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ABSTRACT

An efficient way for a deep reinforcement learning agent to explore in sparse-
rewards settings can be to learn a set of skills that achieves a uniform distribution
of terminal states. We introduce DisTop, a new model that simultaneously learns
diverse skills and focuses on improving rewarding skills. DisTop progressively
builds a discrete topology of the environment using an unsupervised contrastive
loss, a growing network and a goal-conditioned policy. Using this topology, a
state-independent hierarchical policy can select which skill to execute and learn.
In turn, the new set of visited states allows an improved learnt representation. If
the agent gets overloaded by the number of skills, the agent can autonomously
forget the skills unrelated to its eventual task. Our experiments emphasize that
DisTop is agnostic to the ground state representation and that the agent can dis-
cover the topology of its environment whether the states are high-dimensional
binary data, images, or proprioceptive inputs. We demonstrate that this paradigm
is competitive on MuJoCo benchmarks with state-of-the-art algorithms on both
single-task dense rewards and diverse skill discovery without rewards. By com-
bining these two aspects, we show that DisTop outperforms a state-of-the-art hi-
erarchical reinforcement learning algorithm when rewards are sparse. We believe
DisTop opens new perspectives by showing that bottom-up skill discovery com-
bined with dynamic-aware representation learning can tackle different complex
state spaces and reward settings.

1 INTRODUCTION

In reinforcement learning (RL), an autonomous agent learns to solve a task by interacting with its
environment (Sutton & Barto, 1998) thus receiving a reward that has to be hand-engineered by an
expert to efficiently guide the agent. However, when the reward is sparse or not available, standard
methods do not well-explore their environment (Aubret et al., 2019). One way to improve explo-
ration is to reward the agent with a prediction-based (Burda et al., 2019) or count-based (Bellemare
et al., 2016) flat intrinsic bonuses, making the agent reach unvisited or surprising states. However
such methods only learn one policy that sequentially targets new areas; this sequential exploration
prevents the simultaneous exploration of several new areas, which often makes the agent forgets
how to reach them, thereby hurting exploration (Ecoffet et al., 2021).

This issue partially motivated methods where an agent hierarchically commits to a temporally ex-
tended behavior named skills or options (Sutton et al., 1999).While it is possible to learn hierarchical
skills with an extrinsic (i.e task-specific) reward (Bacon et al., 2017), it does not fully address the
exploration issue. In contrast, if an agent learns skills in a bottom-up way with intrinsic rewards, it
makes the skills task-independent (Aubret et al., 2019): they are learnt without access to an extrinsic
reward. It follows that, to explore without extrinsic rewards, the intrinsic objective of an agent may
be to acquire a large and diverse repertoire of skills. While the methods that follow this paradigm
(Pong et al., 2020b; Eysenbach et al., 2019b) manage to learn a large set of different skills that
simultaneously explore different areas, they are learnt during an unsupervised pre-training phase,
preventing online skill specialization to a task. In contrast, we assume that an agent should both
explore by learning diverse skills and specialize its skills to a task when provided, without separat-
ing the learning process in different phases, making possible to use the same algorithm on different
reward settings (sparse, dense, no-rewards). Similarly, extra assumptions like accessing an expertly
built goal/state space (e.g (x,y) coordinates (Nachum et al., 2018b)) are not always available, thus,
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an algorithm should be agnostic to the state space. In other words, an agent should be able to
learn interesting skills whatever are the reward setting and state space, typical of how humans
manage to learn in different settings with different modalities (images, proprioceptive, . . . ).

In this paper, we introduce a new way to learn a goal space and select the goals, bridging the gap
between acquiring skills that reach a uniform density distribution of terminal embedded states and
solving a particular task. We propose a new model that progressively Discovers a Topological rep-
resentation (DisTop) of the environment. DisTop simultaneously optimizes two new components:
1- it learns a continuous representation of its states using a contrastive loss that brings together con-
secutive states while avoiding the distortion of the state representation, i.e the maximal embedded
L2 distance covered by one action is similar everywhere; 2- this property allows DisTop to build a
meaningful discrete topology of the environment with a new self-organizing growing network named
Off-policy Embedded Growing Network (OEGN). Thanks to the clusters, DisTop easily estimates
the expected extrinsic rewards and the count-based density of clusters using few parameters. With
these values, a state-independent Boltzmann policy autonomously selects which skills to execute
and learn. Finally, DisTop trains a goal-conditioned deep RL policy to reach embedded states.

Our experimental contribution shows the genericity and efficiency of selecting skills to improve us-
ing a topological representation. This contribution is 3-folds: 1- we show that DisTop competes with
a state-of-the-art (SOTA) algorithm specific to single-task dense rewards settings thanks to its ability
to select rewarding goals; 2- we demonstrate that, because it selects goals that maximize both the
density of visited states and the extrinsic rewards, DisTop competes with/outperforms benchmark-
specific SOTA algorithms on diverse skills learning benchmarks and sparse rewards environments;
3- we demonstrate that DisTop outperforms a recent method that shares the properties of DisTop.

2 BACKGROUND

2.1 GOAL-CONDITIONED REINFORCEMENT LEARNING FOR SKILL DISCOVERY

In episodic RL, the problem is modelled with a Markov Decision Process (MDP). An agent interacts
with an unknown environment in the following way: the agent gets a state s0 ∈ S that follows
an initial state distribution ρ0(s). Its policy π selects actions a ∈ A to execute depending on its
current state s ∈ S, a ∼ π(·|s). Then, a new state is returned according to the transition dynamics
s′ ∼ p(·|s, a). The agent repeats the procedure until it reaches a particular state or exceeds a fixed
number of steps T . This loop is called an episode. An agent learns π to maximize the expected
cumulative discounted reward Eπ

[∑T
t=0 γ

tR(st−1, at−1, st)
]

where γ is the discount factor. The
policy πθ can be approximated with a neural network parameterized by θ (Haarnoja et al., 2018).
In our case, the agent tries to learn skills, defined as a policy that tries to target a goal-state (or
goal). To this end, it computes an intrinsic reward according to the chosen skill (Aubret et al.,
2019). Following Universal Value Function Approximators (Schaul et al., 2015), the intrinsic reward
and the skill’s policy become dependent on the chosen goal gt: r

g
t = Rω(st−1, at−1, st, gt) and

πgθ (·|st) = πθ(·|st, gt). With this scheme, we can relabel an interaction with an arbitrary goal and
recompute the intrinsic reward (Andrychowicz et al., 2017).

2.2 SKEW-FIT

Skew-Fit (Pong et al., 2020a) strives to learn goal-conditioned policies that visit a maximal entropy
of states, where all states are considered as possible goals. To generate unvisited goal-states, it learns
a generative model that incrementally increases the entropy of generated goals and makes visited
states progressively tend towards a uniform density distribution. Assuming it learns a parameterized
generative model qψ(s), Skew-Fit uses importance sampling to skew the state density distribution
closer to the uniform one qψ(s)αskew where αskew < 0. αskew defines the importance of low-
density states; if αskew = 0, the density distribution will stay similar, if αskew = −1, it strongly
over-weights low-density states to approximate U(S). In practice, they show that directly sampling
states s ∼ 1

Z qψ(s)
αskew , with Z being the normalization constant reduces the variance.

2.3 CONTRASTIVE LEARNING AND INFONCE

Contrastive learning aims at discovering a similarity metric between data points (Chopra et al.,
2005). First, positive pairs that represent similar data and fake negative pairs are built. Second
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Algorithm 1: Summary of the learning algorithm.
OEGN← two connected random nodes.
foreach learning iteration do

Sample BatchSize ∗Ratio clusters c1 ∼ πhigh(c), equation 5 in section 3.2.
Sample BatchSize ∗ (1−Ratio) clusters c2 ∼ pαskew(c), equation 3 in section 3.2.
Sample buffers B1 ∼ Uniform({BGc1 ,B

S
c1}), B2 ∼ Uniform({BGc21,B

S
c2}).

Build minibatch of interactions concat(i1 ∼ B1, i2 ∼ B2), section 3.2.
Update the representation function φω by maximizing equation 2 in section 3.1.
Update ω′ with an exponential moving average of ω.
Compute embeddings of goals g = φω′(sg) and observations e = φω′(s).
Relabel interactions (change goals) (cf. appendix B.5).
Update πgθ with rewards r = ||e− g||2 and SAC (Haarnoja et al., 2018).
Update OEGN, section 3.1 and algorithm 2 in appendix B.3 .

they are given to an algorithm that computes a data representation able to discriminate the pos-
itive from the negative ones. InfoNCE (van den Oord et al., 2018) proposed to build positive
pairs from states that belong to the same trajectory, making the process scale to all input repre-
sentations. The negative pairs are built with states randomly sampled. For a sampled trajectory, it
builds a set B that concatenates N − 1 negative states and a positive one st+p. Then, it maximizes
LNInfoNCE = EB

[
log

fp(st+p,vt)∑
sj∈B fp(sj ,vt)

]
where vt represents an aggregation of previous states learnt

with an autoregressive model, p indicates the additional number of steps needed to select the positive
sample and fp are positive similarity functions. The numerator brings together states that are part of
the same trajectory and the denominator pushes away negative pairs.

3 METHOD

Problem statement. We are interesting in learning skills that simultaneously maximize the state
entropy and extrinsic rewards when provided, thereby supposing the ability to select extrinsically
rewarding/unvisited states as goals. Furthermore, we want our approach to be agnostic to the ground
state space, meaning that it should work even in very unstructured state spaces.

Overview. We propose to skew the goal-sampling process in a learnt dynamic-aware representa-
tion of states. Algorithm 1 sums up our algorithm. DisTop samples clusters of interactions that are
rewarding or rarely visited, the corresponding buffers and finally interactions (sprev, a, s, sg), where
sg is the original goal-state. Then, it learns to embed the states with a neural network and a con-
trastive loss such that the embeddings reflect the inherent topology of the environment; this allows
to both provide meaningful intrinsic rewards and correctly estimate the dynamic-aware density of
states. After that, our growing network dynamically clusters the embedded states. This clustering
method allows DisTop to estimate both the mean reward achieved while targeting a state of the clus-
ter and the density of a visited state by counting the number of interactions its cluster contains; it
only requires a small number of parameters in contrast with learning a generative model (Lee et al.,
2019). Finally, it assigns buffers BG and BS to clusters and samples goal-states (BG) or states (BS)
with a skewed version of the visited state density distribution.

At the beginning of each episode, a Boltzmann policy πhigh selects a cluster c; then DisTop selects a
state s that belongs to the bufferBSc of the selected cluster and it computes the embedding g = φω′(s)
where weights ω′ are an exponential moving average of ω. A goal-conditioned policy πgθ , trained to
reach g, acts in the environment and discovers new reachable states close to its goal. The interactions
made by the policy are stored in a buffer according to their initial objective (BG) and the embedding
of the reached state (BS) (see section 3.2).

3.1 LEARNING THE TOPOLOGY OF THE STATES

In order to learn the discrete topology of the known state-goals, the agent passes through two steps:
1- it learns a continuous representation of states undistorted with respect to the environment dynam-
ics; 2- it clusters this representation and tracks its changes.
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Learning an undistorted representation. DisTop strives to learn a state representation function
φω that maps a given state to an embedded space. We call consecutive states, pairs of states that
are separated by one action, i.e pairs for which there exists a transition. To do this, DisTop takes
advantage of the InfoNCE loss (cf. section 2.3). Similarly to Li et al. (2021), we do not consider
the whole sequence of interactions since this makes it more dependent on the policy. Typically,
a constant and deterministic policy would lose the structure of the environment and could emerge
once the agent has converged to an optimal deterministic policy. DisTop considers its local variant
and builds positive pairs with only two consecutive states. This way, it keeps distinct the states
that cannot be consecutive and it more accurately matches the topology of the environment. We
select our similarity function as fω(st, st+1) = e−k||φω(st)−φω(st+1)||2 where φω is a neural network
parameterized by ω and k is a temperature hyper-parameter (Chen et al., 2020). If B is a batch of N
different consecutive pairs, the local InfoNCE objective, LInfoNCE, is described by:

LLInfoNCE = E(st,st+1)∈B
[
log

fω(st, st+1)∑
s∈B fω(st, s)

]
≥ E(st,st+1)∈B

[
− k||φω(st)− φω(st+1)||2 − log(1 +

∑
s∈Bs 6=st+1

fω(s, st+1))
]
. (1)

We introduce the lower bound (cf. appendix B.1) since it stabilizes the learning process. Intuitively,
equation 1 brings together consecutive states, and pushes away states that are separated by a large
number of actions. There are several drawbacks with this objective function. Firstly, the repre-
sentation may still be strongly distorted, i.e the agent may cover more distance with one action in
some part of the embedded space than in others. In this case, the learnt clusters (see below) may
encompass different number of states, preventing their use for density estimation. Secondly, the
DRL algorithm requires semantically stable inputs to compute Q-values: if the representation of its
goals quickly changes, it cannot take into account the changes and may output bad approximations
of Q-values. In contrast with previous approaches (cf. section 5), we tackle these issues by reformu-
lating the learning objective as two-folds constrained maximization (cf. equation 9 in appendix B.1)
in order to keep our representation stable and locally undistorted (Indyk, 2001). In practice, in order
to perform a stochastic gradient descent, we transform the constraints into penalties and maximize:

LDisTop = E(st,st+1)∈B
[
− kc(max(||φω(st)− φω(st+1)||22 − δ2), 0)− log(1 +

∑
s∈B

fω(s, st+1))

− β||φω(st+1)− φω′(st+1)||22
]
. (2)

Firstly, DisTop forces the distance between consecutive states to be below a threshold δ, avoid-
ing the collapse of parts of the representation; kc > 1 is the dilatation coefficient that brings to-
gether consecutive states. Secondly, β encourages our representation to stay consistent over time,
weights ω′ being a slow exponential moving average of ω. Thus, we avoid using a hand-engineered
environment-specific scheduling (Pong et al., 2020a) and update representations in an online way.

By applying this objective function, DisTop learns a consistent, undistorted representation that keeps
close consecutive states while avoiding collapse (see Figure 4 for an example). In fact, by modifying
kc and/or k, one can respectively select the level of dilatation and distortion of the representation (cf.
appendix A for an analysis). One can notice that the function depends on the density of consecutive
states in B; we discuss the density distribution of states that feeds B in section 3.2.

Clustering the embeddings to obtain a discrete topology Since our representation strives to
avoid distortion by keeping close consecutive states, DisTop can match the topology of the embedded
environment by clustering the embedded states. Using this topology, the next section details how to
bias the goal and state sampling procedure to favor exploration and maximize extrinsic rewards.

In order to adapt the clustering to temporally-related and goal-related interactions, we propose a new
variant of a previous method (Marsland et al., 2002), which we call OEGN. OEGN dynamically
creates, moves and deletes clusters so that clusters generate a network that covers the whole set of
embedded states, independently of their density. Each node/cluster c ∈ C has a reference vector wc
which represents its position in the input space, an embedding is assigned to its closest cluster, i.e
minc||φω′(s) − wc)||2 ≤ δnew where δnew is the radius of the ball and the threshold for creating
clusters. δnew is particularly important since it is responsible of the granularity of the clustering: a
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low value will induce a lot of small clusters, while a high one induce few large clusters that badly
approximate the topology (cf. appendix A.1). A learnt topology can be visualized in Figure 2.

Essentially, the delete operator removes unused nodes, the creation operator creates a node if an
embedding falls outside the radius of all clusters and the moving operator resembles the k-means
clustering. We show section 4 that the delete and creation operators are critical to adapt the clustering
to the dynamically learnt continuous representation (cf. section 4). Edges are added between two
clusters when the agent passes from one cluster to the other, and deleted after a cluster-normalized
delay of uselessness. Overall, these operators make sure that each embedding belongs to the ball
centered on the center of its cluster. Technical details about OEGN can be found in appendix B.3.

3.2 SELECTING NOVEL OR REWARDING SKILLS

While sampling low-density or rewarding states is attractive to solve a task, it is not easy to sample
new reachable goals. For instance, using an embedding space R3, the topology of the environment
may only exploit a small part of it, such that randomly sampling goals inside R3 would mostly
result in unreachable goals. Typically, one can see in figure 2 that embeddings of states only exploit
a small part of the whole space. To make sure goals are reachable, DisTop generates goals by
sampling previously visited states (similarly to Warde-Farley et al. (2019)). To sample the goals-
states or states, DisTop approximates the density of states with a density over clusters, samples a
cluster, an associated buffer, and a state. This sampling procedure applies for both selecting a goal
to execute and sampling a minibatch, but with different desired density distribution of states.

Approximating an arbitrary density distribution of goals and states. We assume that the den-
sity of a visited state is reflected by the probability of a state being in its cluster. So we approxi-
mate the density of a state with the density parameterized by w, reference vector of e = φω′(s):
qw(e) ≈ count(ce)∑

c′∈C count(c
′) where count(ce) denotes the number of embedded states that belong to the

cluster that contains e. While our approximation qw(s) decreases the quality of our density approx-
imation, it makes our algorithm efficient: we associate a buffer to each cluster and only compute
the density of clusters. In practice, we trade-off the bias of qw(s) and the instability of OEGN by
decreasing δnew: the smaller the clusters are, the smaller the bias is, but the more unstable is OEGN
(cf. appendix A).

Using this approximation, we just need to keep states in the buffer of their closest node to sample
from an arbitrary density distribution. In practice, we associate to each node a second buffer that
takes in interactions according to the proximity of the original goal with respect to the node. This
results in two sets of buffers, BG and BS , to respectively sample goal-states and states according
to the desired density distribution (e.g a uniform one). Formally, in BS , DisTop selects the cluster
argminc∈C ||φ(s)− c||2; in BG, DisTop selects the cluster argminc∈C ||φ(sg)− c||2.

Sampling goal-states: which density distribution ? In order to sample new exploratory goals
for the goal-conditioned policy, DisTop increases the entropy of visited terminal states by skewing
the current density distribution of visited states (cf. section 2.1) with:

pαskew(c) =
count(c)1+αskew∑

c′∈C count(c
′)1+αskew

=
e(1+αskew) log count(c)∑

c′∈C e
(1+αskew) log count(c′)

, (3)

where αskew is the skewed parameter (cf. section 2). It is equivalent to sampling with a simple
Boltzmann policy πhigh, using a novelty bonus reward log count(c) and a fixed temperature param-
eter 1 + αskew. We can add a second reward to modify our skewed policy πhigh so as to take into
consideration extrinsic rewards. We associate to a cluster c ∈ C a value Rextc that represents the
average extrinsic rewards received by the skills associated to its goals :

Rextc = Es∈c, g=φω(s), at∼πgθ (·|st), st+1∼p(·|st,at)R(st, at, st+1). (4)

The extrinsic value of a cluster Rextc is updated with an exponential moving average where αc is the
learning rate. To favour exploration, we can also update the extrinsic value of the neighbors of the
final state’s cluster with a slower learning rate (cf. appendix B.5). Our sampling rule can then be:

πhigh(c) = softmaxC(t
ext Rextc︸︷︷︸

Sample rewarding goals

+(1 + αskew) log count(c)︸ ︷︷ ︸
Sample unvisited states

). (5)
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Finally, the agent selects a cluster c1 ∼ πhigh(·), its state-buffer BSc1 and the agent samples a state
with an approximation of the uniform density distribution inside the cluster’s c1 ball of radius δnew
(cf. appendix B.4).

Sampling a learning minibatch: which density distribution ? Our goal-conditioned policy πgθ
needs a uniform density distribution of goals to avoid forgetting previously learnt skills while our
representation function φω requires a uniform density distribution over visited states to quickly
learn the representation of novel areas. Therefore, to construct a minibatch, DisTop samples clusters
∼ pαskew′ with αskew′ 6= αskew, randomly takes half of buffers in BG and the rest from BS and
samples interactions. We can also sample a Ratio of clusters with πhigh if we do not care about
forgetting skills (cf. section 4).

4 EXPERIMENTS

Our experiments aim at studying whether the ability of DisTop to select low-density/rewarding
goals in an undistorted dynamic-aware latent space makes the approach generic to different task
settings/state spaces. We compare DisTop to SOTA algorithms on three kinds of tasks with different
ground state spaces. All curves are a smooth averaged over 5 seeds, except for ablation experiments
which are averaged over 3 seeds, completed with a shaded area indicating the mean +/- standard
deviation over seeds. We provide used hyper-parameters in appendix C.2 and detail environments
and evaluation protocols in appendix C.3. Images of achieved goals are available in appendix C.5.

Is DisTop able to learn diverse skills without rewards ? We assess the diversity of learnt skills
on two robotic tasks Visual Pusher (a robotic arm moves in 2D and eventually pushes a puck) and
Visual Door (a robotic arm moves in 3D and can open a door) (Nair et al., 2018). These environments
are particularly challenging since the agent has to learn skill from 48x48 images using continuous
actions without accessing extrinsic rewards. We compare to the SOTA algorithm Skew-Fit (Pong
et al., 2020b), which skews the visited state density distribution in the ground state space with a VAE
(Kingma & Welling, 2014) and periodically updates its representation. We use the same evaluation
protocol than Skew-Fit: a set of diverse images are sampled, given to the representation function and
the goal-conditioned policy executes the skill. In Figure 1(left), we observe that skills of DisTop are
learnt quicker on Visual Pusher but are slightly worst on Visual Door. Since both Skew-Fit and
DisTop generates rewards with the L2 distance, we hypothesize that this is due to the structure of
the learnt goal space. In practice we observed that DisTop is more stochastic than Skew-Fit, probably
because the intrinsic reward function is required to be smooth over consecutive states. It results that
a one-step complete change of the door angle creates a small change in the representation, thereby
a small negative intrinsic reward. Despite the stochasticity, it is able to reach the goal as evidenced
by the minimal distance reached through the episode (Distop(min)). Stochasticity does not bother
the evaluation on Visual Pusher since the arm moves elsewhere after pushing the puck in the right
position. Therefore, DisTop manages to learn slightly more or less diverse skills than Skew-fit,
depending on the environment structure.

Can DisTop solve non-hierarchical dense rewards tasks? We test DisTop on MuJoCo envi-
ronments Halfcheetah-v2 and Ant-v2 (Todorov et al., 2012), where the agent gets rewards to move
forward as fast as possible. We fix the maximal number of timesteps to 300. We compare DisTop to
SAC (Haarnoja et al., 2018) and ELSIM (Aubret et al., 2020), a method that follows the same
paradigm than DisTop (see section 5). We obtain better results than in the original ELSIM paper
using similar hyper-parameters to DisTop. In Figure 1 (Right), we observe that DisTop obtains high
extrinsic rewards and clearly outperforms ELSIM. It also outperforms SAC on Halfcheetah-v2 and
is close to SAC on Ant-v2. In contrast, we highlight that SAC overfits to dense rewards settings and
cannot learn in sparse or no-reward settings (see below). Despite the genericity of DisTop and the
narrowness of SAC, DisTop competes with SAC on two environments.
Does combining representation learning, entropy of states maximization and task-learning
improve exploration on high-dimensional hierarchical tasks ? We evaluate DisTop ability to
explore and optimize rewards on image-based versions of Ant Maze and Point Maze environments
(Nachum et al., 2018b). The state is composed of a proprioceptive state of the agent and a top view
of the maze (”Image”). Details about state and action spaces are given in appendix C.3.2. In contrast
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Figure 1: Left: Comparison of DisTop and Skew-Fit on their ability to reach diverse states. In the
Visual Pusher environment, we compare the final distance of the position puck with its desired posi-
tion; in the door environment, we compare the angle of the door with the desired angle. DisTop(min)
is the minimal distance reached through evaluation episode. At each evaluation iteration, the dis-
tances are averaged over fifty goals. Right: Average rewards gathered throughout episodes of 300
steps while training on Halfcheetah-v2 and Ant-v2 environments.
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Figure 2: Left: Average rewards gathered throughout training episodes. Right: Top view of Ant
Maze environment with its goal position and an example of OEGN network learnt by DisTop.

with previous methods (Li et al., 2021), we remove the implicit curriculum that changes the extrinsic
goal across episodes; here we train only on the farthest goal and use a sparse reward function. Thus,
the agent gets a non-negative reward only when it gets close to the top-left goal. We compare our
method with a SOTA hierarchical method, LESSON (Li et al., 2021) since it performs well on
hierarchical environments like mazes, ELSIM, SAC (Haarnoja et al., 2018), a prediction-based flat
method mixing LWM (Ermolov & Sebe, 2020) with DisTop (LWM-DisTop), a DisTop’s variant that
rewards a single policy with a count-based bonus like Strehl & Littman (2008) (FlatDisTop). We
only pass the ”image” to the representation learning part of the algorithms, assuming that an agent
can separate its proprioceptive state from the sensorial state. In figure 2, we can see that DisTop is the
only method that manages to regularly reach the goal; in fact, looking at a learnt 3D OEGN network
at the right of figure 2, we can see that it successfully represents the U-shape form of the maze.
LWM-DisTop too quickly learns to predict making the bonus useless for exploration. FlatDisTop
outperforms DisTop, suggesting that DisTop’s ability to retain previous skills can slow down its skill
discovery. LESSON discovers the goal but does not learn to return to it1; we hypothesize that this
is because, unlike DisTop, it does maximize the entropy of states, and thus hardly reach the goal.
Neither SAC, nor ELSIM find the reward. We suppose that the undirected width expansion of the
tree of ELSIM does not maximize the state-entropy, making it spend too much time in useless areas
and thus inefficient for exploration. Therefore, DisTop outperforms two hierarchical methods in
two sparse rewards environment by priorizing its goal sampling process on low-entropy areas.

What are the important components of DisTop? We aim at understanding the importance of
each novel component of DisTop. In figure 3a, we compare the performance of DisTop accord-
ing to different levels of distortion/dilatation. We detail in appendix A the relation between our
hyper-parameters and the distortion/dilatation of the representation. We see that fixing a good kc
determines the quality of the density approximation, and thus the novelty of the selected goals; us-
ing only the consistency penalty of equation 2 (No constraints), the agent learns slower than with
constrains, probably because it under-estimates the density of states in some areas. Figure 3b shows
the importance of dynamically creating clusters by comparing OEGN with a self-organizing map
(SOM) (Kohonen, 1990) that learns with a fix number of nodes. We observed that our OEGN ap-

1In Point Maze, the best seed of LESSON returns to the goal after 5 millions timesteps
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Figure 3: Same environments and evaluation protocols than in figure 1. The agent aims at mini-
mizing the evaluated distance and increasing the average reward. a- comparison of performance in
Visual Pusher between using no constraints in equation 2 and several values of kc; b- comparison in
Visual Pusher of DisTop with OEGN and using a fix number of nodes as in a SOM; c- performance
of DisTop in Visual Pusher for several skew sampling coefficients 1+α′ ; d- evaluation of DisTop in
Ant for several values of ratio.

proximately creates 100 clusters on average on Visual Pusher, so we tried 50, 100 and 200 nodes.
We clearly see that fix numbers of nodes struggle to generate new skills. We hypothesize that this
is due to the resulting bad approximation of the state density: at the beginning, all clusters have
a low density while the agent visited few different states. Figure 3c stresses out the importance
of skewing the sampling process. The agent focuses its learning process on low-density areas with
1+αskew′ to speed up representation and policy learning. Overall, DisTop is robust to small changes
of 1 + αskew′ . Finally, figure 3d shows the importance of sampling a ratio of learning interactions
using πhigh in dense rewards settings (here Ant). It results that the agent purposely avoids learning
on badly rewarding areas (the policy and representation) so that it does not create clusters in this area
and reserves its learning batch for interactions of rewarding skills. At the extremes, trying to learn
all skills stuck the agent in local optimas because it tries to retain too much skills (Ratio = 0), while
learning only in rewarding areas prevents exploration (Ratio = [1, 0.7]). To sum up, our penalties
and OEGN are critical to well-approximate a density distribution of visited states and skewing
it is crucial to efficiently select the skills to learn on.

5 RELATED WORKS

Intrinsic skills in hierarchical RL Some works propose to learn hierarchical skills, but do not
introduce a default behavior that maximizes the visited state entropy (Hazan et al., 2019), limiting
the ability of an agent to explore. For example, it is possible to learn skills that target a ground state
or a change in the ground state space (Nachum et al., 2018b; Levy et al., 2019). These approaches do
not generalize well with high-dimensional states. Therefore, one may want to generate rewards with
a learnt representation of goals, but current methods still rely on hierarchical random walks (Nachum
et al., 2018a; Li et al., 2021) or learn the representation during pre-training (Lu et al., 2019a). We
have shown in section 4 that DisTop explores quicker by maximizing the entropy of states in its
topological representation. DCO (Jinnai et al., 2019) generates options by approximating the second
eigenfunction of the combinatorial graph Laplacian of the MDP. It extends previous works (Machado
et al., 2017; Bar et al., 2020) to continuous state spaces.

Intrinsic motivation to learn diverse skills. DisTop simultaneously learns skills, their goal rep-
resentation, and which skill to train on. It contrasts with several methods that focus on selecting
which skill to train on assuming a good goal representation is available (Florensa et al., 2018; Colas
et al., 2018; Zhang et al., 2020). They either select goals according to a curriculum defined with
intermediate difficulty, the learning progress (LP) (Oudeyer & Kaplan, 2009) or by imagining new
language-based goals (Colas et al., 2020). In addition, DisTop strives to learn either skills that are
diverse or extrinsically rewarding. It differs from a set of prior methods that learn only diverse
skills during a pre-training phase, preventing exploration for end-to-end learning. Previous methods
(Eysenbach et al., 2019b; Florensa et al., 2017) learn a discrete set of skills by maximizing the mu-
tual information (MI) between states and skills, but they hardly generalize over skills. It has been
extended to continuous sets of skills, using a generative model (Sharma et al., 2020) or successor
features (Hansen et al., 2020; Borsa et al., 2019). In both case, directly maximizing this MI may
incite the agent to focus only on simple skills (Campos et al., 2020). DISCERN (Warde-Farley
et al., 2019) maximizes the MI between a skill and the last state of an episode using a contrastive
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loss and the true goal to generate positive pairs. Several methods takes advantages of a VAE to learn
skills, but our method better scales to any ground state space (see appendix A.1). Typically, RIG
(Nair et al., 2018) uses a VAE to compute a goal representation before training the goal-conditioned
policies. Using a VAE, one can define a frontier with a reachability network, from which the agent
should start stochastic exploration (Bharadhwaj et al., 2020); but the gradual extension of the fron-
tier is not automatically discovered, unlike approaches that maximize the entropy of states (including
DisTop). Skew-Fit (Pong et al., 2020a) learns more diverse skills by making the VAE over-weight
low-density states. It is unclear how Skew-Fit could target another density distribution over visited
states than a uniform one. Approaches based on LP have already been built over VAEs (Kovač et al.,
2020; Laversanne-Finot et al., 2018); we believe that DisTop could make use of LP to improve skill
selection.

Skill discovery for end-to-end exploration. Like DisTop, ELSIM (Aubret et al., 2020) discovers
diverse and rewarding skills in an end-to-end way. It builds a tree of skills and selects the branch
to improve with extrinsic rewards. DisTop outperforms ELSIM for both dense and sparse-rewards
settings (cf. section 4). This end-to-end setting has also been experimented through multi-goal
distribution matching (Pitis et al., 2020; Lee et al., 2019) where the agent tries to reduce the dif-
ference between the density of visited states and a given density distribution (with high-density in
rewarding areas). Yet, either they approximate a state density distribution over the ground state
space (Lee et al., 2019) or assume a well-structured state representation (Pitis et al., 2020). Similar
well-structured goal space is assumed when an agent maximizes the reward-weighted entropy of
goals (Zhao et al., 2019).

Dynamic-aware representations. A set of RL methods try to learn a topological map without ad-
dressing the problem of discovering new and rewarding skills. Some methods (Savinov et al., 2018;
2019; Eysenbach et al., 2019a) consider a topological map over direct observations, but to give flat
intrinsic rewards or make planning possible. Other approaches learn landmarks for planning, but
need pre-training with uniform initial state and goal density distributions (Zhang et al., 2021; Huang
et al., 2019) or need a uniform initial state density (Laskin et al., 2020), thereby avoiding the ex-
ploration challenge. We emphasize that SFA-GWR-HRL (Zhou et al., 2019) hierarchically takes
advantage of a topological map built with two GWQ placed over two Slow Feature Analysis algo-
rithms (Wiskott & Sejnowski, 2002); it is unclear whether it can be applied to other environments
than their robotic setting. Functional dynamic-aware representations can be discovered by making
the distance between two states match the expected difference of trajectories to go to the two states
(Ghosh et al., 2019); interestingly, they exhibit the interest of topological representations for HRL
and propose to use a fix number of clusters to create goals. Previous work also showed that an active
dynamic-aware search of independent factors can disentangle the controllable aspects of an environ-
ment (Bengio et al., 2017). Other methods take advantage of temporal contrastive losses for other
functional uses; therefore, unlike DisTop, they do not try to learn a topology of the environment
by preventing the distortion of the representation. For example, successor representations (Jinnai
et al., 2019; Wu et al., 2018) orthogonalize the features of the representation and some methods
use a temporally-contrastive representation for imitation (Sermanet et al., 2018), end-to-end task
solving (Anand et al., 2019; Stooke et al., 2021) or flat exploration (Yarats et al., 2021; Guo et al.,
2021). Zhang et al. (2021) also cluster a dynamic-aware embedding, but they learn a fixed number
of size-changing clusters, making them inappropriate for estimating the inherent density distribution
of states.

6 CONCLUSION

We introduced a new model, DisTop, that simultaneously learns a discrete topology of its envi-
ronment and the skills that navigate into it. This topology allows to efficiently select the skills to
improve regardless of the ground state space or reward setting, i.e extrinsically rewarding ones or
exploratory ones. In contrast with previous approaches, there is no pre-training (Pong et al., 2020b),
no random walks (Lu et al., 2019b). It does not need a well-structured goal space like (Pitis et al.,
2020) or dense rewards like in (Li et al., 2021). Yet, there are exciting perspectives. HRL and plan-
ning based approaches (Nasiriany et al., 2019) could both take advantage of the topology and make
easier states discovery. More importantly, disentangling the topology (Bengio et al., 2013) could
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improve the scalability of the approach since the number of cluster exponentially grows with respect
to the number of independent factors of variation.

REPRODUCIBILITY STATEMENT

To improve the reproducibility of the paper, we provide details about our comparison methods,
some technical details of DisTop and used hyper-parameters in appendix C. In addition, we provide
the code in the supplementary materials and commit to make the github repository public after
acceptance.
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Figure 4: Visualization of the representations learnt by a VAE and DisTop on the environment dis-
played at the far left. From left to right, we respectively see a- the rendering of the maze; b- the
continuous representation learnt by DisTop with 900-dimensional binary inputs; c- a VAE represen-
tation with true (x,y) coordinates; d- a VAE representation with 900-dimensional binary inputs; e-
OEGN network learnt from binary inputs.

A ABLATION STUDY

In this section, we study the impact of the different key hyper-parameters of DisTop. Except for our
main results presented in section 4, we average the results over 3 random seeds. For visualization of
topologies, we select the most viewable one among 3 learnt topologies; while we did not observe a
lot of variance through the seeds, the 3D angle of rotation can bother our perception of the topology.

A.1 UNDERSTANDING THE BUILDING OF TOPOLOGIES

In this subsection, we aim at qualitatively studying the properties of our topology and their building
process. To do this, we make sure that the learnt representation is visualizable. Therefore we
adapted the gym-minigrid environment (Chevalier-Boisvert & Willems, 2018) (cf. Figure 4) where a
randomly initialized agent moves for fifty timesteps in the four cardinal directions. Each observation
is either a 900-dimensional one-hot vector with 1 at the position of the agent (binary) or the (x,y)
coordinates of the agent. Interactions are given to the representation learning algorithm. Unless
otherwise stated, we display as a node the learnt representation of each possible state and connect
states that are reachable in one step.

Does DisTop discover the environment topology even though the ground state space is un-
structured ? In this experiment, we analyze the representation learnt by a standard Variational
Auto Encoder (VAE) and DisTop. In Figure 4, we clearly see that DisTop is able to discover the
topology of its environment since each connected points are distinct but close with each other. In
contrast, the VAE representation collapses since it cannot take advantage of the proximity of states in
the ground state space; it only learns a correct representation when it gets (x,y) positions, which are
well-structured. This toy visualization highlights that, unlike VAE-based models, DisTop does not
depend on well-structured ground state spaces to learn a suitable environment representation
for learning skills.

Can we control the dilatation and distortion of our representations ? The analysis of our
objective function LDisTop shares some similarities with standard works on contrastive learning
(Chopra et al., 2005). However, we review it to clarify the role of the representation with respect
to the interactions, the reward function and OEGN. In particular we emphasize two desideratas for
the continuous representation: 1- two maximally distant consecutive states need to have a similar
distance in the embedding space, in order for our density approximation to be consistent with the
dynamics; 2- we have to avoid adding local optimas between two states with respect to the L2
distance, in comparison with the ground true topology. In addition, the discrete representation must
accurately match the continuous one. We base our analysis on figure 5, please notice that the last
line of figure 5 output an OEGN network, not the enviroment continuous representation.

First, we can study the influence of the distortion parameter kc that brings closer consecutive states
in LDisTop (cf. equation 2). We can see in the second line of figure 5 that the distortion parameter kc
rules the global dilatation of the learnt representation. A low temperature k (fourth line of figure 5),
in equation 2, prevents non-consecutive states to be close with each other, and thus, flattens the
representation and allows to capture the global structure of the environment; a high temperature
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Figure 5: Different Topologies learnt on the gridworld displayed in figure 4. Each line corresponds
to a hyper-parameter and we display the corresponding value on each square. All hyper-parameters
are equals to k = 3, kc = 10, δ = 0.1, deltanew = 0.6 except for the changing one in each line, the
second line for which we change the temperature k = 0.5 and the third line for which we change
the dilatation coefficient kc = 100.
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Figure 6: Progressively learnt topology throughout training. We selected six intermediary OEGN
network with an equal intermediate number of timesteps. The topology is extracted from one of our
experiments in section 4

curves the topology of the environment and the L2 rewards may admit several local optimas, which
is not desirable. However one can see that a low temperature can also distort the representation,
states in rooms (group of inter-connected nodes) tend to be closer with each other than bordering
states, such that an action covers a larger distance in the border than in a room. In fact, in the borders,
the agent often hurts the wall and stays in the same position, so, in comparison with large rooms,
the bring together is less important than the move away part. We can prevent this by increasing
the dilatation coefficient (first line of figure 5) such that all consecutive states get limited by the
distortion threshold δ, which prevents consecutive embeddings to be equal in equation 2. Overall,
relying on δ also becomes interesting when the number of states increases due to the exploration of
the agent: the agent progressively compresses its representation since interesting negative samples
are less frequent. In the third line of figure 5, we see that we can control the the minimal allowed
distance by playing with δ.

The size of the clusters of OEGN needs to be hyper-parameterized with respect to the dilatation of
the representation. The bottom line of Figure 5 emphasizes the importance of the creation threshold
parameter δnew that rules the radius of cluster in section 3.1. With a low δnew = 0.2, clusters do
not move and a lot of clusters are created. OEGN waits a long time to delete them. With a high
δnew = 1, the approximation of the topology becomes very rough, and states that belong to very
different parts of the topology are classified in the same cluster; this hurts our density approximation.
In addition, it may become hard to discover new clusters with random walks when clusters’ radius
is too large.

To sum up, there are 4 important messages: 1- we need a low temperature k to easily differentiate
negative samples from the anchor; 2- to prevent a possible distortion, we increase kc; 3- to prevent a
collapse of the representation, we bound the minimal distance with δ; 4- δnew must be set according
to the dilatation of the representation, fixed with kc, to correctly approximate a density distribution
over states.

Does the discrete network manages to self-organize to track the continuous representation ?
In contrast with the two previous paragraphs, we consider an agent that starts its episodes at the same
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Figure 7: Progressively learnt topology throughout training. We selected six intermediary OEGN
network with an equal intermediate number of timesteps. In comparison with figure 6, the tempera-
ture k, the dilatation coefficient kc and the creation threshold δnew are respectively set to 1, 50 and
0.3.
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Figure 8: Distance between the final puck position and the wanted puck position in Visual Pusher.
a- comparison for different values of temperature k; b- comparison of distortion for different values
of temperature k; c- comparison of distortion for different values of kc.

place and acts in the sparse ant maze experiment described in section 4. Figure 6 and figure 7 show
how DisTop progressively builds its discrete topology (OEGN) of the environment. We only show
topologies of the maze since its ground structure is appropriate for 3D visualization. We see that the
network manages to progressively expand as the agent discovers the maze and learns its continuous
representation. At the end of the learning process, the topologies resemble the original U-shape
maze.

A.2 QUANTITATIVE ANALYSIS

In this section, we complement our results of the ablation conducted in section 4.
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Is the temperature hyper-parameters important ? In figure 8a, we see the impact of the temper-
ature hyper-parameter. Overall, a low temperature makes easier the learning process as hypothesized
in section A.1; probably because it reduces the number of local optimas for the reward function.

Does the temperature and dilatation coefficient impact the distortion in complex environments
? To gain insights about the distortion of the representation, we propose to compute the ratio be-
tween the maximal distance between two consecutive embedded states and the mean one. Intuitively,
if the distortion is 2, it means that there exists an area where the agent executes twice larger steps
than in the rest of the environment. Therefore, when computing the state density with its clusters,
the agent would use twice more clusters and thus, under-estimate the density of the area. Figure 8c
show the distortion for several values of temperature; essentially, we see that the distortion increases
when the temperature decreases, as visually experimented in appendix A.1. However, the distortion
looks to be upper-bounded, probably because the squared dilatation in equation 2 does not allow
this. Figure 8d stresses out the importance of our penalties: the agent learns a very distorted rep-
resentation without them. We also see that the dilatation coefficient can reduce the distortion, as
emphasized in appendix A.1.

B COMPLEMENT INFORMATIONS ON DISTOP

In this section, we provide additional details about DisTop.

B.1 DERIVATION OF THE CONTRASTIVE LOSS

LInfoNCE = E(st,st+1)∈B
[
log

fω(st, st+1)∑
s∈B fω(s, st+1)

]
= E(st,st+1)∈B

[
− k||φω(st)− φω(st+1)||2 − log(

∑
s∈B

fω(s, st+1))
]

(6)

= E(st,st+1)∈B
[
− k||φω(st)− φω(st+1)||2 − log(fω(st, st+1) +

∑
s∈Bs 6=st

f(s, st+1))
]

(7)

≥ E(st,st+1)∈B
[
− k||φω(st)− φω(st+1)||2 − log(1 +

∑
s∈Bs 6=st

f(s, st+1))
]

(8)

In the last line of equation 8, we upper-bound fω(st, st+1) with 1 since e−v < 1 when v is positive.
The logarithmic function is monotonic, so the negative logarithm inverses the bound.

Then, equation 9 formulates our objective as a constrained maximization problem, where ε is a small
positive constant.

max
ω

E(st+1)∈B − log(1 +
∑
s∈B

fω(s, st+1)) s.t. E(st,st+1)∈B||φω(st)− φω(st+1)||22 ≤ δ2

Est+1∈B||φω(st+1)− φω′(st+1)||22 < ε
(9)

Firstly, DisTop enforces the distance between consecutive states to be below a threshold δ (first
constraint of equation 9). Secondly, it forces our representation to stay consistent over time (second
constraint of equation 9).

B.2 ALGORITHM OVERVIEW

Figure 9 illustrates algorithm 1, which sums up the learning loop of DisTop. See main text for
explanations (section 3).
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Figure 9: Illustration of a learning step of our growing network and contrastive loss (cf. text).
Cylinders are buffers associated to each cluster, blue circles are states embedded with φ and pink
circles represent clusters. The image is an example of state in the Visual Door (Nair et al., 2018)
environment.

Algorithm 2: Algorithm of OEGN (red) and GWQ (blue)
Initialize network with two random nodes, set theirs attributes to 0 and connect them. foreach
learning iteration do
Sample a tuple si, ci, s

prev
i ← sample(B).

Embed states: ei ← φω′(si); e
prev
i ← φω′(sprevi )

Sample an input ei ← sample(B).
closest← minnodes(||nodes− ei||2).
Increase error count of ci by 1.
Reset error count of closest to 0
Apply DeleteOperator().
If a node is deleted, stop the learning iteration
Apply CreationOperator().
Apply MovingOperator().
Apply EdgeOperator().

B.3 OEGN AND GWQ

Several methods introduced unsupervised neural networks to learn a discrete representation of a
fixed input density distribution (Kohonen, 1990; Fritzke et al., 1995; Marsland et al., 2002). The
objective is to have clusters (or nodes) that cover the space defined by the input points. Each node
c ∈ C has a reference vector wc which represents its position in the input space. We are interested
in the Growing when required algorithm (GWQ) (Marsland et al., 2002) since it updates the struc-
ture of the network (creation and deletion of edges and nodes) and does not impose a frequency of
node addition. OEGN is an adaptation of GWQ that intuitively works as follows: assuming a new
low-density embedded state is discovered, there are two possibilities: 1- the balls currently overlap:
OEGN progressively moves the clusters closer to the new state and reduces overlapping; 2- the clus-
ters almost do not overlap and OEGN creates a new cluster next to the embedded state. Algorithm 2
describes the major steps of OEGN and GWQ. Operators and relative changes are described below.
Specific operations of OEGN are colored in red, the ones of GWQ in blue and the common parts are
black. We define e = φω′(s) and closest(e) = minc∈C(||c− e||2) for all s ∈ B.

Our modifications are made to 1- make the network aware of the dynamics and goals; 2- adapt the
network to the dynamically changing true density distribution.

Delete operator: Delete ci if ci.error is above a threshold δerror to verify that the node is still
active; delete the less filled neighbors of two neighbors if their distance is below δprox to avoid too
much overlapping; check it has been selected ndel times before deleting it. Delete if a node does not
have edges anymore.

Both creation and moving operators: Check that the distance between the original goal gi and
the resulting embedding ||gi − ei||2 is below a threshold δsuccess.

Creation operator: Check if ||closest − ei||2 > δnew. Verify closest has already been selected
δcount times by the goal-selection policy. If the conditions are filled, a new node is created at the
position of the incoming input ei and it is connected to closest. Update a firing count of the winning

20



Under review as a conference paper at ICLR 2022

Parameters Value
Age deletion threshold δage 600
Error deletion count δerror 600

Proximity deletion threshold δprox 0.4× δnew
Count creation threshold δcount 3

Minimal number of selections ndel 10
Learning rate α 0.001

Neighbors learning rate αneighbors 0.000001
Number of updates per batch ∼ 32

Table 1: Fixed hyper-parameters used in OEGN. They have not been tuned.

(a) States that belong
to the buffer of a clus-
ter represented by the
circle.

Uniform sampling in the
ball

(b) The agent randomly samples a vec-
tor in the ball associated to the cluster.

Uniform sampling in the
ball

State sampled

(c) The agent selects the closest embed-
ded state to the vector.

Figure 10: Illustration of how an agent samples interactions from a buffer.

node and its neighbors and check it is below a threshold. A node is created halfway between the
winning node and the second closest node. The two winning nodes are connected to the new node.

Moving operator: If no node is created or deleted, which happens most of the time, we apply the
moving operator described by eq. 10 assuming closest = argminc(φω′(s)− wc)>(φω′(s)− wc).
In our case, we use a very low αneighbors to avoid the nodes to concentrate close to high-density
areas.

wj =


wj + α(φω′(s)− wj), if j = closest

wj + αneighbors(φω′(s)− wj), if j ∈ neighbors(closest)
wj , otherwise.

(10)

Edge operator: edges are added or updated with attribute age = 0 between the winning node of
ei and the one of eprevi . Edges with age = 0 are added or updated between the two closest nodes
of ei. When an edge is added or updated, increment the age of the other neighbors of closest and
delete edges that are above a threshold δage.

Except for δnew and δsuccess, we emphasize that thresholds parameters have not been fine-tuned and
are common to all experiments; we give them in Table 1.

B.4 STATE SAMPLING

Once the cluster is selected (cf. section 3.2), we keep exploring independently of the presence
of extrinsic rewards. Assuming we have a ball of embedded states (figure 10a), to approximate a
uniform density distribution over visited states that belongs to the cluster, DisTop samples a vector
in the ball of radius δnew that surrounds the center of its cluster (figure 10b). It rejects the vector
and samples another one if it does not belong to the cluster. Finally, it selects the closest embedded
state to the random vector and extracts the corresponding interaction (figure 10c). For example, one
can imagine a ball with 100 states close to the center of the ball and two states on its surface; with
a random sampling system, the agent would give priority to states close to the center. In contrast,
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by computing the state that is the closest to a uniformly sampled point in the ball, our preliminary
experiments suggested it increases the uniformity of selection inside the ball and favors exploration.

B.5 TECHNICAL DETAILS

Number of negative samples. In practice, to learn φω we do not consider the whole batch of states
as negative samples. For each positive pair, we randomly sample only 10 states within the batch of
states. This number has never been tuned.

Relabeling strategies. We propose three relabeling strategies;

1. πhigh relabelling: we take samples from BS and relabel the goal using clusters sampled
with πhigh and randomly sampled states. This is interesting when the agent focuses on a
task; this gives more importance to rewarding clusters and allows to forget uninteresting
skills. We use it in Ant and Half-Cheetah environments.

2. Uniform relabelling: we take samples from BS and relabel the goal using states sampled
from from BS . When αskew ≈ 0, this is equivalent to relabeling uniformly over the em-
bedded state space. This is used for maze and robotic experiments.

Neighbors update. In order to speed up the propagation of extrinsic rewards through the nodes
of the network, we propose to relabel the true high level action (the goal) with the achieved action
(achieved goal). Furthermore, it forces the agent to periodically explore again goals with potential.
The achieved goal can be computed by embedding the final state with φ. Then, we update the
neighbors with an exponential moving average of the achieved average extrinsic reward.

C DETAILS ABOUT OUR EXPERIMENTS

C.1 COMPARISON METHODS

LESSON: we used the code provided by the authors and reproduced some of their results in dense
rewards settings. Since the environments are similar, we used the same hyper-parameter as in the
original paper (Li et al., 2021).

LESSON requires a task to learn skills since it explores with hierarchical random walks, making a
fair comparison unrelevant in no/dense-rewards task.

Skew-Fit: since we use the same evaluation protocol, we directly used the results of the paper. In
order to fairly compare DisTop to Skew-Fit, the state given to the DRL policy of DisTop is also the
embedding of the true image. We do not do this in other environments. We also use the exact same
convolutional neural network (CNN) architecture for weights ω as in the original paper of Skew-Fit.
It results that our CNN is composed of three convolutional layers with kernel sizes: 5x5, 3x3, and
3x3; number of channels: 16, 32, and 64; strides: 3, 2 and 2. Finally, there is a last linear layer with
neurons that corresponds to the topology dimensions d. This latent dimension is different from the
ones of Skew-Fit, but this is not tuned and set to 10. T

That is unclear to us how to fairly adapt Skew-fit to solve a particular task, thus, we do not evaluate
Skew-fit in experiments with tasks.

ELSIM: we use the code provided by the authors. We noticed they used very small batch sizes
and few updates, so we changed the hyper-parameters and get better results than in the paper on
Half-Cheetah. We set the batch size to 256 and use neural networks with 2 × 256 hidden layers.
The weight decay of the discriminator is set to 1 · 10−4 in the maze environment and 1 · 10−3 in
Ant and Half-Cheetah. In Ant and Half-Cheetah, the learning process was too slow since the agent
sequentially runs up to 15 neural networks to compute the intrinsic reward; so we divided the number
of updates by two. In our results, it did not bring significant changes.
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Parameters Values RP/RD/MA/MC/SAM/SPM Comments
DRL algorithm SAC

Entropy scale 0.1/0.05/0.2/0.2/0.1/0.2
Hidden layers 3/3/3/3/4/4

Number of neurons 512 Smaller may work
Learning rate 5 · 10−4 Not tuned

Batch size 256/256/512/512/512/512 Works with both
Smooth update 0.001 Not tuned.

Discount factor γ 0.99/0.99/0.99/0.99/0.996/0.996 Tuned for mazes
Representation φω

Ratio 0/0/0.5/0.5/0/0 see appendix A
Learning rate 1 · 10−4 Not tuned

Number of neurons 256 except robotic images (CNN) Not tuned
Hidden layers 2 except robotic images (CNN) Not tuned

Distortion threshold δ SPM: 0.01 else 0.1 Tuned on SPM
Dilatation coefficient kc SPM: 50 else 20 See appendix A

Consistency coefficient β RD: 1 Not tuned
Smooth update αslow 0.001 Not tuned

Temperature k 1/1/3/3/3/1 See appendix A
Topology dimensions d 10/10/3/3/3/3 Not tuned
OEGN and sampling

Creation threshold δnew 0.8/0.6/0.4/0.6/0.4/0.6 See appendix A
Success threshold δsuccess ∞/∞/0.2/0.2/∞/∞

Buffers size [8/8/5/5/5/5] · 103
Skew sampling 1 + αskew 0 See appendix A

Updates per steps 2/2/0.5/0.5/0.25/0.25
High-level policy πhigh

Learning rate αc 0.05 Tuned
Neighbors learning rate 0.05 Not fine-tuned

Skew selection 1 + α′skew −1/− 1/0/0/− 50/− 50/ See appendix A
Reward temperature text 0/0/50/10/100/100

Table 2: Hyper-parameters used in experiments. RP, RD, MA, MC, SAM, SPM respectively stands
for Robotic Visual Pusher, Robotic Visual Door, MuJoCo Ant, MuJoCo Half-Cheetah, Sparse Ant
Maze, Sparse Point Maze.

SAC: we made our own implementation of SAC. We made a hyper-parameter search on entropy
scale, batch size and neural networks structure. Our results are consistent with the results from the
original paper (Haarnoja et al., 2018).

LWM-DisTop: For fairness in the sampling process, we adapt LWM (Ermolov & Sebe, 2020)
to the topology of DisTop. It essentially rewards an interaction with the prediction error in the
embedded space.

FlatDisTop: One can think of FlatDisTop as a variant of TRPO-AE-SimHash (Tang et al., 2017),
but replacing the autoencoder and the hashing procedure by our contrastive-based representation and
OEGN. The agent rewards an interaction (sprev, a, s, sg) with 1√

count(cs)
where cs is the cluster of

φω′(s).

C.2 HYPER-PARAMETERS

Table 2 shows the hyper-parameters used in our main experiments. We emphasize that tasks are very
heterogeneous and we did not try to homogenize hyper-parameters across environments.
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C.3 ENVIRONMENT DETAILS

C.3.1 ROBOTIC ENVIRONMENTS

Robotic Environments and evaluation protocols are as described in (Pong et al., 2020a). For conve-
nience, we sum up again some details here.

Visual Door: a MuJoCo environment where a robotic arm must open a door placed on a table
to a target angle. The state space is composed of 48x48 images and the action space is a move of
the end effector (at the end of the arm) into (x,y,z) directions. Each direction ranges in the interval
[-1,1]. The agent only resets during evaluation in a random state. During evaluation, goal-states are
sampled from a set of images and given to the goal-conditioned policy. At the end of the 100-steps
episode, we measure the distance between the final angle of the door and the angle of the door in the
goal image.

Visual Pusher: a MuJoCo environment where a robotic arm has to push a puck on a table. The
state space is composed of 48x48 images and the action space is a move of the end effector (at the
end of the arm) in (x,y) direction. Each direction ranges in the interval [-1,1]. The agent resets in a
fixed state every 50 steps. During evaluation, goal-states are sampled randomly in the set of possible
goals. At the end of the episode, we measure the distance between the final puck position and the
puck position in the goal image.

C.3.2 MAZE ENVIRONMENTS

Maze environments are described in (Nachum et al., 2018a) and we used the code modified by
(Li et al., 2021). For convenience, we provide again some details and explain our sparse version.
The environment is composed of 8x8x8 fixed blocks that confine the agent in a U-shaped corridor
displayed in Figure 2.

Similarly to (Li et al., 2021), we zero-out the (x,y) coordinates and append a low-resolution top
view of the maze to the proprioceptive state. This ”image” is a 75-dimensional vector. In our sparse
version, the agent gets 0 reward when its ground distance to the target position is below 1.5 and gets
-1 reward otherwise. The fixed goal is set at the top-left part of the maze.

Sparse Point Maze: the proprioceptive state is composed of 4 dimensions and its 2-dimensional
action space ranges in the intervals [-1,1] for forward/backward movements and [-0.25,0.25] for
rotation movements.

Sparse Ant Maze: the proprioceptive state is composed of 27 dimensions and its 8-dimension
action space ranges in the intervals [-16,16].

C.4 COMPUTATIONAL RESOURCES

Each simulation runs on one GPU during 20 to 40 hours according to the environment. Here are the
settings we used:

• Nvidia Tesla K80, 4 CPU cores from of a Xeon E5-2640v3, 32G of RAM.
• Nvidia Tesla V100, 4 CPU cores from a Xeon Silver 4114, 32G of RAM.
• Nvidia Tesla V100 SXM2, 4 CPU cores from a Intel Cascade Lake 6226 processors, 48G

of RAM. (Least used).

C.5 EXAMPLE OF SKILLS

Figures 11, 12, 13 show examples skills learnt in respectively Visual Door, Visual Pusher and Ant
Maze. Additional videos of skills are available in supplementary materials.
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Figure 11: Examples of 8 skills learnt in Visual Door.

Figure 12: Examples of 8 skills learnt in Visual Pusher.

Figure 13: Examples of 8 skills learnt in Ant Maze.
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