the standard training-free diffusion guidance,
where the proposal posterior mean is approximated via Tweedie’s formula. To address the pre-
viously discussed limitations of such methods, we introduce an auxiliary control component (II)
that enforces proximity between the proposal and true posteriors, ensuring q(xT |xt) ≈ p(xT |xt).
However, since the true posterior has no closed-form expression, evaluating the KL term directly is
infeasible. To address this, we adopt a particle-based optimization strategy using Stein variational
inference. Given a set of N particles Dt ← {xi

t}Ni=0 on the diffusion manifoldMt, we evolve them
along the KL-minimizing direction, which follows from Lemma 2.1:

ϕ∗(xi
t) = Exj

T∼qT |t(xT |xt)
[∇xj

t
log p(xj

T |x
j
t )k(x

i
T ,x

j
T ) +∇xj

t
k(xi

T ,x
j
T )] (5)

We initialize the proposal posterior qT |t(xT |xt) by a new set of particles via Tweedie’s formula,

i.e, DT ←
{
xi
T |xi

T =
xi
t+γ2(t)sθ(x

i
t)

η(t) , ∀xi
t ∈ Dt

}
. However, directly computing this optimal con-

trol direction requires numerous Jacobian-vector products, which are memory-intensive in high-
dimensional cases. To solve this computation burden, we propose a back-and-forth Stein correction.

Back-and-forth Stein correction. We first map the particles Dt backward, Mt → MT , to ob-
tain DT , then apply the Stein correction on DT , and finally map the corrected particles forward,
MT → Mt, back to the noisy manifold. We slightly abuse the terms forward and backward (or
reverse) here, following the conventions of score-based diffusion models (Ho et al., 2020; Song
et al., 2020b). Figure 2 illustrates the key steps of this back-and-forth Stein correction. The steepest
descent direction for minimizing −∇xT

DKL (q(xT |xt)∥p(xT |xt)) onMT can thus be computed
more efficiently.

ϕ∗(xi
T ) = Exj

T∼qT |t(xT |xt)
[∇xj

T
log p(xj

T |x
j
t )k(x

i
T ,x

j
T ) +∇xj

T
k(xi

T ,x
j
T )] (6)

As discussed, the true posterior p(xT |xt) has no closed-form expression; however, its score
∇xT

log p(xT |xt) can be approximated using score models, as established by the following result.
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Lemma 3.3 For xT ∼ p(xT |xt), the posterior score admits the following approximation in terms
of the score model sθ(·):

∇xT
log p(xT |xt) ≈ sθ(xT )− η(t)sθ(xt)

Here, we assume a forward-diffusion kernel of the form pt|T (xt|xT ) = N (η(t)xT , γ
2(t)I). Ap-

plying the posterior score approximation to Equation 6 yields the evolving direction ϕ∗(xi
T ) of the

particles onMT . We now present the optimal controller for the surrogate stochastic optimal control.

Proposition 3.4 Consider the low-density reward-based cost functional J̃ (u,x, t) and its upper
bound value function V̄ (x, t, q). Let qT |t(xT |xt) denote the proposal posterior initialized via
Tweedie’s formula, and let qϵT |t(xT |xt) denote the updated posterior obtained after applying the
back-and-forth Stein correction with step size ϵ(t). Then, the optimal control ū∗(x, t) for the surro-
gate value function V̄ (x, t, q) decomposed as

ū∗(xi
t, t)

σ(t)
= −α(t)sθ

(
xi
t

)
+ β(t)∇xi

t
Exi

T∼qϵ
T |t(xT |xt)

[
r(xi

T )
]︸ ︷︷ ︸

Low-density reward-based guidance on Mt

⊕ Exj
T∼qT |t(xT |xt)

[(
sθ(x

j
T )− η(t)sθ(x

j
t )
)
k(xi

T ,x
j
T ) +∇xj

T
k(xi

T ,x
j
T )
]

︸ ︷︷ ︸
Stein diffusion posterior correction on MT

Here, ⊕ denotes the concatenation operator. The control factor associated with the Stein correction
onMT refines the initial proposal distribution qT |t(xT |xt) toward the true diffusion posterior, in-
curring the updated posterior qϵT |t(xT |xt) ≈ pT |t(xT |xt). After mapping the corrected particles
forward to the noisy manifoldMt, the second control factor guides the particles toward low-density
regions with desired properties. Crucially, our Stein correction ensures robust and accurate guidance
even when leveraging off-the-shelf classifiers on posterior samples approximated via Tweedie’s for-
mula, thereby improving the method’s robustness across diverse tasks. Figure 2 shows that standard
training-free guidance often drifts samples outside generative manifolds, whereas Stein-corrected
posteriors guarantee reliable guidance that keeps samples within them. We refer to the proposed
method as Stein Diffusion Guidance (SDG), which we summarize in Algorithm 1 in the Appendix.

Generalization of Langevin correction. We employ an adaptive step size ϵ(t) for the Stein cor-
rection, with its formulation provided in Appendix C.2. Notably, in the limit ϵ(t) → 0, the back-
and-forth Stein correction recovers the Langevin correction of Song et al. (2020b).

Corollary 3.5 Let the correction stepsize be set to zero, ϵ(t) = 0 for all t, then the back-and-forth
Stein correction reduces to the Langevin correction with stepsize γ2(t) and noise scaled by

√
2:

xt ← xt + γ2(t)sθ(xt) + γ(t)z, z ∼ N (0, I)

Moreover, the Stein correction incorporates interactions between particles arising from repulsive
forces, which play a nontrivial role in enhancing the guidance strength toward desired targets. Sim-
ilar interaction forces have been used for non-i.i.d. diverse diffusion sampling (Corso et al., 2024).

Table 1: Comparison of training-free diffusion guidance methods on non-low-density image guid-
ance tasks. Relevant baseline results are taken from Ye et al. (2024).

Method LABEL GUIDANCE GAUSSIAN DEBLUR SUPER RESOLUTION

Accuracy (%) ↑ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓
DPS (Chung et al., 2023) 50.1 172.0 0.390 98.30 0.420 109.0
LGD (Song et al., 2023) 32.2 102 0.270 85.1 0.360 96.7
SDG w/o Stein correction 48.2 89.50 0.326 87.23 0.315 91.99
SDG (α(t) = 0, ϵ(t) > 0) 54.0 105.4 0.246 70.00 0.228 68.90
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4 EXPERIMENTS

We evaluate SDG on two training-free diffusion guidance settings: (i) standard image diffusion
guidance tasks without low-density sampling to assess its generalizability across data domains (Sec-
tion 4.1); and (ii) reward-guided molecular diffusion sampling in low-density regions (Section 4.2).

4.1 TRAINING-FREE DIFFUSION GUIDANCE ON GENERAL IMAGE TASKS

We adapt the benchmarks from Ye et al. (2024) for three tasks: image label guidance, Gaussian
deblurring, and super-resolution. Detailed task descriptions, evaluation metrics, and baselines are
provided in Appendix D. Since these tasks do not contain minority class samples, we disable low-
density sampling and instead focus on generating samples with high desired rewards. As shown
in Table 1, SDG consistently outperforms its variant without the Stein correction, highlighting the
importance of correcting posterior samples—approximated via Tweedie’s formula—before applying
them to the diffusion guidance tasks. In label guidance, SDG generates sharper images that improve
the classification accuracy metric, though this comes at the cost of a higher FID due to the dataset’s
low resolution. Furthermore, SDG surpasses the relevant baselines, including DPS (Chung et al.,
2023) and LGD (Song et al., 2023), which rely on approximated posterior samples exclusively.

Table 2: Mean and standard deviation of novel hit ratio (%) over
three runs; baseline results from Lee et al. (2023). α(t) and ϵ(t)
control low-density levels and particle update rates, respectively.

Method NOVEL HIT RATIO (%) ↑
fa7 5ht1b jak2

HierVAE (Jin et al., 2020) 0.007 (±0.013) 0.507 (± 0.278) 0.227 (±0.127)

MORLD (Jeon & Kim, 2020) 0.007 (±0.013) 0.880 (± 0.735) 0.227 (±0.118)

FREED (Yang et al., 2021) 1.107 (±0.209) 10.187 (± 3.306) 4.520 (±0.673)

GDSS (Jo et al., 2022) 0.368 (±0.103) 4.667 (± 0.306) 1.167 (±0.281)

MOOD (Lee et al., 2023) 0.733 (±0.141) 18.673 (±0.423) 9.200 (±0.524)

SDG w/o Stein correction 0.299 (±0.094) 0.033 (±0.027) 0.000 (±0.000)

SDG (α(t) > 0, ϵ(t) > 0) 1.156 (±0.087) 22.690 (±0.341) 9.167 (±0.262 )

SDG (α(t) = 0, ϵ(t) > 0) 0.915 (±0.031) 21.278 (±0.332) 8.312 (±0.541)

SDG (α(t) > 0, ϵ(t) = 0) 0.956 (±0.247) 21.722 (±0.275) 8.722 (±0.218)

sim=0.30, ds=-11.00, qed=0.77, sa=0.76

Figure 3: Example docking pose
of a sampled ligand bound to the
jak2 protein receptor.
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Figure 4: Distribution of docking scores (lower is better) for generated molecules of SDG with and
without Stein correction. The black dashed lines indicate thresholds for identifying hit compounds.

4.2 LOW-DENSITY REWARD-BASED DIFFUSION GUIDANCE ON MOLECULES

To evaluate the hypothesis that sampling molecules from low-density regions can improve drug
discovery, we apply SDG to the ligand–protein binding problem adapted from Lee et al. (2023). In
this setting, generated molecules must satisfy four hit conditions: (1) Tanimoto similarity (SIM)
with the closest training sample in ZINC250k (Irwin et al., 2012) is below 0.4 to ensure novelty
(Nov.); (2) synthetic accessibility score (SA) is below 5, indicating ease of molecular synthesis;
(3) drug-likeness score (QED) exceeds 0.5; and (4) docking score (DS) is lower than the median
DS of known actives. We evaluate this task on three protein targets: fa7 (Coagulation Factor VII),
5ht1b (5-hydroxytryptamine receptor 1B), and jak2 (Tyrosine-protein kinase JAK2). Detailed task
descriptions, evaluation metrics, and baselines are provided in Appendix C.
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Figure 5: Temporal sampling dynamics of SDG for the jak2 protein. (a) Percentage of molecules
meeting QED and SA hit criteria; (b) Rewards of posterior samples r(XT ,ET ); (c) Frobenius norm
of node posterior scores sθ(XT ,ET ); (d) Frobenius norm of edge posterior scores sϕ(XT ,ET ).

4.2.1 SAMPLING NOVEL HIT MOLECULES

As shown in Table 2, SDG without the Stein correction performs poorly, indicating that Tweedie’s
formula alone provides a biased and unreliable approximation of diffusion posteriors. Samples
from these approximate posteriors fail to offer meaningful guidance, particularly in low-density
regions where score-based models are least accurate due to limited training support. In contrast,
SDG substantially enhances guidance by leveraging Stein-corrected samples, leading to improve-
ments of several orders of magnitude. This not only validates the theoretical motivation for the Stein
correction but also demonstrates consistent empirical gains. Moreover, SDG further boosts the per-
formance of the pretrained GDSS model and its classifier-guided variant, MOOD, on two protein
targets. Compared to non-diffusion methods, SDG generates more hit compounds across the target
proteins. Figure 4 compares the distributions of docking scores. Without the Stein correction, SDG
fails to align with the data distributions, resulting in poor guidance and fewer promising candidates.
In contrast, SDG effectively regularizes sampling in low-density regions, shifting the docking score
distributions toward the desired range and enabling the generation of more potential hit compounds.

Table 2 also shows that optimizing solely for rewards (α(t) = 0) leads SDG to perform suboptimally,
generating fewer novel hit molecules compared to the full setting (α(t) > 0, ϵ(t) > 0). This
further supports the clear benefit of targeting low-density regions in molecular generation. SDG
incorporates a novel Stein correction, which is provably more robust than the Langevin variant
(ϵ(t) = 0) of Corollary 3.5. These performance gains stem from the non-trivial interaction forces
between particles, previously leveraged to increase sample diversity. Unlike Corso et al. (2024),
however, SDG does not suffer from diversity issues, as most generated molecules remain unique
(Figure 6). We visualize the docking pose of a sampled ligand on the jak2 target protein in Figure 3.

4.2.2 REWARD OVERESTIMATION AND OFF-MANIFOLD SAMPLING

̂SA

QED

Nov.

Uniq.

0.2
0.4

0.6
0.8

SDG
SDG w/o Stein correction

Figure 6: Multiple sampling objec-
tives on jak2; ŜA denotes normalized
synthetic accessibility (SA) scores.

In many applications, true (genuine) rewards are computed
by non-differentiable oracle functions, which cannot be
directly used in training-free diffusion guidance methods.
Reward models and classifiers are trained to learn these
genuine rewards and produce approximate (nominal) re-
wards, serving as differentiable proxies for diffusion mod-
els. However, due to the finite number of training samples,
reward models tend to provide reliable signals only within
the training data support. This limitation becomes more
severe in low-density sampling problems. Uehara et al.
(2024) first formulated this issue and proposed an entropy-
regularized control approach, which is equivalent to solv-
ing a costly stochastic optimal control problem. In our case
study, the absence of regularization leads the reward models
to produce highly unreliable estimates of the true rewards
during the sampling process (Figure 5.b), termed as reward
overestimation. Moreover, this leads to the generation of
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Figure 7: Ablation results under different low-density levels (αmax) for jak2. Chemical distance FCD
(a) and structural distance NSPDK (b) compared to the test set; (c) Validity of generated molecules.

novel molecular structures that lack drug-likeness and are difficult to synthesize (Figures 5.a and
6). Additionally, the model scores vanish and are misdirected away from generative manifolds (Fig-
ure 5.c and 5.d). Further details on the sampling score dynamics are provided in Appendix C.3.3.
In contrast, the Stein correction enables SDG to act as an efficient regularization mechanism that (i)
improves genuine reward estimation accuracy (Figure 5.b), (ii) promotes the generation of more re-
alistic and synthesizable molecules (Figure 5.a and Figure 6), and (iii) preserves sampling within the
generative manifold (Figures 5.c and 5.d), particularly under challenging low-density conditions.

4.2.3 ABLATION STUDIES

Table 3: Ablation results on the number of particles.

Receptor NOVEL HIT RATIO (%) ↑
512 1024 3000

fa7 1.156 (±0.087) 1.044 (±0.063) 1.067 (±0.109)

5ht1b 22.690 (±0.341) 21.922 (± 0.461) 22.389 (±0.490)

jak2 9.078 (±0.278) 8.822 (±0.532) 9.167 (±0.262 )

Performance under extreme low-
density sampling settings. We assess
the robustness of SDG under varying
low-density sampling conditions by mea-
suring the chemical (FCD) and structural
(NSPDK) distances between generated
and test molecules. As shown in Fig-
ures 7(a,b), removing the Stein correction
causes SDG to deviate substantially from the data distributions, even at modest low-density levels
(αmax = 0.3). This degradation is also reflected at the molecular level, where most generated
molecules exhibit invalid valency (Figure 7.c). In contrast, with the Stein correction, SDG guides
samples within generative manifolds while marginally increasing FCD and NSPDK, thereby
enabling sampling from lower-density regions. Moreover, the posterior correction produces
significantly more valid structures, even under extreme conditions (αmax = 0.5), which underscores
the effectiveness of Stein-based regularization for robust low-density molecular sampling scenarios.

Effect of particle size on Stein correction. SDG relies on Stein variational inference, whose
effectiveness depends on the number of particles. While theory guarantees better approximation
with more particles (Liu & Wang, 2016), our empirical results reveal a saturation point beyond
which additional particles can yield inconsistent performance gains. Table 3 presents an ablation
study across varying particle sizes, showing that larger particle sizes do not necessarily lead to
better results. These behaviors likely arise from the inherent instability of kernel-based updates in
high-dimensional spaces under the standard SVGD framework (Liu & Wang, 2016), consistent with
prior analyses in Zhang et al. (2020), and highlight the need for more robust particle update schemes.

5 CONCLUSION

In this work, we propose Stein Diffusion Guidance (SDG), a low-cost alternative to SOC-based
methods for enhancing diffusion guidance in a training-free manner. By analyzing the existing biases
of Tweedie-based approximate posteriors through the lens of SOC theory, we introduce a plug-and-
play Stein correction that effectively mitigates these biases. Experiments on low-density molecular
sampling and general image guidance tasks provide strong empirical support for our theoretical
claims. While effective, SDG still inherits the limitations of the standard SVGD formulation. Future
work could explore more stable SVGD variants to further improve SDG for low-density diffusion
guidance in high-dimensional settings.
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Algorithm 1 Stein Diffusion Guidance Algorithm

1: Input: Score model sθ(xt), number of particles N , off-the-shelf classifier r(xT ), correction
step size ϵ(t), low-density schedule α(t), guidance strength schedule β(t), total steps T .

2: Output: Endpoint samples.
D0 ←

{
xi
0|xi

0 ∼ p0, 1 ⩽ i ⩽ N
}
{initial particles}

3: for t in [0, T ):
/* Back-and-forth Stein correction */

4: DT ←
{
xi
T |xi

T =
xi
t+γ2(t)sθ(x

i
t)

η(t) , ∀xi
t ∈ Dt

}
{Backward mapping}

5: xi
T = xi

T + ϵ(t) 1
N

∑
xj
t ,x

j
T∈Dt

⋃
DT

(
(sθ(x

j
T )− η(t)sθ(x

j
t ))k(x

i
T ,x

j
T ) +∇xj

T
k(xi

T ,x
j
T )
)

6: Dt ←
{
xi
t|xi

t ∼ N (η(t)xi
T , γ

2(t)I), ∀xi
T ∈ DT

}
{Forward mapping}

/* Low-density reward-based diffusion guidance */
7: xi

T =
xi
t+γ2(t)sθ(x

i
t)

η(t)

8: xi
t+1 = xi

t−b(xi
t, t) + σ(t)2

(
(1− α(t))sθ(x

i
t) + β(t)∇xi

t
r(xi

T )
)
+ σ(t)z, z ∼ N (0, I)

9: return:
{
xi
T , 1 ⩽ i ⩽ N

}

A BROADER IMPACT STATEMENTS

Our work presents a novel, generic approach to training-free diffusion guidance by connecting with
Stein variational inference and stochastic optimal control theory. The target application is for low-
density molecular sampling, with the potential to advance drug discovery by finding effective drug
candidates for cancer treatments. However, in the wrong hands, it could be misused to illicitly design
harmful or addictive substances. Ensuring responsible usage is, therefore, critical to maximizing its
positive societal impact.

B THEORETICAL PROOFS

Proposition 3.1 Consider the SOC problem in Equation 2 with the novel functional cost J̃ (u,x, t)
defined in Equation 3. By Lemma 2.2, the marginal density put (xt), the value function V (x, t), and
the optimal control u∗ (x, t) of the controlled-reverse SDE under Pu are given as

put (xt) = p
1−α(t)
t (xt) exp(β(t)r(xT ))

u∗ (x, t) = σ(t)∇x logEP

[
put (x)

pt(x)
|xt = x

]
and V (x, t) = − logEP

[
put (x)

pt(x)
|xt = x

]
Proof. For low-density sampling, we introduce a state cost that penalizes the density of the current
state, expressed as f (xs, s) = α(s) log ps (xs) δ(s−t), where α(s) defines a low-density annealing
schedule. To maximize the reward of generated samples, we define a terminal cost as g (xT ) =
−β(t)r(xT ), where r(·) is the reward function and β(t) defines a guidance-strength schedule. These
two terms form a novel functional cost function J̃ (u,x, t) (Equation 3 ). By Lemma 2.2, we obtain
the value function for this cost function.

V (x, t) = − logEP

[
exp

(
−
∫ T

t

α(s) log ps (xs) δ(s− t)ds+ β(t)r(xT )

)
|xt = x

]
= − logEP [exp (−α(t) log pt (x) + β(t)r(xT )) |xt = x]

= − logEP

[
p
−α(t)
t (x) exp (β(t)r(xT )) |xt = x

]
(7)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

And, the optimal control has the form.

u∗ (x, t) = σ(t)∇x logEP

[
p
−α(t)
t (x) exp (β(t)r(xT )) |xt = x

]
(8)

Substituting the optimal control into the stochastic optimal control problem (Equation 2) yields the
controlled SDE under Pu.

dxu
t =

(
−b(xu

t , t) + σ(t)2∇xu
t
log pt(x

u
t ) + σ(t)u (xu

t , t)
)
dt+ σ(t)dw

=
(
−b(xu

t , t) + σ(t)2∇xu
t
log pt(x

u
t ) + σ(t)2∇x logEP

[
p
−α(t)
t (x) exp (β(t)r(xT )) |xu

t = x
])

dt+ σ(t)dw

=
(
−b(xu

t , t) + σ(t)2∇x logEP

[
p
1−α(t)
t (x) exp (β(t)r(xT )) |xu

t = x
])

dt+ σ(t)dw

=
(
−b(xu

t , t) + σ(t)2∇x logEP [p
u
t (x)|xu

t = x]
)
dt+ σ(t)dw

(9)

where put (xt) denotes the annealed, reward-guided marginal density under Pu:

put (xt) = p
1−α(t)
t (xt) exp(β(t)r(xT )) (10)

Substituting this expression back into the value function and optimal control, we conclude the proof.

u∗ (x, t) = σ(t)∇x logEP

[
put (x)

pt(x)
|xt = x

]
and V (x, t) = − logEP

[
put (x)

pt(x)
|xt = x

]
(11)

Proposition 3.2 Let q ∈ Q be any traceable family of proposal distributions. Then, the value
function in Proposition 3.1 admits the following upper bound:

V (x, t) ≤ V̄ (x, t, q)

= −ExT∼qT |t(xT |x)

[
log

(
put (x)

pt(x)

)
|xt = x

]
+DKL (q(xT |xt)∥p(xT |xt)) |xt=x

= α(t) log pt(x)− β(t)ExT∼qT |t(xT |x) [r(xT )|xt = x]

+DKL (q(xT |xt)∥p(xT |xt)) |xt=x

Proof. We begin by rewriting the value function in terms of the diffusion posterior p(xT | xt), which
denotes the terminal distribution evolved from xt under the uncontrolled process P.

V (x, t) = − logEP

[
put (x)

pt(x)
|xt = x

]
= − logEp(xT |x)

[
put (x)

pt(x)
|xt = x

]
= − log

∫
put (x)

pt(x)
p(xT |x)dxT , note: put (x) depends implicitly on xT

= − log

∫
put (x)

pt(x)

p(xT |x)
q(xT |x)

q(xT |x)dxT , where q(xT |x) is a traceable simpler distribution.

= − logEq(xT |x)

[
put (x)

pt(x)

p(xT |x)
q(xT |x)

|xt = x

]
≤ −ExT∼qT |t(xT |x)

[
log

(
put (x)

pt(x)

)
|xt = x

]
+DKL (q(xT |xt)∥p(xT |xt)) |xt=x, Jensen’s inequality

= α(t) log pt(x)− β(t)ExT∼qT |t(xT |x) [r(xT )|xt = x] +DKL (q(xT |xt)∥p(xT |xt)) |xt=x

= V̄ (x, t, q) (12)
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Lemma 3.3 For xT ∼ p(xT |xt), the posterior score admits the following approximation in terms
of the score model sθ(·):

∇xT
log p(xT |xt) ≈ sθ(xT )− η(t)sθ(xt)

Proof. We commence by expressing the marginal data score as the expectation of the conditional
data score over the posterior distribution.

∇xt
log p(xt) = ∇xt

log

∫
p(xt,xT )dxT

= ∇xt
log

∫
p(xt | xT )p(xT )dxT

=
1

p(xt)
∇xt

∫
p(xt | xT )p(xT )dxT , Identity’s rule

=
1

p(xt)

∫
∇xt

p(xt | xT )p(xT )dxT

=
1

p(xt)

∫
p(xT ,xt)∇xt

log p(xt | xT )dxT

=
1

p(xt)

∫
p(xt | xT )∇xt

log p(xt | xT )p(xT )dxT , Identity’s rule

=

∫
p(xT | xt)∇xt

log p(xt | xT )dxT

= Ep(xT |xt)[∇xt log p(xt|xT )] (13)

We leverage the identity, ∇x log f(x) =
1

f(x)∇xf(x), in two critical steps. Applying a one-sample
Monte Carlo estimation of the expectation, we obtain the following approximation.

sθ(xt) = ∇xt
log p(xt) ≈ ∇xt

log p(xt|xT ), xT ∼ p(xT |xt) (14)

Assuming the noise kernel with the form pt|T (xt|xT ) = N (η(t)xT , γ
2(t)I), the model score can

be expressed as:

sθ(xt) ≈ ∇xt log p(xt|xT ) = −
xt − η(t)xT

γ2(t)
= − z

γ(t)
, z ∼ N (0, I) (15)

The last equality results from xt = η(t)xT + γ(t)z, z ∼ N (0, I). Moreover, the posterior score
can be decomposed as:

∇xT
log p(xT |xt) = ∇xT

log
p(xt|xT )p(xT )

p(xt)

= ∇xT
log p(xt|xT ) +∇xT

log p(xT )

= η(t)
xt − η(t)xT

γ2(t)
+ sθ(xT )

= η(t)
z

γ(t)
+ sθ(xT )

≈ sθ(xT )− η(t)sθ(xt) (16)

We apply the model score to the last approximation, and xT ∼ p(xT |xt), we conclude the proof.
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Proposition 3.4 Consider the low-density reward-based cost functional J̃ (u,x, t) and its up-
per bound value function V̄ (x, t, q). Let qT |t(xT |xt) denote the proposal posterior initialized via
Tweedie’s formula, and let qϵT |t(xT |xt) denote the updated posterior obtained after applying the
back-and-forth Stein correction with step size ϵ(t). Then, the optimal control ū∗(x, t) for the surro-
gate value function V̄ (x, t, q) decomposed as

ū∗(xi
t, t)

σ(t)
= −α(t)sθ

(
xi
t

)
+ β(t)∇xi

t
Exi

T∼qϵ
T |t(xT |xt)

[
r(xi

T )
]︸ ︷︷ ︸

Low-density reward-based guidance on Mt

⊕ Exj
T∼qT |t(xT |xt)

[(
sθ(x

j
T )− η(t)sθ(x

j
t )
)
k(xi

T ,x
j
T ) +∇xj

T
k(xi

T ,x
j
T )
]

︸ ︷︷ ︸
Stein diffusion posterior correction on MT

Proof. By Lemma 2.2, we obtain the optimal control of the surrogate value function.

ū∗(xi
t, t)

σ(t)
= −∇xi

t
V̄ (xi

t, t, q)

= −∇xi
t
DKL

(
q(xi

T |xi
t)∥p(xi

T |xi
t)
)︸ ︷︷ ︸

I

+−α(t)sθ
(
xi
t

)
+ β(t)∇xi

t
Exi

T∼qT |t(xT |xt)

[
r(xi

T )
]︸ ︷︷ ︸

II

(17)

The first control component (I) guides posterior samples in the direction that minimizes the KL
divergence between the approximate and true posteriors. The second control component (II) enables
low-density sampling and reward/classifier-based diffusion guidance. Most existing training-free
diffusion guidance methods utilize solely the second control component while ignoring the first one,
which thus does not guarantee sampling from the true posterior. In this work, we propose Stein
Diffusion Guidance (SDG), which incorporates the guidance control from both components. Let’s
consider a proposal posterior qT |t(xT |xt), whose mean value is estimated via Tweedie’s formula
(xt + γ2(t)sθ(xt, t))/η(t). Below, we present the analytical form of each control component.

The KL divergence control (I): Since the true posterior p(xi
T |xi

t) does not admit a closed-form
expression, we can not compute analytically the KL divergence and its gradient. To address this,
we leverage the Stein variational inference, a nonparametric approach that identifies the steepest
gradient direction to minimize the KL divergence. Assuming a batch of N particles at the tth reverse
diffusion timestep Dt ← {xi

t}Ni=0, we apply Lemma 2.1 to obtain the KSD’s direction minimizing
DKL

(
q(xi

T |xi
t)∥p(xi

T |xi
t)
)
:

ϕ∗(xi
t) = Exj

T∼qT |t(xT |xt)
[∇xj

t
log p(xj

T |x
j
t )k(x

i
T ,x

j
T ) +∇xj

t
k(xi

T ,x
j
T )]

Computing this optimal direction requires numerous Jacobian-vector product evaluations, e.g,

∇xj
T
log p(xj

T |x
j
t )

∂xj
T

∂xj
t

and ∇xj
T
k(xi

T ,x
j
T )

∂xj
T

∂xj
t

, which are computationally expensive as the num-
ber of particles N increases. To alleviate this computational burden, we propose a back-and-forth
Stein correction: (i) Apply Tweedie’s formula to map backward the particles Dt ← {xi

t}Ni=0 on

Mt to DT ←
{
xi
T |xi

T =
xi
t+γ2(t)sθ(x

i
t)

η(t) , ∀xi
t ∈ Dt

}
onMT , which represents the initial proposal

posterior qT |t(xT |xt); (ii) Apply the Stein correction on the particles of DT , which results in the
corrected posterior qϵT |t(xT |xt); (iii) Apply the perturbation kernel pt|T (xt|xT ) to map forward the
Stein-corrected particles DT onMT to Dt ←

{
xt
i|xt

i ∼ N (η(t)xi
T , γ

2(t)I), ∀xi
T ∈ DT

}
onMt.

In the second step, the Stein correction applies a particle-based transform on each particle of DT ,
which follows the KSD’s direction, given as:

ϕ∗(xi
T ) = Exj

T∼qT |t(xT |xt)
[∇xj

T
log p(xj

T |x
j
t )k(x

i
T ,x

j
T ) +∇xj

T
k(xi

T ,x
j
T )] (18)
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We observe that the Stein correction on MT does not involve any evaluations of Jacobian-vector
products, which achieves more memory efficiency during inference. By replacing the posterior
score from Lemma 3.3, we obtain the KSD’s direction with a closed form.

ϕ∗(xi
T ) = Exj

T∼qT |t(xT |Dt)
[(−η(t)sθ(xj

t ) + sθ(x
j
T ))k(x

i
T ,x

j
T ) +∇xj

T
k(xi

T ,x
j
T )] (19)

The particle update with a stepsize ϵ(t) can be taken as:

xi
T = xi

T + ϵ(t) ∗ ϕ∗(xi
T ) (20)

The low-density reward guidance control (II): We use the Stein-corrected posterior qϵT |t(xT |xt) to
guide samples toward low-density regions with high rewards or desired properties. The optimal
control for this task can be written in an analytical form.

−α(t)sθ
(
xi
t

)
+ β(t)∇xi

t
Exi

T∼qϵ
T |t(xT |xt)

[
r(xi

T )
]

(21)

Where xi
t is the noised sample on Mt, resulting from applying the forward kernel on its Stein-

corrected version xi
T onMT .

By concatenating the two control components, we conclude the proof.

Corollary 3.5 Let the correction stepsize be set to zero, ϵ(t) = 0 for all t, then the back-and-forth
Stein correction reduces to the Langevin correction with stepsize γ2(t) and noise scaled by

√
2:

xt ← xt + γ2(t)sθ(xt) + γ(t)z, z ∼ N (0, I)

Proof. By setting ϵ(t) = 0 for all t, from Algorithm 1, we have the back-and-forth Stein correction
mechanism with a following analytical form:

xt ← η(t)
xt + γ2(t)sθ(xt)

η(t)
+ γ(t)z

= xt + γ2(t)sθ(xt) + γ(t)z, z ∼ N (0, I) (22)

This corresponds to the Langevin correction from Song et al. (2020b), with a step size of γ2(t)

and the noise term scaled down by a factor of
√
2. As a result, the back-and-forth Stein correction

generalizes the Langevin correction as a special case.

C MOLECULAR SAMPLING IN LOW-DENSITY REGIONS

C.1 SAMPLING MOLECULAR GRAPH PERMUTATION-INVARIANT DISTRIBUTIONS

Our target application of Stein Diffusion Guidance is to enable sampling molecular graphs with
desired rewards in low-density regions in a training-free diffusion guidance manner. We adapt the
score-based generative framework from Jo et al. (2022) for modeling molecular graph distributions.
Given a graph representation G = (X,E), with X and E denoting the node and edge feature matri-
ces, respectively, the authors introduce a system of SDEs to capture molecular graph distributions,
whose reverse/generative process can be derived as:

{
Xt+1 = Xt − bX(Xt, t) + σX(t)2sθ(Xt,Et) + σX(t)Z, Z ∼ N (0, I)
Et+1 = Et − bE(Et, t) + σE(t)

2sϕ(Xt,Et) + σE(t)Z, Z ∼ N (0, I)
(23)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The authors utilize two score networks to approximate conditional data scores: sθ(Xt,Et) ≈
∇Xt

log p(Xt,Et) and sϕ(Xt,Et) ≈ ∇Et
log p(Xt,Et). In addition, sθ,ϕ(Xt,Et) are

permutation-equivariant models that respect the inherent symmetry of graph data. This system of
coupled SDEs must be solved simultaneously in order to sample graph distributions. Building on
this unconditional sampling foundation, we extend Stein Diffusion Guidance to sample molecular
graphs with desired properties in low-density regions. From Algorithm 1, SDG first corrects poste-
rior molecular graph samples on the manifoldMT :

 Xi
T = Xi

T + ϵX(t) 1
N

∑
Xj

t ,X
j
T∈Dt

⋃
DT

(
(sθ(X

j
T ,E

j
T )− ηX(t)sθ(X

j
t ,E

j
t ))k(X

i
T ,X

j
T ) +∇Xj

T
k(Xi

T ,X
j
T )
)

Ei
T = Ei

T + ϵE(t)
1
N

∑
Ej

t ,E
j
T∈Dt

⋃
DT

(
(sϕ(X

j
T ,E

j
T )− ηE(t)sϕ(X

j
t ,E

j
t ))k(E

i
T ,E

j
T ) +∇Ej

T
k(Ei

T ,E
j
T )
)

(24)

And then utilizing the Stein-corrected posterior samples to perform low-density diffusion guidance
with off-the-shelf molecular property predictors; we refer to property predictors as classifiers. Xi

t+1 = Xi
t − bX(Xi

t, t) + σX(t)2
(
(1− αX(t))sθ(X

i
t,E

i
t) + βX(t)∇Xi

t
r(Xi

T ,E
i
T )
)
+ σX(t)Z

Ei
t+1 = Ei

t − bE(E
i
t, t) + σE(t)

2
(
(1− αE(t))sϕ(X

i
t,E

i
t) + βE(t)∇Ei

t
r(Xi

T ,E
i
T )
)
+ σE(t)Z

(25)

We obtain initial posterior samples via Tweedie’s formula, given as Xi
T = (Xi

t +
γX(t)sθ(X

i
t,E

i
t))/ηX(t) and Ei

T = (Ei
t + γE(t)sϕ(X

i
t,E

i
t))/ηE(t).

Based on the primary work (Jo et al., 2022), Lee et al. (2023) further propose a standard classifier-
based diffusion guidance for conditional molecular sampling in out-of-distribution settings. In ex-
periments, we use the same pretrained models and settings as Lee et al. (2023). Concretely, we
model the node component using a Variance Preserving SDE (VPSDE) and the edge component
using a Variance Exploding SDE (VESDE). In sampling, we adopt the predictor-corrector scheme,
with the reverse SDE as the predictor and annealed Langevin dynamics as the corrector. As reported
in Jo et al. (2022) (Table 12), the pretrained models tend to sample molecules with very low validity
when using either the predictor or corrector framework alone.

C.2 EXPERIMENTAL SETUP

Datasets We benchmark SDG on molecular generation tasks aimed at discovering novel ligands
with strong binding affinity to specific protein targets. Following Lee et al. (2023), we evaluate
performance on three protein receptors: fa7 (Coagulation factor VII), 5ht1b (5-hydroxytryptamine
receptor 1B), and jak2 (Tyrosine-protein kinase JAK2). Ligand candidates are sampled from the
learned distribution over the ZINC250k dataset (Irwin et al., 2012). To assess binding affinity,
we compute docking scores using the program QuickVina 2 (Alhossary et al., 2015) and set the
exhaustiveness to 1 by following Lee et al. (2023).

Evaluation metrics We assess ligand-protein binding based on four criteria: (1) Tanimoto sim-
ilarity (SIM) with the closest ZINC250k training sample is below 0.4 to ensure novelty (Nov.);
(2) synthetic accessibility score (SA) is below 5, indicating ease of synthesis; (3) drug-likeness
score (QED) exceeds 0.5; and (4) docking score (DS) is lower than the median DS of known ac-
tives. For consistent comparison and training, each raw score is normalized to lie within the range,
0 ≤ ŜA, D̂S ≤ 1:

ŜA =
10− SA

9
D̂S =

DS
min(DStrain)− 0.2

(26)

Where higher values indicate better performance. The overall evaluation metric, Novel Hit Ratio
(%), is the percentage of unique (Uniq.) molecules among 3,000 samples that satisfy these criteria.

Model and baselines We adopt the pretrained score-based generative model GDSS (Jo et al.,
2022) and its classifier-guided variant MOOD (Lee et al., 2023) as baselines. We also compare SDG
with several non-diffusion baselines: FREED (Yang et al., 2021), a fragment-based reinforcement
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learning method; HierVAE (Jin et al., 2020), a VAE model with a hierarchical molecular repre-
sentation; and MORLD (Jeon & Kim, 2020), a reinforcement learning approach that incorporates
QED, SA, and DS at different optimisation stages. We also report ablations of SDG: SDG w/o Stein
correction, corresponding to standard training-free diffusion guidance; SDG (α(t) = 0, ϵ(t) > 0),
corresponding to guidance without low-density sampling; and SDG (α(t) > 0, ϵ(t) = 0), corre-
sponding to the Langevin correction (Cororally 3.5).

Novel diffusion prior on the order of molecule graphs In graph generative modeling, the sam-
pling process often utilizes the marginal graph order data distribution. However, for a certain type of
molecular properties, the distribution of desired molecules over graph order is usually nonuniform;
i.e., molecules can behave differently in molecular property space according to their node cardinal-
ity. Here, we propose a novel prior on the order of graphs that prioritizes sampling graph order,
whose training molecules exhibit desired docking scores on a target protein receptor.

p†(Ni) =
|Ni ∩ (DSi < τ)|+M × 39

M × 39 +
∑

i Ni
× p(Ni)

p(DS < τ)
(27)

Where |·| denotes the cardinality of set satisfying the Ni number of nodes and their docking scores
DSi below the hit threshold τ , i.e, |Ni ∩ (DSi < τ)|; M denotes the offset number that serves to en-
able sampling the graph order which does not have any molecules within desired docking scores; we
choose M = 10 for all experiments; in ZINC250k dataset, the range of graph order is from 0 to 38,
which results to 39 different possibilities; p(Ni) is the marginal graph order distribution computed
from training data; and p(DS < τ) denotes the marginal distribution of hit training molecules.

Property predictor pretraining on clean data Since there are no available predictors for multiple
target properties, we opt to pre-train our molecular property predictors on clean (i.e., noise-free)
molecular data of ZINC250k, where the target property is defined as the product of the normalized
scores: ŜA× D̂S. Since most training molecules satisfy the QED hit condition, we thus ignore this
target to simplify our multi-objective optimization task. Our regressor architecture is similar to the
one from Lee et al. (2023) with an additional graph convolution layer. We set the learning rate to
0.01, the number of epochs to 10, the AdamW optimizer (Loshchilov & Hutter, 2019), and utilize
the same architecture hyperparameters for all target proteins.

Stein correction stepsize We utilize an adaptive stepsize schedule ϵ(t) similar to the corrector
framework from Song et al. (2020b), which is defined as:

ϵ(t) = 2η2(t) (snr∥z∥2/∥g∥2)2 , z ∼ N (0, I) (28)

where snr denotes the signal-to-noise ratio, and g = sθ

(
xj
T

)
− η(t)sθ

(
xj
t

)
, assuming a forward

noising kernel as pt|T (xt|xT ) = N (η(t)xT , γ
2(t)I).

Annealing schedules For low-density sampling, we experiment on two scheduling approaches:
constant and linear.

α(t) =

{
αmax, constant

t× αmax, linear (29)

For guidance strength, we adopt the Polyak stepsize (Hazan & Kakade, 2019; Shen et al., 2024):

β(t) = βmax ×
∥sθ(xt)∥
∥∇xt

r(xT )∥
(30)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: SDG hyperparameters.

fa7 jak2 5ht1b

snrX 0.2 0.35 0.3
snrA 0.2 0.35 0.3
α scheduling constant constant constant
αXmax 0.20 0.42 0.35
αAmax 0.20 0.42 0.35
βXmax 1. 1. .7
βAmax

0 0 0
N 512 3000 512

Table 5: Mean and standard deviation of novel top 5% docking scores over three sampling runs.
Baseline results are taken from Lee et al. (2023).

Method TOP 5% DS (↓)
fa7 5ht1b jak2

HierVAE Jin et al. (2020) −6.812 (±0.274) −8.081 (± 0.252) −8.285 (±0.370)

MORLD Jeon & Kim (2020) −6.263 (±0.165) −7.869 (± 0.650) −7.816 (±0.133)

FREED Yang et al. (2021) −8.297 (±0.094) −10.425 (± .331) −9.624 (±0.102)

GDSS Jo et al. (2022) −7.775 (±0.039) −9.459 (± 0.101) −8.926 (±0.089)

MOOD Lee et al. (2023) −8.160 (±0.071) −11.145 (±0.042) −10.147 (±0.060)

SDG w/o Stein correction −7.794 (±0.040) −7.370 (±0.201) −5.904 (±0.163)

SDG −8.310 (±0.009) −11.383 (±0.0537) −10.178 (±0.037)

Hyperparameter search We conducted a hyperparameter search on SDG. We set the signal noise
ratio snr = {0.2, 0.3, 0.35}, the maximum low-density level α = {0.1, 0.2, 0.35, 0.42}, the max-
imum guidance strength β = {0.5, 0.7, 1.0}, the number of particles N = {512, 1024, 3000}, and
the anneal scheduling αscheduling = {linear, constant}. Table 4 presents the hyperparameters of the
main experimental results.

Hardware usage All experiments are conducted on NVIDIA Titan RTX, RTX 6000 with 8 CPU
cores, using a Slurm-managed high-performance computing (HPC) system.

C.3 ADDITIONAL RESULTS
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Figure 8: SDG performance on radar plots: fa7 (left), jak2 (middle), 5ht1b (right).
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C.3.1 MULTI-OBJECTIVE OPTIMIZATION

Figure 8 displays the radar plots of SDG performance under multiple property constraints. A con-
sistent pattern emerges across all target proteins: without Stein correction, SDG tends to generate
novel molecules with low drug-likeness and poor synthetic, largely due to overly complex structures.
Notably, SDG also achieves nearly 100% molecular uniqueness.
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Figure 9: Temporal sampling dynamics of SDG for the fa7 protein. (a) Percentage of molecules
meeting QED and SA hit criteria; (b) Rewards of posterior samples r(XT ,ET ); (c) Frobenius norm
of node posterior scores sθ(XT ,ET ); (d) Frobenius norm of edge posterior scores sϕ(XT ,ET ).
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Figure 10: Temporal sampling dynamics of SDG for the jak2 protein. (a) Percentage of molecules
meeting QED and SA hit criteria; (b) Rewards of posterior samples r(XT ,ET ); (c) Frobenius norm
of node posterior scores sθ(XT ,ET ); (d) Frobenius norm of edge posterior scores sϕ(XT ,ET ).
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Figure 11: Temporal sampling dynamics of SDG for the 5ht1b protein. (a) Percentage of molecules
meeting QED and SA hit criteria; (b) Rewards of posterior samples r(XT ,ET ); (c) Frobenius norm
of node posterior scores sθ(XT ,ET ); (d) Frobenius norm of edge posterior scores sϕ(XT ,ET ).
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C.3.2 NOVEL TOP 5% DOCKING SCORES

We additionally report in Table 5 the average docking scores of the top 5% unique molecules that
satisfy the novel hit conditions. As observed, SDG yields significantly lower average docking scores
compared to the standard training-free diffusion guidance method (SDG w/o Stein correction), in-
dicating that the generated molecules exhibit a stronger binding affinity. Moreover, SDG improves
binding affinity over both the pretrained model GDSS and the classifier-based diffusion guidance
method MOOD.

C.3.3 SAMPLING DYNAMICS OF MODEL SCORES ONMT

In the experiments, we only apply the guidance on the node’s score model, βX(t) > 0, and ignore the
guidance on the edge’s score model, βA(t) = 0 for all t. This enables low-cost sampling by avoiding
backpropagation through edge/adjacency matrices, whose dimension is O(N2), with N being the
number of nodes. Notably, thanks to the system of coupled SDEs (Equation 23), any updates on
the node component will be appropriately reflected on the edge component as well; controlling the
node-component reward guidance would thus be expressive enough to sample molecular graphs with
desired properties.

During sampling process, the model scores s(·) tend to increase in norm as samples move toward
the data manifold, i.e, ∥s(xt+1)∥2 > ∥s(xt)∥2, with xt+1 ∈ Mt+1 ∪ xt ∈ Mt. In contrast, the
model scores on posterior samples tend to decrease, i.e, ∥s(xT |xt+1)∥2 < ∥s(xT |xt)∥2, under
the same manifold transition, reflecting that posterior samples move closer to the data distributions.
These can be intuitively observed via a single data point case x† with Gaussian noises, where the
normed conditional model score ∥s(x, t)∥2 ∝

∥∥∥x−x†

σ2
t

∥∥∥
2
.

Toward the data manifold: t→ T, σt → σmin, x ⇒ ∥s(x, t)∥2 ↗
On the data manifold: t = T, σmin, x→ x† ⇒ ∥s(x, t)∥2 ↘ (31)

Figures 9, 10, and 11(c,d) illustrate the sampling dynamics of model scores. Without the Stein
correction, score dynamics fluctuate arbitrarily across both edge and node components. In contrast,
with the Stein correction, node scores smoothly transit toward high-density regions, while edge
scores first converge to high-density regions within the initial 700–750 steps before shifting toward
lower-density regions in the opposite direction. These dynamics align well with the theoretical
analysis of diffusion score behavior, providing further evidence that the Stein correction regularizes
diffusion guidance in low-density regions.

C.3.4 REWARD OVERESTIMATION IN DIFFUSION GUIDANCE

In training-free diffusion guidance, reward models and classifiers are trained only on a finite set
of clean data samples, making their reward estimations reliable within the data support. However,
diffusion models have much broader support due to noise injection, which can push samples outside
the data support during sampling. In such regions, reward models often overestimate rewards, pro-
ducing unreliable guidance. Uehara et al. (2024) were the first to formalize this issue, showing that
reward models can assign excessively high scores to samples whose semantics or properties fail to
meet the desired criteria. To mitigate this, they proposed regularizing the reverse diffusion process
via the original stochastic optimal control formulation—though this approach is computationally
expensive and impractical for efficient sampling.

Motivated by this challenge, Stein Diffusion Guidance provides a more practical alternative by solv-
ing the surrogate stochastic optimal control objective. As shown in Figures 9, 10, and 11 (a, b),
the absence of Stein correction leads the reward models to overestimate genuine rewards, produc-
ing artificially inflated values. However, the corresponding molecules are often unrealistic, with
significantly lower QED and SA scores. By contrast, the Stein correction introduces a low-cost
regularization that mitigates reward overestimation. Furthermore, SDG-regularized model scores
evolve smoothly throughout the sampling process (see Section C.3.3), keeping sampling trajectories
within generative manifolds and enabling effective exploration in low-density regions.
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C.3.5 ABLATION STUDY ACROSS OODNESS LEVELS

We evaluate the robustness of SDG under varying levels of out-of-distribution (OOD) sampling,
where the maximum low-density level (αmax) defines the OODness level. To compare generated
and test samples, we use distribution-based metrics in chemical space (FCD) and structural space
(NSPDK) (Lee et al., 2023). Figures 12, 13, and 14 (a,b) illustrate the results for SDG and standard
training-free guidance (SDG w/o Stein correction). As OODness increases, standard training-free
guidance drifts completely off the data manifold in both chemical and structural spaces, yielding
significantly high FCD and NSPDK values. In contrast, SDG remains closer to the data manifold,
with only marginal increases in distribution distances, thereby enabling effective sampling in low-
density regions. Notably, even under an extreme OODness level (α = 0.5), SDG preserves a high
rate of valid valency (Validity) in the generated molecules, as shown in Figures 12, 13, and 14 (c).
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Figure 12: Ablation results under different low-density levels (αmax) for fa7. Chemical distance
FCD (a) and structural distance NSPDK (b) to the test set; (c) Validity of generated molecules.
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Figure 13: Ablation results under different low-density levels (αmax) for jak2. Chemical distance
FCD (a) and structural distance NSPDK (b) to the test set; (c) Validity of generated molecules.
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Figure 14: Ablation results under different low-density levels (αmax) for 5ht1b. Chemical distance
FCD (a) and structural distance NSPDK (b) to the test set; (c) Validity of generated molecules.
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C.3.6 COMPUTATIONAL ANALYSIS

SDG provides a low-cost alternative to the stochastic optimal control framework of Uehara et al.
(2024) for diffusion guidance sampling. Whereas the prior approach incurs a worst-case runtime
complexity of O(T 2) due to requiring full trajectory simulations at each step, SDG achieves linear
complexity O(T ), with only a modest overhead relative to standard training-free guidance. We
benchmarked on an RTX 6000 with 8 CPU cores to sample 3000 molecules, using the same solver
as the pretrained score-based models (Jo et al., 2022; Lee et al., 2023). Table 6 reports SDG’s
computational cost in both settings. The runtime roughly doubles with the inclusion of the Stein
correction, though this overhead can be mitigated with faster solvers such as DDIMs (Song et al.,
2020a). Importantly, the back-and-forth Stein correction reduces memory overhead, yielding more
efficient usage compared to the original control problem (Uehara et al., 2024).

Table 6: Computation analysis on the molecule guidance task.

RUNTIME (SECOND) MEMORY (MB)

SDG w/o Stein correction 1360 7783
SDG (α(t) > 0, ϵ(t) > 0) 2521 8049

D IMAGE DIFFUSION GUIDANCE TASKS

We evaluate the generalizability of SDG to diffusion guidance tasks beyond molecules, particularly
on images. These experiments highlight SDG’s potential applicability across diverse data domains.
Following the unified training-free diffusion guidance framework (TFG) of Ye et al. (2024), we test
SDG on three representative tasks: label guidance, Gaussian deblurring, and image super-resolution:

• Label guidance: sampling images with desired class labels from the CIFAR-10 dataset.

• Gaussian deblurring: reconstructing original images that have been blurred with Gaussian
kernels.

• Image super-resolution: reconstructing high-resolution images at 256 × 256 from their
downsampled 64× 64 counterparts.

Evaluation metrics We evaluate training-free diffusion guidance methods using standard image
metrics. Accuracy (%) measures the average classification accuracy on generated samples across
CIFAR-10 labels, while FID and LPIPS (Zhang et al., 2018) assess the fidelity and perceptual
similarity between generated and test images.

Model setup and baselines To adapt TFG from Ye et al. (2024), we remove the recurrent strategy
(line 5) and mean guidance (line 8) from their Algorithm 1; the remaining components correspond
to a standard training-free guidance approach incorporating the implicit dynamic control of LGD
(Song et al., 2023) (line 4). We retain the guidance hyperparameters from their original parameter
search. Since these tasks involve no minority image classes, we set the low-density guidance factor
to zero (α = 0) and focus solely on optimizing samples with highly desired properties. We also
compare our results with DPS (Chung et al., 2023), a baseline closely related to SDG without the
Stein correction, but lacking the implicit dynamic control.

Computation analysis We report computation details for the label guidance task. Experiments
were conducted on an RTX 3090 GPU with 4 CPU cores and a batch size of 256. Table 7 summarizes
the runtime and memory usage for sampling 2,560 images per class over T = 100 DDIM steps (Song
et al., 2020a). The back-and-forth Stein correction notably reduces memory overhead. Moreover, the
runtime overhead decreases compared to the previous solvers in Table 6, from 185% = 2521

1360 × 100

to 136% = 820
602 × 100.
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Table 7: Computation analysis on the image label guidance task.

RUNTIME (SECOND) MEMORY (MB)

SDG w/o Stein correction 602 18728
SDG (α(t) > 0, ϵ(t) > 0) 820 18792

E VISUALIZATION

E.0.1 VISUALIZATION OF IMAGE DIFFUSION GUIDANCE TASKS

Figure 15: Visualization of image deblurring results: SDG without Stein correction (Left) vs. SDG
with Stein correction (Right).

Figure 16: Visualization of image super-resolution results: SDG without Stein correction (Left) vs.
SDG with Stein correction (Right).
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E.0.2 VISUALIZATION OF LIGAND-PROTEIN DOCKING POSES

sim=0.16, ds=-11.10, qed=0.54, sa=0.63 sim=0.24, ds=-10.50, qed=0.78, sa=0.63 sim=0.37, ds=-10.50, qed=0.51, sa=0.83

sim=0.31, ds=-11.10, qed=0.71, sa=0.58 sim=0.35, ds=-10.60, qed=0.63, sa=0.74 sim=0.38, ds=-10.70, qed=0.67, sa=0.60

sim=0.25, ds=-10.70, qed=0.68, sa=0.56 sim=0.37, ds=-10.60, qed=0.76, sa=0.76 sim=0.30, ds=-11.00, qed=0.77, sa=0.76

sim=0.26, ds=-10.60, qed=0.56, sa=0.66 sim=0.18, ds=-10.60, qed=0.51, sa=0.56 sim=0.35, ds=-10.50, qed=0.61, sa=0.60

sim=0.27, ds=-11.00, qed=0.77, sa=0.59 sim=0.30, ds=-10.50, qed=0.60, sa=0.76 sim=0.36, ds=-10.50, qed=0.94, sa=0.62

Figure 17: Visualization of docking poses for multiple generated ligands bound to the jak2 protein.
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sim=0.29, ds=-9.00, qed=0.51, sa=0.61 sim=0.33, ds=-8.90, qed=0.82, sa=0.65 sim=0.36, ds=-9.30, qed=0.68, sa=0.70

sim=0.35, ds=-9.10, qed=0.64, sa=0.73 sim=0.30, ds=-9.10, qed=0.54, sa=0.62 sim=0.40, ds=-9.50, qed=0.64, sa=0.60

sim=0.38, ds=-9.10, qed=0.83, sa=0.66 sim=0.25, ds=-9.90, qed=0.54, sa=0.58 sim=0.32, ds=-9.20, qed=0.82, sa=0.65

sim=0.31, ds=-9.20, qed=0.57, sa=0.65 sim=0.32, ds=-8.80, qed=0.60, sa=0.69 sim=0.33, ds=-9.00, qed=0.77, sa=0.72

sim=0.24, ds=-9.30, qed=0.54, sa=0.62 sim=0.26, ds=-9.00, qed=0.57, sa=0.62 sim=0.30, ds=-9.00, qed=0.81, sa=0.62

Figure 18: Visualization of docking poses for multiple generated ligands bound to the fa7 protein.
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sim=0.36, ds=-12.30, qed=0.72, sa=0.61 sim=0.39, ds=-12.90, qed=0.74, sa=0.65 sim=0.27, ds=-12.30, qed=0.82, sa=0.59

sim=0.26, ds=-12.40, qed=0.62, sa=0.67 sim=0.30, ds=-12.50, qed=0.56, sa=0.65 sim=0.28, ds=-13.50, qed=0.66, sa=0.57

sim=0.35, ds=-12.50, qed=0.51, sa=0.83 sim=0.35, ds=-12.60, qed=0.55, sa=0.80 sim=0.33, ds=-12.80, qed=0.59, sa=0.65

sim=0.35, ds=-12.40, qed=0.63, sa=0.83 sim=0.27, ds=-13.00, qed=0.57, sa=0.68 sim=0.23, ds=-12.40, qed=0.54, sa=0.57

sim=0.33, ds=-12.70, qed=0.63, sa=0.71 sim=0.29, ds=-12.30, qed=0.63, sa=0.63 sim=0.20, ds=-12.80, qed=0.59, sa=0.58

Figure 19: Visualization of docking poses for multiple generated ligands bound to the 5ht1b protein.

F DECLARATION OF LLM USAGES

We only leverage LLM tools for editing purposes, which mainly include grammar checks, spelling
corrections, and word choice suggestions.
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