Under review as a conference paper at ICLR 2026

KNOWLEDGE-ENHANCED
TABULAR DATA GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Tabular data generation methods aim to synthesize artificial samples by learning
the distribution of training data. However, most existing tabular data generation
methods are purely data-driven. They perform poorly when the training sam-
ples are insufficient or when there exists a distribution shift between training and
true data. In many real-world scenarios, data owners are often able to provide
additional knowledge beyond the raw data, such as domain-specific description
or dependencies among features. Motivated by this, we categorize the types of
knowledge that can effectively support tabular data generation, and incorporate
selected knowledge as auxiliary information to guide the generation process. To
this end, we propose KTGen, a Knowledge-enhanced Tabular data Generation
framework. KTGen leverages auxiliary information by training a correction net-
work in the latent space produced by a VAE, aligning the generated data with
the auxiliary information. Our experiments demonstrate that, when training on
limited, biased data, incorporating auxiliary information makes the distribution
of synthetic samples closer to the true data distribution, and also improves the
performance of downstream models trained on the synthetic samples.

1 INTRODUCTION

Tabular data is one of the most widely used data modalities and frequently appears in domains such
as healthcare (Yang et al.||2021; Gong et al., 2020), finance (Zheng et al.,|2020), industry (Du et al.,
2021)), and recommendation systems (Zhang et al., {2023 Wu et al.,[2021). However, real-world tab-
ular data often contains sensitive information and is costly to acquire (Mehrabi et al., [2021}; |Dastin
2022), which limits its quality, and availability in machine learning task. Data generation emerges
as a standard remedy to address this data scarcity. Researchers propose various embedding strate-
gies (Xu et al., [2019; |[Kotelnikov et al.,|2023) to handle the highly structured nature of tabular data
and its column-exchangeability property. By leveraging these approaches alongside well-established
advances in image generation (Shorten & Khoshgoftaar, |2019; |Goodfellow et al., [2014; | Kingma &
Welling| 2013} [Sohl-Dickstein et al., 2015)), significant progress is made in tabular data generation.
Synthetic tabular data has already been applied to a wide range of downstream tasks, including dis-
ease prediction (Cui & Mitra, 2024} |Alcazer et al., [2024)), credit risk assessment (Clements et al.}
2020; Chang et al.l 2024), or personalized recommendation (Huang et al., 2023).

Most existing tabular data generation methods are purely data-driven and rely on sufficient data to
train generative models. Unlike image generation, where large-scale datasets are relatively easy to
obtain, tabular data is often limited in quantity (Cao et al., [2024; Du & Lil [2024). In cross-domain
collaborations, due to privacy protection policies, data owners may be unable to provide researchers
with large-scale datasets and can only share a small number of samples as examples. Current data-
driven generation methods struggle under such circumstances. Prior studies (Margeloiu et al.| [2024)
shows that the quality of the synthetic data degrades significantly as the number of training samples
decreases. On the one hand, a smaller sample size increases uncertainty, making it more difficult
to infer the underlying data distribution. On the other hand, distribution shifts often occur between
the limited training data and the abundant test data, so even if a generative method can accurately
learn the distribution of the training data, it may still fail to generalize to the test data. On the other
hand, distribution shifts (Rubachev et al.| 2025)) often exist between the limited training data and the
abundant test data. In such cases, even if the generative model successfully learns the distribution of
the training set, this knowledge may not transfer to unseen data drawn from a shifted distribution.

Under review as a conference paper at ICLR 2026

Dataset Distribution _ Dataset Data-driven generation

Synthetic Data Synthetic Data Distribution

I H B

\ LN
| Generation model

I

,,,,,,,, | . e e
Training Set Distribution Training Set A |

data description : : ‘ ‘

Knowledge feature dependency

statistics .
. Knowledge-enhanced generation

Figure 1: Illustration of how incorporating external knowledge can improve data generation quality.
When the training data distribution differs from the real data, knowledge enables the generative
model to capture patterns beyond the training set.

In many practical scenarios, beyond the limited training samples, data owners or domain experts can
often provide a wealth of additional knowledge. Such knowledge can take various forms: at the data
level, it may include domain-specific background information about the dataset (Lin et al.| [2025));
at the feature level, it may involve the semantic meaning of features, dependencies among features,
and the distribution of feature values; and at the sample level, it may reflect the identification and
annotation of anomalous samples. These forms of knowledge capture information that may not be
revealed by the available training samples. It is necessary to explore how such knowledge can be
incorporated into the tabular data generation process as guidance.

These types of knowledge can generally be categorized into two forms. The first type is unstructured
textual information, which can be any description related to the data, often provided by humans. The
second type is statistical knowledge with explicit semantic meaning, usually derived from large-
scale data analysis. Such information summarizes key characteristics of the data distribution and
can provide crucial guidance without directly disclosing raw data. In this work, we primarily focus
on the second type, which allows us to encode statistical properties into the generative model.

This paper proposes KTGen, a Knowledge-enhanced Tabular data Generation method. KTGen
consists of a variational autoencoders (VAE) that maps samples between the data space and the latent
space, and a score-based diffusion model (Song et al.,2021)) that performs denoising sampling from
the noise space to the latent space. During training, KTGen additionally trains a correction network
in the latent space to align the synthetic data with the auxiliary information. In our experiments, we
construct biased training sets from eight datasets and compare KTGen with eleven existing tabular
data generation methods. When trained on biased training sets, KTGen generates higher-quality
samples than other methods. It also achieves strong performance on randomly sampled training
sets. Furthermore, we conduct additional visualization studies to illustrate how KTGen improves
the quality of synthetic data. Our contributions are as follows:

* We investigate previously overlooked knowledge in tabular data generation and incorporate it into
the generation process to improve the quality of synthetic data.

* We propose KTGen, which employs a VAE and a diffusion model for generation. KTGen addi-
tionally trains a correction network in latent space to align the synthetic data with knowledge.

* We conduct extensive experiments on eight datasets, comparing KTGen with various tabular data
generation methods, and demonstrate the effectiveness of our approach.

2 RELATED WORKS

2.1 CLASSICAL TABULAR DATA AUGMENTATION

Classical data augmentation methods for tabular data aim to improve model performance when
data is limited. SMOTE (Chawla et al.| 2002)) generates synthetic minority-class samples by inter-
polating between existing instances, effectively alleviating class imbalance. ADASYN (He et al.,

Under review as a conference paper at ICLR 2026

2008) extends SMOTE by adaptively generating more samples for harder-to-learn minority exam-
ples. Mixup (Zhang et al., [2018) produces new samples by taking convex combinations of feature
vectors and their labels, smoothing decision boundaries and improving robustness. Other tradi-
tional approaches include random oversampling, undersampling, feature perturbation, and boot-
strapping (Ling & Li, 1998} Blagus & Lusal [2015), which create additional data by resampling or
slightly modifying existing observations. These classical techniques are simple yet effective for
enhancing sample diversity and mitigating overfitting in downstream models.

2.2 GENERATIVE METHODS FOR TABULAR DATA

Image-Inspired Tabular Generative Models. Many modern tabular data generation models are
derived from classical generative models originally developed for images. For instance, Generative
Adversarial Networks (GAN) based approaches such as ADSGAN (Yoon et al., 2020) and CT-
GAN (Xu et al.L|2019) leverage adversarial training to learn the joint distribution of tabular features.
Similarly, VAE based methods like TVAE (Xu et al.,|2019) employs a latent-variable framework to
model feature dependencies and generate realistic samples. More recently, diffusion-based models
such as TabDDPM (Kotelnikov et al., 2023), TabDiff (Shi et al., 2024), and TabSyn (Zhang et al.,
2024) have been applied to tabular data, demonstrating strong performance by learning the denoising
process in a latent or data space.

Table-Specific Generative Methods. In addition to these approaches, other methodologies have
also been explored for tabular data generation. Bayesian methods (Ankan & Textor, [2024)) repre-
sent variables and their conditional dependencies through a directed acyclic graph and sample new
data points accordingly. Normalizing Flows (Durkan et al., 2019) are generative models that con-
struct tractable distributions, enabling both efficient sampling and exact density evaluation. Random
Forest-based methods, such as Adversarial Random Forests (Watson et al.,[2023) for density estima-
tion and generative modeling, provide a non-parametric alternative that can capture complex feature
interactions. With the rapid development of LLM, several recent (Kim et al., 2024} Borisov et al.,
2023) works explore transforming tabular data into textual representations and leveraging LLM for
data generation. In addition, with the introduction of the tabular foundation model TabPFN (Holl-
mann et al.} 2025)), which demonstrates strong performance on tabular prediction, subsequent works
such as TabPFGen (Ma et al., |2023)) and TabEBM (Margeloiu et al., [2024)) combined TabPFN with
energy-based models (Grathwohl et al., 2020). These approaches leverage the in-context learning
capabilities of TabPFN while incorporating the flexibility of energy-based modeling, resulting in
significantly improved synthetic data quality and downstream task performance.

3 PRELIMINARIES

Before presenting our proposed framework, we first introduce several preparatory steps. Section[3.1]
defines the mathematical notations commonly used in tabular data task. Section [3.2] presents our
categorization of knowledge. It further specifies which parts of this knowledge are intended to be
incorporated into the generation process. These steps lay the foundation for the design of our model.

3.1 NOTATION

Regard a tabular dataset with m rows and n columns as an matrix X €R™*". Dataset contains a
total of m samples. The i-th sample x;ER"™ can be represented as an n-dimensional vector:

mi:(xlaz%'--xn), i:1,2,3,...,m. (1)

Similarly, the j-th column c;ER™ records the j-th feature of the dataset. Among these n features,
some are categorical while others are numerical. In this paper, when it is necessary to distinguish
between categorical and numerical features, we denote them as :17?“ or :z:‘;”m, respectively; if no
distinction is needed, the superscript is omitted.

A common task for tabular data is prediction, where one feature is treated as the target, and all other
features are used to predict it. If the target feature is categorical, the task is a classification problem;
otherwise, it is a regression problem. We focus on the task of tabular data generation, with the
objective of training a generative model G,,, or employing a generative algorithm G,. When given a

Under review as a conference paper at ICLR 2026

dataset X, G,,, or G, can generate a new dataset based on the dataset:
X =G(X). 2)

The synthetic data X are expected to approximate the distribution of the original dataset X, thereby
serving as a augmentation or replacement for X in downstream tasks. Our objective is to enhance
the data generation process by leveraging not only the training data X but also related knowledge
KC, thereby guiding the generative model beyond purely data-driven learning.

3.2 KNOWLEDGE CATEGORIZATION

For a tabular data generation task, any information related to the dataset but not explicitly presented
in the form of training data can be regarded as knowledge. Properly leveraging such knowledge can
improve the quality of the generated data. From the perspective of representation, this knowledge
can generally be categorized into two forms.

Semantic-Level Knowledge. The first type of knowledge lies at the semantic level, which typ-
ically takes the form of descriptive text. Examples include descriptions about the domain of the
dataset, the intended meaning of individual features, or instructions on how certain variables are
measured. When introducing this type of knowledge into a tabular data task, such textual descrip-
tions can be embedded or tokenized and appended to the feature representation, enabling models
to capture semantic cues that are not explicitly present in numerical values (Jiang et al., 2024;
Berkovitch et al.| 2025; [Huynh et al., [2023). This approach allows language models to provide
guidance to the generator.

Data-Level Knowledge. The second category is data-level knowledge. In many real-world sce-
narios, although a sufficient amount of real data exists, privacy concerns or regulatory restrictions
make direct data sharing infeasible. In this case, data owners may provide partial statistical charac-
teristics of the original data instead. These pieces of knowledge can come from multiple aspects:
they may include sample-level knowledge, insights obtained from clustering analysis; information
about inter-feature dependencies; or intra-feature statistics such as the empirical distribution of a
feature. By integrating such diverse knowledge, generative models can be better guided to produce
data that faithfully reflects both the structure and characteristics of the underlying dataset.

Some studies (Lin et al.| 2025)) incorporate feature names and meta descriptions of datasets into
the generation process, leading to improved data quality. We primarily focus on the second type of
knowledge. In our envisioned scenario, the data owner provides a small set of samples. In addition,
certain statistical information derived from a large dataset can be shared without violating privacy-
preserving principles. For these statistical pieces of information, we focus primarily on inter-feature
dependencies and the estimated distributions of individual features. By integrating such diverse
knowledge, generative models can be better guided to produce data that faithfully reflects both the
structure and characteristics of the underlying dataset.

4 KTGEN

In this section, we present our proposed framework KTGen in detail, with its overall workflow
illustrated in Figure 2} The essence of KTGen lies in training a correction network in the latent space
of a VAE, such that the generated data, after passing through the correction network, are aligned
with the incorporated knowledge. We provide a detailed description of the different components of
KTGen, along with their respective training procedures. Each part of the framework is introduced
in turn, illustrating how they work together to enable effective generative modeling of tabular data.

4.1 TABULAR DATA GENERATOR

We follow the generation framework of TABSYN (Zhang et al.,|2024), which consists of a VAE that
maps tabular data into a latent space, and a score-based diffusion model that samples from the noise
space and denoises into the latent space. The detailed generation framework and training objective
are provided in Appendix

VAE for Tabular Data. Each feature of the input sample is embedded into a d-dimensional feature
embedding, resulting in a sequence of embeddings E € R™ < of length m for the entire sample.

Under review as a conference paper at ICLR 2026

(a) VAE
Age Sex Income Feature Embedding ? Latent Space = Feature Embedding Age Sex Income
- & -
25 M <=50K P > 8 > > g > P 25 M <=50K
37 F >50K g g - 37 F >50K
E zZ E

""""" T
(b) Latent Diffusion 1 (c) Latent Correction
|
Latent Space 3 E Noise Space 3 E Latent Space : Latent Space z g Latent Space
=
> 22 > > 2> I zz
2z S = ! £ g
s = 6 = 1 pe i Py
4 Z 1 V4 z
(d) Generation
Noise Space > (? Latent Space ” Q Latent Space = Feature Embedding Age Sex Income
e =] @ e ————
> 2 > Zg > 2 > P 25 M <=50K
5E I g L g L 37 F >50K
z 7 E

Figure 2: Overview of KTGen: (a) the VAE component of KTGen, which maps a sample into a latent
space; (b) the diffusion component, which learns the denoising process from noise space to latent
space; (c) the correction network, which refines the sampled latent representations using auxiliary
information; (d) the complete data generation process of KTGen.

A Transformer (Vaswani et al., 2017) is used as the encoder of the VAE to process the embedding
sequence and output the mean and log-variance of the latent distribution. The reparameterization
trick is then applied to sample a latent embedding Z from this distribution. The decoder maps Z
back to a feature embedding sequence, which is subsequently converted to actual feature values
using a trained reconstructor.

Diffusion in Latent Space. On top of the latent space, we employ a score-based diffusion
model (Song et al., 2021} |Karras et al., 2022) to enable sampling from noise into the latent space.
After training the VAE, we obtain latent embeddings Z from the encoder and model their distribu-
tion using diffusion. The forward process gradually perturbs Z by adding Gaussian noise with a
time-dependent variance o (t). The diffusion model is trained to predict the injected noise given the
noisy latent variable and the time step, which allows us to approximate the score function. With the
estimated score, the reverse denoising process can be applied to iteratively transform noise samples
back into latent embeddings. Once trained, this procedure enables efficient generation of synthetic

latent representations Z that can be decoded into tabular data.

4.2 KNOWLEDGE CORRECTION

During training, we incorporate two types of statistics as auxiliary information: (i) inter-feature de-
pendencies, captured by a correlation matrix P, and (ii) feature-wise statistics, represented by em-
pirical category frequencies for categorical features and Gaussian Mixture Model (Dempster et al.|
1977)) parameters for numerical features.

KTGen aim to perform a knowledge correction on the latent embeddings obtained from the diffusion
model and make the reconstructed data better align with the provided auxiliary knowledge. We train
a correction network g4 in the latent space. Its input is the synthetic latent embedding Z produced

by the diffusion model. After passing through g4, we obtain the corrected latent embedding z' ,
which is then decoded by the VAE decoder to generate a synthetic sample &:

& = Reconstruction (Decoder (g¢ (Z))) 3)

Inter-Feature Dependencies. Since the number of generated samples is virtually unlimited, we
can use a large set of synthetic samples X eR™ ™ to match the auxiliary information of the real data.
For inter-feature dependencies, we compute the correlation matrix P from the synthetic samples and
enforce it to match the true correlation matrix P:

Lrela = MSE (Triu(P), Triu(P)) :)

Under review as a conference paper at ICLR 2026

Table 1: The downstream models trained with synthetic data are evaluated on the test set, and the
rankings are averaged across all datasets. For classification tasks, AUROC is used as the metric,
while for regression tasks, RMSE is employed. The best-performing generation method in each
case is highlighted in bold. Here, “Basic” refers to training only on the sample set without using
any synthetic samples. “KTGen,” denotes the base version, which does not include the correction
network or any auxiliary information, whereas “KTGen,” represents the complete method.

| high-bias | medium-bias | unbias

‘ XGB RF PEN LR ‘ XGB RF PEN LR ‘ XGB RF PEN LR
Basic 6.6562 6.8281 5.1719 7.1406 7.5938 7.4375 5.2500 7.0000 8.8438 8.0312 6.3750 7.3125
SMOTE 79531 7.6406 8.2656 8.0156 | 6.4844 58750 6.9062 7.9688 6.6406 7.2500 5.1875 7.5625
Mixup 8.1094 8.0000 9.0312 9.1562 5.5781 6.3125 7.3906 8.1875 7.0000 7.0000 6.5000 8.3125
TVAE 8.8750 8.8438 8.2812 8.8125 8.3906 8.2188 8.3750 8.0938 7.9062 7.6562 8.1250 7.4375

CTGAN 9.1094 8.9688 8.9062 88750 | 9.5156 9.8750 9.8906 9.5938 | 10.5625 11.3438 11.1875 10.3750
TabDDPM | 9.8125 9.9375 9.8125 9.0938 | 9.1406 9.1250 9.7812 8.7812 | 10.4375 10.1875 10.9062 9.9688
TABSYN | 7.5938 7.2812 7.6250 8.0312 | 8.4844 8.5938 7.46838 8.1875 | 7.6250 8.0000 9.2188 8.6562
ARF 9.3281 8.9062 9.3438 7.9688 | 10.0000 10.3125 8.9062 9.3125 | 9.1562 9.0312 9.6250 8.2188
BN 7.7969 8.4375 9.8438 88750 | 7.4844 83125 8.6094 8.1250 | 9.6875 9.8125 9.7812 9.6250
TabPFGen | 7.1562 6.8750 5.2188 6.1250 | 8.4062 8.2188 8.0938 7.3438 | 59844 4.9375 54375 5.3750
TabEBM 6.6250 7.3125 6.7188 6.3125 | 5.3906 5.1250 6.6562 6.1875 | 6.1250 6.9688 6.8438 6.1250
TabPFN 5.6094 6.0625 6.4688 5.7500 | 6.1875 59375 6.0938 53750 | 4.3750 4.0938 4.5312 4.8438

KTGen, 7.2344 73125 65625 7.9375 | 9.0469 8.5625 7.8594 7.7812 | 7.1875 7.6875 74375 8.6562
KTGen, 3.1406 2.5938 3.7500 2.9062 | 3.2969 3.0938 3.7188 3.0625 | 3.4688 3.0000 3.8438 2.5312

Triu represents the vector obtained by straightening the upper triangular matrix.

Feature-Wise Statistics. To ensure that the generated data matches the feature-wise statistics of
the real dataset, we define a distribution alignment loss over all features. We denote the j-th feature

of the i-th sample in X as Z; ;. For a categorical feature with k possible values (categorical features
are represented using label encoding with values ranging from 0 to k& — 1), the probabilities of each
value are defined as pg, p1, - . ., px—1- The log-likelihood is computed via a lookup table:

~cat

logp (27%) = logpi,?nj.)

A small smoothing term is applied for unseen categories to avoid numerical issues. For a numerical
feature, let the Gaussian mixture have k& components with weights «, means y, and variances o>
The log-likelihood of a sample value Z; ; under the mixture is:

k
logp (#5") =1log | Y N (27|, 07) | - (6)
=1

Finally, the distribution alignment loss over all features and samples is defined as the negative aver-
age log-likelihood:

11)
Laise = - Z -~ Zlogp(xi,j). 7
i=1 ' =1

Training Loss. We train the correction network jointly using the loss functions defined above:
Leors = At Lroa + MLy + \sMSE (2, 2") ®)
The third term encourages the correction network not to make excessive deviations to the latent rep-

resentations, thereby preventing the correction process from disrupting the primary structure gener-
ated by the diffusion model.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Datasets. We obtained eight datasets from UCI (Asuncion et al.,[2007) and scikit-learn (Pedregosa
et al., 2011), including six binary classification tasks and two regression tasks. The dataset sizes

Under review as a conference paper at ICLR 2026

0.461 (;TGAN oTVAE 'I;abP.FSﬁn
0.40. JabDDPM KTGens 0.8 fzzt=
' 8 M.ixup
T 0.421 JTabEBM c 0.6
Q o TabPFN 8
(Q 0.401 Mixup ..'I'ABSY_llyaEPFGen 05)_ 0.41 K'.:Genb
] ARF ! TabPFN gARF
0.38 . KGen. © 0.2 il A .
] BN °
0.36 SMOT.E ° 0.0l KTGenc‘A'TABS'Y(l:\ITGA"\II'abPDPM
0.60 0.62 0.64 0.66 0.05 0.10 0.15 o0.20
KL and Wasserstein DCR

(a) Statistical Fidelity Metric. (b) Privacy Preservation Metric.

Figure 3: Figure (a) shows the column-wise distribution matching and KS test statistic of data
generated by various generative models, while Figure (b) shows the DCR and J-presence result.
The lower-right corner indicates the best result.

range from 768 to 48,842 samples, with the number of features varying from 9 to 24. For a more
comprehensive description of the datasets, please refer to the Appendix

Preprocessing. For all categorical features, ordinal encoding is applied, preserving the order if
it exists. All numerical features are standardized using z-score normalization. The data are first
split into a candidate set and a test set in an 8:2 ratio. The candidate set is used to extract auxiliary
information. To capture inter-feature dependencies, we compute a correlation matrix P based on
the candidate set. For feature-wise statistics, we treat categorical and numerical features separately.
For a categorical feature, we record the empirical frequency of all its possible categories. For a
numerical feature, we fit a Gaussian Mixture Model to approximate its distribution and store the
parameters of each mixture component, including its mean, variance, and weight.

A biased training set is then obtained through sampling from the candidate set. We perform multiple
sampling runs and compute the distribution differences between each sampled subset and the orig-
inal dataset. The 4 subsets with the largest distribution differences are designated as the high-bias
group, 4 subsets with moderate distribution differences as the medium-bias group, and 4 randomly
sampled subsets as the unbias group. The number of training samples is set to 20, 50, and 100,
while the experimental results reported in the main text are based on 20 training samples. The
detailed sampling strategy is provided in the Appendix D]

Baselines Generators. We compare KTGen with 11 existing tabular data generation methods:
two classical augmentation methods (i) SMOTE (Chawla et al., [2002) and (ii) Mixup (Zhang et al.,
2018); (iii) a VAE based method TVAE (Xu et al., 2019); (iv) a GAN based method CTGAN (Xu
et al.l 2019); two diffusion based methods (v) TabDDPM (Kotelnikov et al.l [2023)) and (vi) Tab-
SYN (Zhang et al., [2024); (vii) a tree-based method ARF (Watson et al., 2023); (viii) Bayesian
network based method (Ankan & Textor, 2024); two energy-based methods (ix) TabPFGen (Ma
et al.,[2023)); and (x) TabEBM (Margeloiu et al.,|2024); and (xi) PFN-based (Hollmann et al., [2025])
density estimation methods. For some of the methods that require hyperparameter tuning, we per-
formed 20 optimization trials. Implementation details can be found in the Appendix [E]

Downstream Predictors. We select four representative downstream predictors: XGBoost (Chen
& Guestrin, 2016), Random Forest (Breiman), [2001), TabPEN (Hollmann et al., |2025)), and Linear
Regression or Logistic Regression (Coxl [1958). For XGBoost and Random Forest, we perform
hyperparameter tuning using the training data, while synthetic data is used to train the models.
Implementation details can be found in the Appendix [F

5.2 EVALUATION

Downstream Predictors Utility. For each sample set, we split it into tiny training and validation
sets with a 7:3 ratio to tune the downstream model and determine its hyperparameters. First, the
downstream model is trained on all samples of the sample sets using the optimized hyperparameters

Under review as a conference paper at ICLR 2026

Table 2: Performance of downstream models trained on synthetic data generated by models trained
with different amounts of training set.

| high-bias | medium-bias | unbias
| KTGen, KTGen, KTGens KTGen. | KTGen, KTGen, KTGeny KTGen, | KTGen, KTGen, KTGens KTGen.
XGB 1.2624 1.0973 1.1565 1.0677 1.1000 1.3090 1.1273 0.9667 0.9096 0.8622 0.9265 0.8635
abalone RF 1.1845 0.9929 1.1284 1.0049 1.1763 0.9669 1.1926 0.9697 0.9162 0.8405 0.8647 0.8460
(RMSE) PEN 1.2373 1.1166 1.2804 1.0624 1.2189 1.0166 1.1896 1.1711 0.9634 0.8518 0.8995 0.8390
LR 3.2123 0.9965 1.0182 1.0855 1.2826 1.5049 1.5034 1.4591 0.9347 0.7920 0.8464 0.7972
PEN 0.6641 0.6717 0.6380 0.6327 0.6140 0.6705 0.7115 0.6588 0.7789 0.7067 0.7937 0.7458
adult RF 0.6747 0.7025 0.6783 0.6877 0.6183 0.6367 0.7042 0.6543 0.7812 0.7775 0.7954 0.7713
(AUROC) | XGB 0.7225 0.6881 0.7339 0.7479 0.6776 0.6691 0.7006 0.7146 0.8135 0.7830 0.8135 0.8175
LR 0.6872 0.7044 0.6213 0.7166 0.6938 0.6469 0.7128 0.6727 0.7807 0.7662 0.8208 0.7586

and evaluated on the test set. Then, for each data generation method, 1,000 synthetic samples are
generated, and the downstream model is trained on both the synthetic and real samples, followed by
evaluation on the test set. The quality of the downstream models trained with different generated
data is then ranked, with the ranking results reported in Table|[I]

The experimental results reported in the main text are based on using 20 samples as the training
data. In the most extreme scenarios (the distribution deviates significantly from the real data), it
can be observed that KTGen2, which incorporates auxiliary knowledge, achieves a substantial im-
provement over KTGenl, which does not include knowledge in the correction network. Models
trained with the synthetic samples from KTGen2 outperform those trained with synthetic samples
from other generation methods. More detailed experimental results can be found in the Appendix |G|

Statistical Fidelity and Privacy Preservation. Statistical fidelity and privacy preservation are
two important metrics for evaluating synthetic data. For statistical fidelity, we estimate the similarity
between the candidate set (i.e., not the sampled training set) and the generated samples using: (i)
Column-wise distribution matching: Kullback-Leibler divergence (Csiszar, [1975) is computed for
categories features, Wasserstein distance (Mongel, |1781)) for numerical features, and the results are
inversely mapped to [0, 1] range and then averaged; (ii) Kolmogorov—Smirnov test (Karson, |1968)
statistic. For privacy protection, we assess the risk of data leakage using the following two metrics
(computed with respect to the sampled training set): (i) Average Distance to Closest Record (Zhao
et al.l 2021)): larger values indicate greater differences between generated and training samples; (2)
o-presence (Van Tilborg & Jajodial [2011): smaller values indicate a lower probability of identifying
training samples from the generated data.

Figure [3illustrates the performance of KTGen under various metrics. Figures [3a]shows the column
distribution matching and the KS test results, respectively, where KTGen achieves the best perfor-
mance as expected. Other methods are trained only on a small, biased subset of the data and thus
struggle to capture the true distribution of the candidate dataset. In contrast, KTGen incorporates
additional statistical information from the candidate dataset during training. Figures [3b|reports the
average DCR and J-presence. Achieving a good trade-off between data fidelity and privacy pro-
tection remains challenging. While KTGen attains high quality in the generated data, it does not
achieve the optimal privacy guarantees.

5.3 ABLATION STUDIES

As described in Section 3, we construct the loss to incorpo-

rate two types of auxiliary information: inter-feature correla- [M de N
tions and column-wise distributions. To evaluate their effects, KTGeny, | 1 0 0.1
we conduct experiments by introducing these types of informa- KTGengs, | O 1 0.1
tion separately into the generation process. Specifically, KTGeny, KTGeng, | 1 1 0.1

uses no correction network, i.e., no auxiliary information is in-
corporated into the data generation process; KTGen, uses only Taple 3: thyperparameters.
the correlation-based loss Ly,; auxiliary information is incorpo-

rated into the data generation process; KTGeny uses only the column-distribution-based loss Lg;s;
and KTGen, uses both L., and L. Table E] lists the detailed parameter settings, and Table E]
reports the experimental results on two datasets. It can be observed that in the vast majority of ex-
periments, incorporating auxiliary knowledge improves the quality of the generated data. Notably,
there are many cases where introducing a single type of knowledge yields better results than using
both types simultaneously.

Under review as a conference paper at ICLR 2026

SMOTE TVAE CTGAN TABSYN TabEBM KTGen
|] u l u
|| | | || |
e m [- u
5 u
o | | | |
S ™] = Em = B
i+ | |] |
| | [|
H HE B || |
B I]] m m I I m | I -
o hb | o -
o | I | | || — - | I |
= g o CE - i mm |
E mmmo B NN = . |
= e
o Emm = EEH B » omm Em

[
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: Visualizes the absolute differences between the correlation matrix computed from the
synthetic samples and that obtained from the training set. Lighter colors indicate smaller differences,
reflecting better learning of the dependencies between features.

SMOTE TVAE CTGAN

L

TABSYN

diabetes

magic

Y

S o 3 . 3 IR
[e Training Set Training Samples 4 Synthetic Samples]

Figure 5: Demonstrates the PCA-based dimensionality reduction trained on the training set (blue),
applied to both the actual training samples (orange) and the generated data (green).

5.4 VISUALIZATION

Figure E| presents the absolute differences between abalone adult
the correlation matrices computed from the synthetic
samples and those from the candidate set. It canbe o
observed that KTGen achieves the most accurate es- 21> %
timation of the underlying correlations. Figure[§]il- * <
lustrates the two-dimensional scatter plots obtained LOjemro |
via PCA for the training set, the training samples 20 50 100 20 50 100
(high-bias 20 samples), and the synthetic samples. samples samples

It can be observed that, for typical generation meth-
ods, the scatter distribution of the training samples
and synthetic samples are largely similar. In con-
trast, when using KTGen, the synthetic samples dis-
tribution shifts from the biased training samples toward the overall training set distribution. Fig-
ure [6] shows the performance improvement of generative models as the number of training samples
increases. KTGen outperforms other methods in low-sample scenarios, though this advantage di-
minishes as the sample size increases.

[—=—smote TVAE —&— CTGAN —4— TABSYN —v— TabEBM —+— KiGen|

Figure 6: The downstream model perfor-
mance trained on generated data.

6 CONCLUSION

In this work, we presents KTGen, a knowledge-enhanced tabular data generation method. Unlike
conventional data-driven methods that rely solely on limited training samples, KTGen leverages
auxiliary information to guide the generation process. We conducted extensive experiments on both
biased and unbiased small-sample training sets, and our analysis shows that incorporating knowl-
edge can significantly alleviate issues arising from insufficient training data or distribution shifts
between training and real data. In the current work, the introduced knowledge is derived from large-
scale statistical information, and a corresponding loss is designed to incorporate it into the training
of the generative model. However, this represents only one form of knowledge. In future work, we
aim to explore other types of knowledge that can guide the generation process and develop more
elegant methods to leverage such information effectively.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study is purely methodological and does not
involve human subjects, personally identifiable information, or sensitive data. All datasets used are
publicly available benchmark datasets, and their usage strictly follows the respective licenses. The
proposed method does not raise foreseeable risks of harm, privacy infringement, or discrimination,
and all experiments are conducted in compliance with accepted standards of research integrity. We
believe our contributions align with the principles of responsible stewardship, fairness, and trans-
parency, and we commit to releasing the source code and results upon acceptance to further support
reproducibility and openness.

REPRODUCIBILITY STATEMENT

Our work is fully reproducible. In Appendix[C] we provide detailed descriptions of each dataset and
their sources. Appendix [E]presents the baselines used for comparison along with their implementa-
tions. The architecture of our model is also described in detail in Appendix

REFERENCES

Vincent Alcazer, Grégoire Le Meur, Marie Roccon, Sabrina Barriere, Baptiste Le Calvez, Bouchra
Badaoui, Agathe Spaeth, Olivier Kosmider, Nicolas Freynet, Marion Eveillard, et al. Evaluation
of a machine-learning model based on laboratory parameters for the prediction of acute leukaemia
subtypes: a multicentre model development and validation study in france. The Lancet Digital
Health, 6(5):323—-e333, 2024.

Ankur Ankan and Johannes Textor. pgmpy: A python toolkit for bayesian networks. Journal of
Machine Learning Research, 25(265):1-8, 2024. URL http://jmlr.org/papers/v25/
23-0487.htmll

Arthur Asuncion, David Newman, et al. Uci machine learning repository, 2007.

Yevgeni Berkovitch, Oren Glickman, Amit Somech, and Tomer Wolfson. Generating tables from
the parametric knowledge of language models. In Proceedings of the 4th International Workshop
on Knowledge-Augmented Methods for Natural Language Processing, pp. 50—65, 2025.

Rok Blagus and Lara Lusa. Joint use of over-and under-sampling techniques and cross-validation
for the development and assessment of prediction models. BMC bioinformatics, 16(1):363, 2015.

Vadim Borisov, Kathrin Sessler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Lan-
guage models are realistic tabular data generators. In The Eleventh International Conference on
Learning Representations, 2023.

Leo Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

Chengtai Cao, Fan Zhou, Yurou Dai, Jianping Wang, and Kunpeng Zhang. A survey of mix-based
data augmentation: Taxonomy, methods, applications, and explainability. ACM Computing Sur-
veys, 57(2):1-38, 2024.

Victor Chang, Sharuga Sivakulasingam, Hai Wang, Siu Tung Wong, Meghana Ashok Ganatra, and
Jiabin Luo. Credit risk prediction using machine learning and deep learning: A study on credit
card customers. Risks, 12(11):174, 2024.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321-357, 2002.

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794,
2016.

Jillian M Clements, Di Xu, Nooshin Yousefi, and Dmitry Efimov. Sequential deep learning for credit
risk monitoring with tabular financial data. arXiv preprint arXiv:2012.15330, 2020.

10

http://jmlr.org/papers/v25/23-0487.html
http://jmlr.org/papers/v25/23-0487.html

Under review as a conference paper at ICLR 2026

David R Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 20(2):215-232, 1958.

Imre Csiszér. I-divergence geometry of probability distributions and minimization problems. The
annals of probability, pp. 146—158, 1975.

Suhan Cui and Prasenjit Mitra. Automated multi-task learning for joint disease prediction on elec-
tronic health records. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tom-
czak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp.
129187-129208. Curran Associates, Inc., 2024.

Jeffrey Dastin. Amazon scraps secret ai recruiting tool that showed bias against women. In Ethics
of data and analytics, pp. 296-299. Auerbach Publications, 2022.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1-22,1977.

Lun Du, Fei Gao, Xu Chen, Ran Jia, Junshan Wang, Jiang Zhang, Shi Han, and Dongmei Zhang.
Tabularnet: A neural network architecture for understanding semantic structures of tabular data.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pp- 322-331, 2021.

Yuntao Du and Ninghui Li. Towards principled assessment of tabular data synthesis algorithms.
CoRR, 2024.

Conor Durkan, Artur Bekasov, lain Murray, and George Papamakarios. Neural spline flows. Ad-
vances in Neural Information Processing Systems, 32, 2019.

Mengchun Gong, Shuang Wang, Lezi Wang, Chao Liu, Jianyang Wang, Qiang Guo, Hao Zheng,
Kang Xie, Chenghong Wang, and Zhouguang Hui. Evaluation of privacy risks of patients’ data
in china: case study. JMIR Medical Informatics, 8(2):e13046, 2020.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in Neural Informa-
tion Processing Systems, 27, 2014.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in neural information processing systems, 34:18932—-18943,
2021.

Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like
one. In International Conference on Learning Representations, 2020.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling ap-
proach for imbalanced learning. In 2008 IEEFE international joint conference on neural networks
(IEEE world congress on computational intelligence), pp. 1322—1328. Ieee, 2008.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017.

Noah Hollmann, Samuel Miiller, Lennart Purucker, Arjun Krishnakumar, Max Korfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319-326, 2025.

Feiran Huang, Zefan Wang, Xiao Huang, Yufeng Qian, Zhetao Li, and Hao Chen. Aligning distil-
lation for cold-start item recommendation. In Proceedings of the 46th international ACM SIGIR
conference on research and development in information retrieval, pp. 1147-1157, 2023.

Viet-Phi Huynh, Yoan Chabot, and Raphaél Troncy. Towards generative semantic table interpreta-
tion. In VLDB Workshops, 2023.

11

Under review as a conference paper at ICLR 2026

Jun-Peng Jiang, Han-Jia Ye, Leye Wang, Yang Yang, Yuan Jiang, and De-Chuan Zhan. Tabular
insights, visual impacts: transferring expertise from tables to images. In Forty-first International
Conference on Machine Learning, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565-26577,
2022.

Marvin Karson. Handbook of methods of applied statistics. volume i: Techniques of computation
descriptive methods, and statistical inference. volume ii: Planning of surveys and experiments. im
chakravarti, rg laha, and j. roy, new york, john wiley; 1967, 9.00., 1968.

Jinhee Kim, Taesung Kim, and Jaegul Choo. Epic: Effective prompting for imbalanced-class data
synthesis in tabular data classification via large language models. Advances in Neural Information
Processing Systems, 37:31504-31542, 2024.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114,2013.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In International Conference on Machine Learning, pp. 17564—
17579. PMLR, 2023.

Guillaume LemaAZtre, Fernando Nogueira, and Christos K Aridas. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning
Research, 18(17):1-5, 2017.

Xiaofeng Lin, Chenheng Xu, Matthew Yang, and Guang Cheng. Ctsyn: A foundational model for
cross tabular data generation. In International Conference on Learning Representations, 2025.

Charles X Ling and Chenghui Li. Data mining for direct marketing: Problems and solutions. 1998.

Junwei Ma, Apoorv Dankar, George Stein, Guangwei Yu, and Anthony Caterini. Tabpfgen—tabular
data generation with tabpfn. In NeurIPS 2023 Second Table Representation Learning Workshop,
2023.

Andrei Margeloiu, Xiangjian Jiang, Nikola Simidjievski, and Mateja Jamnik. Tabebm: A tabular
data augmentation method with distinct class-specific energy-based models. Advances in Neural
Information Processing Systems, 37:72094-72144, 2024.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. ACM computing surveys (CSUR), 54(6):1-35, 2021.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale
Sci., pp. 666-704, 1781.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-
chine learning in python. the Journal of Machine Learning Research, 12:2825-2830, 2011.

Zhaozhi Qian, Rob Davis, and Mihaela Van Der Schaar. Synthcity: a benchmark framework for
diverse use cases of tabular synthetic data. Advances in Neural Information Processing Systems, 36:
3173-3188, 2023.

Ivan Rubachev, Nikolay Kartashev, Yury Gorishniy, and Artem Babenko. Tabred: Analyzing pitfalls
and filling the gaps in tabular deep learning benchmarks. In The Thirteenth International Conference
on Learning Representations, 2025.

Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. Tabdiff: a
multi-modal diffusion model for tabular data generation. arXiv e-prints, pp. arXiv—2410, 2024.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1-48, 2019.

12

Under review as a conference paper at ICLR 2026

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256-2265. pmlr, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations, 2021.

Henk CA Van Tilborg and Sushil Jajodia. Encyclopedia of cryptography and security, volume 1.
Springer Science & Business Media, 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

David S Watson, Kristin Blesch, Jan Kapar, and Marvin N Wright. Adversarial random forests for
density estimation and generative modeling. In International Conference on Artificial Intelligence
and Statistics, pp. 5357-5375. PMLR, 2023.

Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. Fedgnn: Federated graph
neural network for privacy-preserving recommendation. arXiv preprint arXiv:2102.04925, 2021.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional gan. Advances in Neural Information Processing Systems, 32, 2019.

Qian Yang, Jianyi Zhang, Weituo Hao, Gregory P Spell, and Lawrence Carin. Flop: Federated learning
on medical datasets using partial networks. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pp. 3845-3853, 2021.

Jinsung Yoon, Lydia N Drumright, and Mihaela Van Der Schaar. Anonymization through data syn-
thesis using generative adversarial networks (ads-gan). IEEE Journal of Biomedical and Health
Informatics, 24(8):2378-2388, 2020.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos
Faloutso, Huzefa Rangwala, and George Karypis. Mixed-type tabular data synthesis with score-
based diffusion in latent space. In 12th International Conference on Learning Representations,
ICLR 2024, 2024.

Honglei Zhang, Fangyuan Luo, Jun Wu, Xiangnan He, and Yidong Li. Lightfr: Lightweight federated
recommendation with privacy-preserving matrix factorization. ACM Transactions on Information
Systems, 41(4):1-28, 2023.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan: Effective table data synthe-
sizing. In Asian conference on machine learning, pp. 97-112. PMLR, 2021.

Yuli Zheng, Zhenyu Wu, Ye Yuan, Tianlong Chen, and Zhangyang Wang. Pcal: A privacy-preserving
intelligent credit risk modeling framework based on adversarial learning. CoRR, 2020.

13

Under review as a conference paper at ICLR 2026

A Uss orF LLMs

During the experimental process, we utilized large language models (LLMs) to assist with tasks
such as code implementation, debugging, and visualization. In the course of writing the paper,
LLMs were mainly employed for literature translation, summarization, and correcting formatting
issues.

B KTGEN

B.1 VAE FOR TABULAR DATA

To facilitate learning in the latent space with diffusion models, we first employ a Variational Au-
toencoder (VAE) to map raw tabular data into a latent representation.

Feature Embedding. Each column of a tabular dataset corresponds to a distinct feature, which
can be either categorical or numerical. Since these features differ in semantics and distributions, it
is necessary to process them separately. Inspired by the embedding strategy in Transformer-based
tabular prediction models (Vaswani et al.,|[2017; |Gorishniy et al[2021), we map each feature value
of a sample « into a d-dimensional embedding.

For a categorical feature, we learn a 8-dimensional embedding vector for each possible category; For
a numerical feature, we learn a linear mapping that projects each feature value into a 8-dimensional
vector:

o A 4 b if feature j is categorical feature, ©)
T 2"™a"™ + b, if feature j is numerical feature,
where A“a‘ERkXd a;"™", b;‘“, b;‘”meR“d are learnable parameters. xOhe]Rle is the one-hot em-

bedding of categorical feature acc‘“ k represent the total number of poss1ble categories it can take.
For all columns, feature embeddmg sequence is stocked as:

E = stock[ey, es, ..., e,] € R™*4 (10)
Encoder and Decoder. In the VAE structure, the encoder takes the feature embedding sequence
E as input and employs two Transformer modules to output the mean z€R"™*? and log-variance
log 52€R™*? of the latent distribution. Using the reparameterization trick to obtain latent embed-
dings Z€R™*%. It can be decoded to reconstructed feature embedding sequence E€R™*<. Both

the encoder and decoder consist of two-layer Transformer structures, each with a single attention
head.

Data Reconstruction. To perform data generation, each embedding in the feature embedding se-
quence E must be reconstructed back into its corresponding original feature value.

For a categorical feature, the reconstructed feature embedding é; is passed through a linear transfor-
mation to obtain logits over categories; For a numerical feature, a linear mapping directly produces
a reconstructed nEumerical value:
Acat R . ~
‘%;at = arg max ({i;rob> = arg max (catA j) "%;um e;lumagum + bx;_um’ (1 l)
~ cat ~cat " ~

where A cRIxF b, cR ¥k a;”meRdX L and b;“meRl *1 are learnable parameters of reconstruc-
tion part. Thus, the reconstructed sample is &;=(Z1, &a, ..., Zn).

VAE Training. We adopt the 5-VAE (Higgins et al.,[2017) training objective, which consists of a
reconstruction loss and a KL-divergence term:

Lo — CE (Xca‘, X”mb) + MSE (X““m ““m) Z Dic (N
p,q

The first and second terms correspond to the reconstruction losses for categorical and numerical
features, respectively, while the third term serves as a regularization on the mean and variance of
the latent space. The coefficient 3 is introduced to balance these losses. Since an additional diffu-
sion process is employed to learn the latent space distribution, we do not strictly enforce the latent
variables to follow a Gaussian prior. During training, /3 is gradually decreased to emphasize more
accurate data reconstruction. This strategy is demonstrated to be effective (Zhang et al., 2024)).

JIN(0, 1)) (12)

/”LP‘I’ Pq

14

Under review as a conference paper at ICLR 2026

B.2 DIFFUSION IN LATENT SPACE

On top of the latent space, we employ a score-based diffusion model (Song et al.| 2021} Karras et al.,
2022) to enable sampling from the noise space into the latent space. After the VAE model is trained,
we extract the latent embeddings Z from the encoder. First, the latent embeddings Z is flattened
to z. To learn the underlying distribution of latent embeddings p(z), we consider the following
forward diffusion and reverse denoising processes.

The forward process gradually perturbs the latent variable by injecting Gaussian noise:
zi =29+ o(t)e, €€ N(0,1) (13)

where zg = z, o(t) represents the noise level, and z; is the noisy embedding at time step ¢. Follow
previous work (Zhang et al., 2024), we set the noise level o (t) = t.

The diffusion model is trained to learn a denoising function f, that estimates the added noise € from
the noise embedding z; and the corresponding time step ¢:

Lt = By~ p(z)]Eth(t)EeNN(O,I) |.fo (z¢,t) — €| (14)
Based on the estimated noise, the score function of z; can be approximated as
f9 (ztv t)
Vz, 1 =—— 15
Zt ng(zt) U(t)) (15)

The reverse denoising process then enables sampling from the latent space distribution:

dzy = —20(t) o(t) Vz, logp(z:) dt + /26 (t) o(t) dwy, (16)

where w; denotes the standard Wiener process, ¢(t) denotes the derivative of o (t) with respect to
time step t. After the diffusion model is trained, synthetic latent embeddings can be generated by
iteratively applying the reverse process. The denoising network consists of a 3-layer MLP with
residual connections.

B.3 CORRECTION NETWORK

The detailed implementation of the Correction Network is provided in Sectiond.2] Here, we focus
on its architecture, which consists of a 2-layer MLP with residual connections.

C DATASETS

Table 4: Statistics of Datasets

Rows Cols Target Cat Cols Num Cols
abalone 4177 9 Regression 1 8
adult 48842 15 Classification 9 6
california 20640 9 Regression 0 9
credit 1000 21 Classification 14 7
default 30000 24 Classification 2 22
diabetes 768 9 Classification 1 8
magic 19020 11 Classification 1 10
shopper 12330 18 Classification 4 14

Below is a detailed introduction to each dataset:

» abalone: Predicting the age of abalone from physical measurements. The age of abalone is
determined by cutting the shell through the cone, staining it, and counting the number of rings
through a microscope — a boring and time-consuming task. https://archive.ics.uci.
edu/dataset/1/abalone

15

https://archive.ics.uci.edu/dataset/1/abalone
https://archive.ics.uci.edu/dataset/1/abalone

Under review as a conference paper at ICLR 2026

e adult: Predict whether annual income of an individual exceeds 50K/yr based on census
data. Also known as ”Census Income” dataset. https://archive.ics.uci.edu/
dataset/2/adult

* california: This dataset was derived from the 1990 U.S. census, using one row per cen-
sus block group. A block group is the smallest geographical unit for which the U.S.
Census Bureau publishes sample data (a block group typically has a population of 600
to 3,000 people). https://inria.github.io/scikit-learn-mooc/python_
scripts/datasets_california_housing.html

 credit: This dataset classifies people described by a set of attributes as good or bad credit
risks. Comes in two formats (one all numeric). https://archive.ics.uci.edu/
dataset/144/statlog+german+credit+data

e default: This research aimed at the case of customers’ default payments in Taiwan. From the
perspective of risk management, the result of predictive accuracy of the estimated probabil-
ity of default will be more valuable than the binary result of classification - credible or not
credible clients. https://archive.ics.uci.edu/dataset/350/default+of+
credit+card+clients

« diabetes: Diabetes patient records were obtained from two sources: an automatic electronic
recording device and paper records. The automatic device had an internal clock to timestamp
events, whereas the paper records only provided logical time” slots (breakfast, lunch, dinner,
bedtime). https://archive.ics.uci.edu/dataset/34/diabetes

* magic: The data are MC generated (see below) to simulate registration of high energy
gamma particles in a ground-based atmospheric Cherenkov gamma telescope using the imag-
ing technique. https://archive.ics.uci.edu/dataset/159/magic+gamma+
telescope

* shopper: Of the 12,330 sessions in the dataset, 84.5% (10,422) were negative class sam-
ples that did not end with shopping, and the rest (1908) were positive class samples
ending with shopping. https://archive.ics.uci.edu/dataset/468/online+
shoppers+purchasing+intention+dataset

D BIAS DATA SAMPLING

For a table matrix X €R™*™. We sequentially traverse each column of the table. For the j-th
column ¢;, if the corresponding feature is categorical and has & possible values (encoded as ordinal
values 0 to k—1), with proportions pg, p1, - . ., px—1. We can compute a weight for each sample as:

wj:’Y(le,jaszjv---vam,j)7 (17

where p X, denotes the proportion of the value at row ¢, column j within the corresponding discrete

column. And ~y is a parameter controlling the degree of bias. A larger v amplifies the difference
between classes, giving higher weights to majority class and making them more likely to be selected.
Conversely, as ~y approaches 0, the weights of all samples converge, resulting in nearly random
sampling.

If the feature is numerical, let Cpax, Cmins Cmean> a0d Cgq denote the maximum, minimum, mean, and
standard deviation of the column c;, respectively. We consider three different weighting schemes:

~\ 2
Cj — Cmi Cmax — Cj (c; —¢)
_] min _ max] _]
wy =y STy G TGy [GO (18)
Cmax — Cmin Cmax — Cmin 2 (Cstd)

The first scheme assigns higher weights to larger values and the second scheme assigns higher
weights to smaller values. The parameter v controls the magnitude of the weight differences. In
the third scheme, ¢ is sampled from a Gaussian distribution with mean cy,e,, and variance cf[d. This
scheme favors values around the ¢, assigning them higher weights. The parameter ~ controls the
differences in weights across positions; when + is large, the weight difference between values near

16

https://archive.ics.uci.edu/dataset/2/adult
https://archive.ics.uci.edu/dataset/2/adult
https://inria.github.io/scikit-learn-mooc/python_scripts/datasets_california_housing.html
https://inria.github.io/scikit-learn-mooc/python_scripts/datasets_california_housing.html
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/34/diabetes
https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
https://archive.ics.uci.edu/dataset/159/magic+gamma+telescope
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset

Under review as a conference paper at ICLR 2026

¢ and those at the extremes becomes significant. When ~ approaches 0, all positions in w; converge
to similar values, resulting in almost no differences in weights.

Weights can be computed in this manner for all columns, and the weights across all columns are
then aggregated:

w =[] w;. (19)
j=1

We split the data into candidate and test sets with a ratio of 8:2. The candidate set is used to extract
auxiliary information. Subsequently, training samples are drawn from this candidate set based on
the aggregated weights w. We perform multiple biased sampling iterations on each training set.
For each iteration, we first sample a bias magnitude ~ , and then generate a fixed-size sample set
following the procedure. For each dataset, this sampling process is repeated 100 times to obtain
100 sample sets. Due to the stochasticity of the sampling process, we additionally compute the
distributional similarity of each sample set relative to the training set. Specifically, for categorical
features we calculate the KL divergence, and for numerical features we compute the Wasserstein
distance. Each resulting value d; is strictly positive. We transform them to distributional similarity:

1 1
== 20

From the 100 sample sets, we select 4 with the smallest similarity as the high-bias sample sets, 4
with median similarity as the medium-bias sample sets, and another 4 randomly sampled sets as the
unbiased sample sets.

E BASELINES

Below is a detailed introduction and implementation of the baseline methods used in this paper:

¢ SMOTE (Chawla et al.| 2002

Introduction: Synthetic Minority Over-sampling Technique generates new samples for mi-
nority classes via interpolation. It helps balance imbalanced datasets and improves classifier
performance on underrepresented classes.

Implementation: Use the open-source implementation of SMOTE from the python li-

brary Imbalanced-learn (LemaAZtre et al., 2017). https://imbalanced-learn.org/
stable/.

Hyperparameter Space:
k: integer, choices {1, 3,5}
* Mixup (Zhang et al., 2018)

Introduction: Creates virtual training samples by linearly interpolating random pairs of
examples and their labels. This regularizes models and improves generalization by encouraging
smoother decision boundaries.

Implementation: We manually implement the Mixup technique, generating virtual samples
by linearly interpolating randomly selected pairs of training examples and their labels.
e TVAE (Xu et al.,2019):

Introduction: A Variational Autoencoder designed for tabular data that captures feature
dependencies in a latent space. It generates realistic synthetic samples while preserving corre-
lations among columns.

Implementation: Use the open-source implementation in the python library Synthc-
ity (Qian et al) 2023). https://github.com/vanderschaarlab/synthcity/
tree/main.

Hyperparameter Space:
n_iter: integer, choices {100, 200, 300, 400, 500}
Ir: float, choices {0.0001, 0.0002,0.001}
decoder_n_layers_hidden: integer, range [1, 5]

17

https://imbalanced-learn.org/stable/
https://imbalanced-learn.org/stable/
https://github.com/vanderschaarlab/synthcity/tree/main
https://github.com/vanderschaarlab/synthcity/tree/main

Under review as a conference paper at ICLR 2026

weight_decay: float, choices {0.0001, 0.001}

batch_size: integer, choices {64, 128,256,512}
n_units_embedding: integer, range [50, 500] step 50
decoder_n_units_hidden: integer, range [50, 500] step 50
decoder_nonlin: categorical, choices {elu, leaky_relu, relu, tanh}
decoder_dropout: float, range [0.0, 0.2]
encoder_n_layers_hidden: integer, range [1, 5]
encoder_n_units_hidden: integer, range [50, 500] step 50
encoder_nonlin: categorical, choices {elu, leaky relu, relu, tanh}
encoder_dropout: float, range [0.0, 0.2]

* CTGAN (Xu et al.,[2019):

Introduction: A GAN-based model for tabular data that uses conditional sampling to handle
discrete columns. It effectively models mixed-type tables and generates high-quality synthetic
data.

Implementation: Use the open-source implementation in the python library Synthcity.
Hyperparameter Space:
generator_n_layers_hidden: integer, range [1, 4]
generator_n_units_hidden: integer, range [50, 150], step 50
generator_nonlin: categorical, choices {elu, leaky_relu, relu, tanh}
n_iter: integer, range [100, 1000], step 100
generator_dropout: float, range [0.0, 0.2]
discriminator_n_layers_hidden: integer, range [1, 4]
discriminator_n_units_hidden: integer, range [50, 150], step 50
discriminator_nonlin: categorical, choices {elu, leaky relu, relu, tanh}
discriminator_n_iter: integer, range [1, 5]
discriminator_dropout: float, range [0.0, 0.2]
Ir: float, choices {0.0001, 0.0002, 0.001}
weight_decay: float, choices {0.0001, 0.001}
batch size: integer, choices {100, 200, 500}
encoder_max_clusters: integer, range [2, 20]

« TabDDPM (Kotelnikov et al., [2023)):

Introduction: A diffusion-based generative model that denoises samples in data or latent
space. It gradually transforms noise into realistic tabular samples using a learned denoising
process.

Implementation: Use the open-source implementation in the python library Synthcity.
Hyperparameter Space:

Ir: log-uniform, range [10~°,0.1]

batch size: integer log-uniform, range [256, 4096]

num_timesteps: integer, range [10, 1000]

n_iter: integer log-uniform, range [1000, 10000]

* TABSYN (Zhang et al.|[2024):

Introduction: Diffusion-based method combining continuous and discrete features for real-
istic tabular synthesis. It can capture complex dependencies and generate samples consistent
with real data distributions.

Implementation: Use the open-source implementation in GitHub. https://github.
com/amazon—science/tabsyn.

Hyperparameter: Use the default parameters in the paper

¢ ARF (Watson et al.,[2023)):
Implementation: Use the open-source implementation in the python library Synthcity.

18

https://github.com/amazon-science/tabsyn
https://github.com/amazon-science/tabsyn

Under review as a conference paper at ICLR 2026

Introduction: Adversarial Random Forests is a non-parametric method for density estima-
tion and synthetic data generation. It can model intricate feature interactions without assuming
a parametric form.

Hyperparameter Space:
num_trees: integer, range [10, 100], step 10
delta: float, range [0.0,0.5]
max_iters: integer, range [1, 5]
early stop: categorical, choices {False, True}
min_node size: integer, range [2, 20], step 2
* BN (Ankan & Textor} 2024):

Introduction: Bayesian Network-based generator models variable dependencies via a di-
rected acyclic graph. New samples are generated by sampling from the joint probability distri-
bution encoded by the network.

Implementation: Use the open-source implementation in the python library Synthcity.
Hyperparameter Space:
struct_learning_search_method: categorical, choices {hillclimb, pc, tree_search}
struct_learning_score: categorical, choices {bdeu, bds, bic, k2}

¢ TabPFGen (Ma et al.,[2023):

Introduction: Leverages the tabular foundation model TabPFN combined with energy-based
modeling. It generates synthetic data by performing probabilistic inference informed by both
model priors and data statistics.

Implementation: Use the open-source implementation in the python library TabPFGen.
https://github.com/sebhaan/TabPFGen.
e TabEBM (Margeloiu et al., 2024):

Implementation: Use the open-source implementation in the python library TabEBM.
https://github.com/andreimargeloiu/TabEBM.

Introduction: Combines TabPFN with energy-based models to synthesize high-quality tabu-
lar data. This approach balances flexibility and accuracy by leveraging energy-based likelihood
estimation.

¢ TabPFN (Hollmann et al., [2025):

Introduction: A tabular foundation model that performs density estimation and probabilistic
prediction using in-context learning. Perform density estimation on tabular data using TabPFN,
and generate synthetic data based on the estimated distribution.

Implementation: Use the open-source implementation in the python library tabpfn-
extensions. https://github.com/priorlabs/tabpfn-extensions.

F DOWNSTREAM MODEL

Below is a detailed introduction and implementation of the downstream model used in this paper:

¢ XGBoost (Chen & Guestrinl|2016)

Introduction: A scalable and efficient gradient boosting framework for supervised learning.
It constructs an ensemble of decision trees to optimize prediction performance while controlling
overfitting.

Implementation: Use the open-source implementation in the python library xgboost.
https://xgboost.ai/

Hyperparameter Space:
alpha: float, [1078,100] (log scale)
colsample_bylevel: float, [0.5, 1.0]
colsample_bytree: float, [0.5, 1.0]
gamma: float, [10~%,100] (log scale)
lambda: float, [1078,100] (log scale)

19

https://github.com/sebhaan/TabPFGen
https://github.com/andreimargeloiu/TabEBM
https://github.com/priorlabs/tabpfn-extensions
https://xgboost.ai/

Under review as a conference paper at ICLR 2026

learning rate: float, [10~*,0.3] (log scale)
max_depth: integer, [3, 10]
min_child_weight: float, [10~2,100] (log scale)
subsample: float, [0.5,1.0]

¢ Random Forest (Breiman, |[2001)

Introduction: An ensemble method that builds multiple decision trees and aggregates their
predictions. It is robust to overfitting and can capture complex feature interactions.

Implementation: Use the open-source implementation in the python library scikit-learn (Pe-
dregosa et al.,[2011). https://scikit-learn.org/stable/index.html

Hyperparameter Space:
min_samples_split: integer, [2, 10] min_samples_leaf: integer, [1, 10]
¢ TabPFN (Hollmann et al., 2025)

Introduction: A tabular foundation model that performs in-context learning for classifica-
tion and regression tasks. It can estimate predictive distributions without explicit training on
the downstream dataset.

Implementation: Use the open-source implementation in the python library tabpfn.
https://github.com/PriorLabs/TabPFN.
* Linear Regression or Logistic Regression (Cox| 1958)

Introduction: Classical parametric models for regression and classification. Linear regres-
sion models continuous outcomes, while logistic regression models binary outcomes using a
sigmoid function.

Implementation: Use the open-source implementation in the python library scikit-learn.

20

https://scikit-learn.org/stable/index.html
https://github.com/PriorLabs/TabPFN

Under review as a conference paper at ICLR 2026

G EXPERIMENTAL RESULTS

Downstream Model Performance.

Table 5: abalone.

high-bias ‘ medium-bias ‘ unbias
XGB RF PFEN LR ‘ XGB RF PFEN LR ‘ XGB RF PEN LR
Basic 1.2489 1.1638 1.2036 2.1150 | 1.0963 1.1286 1.1202 1.4425 | 0.9843 0.9407 0.7921 1.0519
SMOTE 1.2921 1.1922 1.2273 2.1691 | 1.0782 1.1058 1.0918 1.8927 | 0.8827 0.9365 0.8017 1.3134
Mixup 1.2519 1.1979 12696 2.0779 | 0.9975 1.0469 1.0884 1.2701 | 0.9066 0.9564 0.8483 1.0100
TVAE 1.2665 1.2409 1.3005 1.3315 | 1.0566 1.0462 1.1494 1.3861 | 0.9697 0.9049 1.0250 0.9096
CTGAN 1.2949 1.2690 12859 1.1259 | 1.1936 1.1675 1.2387 1.3496 | 0.9458 0.9073 1.0748 0.9044
TabDDPM | 1.2940 1.2524 1.2379 1.0924 | 1.1222 1.1216 1.2772 1.3002 | 1.3276 1.3388 1.2637 1.5956
20 samples TABSYN 1.2424 1.1815 12599 0.9656 | 1.0584 1.0778 1.0759 1.4604 | 0.9338 0.8684 0.8939 0.8928
ARF 1.2570 1.2033 1.2832 1.1006 | 1.1628 1.1723 1.2685 1.3539 | 0.9501 0.9091 0.9515 0.9344
BN 1.2364 1.1952 1.3129 1.0984 | 1.0598 1.0911 1.1355 1.3609 | 0.9374 1.0219 0.8974 0.9366
TabPFGen | 1.2789 1.1656 1.1984 1.5064 | 1.0228 1.0977 1.2535 1.1108 | 0.9036 0.8689 0.8172 0.8455
TabEBM 1.2513 1.1462 1.2086 1.4229 | 1.0619 1.0079 1.0998 1.0992 | 0.9107 0.9163 0.8780 0.8494
TabPFN 1.2158 1.1523 1.2609 1.7931 | 1.1444 1.1980 1.1053 1.4641 | 0.8913 0.9120 0.9470 0.8770
KTGen, 1.2624 1.1845 1.2373 3.2123 | 1.1000 1.1763 1.2189 1.2826 | 0.9096 0.9162 0.9634 0.9347
KTGen, 1.0677 09929 1.0624 0.9965 | 0.9667 0.9669 1.0166 1.4591 | 0.8622 0.8405 0.8390 0.7920
Basic 1.1859 1.1748 1.2066 1.4604 | 1.5202 1.4204 1.1014 1.5834 | 0.8522 0.8372 0.7452 0.7674
SMOTE 1.3040 1.3785 1.2672 1.4947 | 1.5102 1.6756 1.1337 2.2439 | 0.8773 0.9085 0.7835 1.0207
Mixup 1.2012 1.2493 1.3472 1.5541 | 1.4755 1.6976 1.6866 1.2783 | 0.7913 0.7909 0.7590 0.7928
TVAE 1.1832 1.2202 1.2869 1.4578 | 1.2744 1.2062 1.1350 1.1217 | 0.8620 0.8252 0.9582 0.7912
CTGAN 1.1639 1.2161 1.3143 1.9017 | 1.2029 1.2818 1.1337 1.1156 | 1.2118 0.8958 1.0411 0.9435
TabDDPM | 1.4331 1.6842 1.3413 1.8359 | 0.9819 0.9877 1.7576 1.0214 | 1.3276 1.3388 1.2637 1.5956
50 samples TABSYN 1.1722 1.1651 1.2034 1.2256 | 1.4638 1.5101 1.0516 1.0705 | 0.8760 0.8351 0.8620 0.8296
i ; ARF 1.2090 1.2146 12772 1.0669 | 1.2561 1.1470 1.1250 1.0558 | 0.8570 0.8137 0.8509 0.8143
BN 1.1919 1.2478 1.2788 1.2131 | 1.5771 1.4152 1.4327 1.0202 | 0.8166 0.8316 0.8358 0.7722
TabPFGen | 1.1871 1.1596 1.2251 1.1814 | 1.4417 1.3896 1.2847 0.8150 | 0.8308 0.7899 0.7556 0.7640
TabEBM 1.1604 1.1473 1.1475 1.2566 | 1.1341 1.1722 1.0451 0.8771 | 0.7946 0.7485 0.7261 0.7510
TabPFN 1.1857 1.1765 12607 2.0221 | 1.3200 1.2457 1.8819 2.0822 | 0.8132 0.7997 0.8117 0.7747
KTGen, 1.1083 1.1597 1.1391 1.8301 | 1.4760 1.3697 2.0305 1.4015 | 0.7989 0.7798 0.7900 0.7558
KTGen, 0.9709 0.9658 1.2226 0.9300 | 0.9368 0.8955 1.1040 0.9162 | 0.8237 0.8002 0.7746 0.7557
Basic 1.1871 1.1912 1.2725 1.0976 | 1.1527 1.1065 1.0645 1.2656 | 0.8191 0.7856 0.7320 0.7269
SMOTE 1.1864 1.1555 1.2536 1.3062 | 1.2227 1.4157 1.1430 2.1584 | 0.8252 0.8794 0.7899 0.8458
Mixup 1.2024 1.2430 1.3230 1.0061 | 1.1461 1.2743 1.1579 1.1644 | 0.7910 0.8173 0.7305 0.7288
TVAE 1.2775 1.1821 1.2164 0.8646 | 1.0904 1.1840 1.1533 1.3047 | 0.8745 0.8472 0.9048 0.8638
CTGAN 1.1899 1.1524 1.2807 1.0153 | 1.1456 1.1781 1.2936 1.3079 | 0.8551 0.8156 0.8488 0.8112
TabDDPM | 1.2882 1.2552 1.2657 1.1363 | 1.3276 1.3388 1.2637 1.5956 | 0.8510 0.8504 0.7345 1.0756
100 samples TABSYN 1.3289 1.2079 1.3127 0.9190 | 1.0818 1.1155 1.1901 1.1236 | 0.8610 0.8281 0.8311 0.8192
ARF 1.1464 1.1965 1.2394 0.9490 | 1.0483 1.0278 1.0948 1.4482 | 0.7466 0.7459 0.7326 0.7472
BN 1.2875 1.2682 1.3378 1.0364 | 1.0770 1.0638 1.3570 1.1492 | 0.8180 0.8134 0.8271 0.7154
TabPFGen | 1.1951 1.1603 1.2675 1.0328 | 1.1090 1.0951 1.3851 0.9828 | 0.8402 0.8081 0.7785 0.7740
TabEBM 1.2047 11692 1.2432 0.9675 | 1.0583 1.0360 1.2197 1.0711 | 0.7274 0.7035 0.6797 0.7122
TabPFN 1.1864 1.1720 1.3191 1.3116 | 0.9921 0.9477 1.3714 1.1983 | 0.7621 0.7431 0.7389 0.7615
KTGen, 1.2296 1.1659 12316 1.1359 | 1.0237 1.0026 1.8164 1.3401 | 0.7750 0.7548 0.7257 0.7746
KTGen, 09276 09299 1.1210 0.8942 | 0.8991 0.8754 1.1964 0.8765 | 0.7986 0.7814 0.7352 0.7263

21

Under review as a conference paper at ICLR 2026

Table 6: adult.

high-bias | medium-bias | unbias
XGB RF PFN LR ‘ XGB RF PFN LR ‘ XGB RF PFN LR
Basic 0.7005 0.7265 0.7440 0.7161 | 0.6318 0.6790 0.7095 0.7217 | 0.7947 0.8193 0.8216 0.8171
SMOTE 0.6558 0.6969 0.6720 0.7073 | 0.6746 0.7293 0.7187 0.7478 | 0.7689 0.7864 0.8201 0.7793
Mixup 0.6425 0.6591 0.6129 0.6594 | 0.6603 0.7071 0.6996 0.7316 | 0.7170 0.7298 0.7437 0.7399
TVAE 0.6157 0.6323 0.6571 0.6063 | 0.5954 0.6266 0.6275 0.5759 | 0.7662 0.7680 0.7657 0.7903
CTGAN 0.6463 0.6334 0.5926 0.6070 | 0.5914 0.6393 0.6587 0.6487 | 0.7412 0.7412 0.6245 0.7341
TabDDPM | 0.6173 0.6322 0.6670 0.6079 | 0.6029 0.6235 0.6207 0.6457 | 0.6169 0.7016 0.7256 0.5680
20 samples TABSYN 0.6076 0.6613 0.6879 0.7004 | 0.5697 0.5994 0.6266 0.6184 | 0.8060 0.7729 0.8190 0.8077
ARF 0.6962 0.7174 0.6914 0.7453 | 0.6649 0.6553 0.6337 0.6676 | 0.7493 0.7418 0.7175 0.7590
BN 0.6491 0.6940 0.6983 0.7022 | 0.7359 0.7184 0.6648 0.7325 | 0.7564 0.7922 0.7941 0.8007
TabPFGen | 0.6535 0.6936 0.6810 0.7069 | 0.6723 0.6601 0.6904 0.7112 | 0.7499 0.8082 0.7995 0.8183
TabEBM 0.7638 0.7895 0.7744 0.7779 | 0.7573 0.8154 0.7930 0.7953 | 0.8388 0.8498 0.8445 0.8535
TabPFN 0.6187 0.6434 0.6930 0.6666 | 0.6244 0.6303 0.6877 0.7017 | 0.7737 0.7381 0.7959 0.7607
KTGen, 0.6641 0.6747 0.7225 0.6872 | 0.6140 0.6183 0.6776 0.6938 | 0.7789 0.7812 0.8135 0.7807
KTGen, 0.6717 0.7025 0.7479 0.7166 | 0.7115 0.7042 0.7146 0.7128 | 0.7937 0.7954 0.8175 0.8208
Basic 0.7968 0.7979 0.8071 0.7826 | 0.7958 0.8149 0.8330 0.8292 | 0.8044 0.8436 0.8541 0.8287
SMOTE 0.7842 0.7751 0.7353 0.7228 | 0.8148 0.8088 0.8133 0.8127 | 0.8352 0.8402 0.8445 0.8333
Mixup 0.7522 0.7609 0.7010 0.7449 | 0.7715 0.7812 0.7446 0.8148 | 0.8018 0.8009 0.7846 0.8239
TVAE 0.7472 0.7551 0.7836 0.7670 | 0.8021 0.8027 0.8065 0.7785 | 0.7590 0.7931 0.8098 0.7950
CTGAN 0.6356 0.6936 0.6494 0.6318 | 0.7930 0.7937 0.8024 0.7883 | 0.7207 0.7546 0.7800 0.7072
TabDDPM | 0.7916 0.7758 0.7387 0.7716 | 0.7795 0.8201 0.8076 0.8019 | 0.8159 0.8371 0.8257 0.8179
50 samples TABSYN | 0.7471 0.7559 0.7798 0.7634 | 0.8057 0.8053 0.8067 0.7963 | 0.8028 0.8101 0.8437 0.8233
ARF 0.7039 0.6993 0.7008 0.7114 | 0.7362 0.7174 0.6910 0.7264 | 0.8124 0.8130 0.8047 0.8215
BN 0.7911 0.7766 0.7315 0.7077 | 0.8104 0.8011 0.7552 0.7953 | 0.8259 0.8261 0.8235 0.8229
TabPFGen | 0.8009 0.7938 0.7905 0.7850 | 0.8059 0.8049 0.8193 0.8309 | 0.8351 0.8280 0.8354 0.8307
TabEBM 0.8009 0.7808 0.7821 0.7895 | 0.7573 0.8154 0.7930 0.7953 | 0.8388 0.8498 0.8445 0.8535
TabPFN 0.7689 0.7589 0.7389 0.7542 | 0.8141 0.8036 0.7899 0.8037 | 0.8182 0.8206 0.8159 0.8284
KTGen, 0.7542 0.7542 0.7487 0.7231 | 0.8002 0.7878 0.7969 0.7914 | 0.8170 0.8142 0.8312 0.8068
KTGen, 0.7318 0.7479 0.7533 0.6825 | 0.7895 0.7885 0.8172 0.8221 | 0.8171 0.8265 0.8307 0.8310
Basic 0.8341 0.8588 0.8664 0.8501 | 0.8312 0.8455 0.8576 0.8504 | 0.8326 0.8435 0.8692 0.8652
SMOTE 0.8201 0.8352 0.8111 0.8220 | 0.8457 0.8328 0.8351 0.8235 | 0.8490 0.8503 0.8296 0.8558
Mixup 0.8075 0.8210 0.7881 0.8357 | 0.8150 0.8027 0.7660 0.8165 | 0.8325 0.8393 0.8092 0.8591
TVAE 0.8073 0.8190 0.8322 0.8159 | 0.8015 0.8055 0.8129 0.7951 | 0.8401 0.8427 0.8302 0.8168
CTGAN 0.7760 0.7957 0.7480 0.7567 | 0.7791 0.7896 0.7808 0.7908 | 0.8160 0.8243 0.8409 0.8117
TabDDPM | 0.8280 0.8460 0.8286 0.7911 | 0.8093 0.8282 0.8125 0.7722 | 0.8204 0.8293 0.8465 0.7618
100 samples TABSYN 0.8235 0.8381 0.8473 0.8181 | 0.8264 0.8255 0.8421 0.8247 | 0.8540 0.8512 0.8691 0.8534
h ° | ARF 0.8097 0.8366 0.7894 0.8150 | 0.8048 0.8181 0.7866 0.8100 | 0.8476 0.8511 0.8257 0.8520
BN 0.8260 0.8319 0.7969 0.7997 | 0.8288 0.8269 0.7983 0.8132 | 0.8429 0.8480 0.8057 0.8415
TabPFGen | 0.8457 0.8539 0.8541 0.8457 | 0.8294 0.8310 0.8432 0.8354 | 0.8462 0.8586 0.8520 0.8713
TabEBM 0.8290 0.8451 0.8437 0.8469 | 0.8388 0.8498 0.8445 0.8535 | 0.8591 0.8655 0.8714 0.8829
TabPFN 0.8149 0.8200 0.7984 0.7983 | 0.8187 0.8206 0.8009 0.8157 | 0.8446 0.8421 0.8372 0.8313
KTGen, 0.8138 0.8255 0.8137 0.8143 | 0.8214 0.8126 0.8046 0.7973 | 0.8378 0.8401 0.8398 0.8496
KTGen, 0.8267 0.8435 0.8279 0.8106 | 0.8317 0.8288 0.8198 0.7981 | 0.8341 0.8438 0.8590 0.8533

22

Under review as a conference paper at ICLR 2026

Table 7: california.

high-bias | medium-bias | unbias
XGB RF PFN LR ‘ XGB RF PFN LR ‘ XGB RF PFN LR
Basic 1.3160 1.4231 1.3082 3.7761 | 1.2063 1.2155 1.1348 1.5143 | 0.8494 0.8409 0.7304 1.4925
SMOTE 1.2784 1.3858 1.3619 3.8253 | 1.1252 1.1559 1.1323 1.5396 | 0.9491 0.8671 0.7106 1.7952
Mixup 1.3473 1.1991 1.2399 3.7072 | 1.1392 1.1552 1.2915 1.4890 | 0.8379 0.7792 0.6254 1.5518
TVAE 1.2790 1.1907 1.2385 1.4377 | 1.1753 1.1992 1.0714 1.8850 | 0.8428 0.8020 0.7408 1.2111
CTGAN 1.3875 1.3648 1.3190 1.3869 | 1.2335 1.2818 1.2476 1.7435 | 0.8965 0.8606 0.8520 1.4285
TabDDPM | 1.4699 1.5672 1.8390 1.5181 | 1.2566 1.2340 1.2404 1.2502 | 0.9283 0.9471 0.8596 1.2008
20 samples TABSYN 1.5572 1.5600 1.4310 1.7990 | 1.2929 1.2451 1.2296 1.2858 | 0.9440 0.9011 0.8851 1.0505
ARF 1.4323 1.4798 1.5304 1.7413 | 1.1982 1.1981 1.1263 1.9405 | 0.8995 0.9286 0.8099 1.1705
BN 1.4904 13110 1.4203 1.4568 | 1.1335 1.1399 1.1249 1.1872 | 0.8563 0.8389 0.7968 0.7524
TabPFGen | 1.3782 1.3314 1.3685 1.3570 | 1.2733 1.2218 1.1973 1.4703 | 0.8428 0.7972 0.7387 1.1850
TabEBM 14184 1.3784 1.3596 1.2922 | 1.1955 1.1914 1.2215 1.4192 | 0.7994 0.7184 0.6724 1.1562
TabPFN 1.3152 1.3045 1.3269 3.7408 | 1.2243 1.2211 1.1100 2.0470 | 0.8826 0.8457 0.7829 1.6428
KTGen, 1.3927 1.3417 1.1300 1.7636 | 1.2237 1.2370 1.1436 1.3947 | 0.8879 0.8521 0.7728 1.4676
KTGen, 1.2121 1.1230 1.2661 1.0145 | 1.1977 1.0964 1.2047 0.8977 | 0.8363 0.7750 0.7961 0.7068
Basic 1.3951 14334 13656 2.4224 | 09390 0.9569 0.9464 1.7225 | 0.7535 0.7632 0.6266 0.8890
SMOTE 1.2495 1.4453 1.2004 2.4547 | 0.8699 0.9223 0.8833 1.7421 | 0.7600 0.7550 0.6477 1.1170
Mixup 1.3461 1.2824 13613 2.5387 | 0.8870 0.9058 0.8961 1.7643 | 0.7205 0.7211 0.5640 0.8320
TVAE 1.6017 1.5264 1.5507 2.5256 | 1.0318 0.9654 0.9524 1.6140 | 0.8146 0.8199 0.7565 0.8917
CTGAN 1.5869 1.4203 1.6994 23314 | 0.9991 1.0299 0.9409 2.3011 | 0.8888 0.8833 0.8835 0.9808
TabDDPM | 1.7510 1.8468 1.6716 2.6257 | 0.9377 09117 0.9246 1.2550 | 0.7579 0.7757 0.6362 0.9103
50 samples TABSYN 1.5960 1.5434 14724 1.9979 | 1.0896 0.9941 1.0261 1.3096 | 0.8479 0.8219 0.8107 0.8849
ARF 1.3695 1.4301 1.3234 1.8458 | 1.0094 0.9809 0.9797 1.6618 | 0.8177 0.8284 0.7990 0.9403
BN 1.3922 1.3090 1.4090 2.0209 | 0.9366 1.0653 1.0266 1.1747 | 0.7488 0.7444 0.6883 0.6555
TabPFGen | 1.3219 1.3590 1.4985 2.3720 | 0.9476 0.8760 0.8476 1.6323 | 0.7465 0.7201 0.5715 0.7350
TabEBM 1.3755 1.4362 1.3539 2.0373 | 0.8589 0.8922 0.9564 1.5547 | 0.6916 0.6350 0.5702 0.7211
TabPFN 1.4577 1.4355 14605 3.9013 | 1.0115 1.1349 0.9700 1.5916 | 0.7603 0.7460 0.6957 0.8076
KTGen, 1.4320 1.4807 1.3893 4.3607 | 0.9739 1.0511 1.0635 1.9210 | 0.7414 0.7263 0.6099 0.8150
KTGen, 1.2693 1.2058 1.1645 1.2709 | 0.9266 0.8983 1.1366 0.7769 | 0.7637 0.7591 0.7515 0.6443
Basic 1.2419 1.1435 1.0728 1.5256 | 0.9064 0.9180 0.8424 1.2342 | 0.6617 0.6543 0.5449 0.8105
SMOTE 1.1691 1.1556 1.2027 1.3094 | 0.9424 1.0322 0.9316 1.4766 | 0.6393 0.6734 0.5619 1.1468
Mixup 1.2142 1.1686 1.0163 1.4790 | 0.8924 0.9416 0.9017 1.1995 | 0.6114 0.6427 0.5588 0.8704
TVAE 1.2576 1.1789 1.0899 1.4001 | 0.9056 0.9286 1.0536 1.3462 | 0.6617 0.6642 0.5991 0.9799
CTGAN 1.3399 1.2626 1.2055 2.0532 | 0.9531 0.9367 0.9310 1.6229 | 0.7360 0.7378 0.6939 0.9249
TabDDPM | 1.1389 1.0968 1.0030 1.3520 | 0.9438 0.9480 0.9091 1.4592 | 0.6194 0.6463 0.5875 0.9255
100 samples TABSYN 1.2677 1.1815 1.1405 1.4950 | 0.9368 0.9186 0.8988 1.1631 | 0.7134 0.7186 0.6710 0.7905
h ” | ARF 1.4749 14191 13104 2.1456 | 1.0094 0.9809 0.9797 1.6618 | 0.8177 0.8284 0.7990 0.9403
BN 1.1841 1.0933 1.1443 1.1813 | 0.9091 0.9609 0.9533 1.0037 | 0.6570 0.6684 0.6530 0.6442
TabPFGen | 1.3065 1.1998 1.0801 1.5254 | 0.9013 0.9523 0.9716 1.1728 | 0.6126 0.6322 0.5339 0.8325
TabEBM 1.1573 1.1473 1.0458 1.3984 | 0.8997 0.9455 0.8830 1.1573 | 0.5587 0.5813 0.5235 0.8625
TabPFN 1.2046 1.1529 1.0149 1.5624 | 0.8890 0.9190 0.8855 1.6971 | 0.6405 0.6592 0.6032 0.9182
KTGen, 1.2531 1.1583 0.9461 1.3714 | 0.8908 0.9329 0.8645 1.4603 | 0.6360 0.6359 0.6062 0.8401
KTGen, 1.0425 1.0055 0.9873 0.7953 | 0.9028 0.8826 0.8680 0.7596 | 0.6600 0.6723 0.6730 0.6293

23

Under review as a conference paper at ICLR 2026

Table 8: credit.

high-bias | medium-bias | unbias
XGB RF PFN LR ‘ XGB RF PFN LR ‘ XGB RF PFN LR
Basic 0.6040 0.5973 0.6719 0.6454 | 0.6205 0.6207 0.7154 0.6238 | 0.6410 0.6535 0.6259 0.6310
SMOTE 0.6553 0.6695 0.6551 0.6432 | 0.6126 0.6521 0.6657 0.6314 | 0.6787 0.6828 0.6910 0.6645
Mixup 0.5577 0.5829 0.5998 0.6045 | 0.5631 0.5616 0.5601 0.5749 | 0.6336 0.6655 0.6005 0.6496
TVAE 0.5509 0.5936 0.5956 0.5321 | 0.5753 0.5909 0.6027 0.5751 | 0.6294 0.6655 0.6430 0.6212
CTGAN 0.5618 0.6170 0.5992 0.5747 | 0.5777 0.6569 0.6243 0.5913 | 0.6020 0.6010 0.6043 0.5674
TabDDPM | 0.5888 0.5974 0.6287 0.5708 | 0.6776 0.6907 0.6967 0.6415 | 0.7088 0.7077 0.7020 0.6802
20 samples TABSYN 0.5624 0.6103 0.5911 0.5826 | 0.5190 0.5324 0.5707 0.5153 | 0.5988 0.6099 0.5797 0.6011
ARF 0.5753 05972 0.5983 0.5810 | 0.6044 0.6283 0.6147 0.6225 | 0.5982 0.6178 0.5928 0.6154
BN 0.6669 0.6698 0.6775 0.6404 | 0.6226 0.6722 0.6701 0.6346 | 0.6534 0.6773 0.6721 0.6600
TabPFGen | 0.6393 0.6594 0.6837 0.6503 | 0.6077 0.6419 0.6876 0.6276 | 0.6847 0.6969 0.6925 0.6985
TabEBM 0.6039 0.6356 0.6529 0.6277 | 0.6630 0.6787 0.6914 0.6575 | 0.7209 0.7380 0.7319 0.7158
TabPFN 0.6243 0.6549 0.6577 0.6506 | 0.5940 0.6435 0.6201 0.5979 | 0.6338 0.6402 0.6499 0.6211
KTGen, 0.5861 0.6441 0.6539 0.6294 | 0.5833 0.6131 0.6298 0.5928 | 0.6988 0.6911 0.6882 0.6584
KTGen, 0.6177 0.6829 0.6703 0.6530 | 0.6282 0.6746 0.6636 0.6369 | 0.6643 0.6888 0.6721 0.6601
Basic 0.6698 0.6793 0.6508 0.6555 | 0.6978 0.6908 0.7097 0.6627 | 0.6926 0.7205 0.7201 0.6722
SMOTE 0.6541 0.6653 0.6452 0.6653 | 0.6968 0.7090 0.6662 0.6403 | 0.6879 0.6737 0.6536 0.6618
Mixup 0.6185 0.6276 0.5979 0.6227 | 0.5850 0.6179 0.5762 0.6236 | 0.6276 0.6299 0.6135 0.6299
TVAE 0.5985 0.6225 0.6114 0.5862 | 0.6622 0.6849 0.7077 0.6661 | 0.6173 0.6626 0.6979 0.6760
CTGAN 0.6110 0.6369 0.6210 0.5824 | 0.6871 0.7002 0.7000 0.6497 | 0.5866 0.6570 0.6204 0.5896
TabDDPM | 0.6571 0.6700 0.6549 0.6512 | 0.6776 0.6907 0.6967 0.6415 | 0.7088 0.7077 0.7020 0.6802
50 samples TABSYN | 0.6543 0.6609 0.6523 0.6259 | 0.6271 0.6587 0.6761 0.5981 | 0.5958 0.6232 0.6693 0.6340
ARF 0.6445 0.6483 0.6150 0.6410 | 0.6376 0.6498 0.6065 0.5800 | 0.6087 0.6157 0.5933 0.5876
BN 0.6499 0.6594 0.6700 0.6522 | 0.6979 0.7096 0.6816 0.6217 | 0.6820 0.6718 0.6682 0.6489
TabPFGen | 0.6638 0.6760 0.6495 0.6699 | 0.6264 0.6398 0.6687 0.6366 | 0.5925 0.6245 0.6552 0.6007
TabEBM 0.6449 0.6539 0.6345 0.6426 | 0.6630 0.6787 0.6914 0.6575 | 0.7209 0.7380 0.7319 0.7158
TabPFN 0.6649 0.6742 0.6824 0.6691 | 0.6673 0.6841 0.6717 0.6283 | 0.6725 0.6821 0.6551 0.6443
KTGen, 0.6327 0.6448 0.6639 0.6401 | 0.6582 0.6729 0.6787 0.6256 | 0.6762 0.6905 0.6672 0.6551
KTGen, 0.6984 0.6965 0.6993 0.6701 | 0.6888 0.7071 0.7067 0.6632 | 0.7023 0.7239 0.7073 0.6750
Basic 0.7024 0.7162 0.7191 0.7039 | 0.7346 0.7421 0.7404 0.7080 | 0.7268 0.7514 0.7305 0.6719
SMOTE 0.6869 0.7090 0.6910 0.6924 | 0.7247 0.7318 0.7073 0.7016 | 0.7426 0.7559 0.7209 0.7176
Mixup 0.6676 0.6820 0.6506 0.6825 | 0.6962 0.7050 0.6687 0.6847 | 0.7059 0.7253 0.6826 0.6702
TVAE 0.6875 0.7161 0.7004 0.6821 | 0.6912 0.7078 0.7245 0.6905 | 0.7191 0.7505 0.7422 0.7015
CTGAN 0.6810 0.7087 0.6930 0.6662 | 0.6940 0.7057 0.7078 0.6882 | 0.6976 0.7182 0.7237 0.6623
TabDDPM | 0.6776 0.6907 0.6967 0.6415 | 0.7088 0.7077 0.7020 0.6802 | 0.7019 0.7264 0.6885 0.6119
100 samples TABSYN 0.7077 0.7316 0.7366 0.6843 | 0.7075 0.7185 0.7225 0.6965 | 0.7040 0.7087 0.7100 0.6642
h ° | ARF 0.6977 0.7146 0.6806 0.6920 | 0.6845 0.7115 0.6964 0.7085 | 0.7129 0.7401 0.7061 0.7142
BN 0.6788 0.6943 0.6735 0.6777 | 0.7231 0.7276 0.6839 0.6849 | 0.7346 0.7501 0.6926 0.6953
TabPFGen | 0.7044 0.7029 0.7133 0.7074 | 0.7220 0.7239 0.7383 0.7208 | 0.6893 0.7098 0.7002 0.6771
TabEBM 0.6927 0.7049 0.7023 0.6921 | 0.7209 0.7380 0.7319 0.7158 | 0.6824 0.7214 0.6955 0.6776
TabPFN 0.6786 0.6984 0.6796 0.6769 | 0.6916 0.7144 0.7038 0.6876 | 0.7040 0.7234 0.6983 0.6556
KTGen, 0.6885 0.6876 0.6962 0.6793 | 0.6898 0.6954 0.6986 0.6790 | 0.7145 0.7462 0.7197 0.6993
KTGen, 0.7152 0.7255 0.7049 0.7051 | 0.7260 0.7328 0.7339 0.7148 | 0.7418 0.7725 0.7304 0.7258

24

Under review as a conference paper at ICLR 2026

Table 9: default.

high-bias | medium-bias | unbias
XGB RF PFN LR ‘ XGB RF PFN LR ‘ XGB RF PFN LR
Basic 0.6293 0.6321 0.6251 0.6141 | 0.5264 0.5360 0.5472 0.5963 | 0.5400 0.5721 0.6106 0.6263
SMOTE 0.6078 0.6171 0.5917 0.6092 | 0.5313 0.5410 0.5585 0.5752 | 0.5740 0.5998 0.5725 0.5736
Mixup 0.6055 0.6347 0.6170 0.6004 | 0.5472 0.5799 0.5411 0.5583 | 0.6052 0.6267 0.6093 0.5640
TVAE 0.6410 0.6527 0.6669 0.6466 | 0.5306 0.5240 0.5465 0.5460 | 0.6033 0.6067 0.6084 0.5916
CTGAN 0.5777 0.5815 0.5928 0.5759 | 0.4805 0.4796 0.4661 0.4189 | 0.5732 0.5748 0.5711 0.5993
TabDDPM | 0.5481 0.5712 0.5574 0.5391 | 0.5223 0.5416 0.5444 0.5086 | 0.5721 0.5981 0.5523 0.5471
20 samples TABSYN 0.5749 0.5910 0.6067 0.5919 | 0.5248 0.5472 0.5432 0.5319 | 0.5832 0.6100 0.5822 0.5636
ARF 0.6318 0.6469 0.6152 0.5976 | 0.5646 0.5815 0.6115 0.5748 | 0.5699 0.5823 0.5619 0.5426
BN 0.6061 0.6128 0.6209 0.6042 | 0.5688 0.5858 0.5956 0.5776 | 0.6098 0.6085 0.6350 0.5769
TabPFGen | 0.6119 0.6199 0.6339 0.6168 | 0.5110 0.5088 0.5123 0.5470 | 0.6512 0.6496 0.6203 0.5666
TabEBM 0.6183 0.6257 0.6013 0.6083 | 0.5485 0.5490 0.5328 0.5482 | 0.6347 0.6223 0.6331 0.5998
TabPFN 0.6170 0.6298 0.6173 0.5874 | 0.5119 0.5409 0.5566 0.5352 | 0.6225 0.6239 0.5765 0.5617
KTGen, 0.6207 0.6243 0.6036 0.5707 | 0.5016 0.5272 0.5684 0.5494 | 0.5947 0.6220 0.5993 0.5528
KTGen, 0.6571 0.6967 0.6539 0.6760 | 0.6913 0.6846 0.6162 0.6495 | 0.6816 0.6998 0.6680 0.6934
Basic 0.6107 0.6413 0.6560 0.5923 | 0.5835 0.6413 0.6396 0.6243 | 0.6679 0.6982 0.6990 0.6662
SMOTE 0.6165 0.6258 0.6054 0.5685 | 0.6127 0.6240 0.5863 0.5888 | 0.6731 0.6780 0.6708 0.6162
Mixup 0.6171 0.6304 0.6213 0.5654 | 0.6364 0.6654 0.6225 0.6005 | 0.6838 0.6912 0.6757 0.6270
TVAE 0.5727 0.6021 0.5801 0.5832 | 0.5730 0.5919 0.5676 0.5529 | 0.6507 0.6614 0.6692 0.6722
CTGAN 0.5507 0.5777 0.5363 0.5480 | 0.5854 0.6161 0.6060 0.5863 | 0.5979 0.6262 0.6288 0.6429
TabDDPM | 0.5880 0.5955 0.6046 0.5197 | 0.5987 0.6277 0.6378 0.5354 | 0.6937 0.6942 0.6883 0.6441
50 samples TABSYN | 0.5925 0.5964 0.6010 0.5368 | 0.6024 0.6320 0.6593 0.6513 | 0.6369 0.6526 0.6653 0.6631
ARF 0.5963 0.5869 0.5974 0.5229 | 0.5951 0.5929 0.5866 0.5536 | 0.6836 0.6880 0.6767 0.6277
BN 0.6075 0.6304 0.6424 0.5643 | 0.6355 0.6380 0.6142 0.5982 | 0.6698 0.6807 0.6759 0.6206
TabPFGen | 0.6164 0.6186 0.6360 0.5821 | 0.6542 0.6605 0.6473 0.6147 | 0.7055 0.7036 0.6586 0.6415
TabEBM 0.6549 0.6757 0.6396 0.5957 | 0.6398 0.6536 0.6421 0.6369 | 0.6952 0.6994 0.6783 0.6800
TabPFN 0.5949 0.6083 0.5974 0.5683 | 0.6343 0.6501 0.6245 0.5882 | 0.6716 0.6897 0.6516 0.6265
KTGen, 0.5954 0.5984 0.6065 0.5713 | 0.6450 0.6535 0.6182 0.6042 | 0.6846 0.7068 0.6810 0.6425
KTGen, 0.6493 0.6893 0.6756 0.6560 | 0.6950 0.7066 0.6670 0.6944 | 0.7075 0.7305 0.7052 0.6909
Basic 0.6723 0.6859 0.6859 0.6332 | 0.6356 0.6459 0.6880 0.6442 | 0.6841 0.6807 0.6910 0.6096
SMOTE 0.6621 0.6607 0.6379 0.6312 | 0.6401 0.6415 0.6142 0.6377 | 0.6919 0.6921 0.6757 0.6367
Mixup 0.6726 0.6760 0.6584 0.6232 | 0.6657 0.6656 0.6621 0.6287 | 0.7097 0.7065 0.6876 0.6500
TVAE 0.6127 0.6203 0.6249 0.5814 | 0.6267 0.6334 0.6604 0.6215 | 0.6563 0.6697 0.6778 0.6305
CTGAN 0.5930 0.6183 0.6283 0.6237 | 0.6406 0.6521 0.6667 0.6315 | 0.6810 0.6766 0.6772 0.6385
TabDDPM | 0.6395 0.6426 0.6888 0.5852 | 0.6605 0.6606 0.6816 0.5535 | 0.6786 0.6858 0.6775 0.5767
100 samples TABSYN 0.6403 0.6517 0.6691 0.6173 | 0.6459 0.6524 0.6667 0.6421 | 0.6368 0.6515 0.6638 0.6254
h ” | ARF 0.6239 0.6105 0.6054 0.5461 | 0.5951 0.5929 0.5866 0.5536 | 0.6836 0.6880 0.6767 0.6277
BN 0.6738 0.6720 0.6286 0.6344 | 0.6648 0.6636 0.6366 0.6278 | 0.6930 0.6978 0.6789 0.6324
TabPFGen | 0.6916 0.6855 0.6788 0.6392 | 0.6777 0.6808 0.6838 0.6545 | 0.7122 0.7147 0.6768 0.6632
TabEBM 0.6812 0.6877 0.6690 0.6564 | 0.6830 0.6870 0.6826 0.6533 | 0.7191 0.7219 0.7026 0.6774
TabPFN 0.6744 0.6813 0.6444 0.6374 | 0.6755 0.6767 0.6476 0.6211 | 0.7029 0.7179 0.6823 0.6346
KTGen, 0.6621 0.6577 0.6475 0.6220 | 0.6770 0.6988 0.6577 0.6195 | 0.6902 0.7145 0.6879 0.6327
KTGen, 0.7158 0.7242 0.6915 0.6719 | 0.7092 0.7124 0.6969 0.6685 | 0.7194 0.7325 0.7009 0.6790

25

Under review as a conference paper at ICLR 2026

Table 10: diabetes.

high-bias | medium-bias | unbias
XGB RF PFN LR ‘ XGB RF PFN LR ‘ XGB RF PFN LR
Basic 0.6249 0.6967 0.7023 0.7129 | 0.6547 0.7369 0.7513 0.7471 | 0.7449 0.7519 0.7288 0.7247
SMOTE 0.6197 0.6478 0.6262 0.7012 | 0.7204 0.7437 0.7100 0.7330 | 0.7094 0.7329 0.7408 0.7299
Mixup 0.6537 0.6686 0.6154 0.7024 | 0.7252 0.7400 0.6986 0.7389 | 0.6954 0.6983 0.7247 0.7095
TVAE 0.5930 0.6321 0.6896 0.6612 | 0.6941 0.7273 0.7170 0.7283 | 0.7209 0.7378 0.7327 0.7405
CTGAN 0.6344 0.6948 0.6520 0.6694 | 0.6727 0.6550 0.6949 0.6545 | 0.6418 0.6332 0.6196 0.5581
TabDDPM | 0.5637 0.6281 0.5152 0.6227 | 0.6324 0.6543 0.6360 0.6912 | 0.6428 0.6493 0.6388 0.6560
20 samples TABSYN 0.6164 0.6566 0.6107 0.6501 | 0.6898 0.7127 0.7146 0.7419 | 0.7081 0.7207 0.6953 0.7002
ARF 0.6410 0.6603 0.5827 0.6310 | 0.6111 0.6170 0.5974 0.6129 | 0.6397 0.6557 0.6523 0.6770
BN 0.6679 0.6797 0.6601 0.7017 | 0.7181 0.7224 0.7071 0.7343 | 0.7138 0.7189 0.7142 0.7106
TabPFGen | 0.6795 0.6872 0.6965 0.7245 | 0.6856 0.6725 0.6649 0.7240 | 0.6765 0.7021 0.7206 0.7200
TabEBM 0.6697 0.6871 0.6957 0.7089 | 0.6966 0.7039 0.7295 0.7594 | 0.7087 0.7121 0.7230 0.6948
TabPFN 0.6757 0.7039 0.6573 0.7039 | 0.7089 0.7038 0.6562 0.6765 | 0.6948 0.7221 0.7005 0.7019
KTGen, 0.6686 0.6926 0.6525 0.7231 | 0.7028 0.7151 0.7041 0.7131 | 0.6773 0.6924 0.7071 0.7073
KTGen, 0.7449 0.7635 0.7300 0.7950 | 0.7687 0.7682 0.7472 0.7764 | 0.7737 0.7840 0.7608 0.7775
Basic 0.7297 0.7474 0.7687 0.7491 | 0.7518 0.7647 0.7720 0.7800 | 0.7397 0.7517 0.7737 0.7621
SMOTE 0.7034 0.7176 0.6754 0.7377 | 0.7364 0.7524 0.7310 0.7773 | 0.7243 0.7438 0.7711 0.7944
Mixup 0.7169 0.7338 0.7181 0.7316 | 0.7288 0.7418 0.7380 0.7770 | 0.7136 0.7266 0.7583 0.7858
TVAE 0.7215 0.7286 0.7461 0.7372 | 0.7176 0.7447 0.7501 0.7136 | 0.7201 0.7368 0.7620 0.7625
CTGAN 0.6879 0.7459 0.7537 0.7366 | 0.6942 0.7106 0.7237 0.7363 | 0.6950 0.7025 0.7391 0.7638
TabDDPM | 0.6675 0.7078 0.7391 0.7075 | 0.7152 0.7387 0.7222 0.6103 | 0.7385 0.7428 0.7284 0.6606
50 samples TABSYN 0.7136 0.7444 0.7463 0.7312 | 0.6753 0.7070 0.7278 0.7164 | 0.7182 0.7340 0.7579 0.7395
ARF 0.7169 0.7521 0.6825 0.7152 | 0.7180 0.7271 0.7194 0.7431 | 0.7330 0.7354 0.7498 0.7871
BN 0.7271 0.7290 0.6978 0.7248 | 0.7391 0.7506 0.7091 0.7797 | 0.7269 0.7381 0.7330 0.7914
TabPFGen | 0.7539 0.7547 0.7444 0.7713 | 0.7146 0.7231 0.7394 0.7687 | 0.7107 0.7212 0.7610 0.7821
TabEBM 0.7400 0.7599 0.7619 0.7656 | 0.7383 0.7409 0.7709 0.7750 | 0.7299 0.7324 0.7682 0.7838
TabPFN 0.7169 0.7350 0.7087 0.7422 | 0.7294 0.7362 0.7087 0.7496 | 0.7279 0.7397 0.7552 0.7844
KTGen, 0.6994 0.7194 0.6966 0.7385 | 0.7125 0.7247 0.7139 0.7442 | 0.7180 0.7262 0.7434 0.7725
KTGen, 0.7744 0.7901 0.7746 0.7754 | 0.7604 0.7598 0.7624 0.7784 | 0.7611 0.7664 0.7780 0.7910
Basic 0.7660 0.7631 0.7887 0.7945 | 0.7902 0.7847 0.8066 0.7955 | 0.7611 0.7609 0.8003 0.7939
SMOTE 0.7642 0.7694 0.7415 0.7921 | 0.7888 0.7958 0.7882 0.7902 | 0.7788 0.7838 0.7945 0.8044
Mixup 0.7347 0.7357 0.7526 0.7786 | 0.7751 0.7799 0.7817 0.7888 | 0.7693 0.7543 0.7865 0.8039
TVAE 0.7378 0.7726 0.7889 0.7990 | 0.7461 0.7537 0.7751 0.7751 | 0.7745 0.7687 0.7913 0.7906
CTGAN 0.7108 0.7377 0.7616 0.7592 | 0.7555 0.7487 0.7681 0.7426 | 0.7838 0.7603 0.7885 0.7892
TabDDPM | 0.7126 0.7417 0.7802 0.6911 | 0.7505 0.7726 0.7865 0.7400 | 0.7395 0.7656 0.7845 0.7047
100 samples TABSYN 0.7181 0.7377 0.7669 0.7538 | 0.7703 0.7796 0.7973 0.7759 | 0.7705 0.7600 0.7867 0.7820
h ° | ARF 0.7554 0.7625 0.7262 0.7695 | 0.7843 0.8038 0.7707 0.7839 | 0.7924 0.7725 0.7849 0.8020
BN 0.7499 0.7488 0.7303 0.7887 | 0.7779 0.7835 0.7692 0.7803 | 0.7774 0.7702 0.7705 0.8076
TabPFGen | 0.7429 0.7498 0.7827 0.7963 | 0.7845 0.7846 0.8037 0.7809 | 0.7625 0.7545 0.8156 0.8029
TabEBM 0.7411 0.7468 0.7791 0.7881 | 0.7831 0.7800 0.8013 0.7975 | 0.7536 0.7532 0.8002 0.8014
TabPFN 0.7516 0.7642 0.7301 0.7775 | 0.7813 0.7931 0.7760 0.7848 | 0.7753 0.7628 0.7831 0.8064
KTGen, 0.7241 0.7316 0.7291 0.7782 | 0.7712 0.7823 0.7736 0.7771 | 0.7892 0.7681 0.7835 0.8143
KTGen, 0.7518 0.7720 0.7606 0.7931 | 0.7838 0.7920 0.7948 0.7928 | 0.7765 0.7705 0.7914 0.8048

26

Under review as a conference paper at ICLR 2026

Table 11: magic.

high-bias | medium-bias | unbias
XGB RF PFN LR ‘ XGB RF PFN LR ‘ XGB RF PFN LR
Basic 0.6711 0.6727 0.7028 0.7212 | 0.6571 0.6483 0.7102 0.6563 | 0.6194 0.6844 0.7555 0.7430
SMOTE 0.6230 0.6390 0.6330 0.7032 | 0.6653 0.6728 0.6850 0.6059 | 0.7495 0.6938 0.7956 0.7204
Mixup 0.6410 0.6653 0.6771 0.7004 | 0.7184 0.6897 0.7032 0.5883 | 0.7854 0.7571 0.7915 0.7200
TVAE 0.5840 0.5468 0.5962 0.5555 | 0.6348 0.6306 0.6183 0.6369 | 0.6332 0.6331 0.6240 0.5750
CTGAN 0.6260 0.6126 0.5989 0.5778 | 0.6505 0.6249 0.5965 0.5383 | 0.6048 0.6011 0.6888 0.5887
TabDDPM | 0.6530 0.6771 0.6847 0.6087 | 0.6189 0.6509 0.6515 0.6170 | 0.5835 0.5685 0.6972 0.4763
20 samples TABSYN 0.6408 0.6474 0.6332 0.6596 | 0.6225 0.6138 0.5691 0.5519 | 0.5489 0.6042 0.5949 0.4432
ARF 0.6464 0.6489 0.6581 0.6740 | 0.6323 0.6270 0.5757 0.5402 | 0.6823 0.6656 0.7338 0.5817
BN 0.6718 0.6653 0.6735 0.7110 | 0.6950 0.7039 0.7278 0.6001 | 0.7592 0.7370 0.7744 0.7193
TabPFGen | 0.6816 0.6742 0.6874 0.6966 | 0.6673 0.6817 0.7047 0.6416 | 0.7140 0.7554 0.7819 0.7400
TabEBM 0.6957 0.6846 0.7007 0.6956 | 0.6627 0.6830 0.6987 0.6357 | 0.7034 0.7471 0.7664 0.7107
TabPFN 0.6460 0.6541 0.6746 0.6863 | 0.6710 0.6685 0.7359 0.6721 | 0.6777 0.6907 0.7359 0.6703
KTGen, 0.6730 0.6844 0.6869 0.6835 | 0.6627 0.6756 0.6964 0.6636 | 0.7064 0.7075 0.7418 0.6515
KTGen, 0.6928 0.6885 0.7530 0.8120 | 0.7875 0.7620 0.8092 0.8037 | 0.7676 0.7862 0.8039 0.8339
Basic 0.8009 0.7733 0.8403 0.8095 | 0.7133 0.6789 0.8223 0.7732 | 0.7473 0.8171 0.8788 0.8168
SMOTE 0.7930 0.7846 0.7941 0.7932 | 0.7857 0.7951 0.7681 0.7508 | 0.8032 0.8048 0.8759 0.7503
Mixup 0.8190 0.8136 0.8276 0.8090 | 0.7867 0.7853 0.7978 0.7299 | 0.7473 0.8052 0.8577 0.7506
TVAE 0.7593 0.7693 0.7960 0.7244 | 0.7098 0.7092 0.7340 0.6937 | 0.6965 0.7410 0.7738 0.6175
CTGAN 0.7700 0.7786 0.7702 0.7457 | 0.6625 0.6593 0.6834 0.6382 | 0.6007 0.6843 0.7262 0.6822
TabDDPM | 0.7613 0.7573 0.8296 0.6694 | 0.7079 0.7033 0.7426 0.6059 | 0.7985 0.8230 0.8415 0.7316
50 samples TABSYN 0.7287 0.7492 0.7331 0.7032 | 0.6729 0.6734 0.6848 0.7270 | 0.7642 0.7797 0.7930 0.7938
ARF 0.8030 0.8007 0.7961 0.7729 | 0.7704 0.7727 0.7624 0.7074 | 0.7301 0.7682 0.7603 0.6928
BN 0.8124 0.8101 0.8109 0.7902 | 0.7843 0.7905 0.7478 0.7601 | 0.7618 0.7968 0.8136 0.7325
TabPFGen | 0.8002 0.7928 0.8284 0.8186 | 0.7720 0.7727 0.7931 0.7822 | 0.7417 0.7914 0.8422 0.7810
TabEBM 0.8161 0.8106 0.8352 0.8184 | 0.7644 0.7654 0.7923 0.7867 | 0.7533 0.7994 0.8182 0.7808
TabPFN 0.8064 0.8086 0.8123 0.8099 | 0.7722 0.7691 0.7794 0.7546 | 0.7856 0.7906 0.7963 0.7755
KTGen, 0.8226 0.8204 0.8324 0.8061 | 0.7794 0.7653 0.8023 0.7203 | 0.7302 0.7760 0.8271 0.7785
KTGen, 0.7671 0.7697 0.8306 0.8230 | 0.7601 0.7533 0.8204 0.8276 | 0.7325 0.7556 0.8622 0.8181
Basic 0.8243 0.8310 0.8525 0.8164 | 0.7950 0.7991 0.8723 0.8221 | 0.8725 0.8708 0.9011 0.8273
SMOTE 0.8053 0.8125 0.8099 0.8040 | 0.8235 0.8370 0.8014 0.8034 | 0.8855 0.8848 0.8968 0.8291
Mixup 0.8189 0.8192 0.8004 0.8156 | 0.8359 0.8452 0.8462 0.8061 | 0.8867 0.8882 0.8914 0.8256
TVAE 0.7658 0.7672 0.7623 0.7520 | 0.7753 0.7934 0.8227 0.7662 | 0.8140 0.8233 0.8280 0.7857
CTGAN 0.6909 0.7157 0.7300 0.7026 | 0.7196 0.7456 0.8100 0.6892 | 0.8456 0.8510 0.8351 0.7702
TabDDPM | 0.7391 0.7824 0.8410 0.6059 | 0.7205 0.7463 0.8071 0.5636 | 0.8613 0.8562 0.8768 0.6568
100 samples TABSYN 0.7783 0.8020 0.8384 0.8065 | 0.7747 0.7766 0.8061 0.7651 | 0.8478 0.8526 0.8787 0.8332
h ° | ARF 0.8091 0.8032 0.8053 0.7841 | 0.7704 0.7727 0.7624 0.7074 | 0.7301 0.7682 0.7603 0.6928
BN 0.8179 0.8293 0.7805 0.8032 | 0.8366 0.8383 0.8076 0.8098 | 0.8809 0.8789 0.8598 0.8242
TabPFGen | 0.8047 0.8108 0.8195 0.7944 | 0.8320 0.8314 0.8458 0.8058 | 0.8811 0.8805 0.8998 0.8259
TabEBM 0.8260 0.8299 0.8363 0.8241 | 0.8370 0.8364 0.8576 0.8091 | 0.8842 0.8812 0.9020 0.8231
TabPFN 0.8171 0.8342 0.8028 0.8095 | 0.8276 0.8402 0.8247 0.7558 | 0.8800 0.8801 0.8911 0.8229
KTGen, 0.7978 0.8102 0.8124 0.8054 | 0.8249 0.8435 0.8525 0.7681 | 0.8851 0.8836 0.8987 0.8232
KTGen, 0.7915 0.7829 0.84838 0.8291 | 0.7719 0.7971 0.8700 0.8295 | 0.8295 0.8283 0.8864 0.8333

27

Under review as a conference paper at ICLR 2026

Table 12: shopper.

high-bias | medium-bias | unbias
XGB RF PFN LR ‘ XGB RF PFN LR ‘ XGB RF PFN LR
Basic 0.6306 0.6872 0.6988 0.6981 | 0.7575 0.7549 0.8109 0.7525 | 0.6734 0.7262 0.7746 0.7071
SMOTE 0.6720 0.7200 0.7167 0.6870 | 0.7875 0.8087 0.7845 0.7535 | 0.8189 0.8156 0.8189 0.7582
Mixup 0.6836 0.7096 0.7045 0.6782 | 0.7856 0.7903 0.7565 0.7472 | 0.8238 0.8160 0.8175 0.7358
TVAE 0.5822 0.6146 0.6304 0.5934 | 0.6568 0.7013 0.7107 0.6926 | 0.7619 0.7768 0.7542 0.7307
CTGAN 0.6250 0.6871 0.6396 0.6967 | 0.6213 0.6340 0.7186 0.6334 | 0.6803 0.6897 0.6679 0.5855
TabDDPM | 0.5835 0.5867 0.5839 0.5284 | 0.5657 0.6034 0.5721 0.5595 | 0.6919 0.7315 0.7023 0.7159
20 samples TABSYN 0.5968 0.6498 0.6074 0.6865 | 0.6415 0.6814 0.7273 0.6756 | 0.6967 0.7262 0.7374 0.7460
ARF 0.6320 0.6357 0.6177 0.6678 | 0.6864 0.7190 0.7852 0.7304 | 0.7598 0.7396 0.7560 0.7013
BN 0.6840 0.7016 0.7036 0.6890 | 0.8008 0.7938 0.7463 0.7602 | 0.8408 0.8434 0.8216 0.7487
TabPFGen | 0.6367 0.6527 0.7451 0.7129 | 0.7812 0.7902 0.7757 0.7551 | 0.8174 0.8315 0.8216 0.7481
TabEBM 0.6926 0.7063 0.7096 0.7254 | 0.7939 0.8011 0.8128 0.8138 | 0.8064 0.8206 0.8237 0.8240
TabPFN 0.5758 0.6222 0.6506 0.6246 | 0.7097 0.7273 0.7085 0.6878 | 0.7465 0.7579 0.7440 0.6775
KTGen, 0.6300 0.6505 0.6587 0.6564 | 0.7170 0.7365 0.7554 0.6955 | 0.7586 0.7611 0.7605 0.6795
KTGen, 0.7276 0.7383 0.6944 0.7050 | 0.7632 0.7779 0.7994 0.7730 | 0.7847 0.8068 0.8010 0.7676
Basic 0.7575 0.7897 0.8228 0.7448 | 0.7763 0.7835 0.8164 0.7405 | 0.8425 0.8211 0.8623 0.7623
SMOTE 0.7907 0.8130 0.7896 0.7210 | 0.7920 0.8165 0.7924 0.7092 | 0.8516 0.8467 0.8667 0.7928
Mixup 0.7590 0.7711 0.7146 0.6969 | 0.7659 0.7879 0.7344 0.6958 | 0.8349 0.8314 0.8415 0.8008
TVAE 0.7753 0.7900 0.7821 0.7091 | 0.7176 0.7347 0.7352 0.7187 | 0.8195 0.7970 0.7998 0.7735
CTGAN 0.7707 0.7695 0.7831 0.7570 | 0.6709 0.6805 0.6897 0.6822 | 0.7868 0.7824 0.8114 0.7258
TabDDPM | 0.5990 0.6343 0.6509 0.6231 | 0.6790 0.6843 0.7531 0.6218 | 0.8080 0.8279 0.8566 0.7119
50 samples TABSYN | 0.7630 0.7996 0.7829 0.7114 | 0.7028 0.7246 0.7243 0.6653 | 0.7800 0.7884 0.7802 0.7398
ARF 0.7542 0.7418 0.7396 0.7139 | 0.8215 0.8393 0.8422 0.7888 | 0.8289 0.8119 0.8314 0.7928
BN 0.7867 0.8026 0.7812 0.7293 | 0.7719 0.7768 0.7335 0.7164 | 0.8144 0.8271 0.8215 0.7858
TabPFGen | 0.7704 0.7882 0.7961 0.7525 | 0.7665 0.7893 0.7761 0.6930 | 0.8437 0.8530 0.8509 0.7970
TabEBM 0.7876 0.7838 0.7996 0.7792 | 0.8243 0.8208 0.8109 0.7594 | 0.8503 0.8468 0.8620 0.8238
TabPFN 0.7590 0.7783 0.7594 0.7471 | 0.7141 0.7140 0.6993 0.6720 | 0.7880 0.8011 0.8264 0.7850
KTGen, 0.7305 0.7500 0.7225 0.7188 | 0.7389 0.7385 0.6955 0.6774 | 0.8179 0.8174 0.8356 0.7885
KTGen, 0.8047 0.7649 0.7752 0.7391 | 0.8090 0.8183 0.7658 0.6985 | 0.8283 0.8435 0.8392 0.7428
Basic 0.8316 0.8277 0.8514 0.7680 | 0.8745 0.8683 0.8951 0.7908 | 0.8381 0.8568 0.8639 0.8084
SMOTE 0.8336 0.8396 0.8042 0.7620 | 0.8703 0.8735 0.8333 0.7633 | 0.8735 0.8826 0.8563 0.7993
Mixup 0.8012 0.8087 0.7736 0.7489 | 0.8383 0.8544 0.7985 0.7715 | 0.8611 0.8638 0.8403 0.8144
TVAE 0.7999 0.8117 0.8102 0.7118 | 0.8191 0.8378 0.8169 0.7456 | 0.8221 0.8433 0.8511 0.8146
CTGAN 0.6904 0.6969 0.6160 0.5895 | 0.8379 0.8463 0.8374 0.7804 | 0.8345 0.8472 0.8586 0.8067
TabDDPM | 0.6926 0.7134 0.7333 0.6416 | 0.8018 0.8042 0.8459 0.5719 | 0.8518 0.8461 0.8417 0.6193
100 samples TABSYN 0.8004 0.7969 0.8103 0.7525 | 0.8389 0.8602 0.8681 0.7783 | 0.8469 0.8565 0.8705 0.7858
h ° | ARF 0.8355 0.8354 0.8172 0.8022 | 0.8732 0.8768 0.8522 0.8087 | 0.8384 0.8552 0.8616 0.8332
BN 0.8178 0.8066 0.7587 0.7571 | 0.8643 0.8720 0.8161 0.7700 | 0.8499 0.8622 0.8380 0.8055
TabPFGen | 0.8123 0.8249 0.8215 0.7456 | 0.8774 0.8783 0.8734 0.8045 | 0.8546 0.8520 0.8469 0.8141
TabEBM 0.8178 0.8494 0.8340 0.8122 | 0.8667 0.8896 0.8821 0.8446 | 0.8681 0.8663 0.8849 0.8611
TabPFN 0.7454 0.7633 0.7227 0.7193 | 0.8370 0.8259 0.8027 0.7715 | 0.8304 0.8178 0.8158 0.7779
KTGen, 0.7424 0.7710 0.7661 0.7154 | 0.8383 0.8423 0.8303 0.7644 | 0.8390 0.8442 0.8413 0.8065
KTGen, 0.7921 0.8080 0.8328 0.7632 | 0.8428 0.8585 0.8729 0.7653 | 0.8546 0.8645 0.8669 0.7819

28

	Introduction
	RELATED WORKS
	Classical Tabular Data Augmentation
	Generative Methods for Tabular Data

	Preliminaries
	Notation
	Knowledge Categorization

	KTGen
	Tabular Data Generator
	Knowledge Correction

	Experiments
	Experimental Setups
	Evaluation
	Ablation Studies
	Visualization

	Conclusion
	Uss of LLMs
	KTGen
	VAE for Tabular Data
	Diffusion in Latent Space
	Correction Network

	Datasets
	Bias Data Sampling
	Baselines
	Downstream model
	Experimental Results

