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Figure 1: Delicate 3D assets generated using the proposed GSGEN. See our project
page gsgen3d.github.io for videos of these images.

ABSTRACT

In this paper, we present Gaussian Splatting based text-to-3D generation (GSGEN),
a novel approach for generating high-quality 3D objects. Previous methods suffer
from inaccurate geometry and limited fidelity due to the absence of 3D prior and
proper representation. We leverage 3D Gaussian Splatting, a recent state-of-the-art
representation, to address existing shortcomings by exploiting the explicit nature
that enables the incorporation of 3D prior. Specifically, our method adopts a pro-
gressive optimization strategy, which includes a geometry optimization stage and an
appearance refinement stage. In geometry optimization, a coarse representation is
established under a 3D geometry prior along with the ordinary 2D SDS loss, ensur-
ing a sensible and 3D-consistent rough shape. Subsequently, the obtained Gaussians
undergo an iterative refinement to enrich details. In this stage, we increase the num-
ber of Gaussians by compactness-based densification to enhance continuity and
improve fidelity. With these designs, our approach can generate 3D content with
delicate details and more accurate geometry. Extensive evaluations demonstrate the
effectiveness of our method, especially for capturing high-frequency components.
Video results are provided in gsgen3d.github.io.

1 INTRODUCTION

Diffusion model based text-to-image generation (Saharia et al., 2022; Rombach et al., 2022; Ramesh
et al., 2022; Alex et al., 2023) has achieved remarkable success in synthesizing photo-realistic images
from textual prompts. Nevertheless, for high-quality text-to-3D content generation, the advancements
lag behind that of image generation due to the inherent complexity of real-world 3D scenes. Recently,
DreamFusion (Poole et al., 2023) has made great progress in generating delicate assets by utilizing
score distillation sampling with a pre-trained text-to-image diffusion prior. Its follow-up works further
improve this paradigm in quality (Wang et al., 2023c; Chen et al., 2023), training speed (Lin et al.,
2023; Metzer et al., 2022), and generating more reasonable geometry (Armandpour et al., 2023; Zhu
& Zhuang, 2023; Seo et al., 2023). However, most existing text-to-3D methods still suffer greatly
from collapsed geometry and limited fidelity, and are difficult to incorporate 3D priors due to the
implicit nature of NeRF (Mildenhall et al., 2020) and DMTET (Shen et al., 2021).
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Stable DreamFusion (Tang, 2022; Poole et al., 2023) GSGEN (Ours)
A DSLR photo of a panda

Fantasia3D (Chen et al., 2023) GSGEN (Ours)
A high quality photo of a furry corgi

threestudio Magic3D (Guo et al., 2023; Lin et al., 2023) GSGEN (Ours)
A zoomed out DSLR photo of an amigurumi bulldozer

Figure 2: Compared to previous methods, GSGEN alleviates the Janus problem by representing the
3D scene using 3D Gaussian Splatting, which is capable of applying direct 3D geometry guidance
and expressing content with delicate details. Note that the results of DreamFusion and Magic3D are
obtained using Stable DreamFusion (Tang, 2022) and threestudio (Guo et al., 2023) since the official
implementations are not publicly available due to the utilization of private diffusion models. All the
results are obtained using StableDiffusion (Rombach et al., 2022) on checkpoint runwayml/stable-
diffusion-v1-5 for a fair comparison. Videos of these images are provided in the supplemental video.

Recently, 3D Gaussian Splatting (Kerbl et al., 2023) has garnered significant attention in the field of
3D reconstruction, primarily due to its remarkable ability to represent intricate scenes and capability
of real-time rendering. By modeling a scene using a set of 3D Gaussians, Kerbl et al. (2023) adopt
an explicit and object-centric approach that fundamentally diverges from implicit representations
like NeRF and DMTET. This distinctive approach paves the way for the integration of explicit 3D
priors into text-to-3D generation. Building upon this insight, instead of a straightforward replacement
of NeRFs with Gaussians, we propose to guide the generation with an additional 3D point cloud
diffusion prior to enhancing geometrical coherence. By adopting this strategy, we can better harness
the inherent advantages of 3D Gaussians in the creation of complex and 3D-consistent assets.

Specifically, we propose to represent the generated 3D content with a set of Gaussians and optimize
them progressively in two stages, namely geometry optimization and appearance refinement. In the
geometry optimization stage, we optimize the Gaussians under the guidance of a 3D point cloud
diffusion prior along with the ordinary 2D image prior. The incorporation of this extra 3D SDS loss
ensures a 3D-consistent rough geometry. In the subsequent refinement stage, the Gaussians undergo
an iterative enhancement to enrich the delicate details. Due to the sub-optimal performance of the
original adaptive control under SDS loss, we introduce an additional compactness-based densification
technique to enhance appearance and fidelity. Besides, to prevent potential degeneration and break
the symmetry in the early stage, the Gaussians are initialized with a coarse point cloud generated
by a text-to-point-cloud diffusion model. As a result of these techniques, our approach can generate
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3D assets with accurate geometry and exceptional fidelity. Fig.2 illustrates a comparison between
GSGEN and previous state-of-the-art methods on generating assets with asymmetric geometry.

In summary, our contributions are:

• We propose GSGEN, the first text-to-3D generation method using 3D Gaussians as repre-
sentation. By incorporating geometric priors, we highlight the distinctive advantages of
Gaussian Splatting in text-to-3D generation.

• We introduce a two-stage optimization strategy that first exploits joint guidance of 2D and
3D diffusion prior to shaping a coherent rough structure in geometry optimization; then
enriches the details with a compactness-based densification in appearance refinement.

• We validate GSGEN on various textual prompts. Experiments show that our method can
generate 3D assets with more accurate geometry and enhanced fidelity than previous meth-
ods. Especially, GSGEN demonstrates superior performance in capturing high-frequency
components in objects, such as feathers, surfaces with intricate textures, animal fur, etc.

2 RELATED WORK

2.1 3D SCENE REPRESENTATIONS

Representing 3D scenes in a differentiable way has achieved remarkable success in recent years.
NeRFs (Mildenhall et al., 2020) demonstrates outstanding performance in novel view synthesis
by representing 3D scenes with a coordinate-based neural network. After works have emerged to
improve NeRF in reconstruction quality (Barron et al., 2021; 2023; Wang et al., 2022c), handling
large-scale (Tancik et al., 2022; Zhang et al., 2020; Martin-Brualla et al., 2021; Chen et al., 2022b)
and dynamic scenes (Park et al., 2021; Attal et al., 2023; Wang et al., 2022b; Sara Fridovich-Keil
and Giacomo Meanti et al., 2023; Pumarola et al., 2021), improving training (Yu et al., 2021a; Chen
et al., 2022a; Sun et al., 2022; Müller et al., 2022) and rendering (Reiser et al., 2023; Hedman et al.,
2021; Yu et al., 2021b) speed. Although great progress has been made, NeRF-based methods still
suffer from low rendering speed and high training-time memory usage due to their implicit nature. To
tackle these challenges, Kerbl et al. (2023) propose to represent the 3D scene as a set of anisotropic
Gaussians and render the novel views using a GPU-optimized tile-based rasterization technique. 3D
Gaussian Splatting could achieve comparing reconstruction results while being capable of real-time
rendering. Our research highlights the distinctive advantages of Gaussian Splatting within text-to-3D
by incorporating explicit 3D prior, generating 3D consistent and highly detailed assets.

2.2 DIFFUSION MODELS

Diffusion models have arisen as a promising paradigm for learning and sampling from a complex
distribution. Inspired by the diffusion process in physics, these models involve a forward process
to gradually add noise and an inverse process to denoise a noisy sample with a trained neural
network. After DDPM (Ho et al., 2020; Song et al., 2021b) highlighted the effectiveness of diffusion
models in capturing real-world image data, a plethora of research has emerged to improve the inherent
challenges, including fast sampling (Lu et al., 2022; Bao et al., 2022; Song et al., 2021a) and backbone
architectural enhancement (Bao et al., 2023; Podell et al., 2023; Liu et al., 2023b; Dhariwal & Nichol,
2021; Hoogeboom et al., 2023; Peebles & Xie, 2022). One of the most successful applications of
diffusion models lies in text-to-image generation, where they have shown remarkable progress in
generating realistic images from text prompts (Ho & Salimans, 2022; Ramesh et al., 2022; Alex
et al., 2023). To generate high-resolution images, current solutions either adopt a cascaded structure
that consists of a low-resolution diffusion model and several super-resolution models (Saharia et al.,
2022; Balaji et al., 2022; Alex et al., 2023) or trains the diffusion model in latent space with an auto-
encoder (Rombach et al., 2022; Gu et al., 2022). Our proposed GSGEN is built upon StableDiffusion
(Rombach et al., 2022), an open-source latent diffusion model that provides fine-grained guidance for
high-quality 3D content generation.
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2.3 TEXT-TO-3D GENERATION

Early efforts in text-to-3D generation, including CLIP-forge (Sanghi et al., 2021), Dream Fields (Jain
et al., 2022), Text2Mesh (Michel et al., 2022), TANGO (Chen et al., 2022c), CLIPNeRF (Wang et al.,
2022a), and CLIP-Mesh (Khalid et al., 2022), harness CLIP (Radford et al., 2021) guidance to create
3D assets. To leverage the stronger diffusion prior, DreamFusion (Poole et al., 2023) introduces the
score distillation sampling loss that optimizes the 3D content by minimizing the difference between
rendered images and the diffusion prior. This development sparked a surge of interest in text-to-3D
generation through image diffusion prior (Wang et al., 2023a; Raj et al., 2023; Lorraine et al., 2023;
Zhu & Zhuang, 2023). Magic3D (Lin et al., 2023) employs a coarse-to-fine strategy, optimizing
a NeRF with a low-resolution diffusion prior and then enhancing texture under a latent diffusion
model with a DMTET initialized using the coarse NeRF. Latent-NeRF (Metzer et al., 2022) trains a
NeRF within the latent space of StableDiffusion and introduces the Sketch-Shape method to guide
the generation process. Fantasia3D (Chen et al., 2023) disentangles the learning of geometry and
material, harnessing physics-based rendering techniques to achieve high-fidelity mesh generation.
ProlificDreamer (Wang et al., 2023c) introduces variational score distillation to improve SDS and
facilitate the generation of high-quality and diverse 3D assets, whose contribution is orthogonal to
ours since we focus on incorporating 3D prior with more advanced representation. Another line of
work lies in generating 3D assets directly through a 3D diffusion model based on NeRF or other
differentiable representations (Wang et al., 2023b; Jun & Nichol, 2023; Liu et al., 2023a; Cheng et al.,
2023). Our approach builds upon Point-E (Nichol et al., 2022), a text-to-point-cloud diffusion model
trained on millions of 3D models, which offers valuable 3D guidance and coarse initialization.

3 PRELIMINARY

3.1 SCORE DISTILLATION SAMPLING

Instead of directly generating 3D models, recent studies have achieved notable success by optimizing
3D representation with a 2D pre-trained image diffusion prior based on score distillation sampling, as
proposed by Poole et al. (2023). In this paradigm, the scene is represented as a differentiable image
parameterization (DIP) denoted as θ, where the image can be differentiably rendered based on the
given camera parameters through a transformation function g. The DIP θ is iteratively refined to
ensure that, for any given camera pose, the rendered image x = g(θ) closely resembles a plausible
sample derived from the guidance diffusion model. DreamFusion achieves this by leveraging Imagen
(Saharia et al., 2022) to provide a score estimation function denoted as ϵϕ(xt; y, t), where xt, y, and
t represent the noisy image, text embedding, and timestep, respectively. This estimated score plays a
pivotal role in guiding the gradient update, as expressed by the following equation:

∇θLSDS = Eϵ,t
[
w(t)(ϵϕ(xt; y, t)− ϵ)

∂x

∂θ

]
(1)

where ϵ is a Gaussian noise and w(t) is a weighting function. Our approach combines score distillation
sampling with 3D Gaussian Splatting at both 2D and 3D levels with different diffusion models to
generate 3D assets with both detailed appearance and 3D-consistent geometry.

3.2 3D GAUSSIAN SPLATTING

Gaussian Splatting, as introduced in Kerbl et al. (2023), presents a pioneering method for novel
view synthesis and 3D reconstruction from multi-view images. Unlike NeRF, 3D Gaussian Splatting
adopts a distinctive approach, where the underlying scene is represented through a set of anisotropic
3D Gaussians parameterized by their positions, covariances, colors, and opacities. When rendering,
the 3D Gaussians are projected onto the camera’s imaging plane (Zwicker et al., 2001). Subsequently,
the projected 2D Gaussians are assigned to individual tiles. The color of p on the image plane is
rendered sequentially with point-based volume rendering technique (Zwicker et al., 2001):

C(p) =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) where, αi = oie
− 1

2 (p−µi)
TΣ−1

i (p−µi), (2)

where ci, oi, µi, and Σi represent the color, opacity, position, and covariance of the i-th Gaussian
respectively, and N denotes the Gaussians in this tile. To maximize the utilization of shared memory,
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Figure 3: Overview of the proposed GSGEN. Our approach aims at generating 3D assets with
accurate geometry and delicate appearance. GSGEN starts by utilizing Point-E to initialize the
positions of the Gaussians (Sec 4.3). The optimization is grouped into geometry optimization (Sec
4.1) and appearance refinement (Sec 4.2) to meet a balance between coherent geometry structure and
highly detailed texture.

Gaussian Splatting further designs a GPU-friendly rasterization process where each thread block is
assigned to render an image tile. These advancements enable Gaussian Splatting to achieve more
detailed scene reconstruction, significantly faster rendering speed, and reduction of memory usage
during training compared to NeRF-based methods. In this study, we expand the application of
Gaussian Splatting into text-to-3D generation and introduce a novel approach that leverages the
explicit nature of Gaussian Splatting by integrating 3D diffusion priors, highlighting the potential of
3D Gaussians as a fundamental representation for generative tasks.

4 APPROACH

Our goal is to generate 3D content with accurate geometry and delicate detail. To accomplish this,
GSGEN exploits the 3D Gaussians as representation due to its flexibility to incorporate geometry
priors and capability to represent high-frequency details. Based on the observation that a point
cloud can be seen as a set of isotropic Gaussians, we propose to integrate a 3D SDS loss with a
pre-trained point cloud diffusion model to shape a 3D-consistent geometry. With this additional
geometry prior, our approach could mitigate the Janus problem and generate more sensible geometry.
Subsequently, in appearance refinement, the Gaussians undergo an iterative optimization to gradually
improve fine-grained details with a compactness-based densification strategy, while preserving the
fundamental geometric information. The detailed GSGEN methodology is presented as follows.

4.1 GEOMETRY OPTIMIZATION

Many text-to-3D methods encounter the significant challenge of overfitting to several views, resulting
in assets with multiple faces and collapsed geometry (Poole et al., 2023; Lin et al., 2023; Chen et al.,
2023). This issue, known as the Janus problem (Armandpour et al., 2023; Seo et al., 2023), has posed
a persistent hurdle in the development of such methodologies. In our early experiments, we faced a
similar challenge that relying solely on 2D guidance frequently led to collapsed results. However, we
noticed that the geometry of 3D Gaussians can be directly rectified with a point cloud prior, which is
not feasible for previous text-to-3D methods using NeRFs and DMTET. Recognizing this distinctive
advantage, we introduce a geometry optimization process to shape a reasonable geometry. Concretely,
in addition to the ordinary 2D image diffusion prior, we further optimize the positions of Gaussians
using Point-E (Nichol et al., 2022), a pre-trained text-to-point-cloud diffusion model. Instead of
directly aligning the Gaussians with a Point-E generated point cloud, we apply a 3D SDS loss to
lead the positions inspired by image diffusion SDS, which avoids challenges including registration,
scaling, and potential degeneration. Notably, we only apply the Point-E SDS gradients to positions,
as empirical observations suggest that Point-E may generate relatively simple color patterns. We
summarize the loss in the geometry optimization stage as the following equation:

∇θLgeometry = EϵI ,t
[
wI(t)(ϵϕ(xt; y, t)− ϵI)

∂x

∂θ

]
+ λ3D · EϵP ,t [wP (t)(ϵψ(pt; y, t)− ϵP )] , (3)
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where pt and xt represent the noisy Gaussian positions and the rendered image, w∗ and ϵ∗ refer to
the corresponding weighting function and Gaussian noise.

4.2 APPEARANCE REFINEMENT

While the introduction of 3D prior does help in learning a more reasonable geometry, we ex-
perimentally find it would also disturb the learning of appearance, resulting in insufficiently
detailed assets. Based on this observation, GSGEN employs another appearance refinement
stage that iteratively optimizes and densifies the Gaussians utilizing only the 2D image prior.

Figure 4: An illustration of the proposed
compactness-based densification. For two
Gaussians, if the distance between them (r12)
is larger than the sum of their radius (r1+ r2),
a Gaussian will be augmented to achieve a
more complete geometry.

To densify the Gaussians, Kerbl et al. (2023) propose
to split Gaussians with a large view-space spatial
gradient. However, we encountered challenges in
determining the appropriate threshold for this spatial
gradient under score distillation sampling. Due to
the stochastic nature of SDS loss, employing a small
threshold is prone to be misled by some stochastic
large gradient thus generating an excessive number
of Gaussians, whereas a large threshold will lead
to a blurry appearance, as illustrated in Fig.8. To
tackle this, we propose compactness-based densifi-
cation as a supplement to positional gradient-based
split. Specifically, for each Gaussian, we first obtain
its K nearest neighbors with a KD-Tree. Then, for
each of the neighbors, if the distance between the
Gaussian and its neighbor is smaller than the sum of
their radius, a Gaussian will be added between them
with a radius equal to the residual. As illustrated in
Fig.4, compactness-based densification could ”fill the holes”, resulting in a more complete geometry.
To prune unnecessary Gaussians, we add an extra loss to regularize opacity with a weight propor-
tional to its distance to the center and remove Gaussians with opacity smaller than a threshold αmin
periodically. Furthermore, we recognize the importance of ensuring the geometry consistency of the
Gaussians throughout the refinement phase. With this concern, we penalize Gaussians which deviates
significantly from their positions obtained during the preceding geometry optimization. The loss in
the appearance refinement stage is summarized as the following:

∇θLrefine = λSDSEϵI ,t
[
wI(t)(ϵϕ(xt; y, t)− ϵI)

∂x

∂θ

]
+λp∇θ

∑
i

||pi−p
(g)
i ||+λo∇θ

∑
i

sg(||pi||)·oi,

(4)
where sg(·) refers to the stop gradient operation, pi, p

(g)
i and oi represents the position, the position

obtained through geometry optimization and opacity of the i-th Gaussian respectively. λSDS, λp and
λo are loss weights for SDS loss, position regularization, and opacity regularization.

4.3 INITIALIZATION WITH GEOMETRY PRIOR

w/o Point-E color w/ Point-E color

Figure 6: The impact of adopting Point-E gener-
ated color.

Previous studies (Chen et al., 2023; Lin et al.,
2023; Metzer et al., 2022) have demonstrated
the critical importance of starting with a rea-
sonable geometry initialization. In our early
experiments, we also found that initializing with
a simple pattern could potentially lead to a de-
generated 3D object. To overcome this, we opt
for initializing the positions of the Gaussians
either with a generated point cloud or with a 3D
shape provided by the users. In the context of
general text-to-3D generation, we employ a text-
to-point-cloud diffusion model, Point-E (Nichol
et al., 2022), to generate a rough geometry ac-
cording to the text prompt. While Point-E can
produce colored point clouds, we opt for random color initialization based on empirical observations,
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Magic3D Fantasia3D GSGEN (ours)

A 3D model of an adorable cottage with a thatched roof

A ripe strawberry

A DSLR photo of an ice cream sundae

A DSLR photo of a car made out of sushi

Magic3D GSGEN (Ours) Fantasia3D GSGEN (Ours)

A bagel filled with cream cheese and lox A DSLR photo of banana

A peacock on a surfboard A car made out of cheese

Figure 5: Qualitative comparison between the proposed GSGEN and previous state-of-the-art text-to-
3D generation methods, including Magic3D (Lin et al., 2023) and Fantasia3D (Chen et al., 2023).
Our approach achieves better visual quality, especially in high-frequency details, such as the thatched
roof, intricate details of sushi and banana, and the feather of the peacock, etc. The prompts are
provided under the images. For more qualitative comparison results, please refer to Appendix B.3.
Videos of these images are provided in the supplemental video.

as direct utilization of the generated colors has been found to have detrimental effects in early
experiments (shown in Fig.6). For user-guided generation, we convert the preferred shape to a point
cloud to initialize the positions. To avoid too many vertices in the provided shape, we use farthest
point sampling (Eldar et al., 1997) for point clouds and uniform surface sampling for meshes to
extract a subset of the original shape instead of directly using all the vertices or points.

5 EXPERIMENTS

In this section, we present our experiments on validating the effectiveness of the proposed GSGEN.
Specifically, we compare our approach with previous state-of-the-art methods in general text-to-
3D generation. Additionally, we conduct several ablation studies to evaluate the importance of
initialization, 3D guidance, and densification strategy. The detailed results are shown as follows.
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(a) w/o initialization (b) w/o 3D guidance (c) Coarse Model (d) Full

A zoomed out DSLR photo of a corgi wearing a top hat

A high quality photo of a furry dog

A DSLR photo of a streaming engine train, high resolution

A DSLR photo of a panda

Figure 7: Ablation study results on initialization and 3D prior. Coarse Model here refers to the
rough assets obtained after geometry optimization. We can observe that the assets generated with
random initialization suffer from degeneration severely, resulting in completely inconsistent geometry
(in the first column). Although the Point-E initialized assets have a slightly better geometry, they
still encounter the Janus problem (in the second column). The proposed GSGEN utilizes Point-E
initialization and 3D guidance to generate shapes with better 3D consistency.

5.1 IMPLEMENTATION DETAILS

Guidance model setup. We implement the guidance model based on the publicly available diffusion
model, StableDiffusion (Rombach et al., 2022; von Platen et al., 2022). All the assets demonstrated in
this section are obtained with the checkpoint runwayml/stable-diffusion-v1-5. For the guidance scale,
we adopt 100 for StableDiffusion as suggested in DreamFusion and other works. We also exploit the
view-dependent prompt technique proposed by DreamFusion.

3D Gaussian Splatting setup. We implement the 3D Gaussian Splatting in a pytorch CUDA
extension. We split the Gaussians by view-space position gradient every 500 iterations with a
threshold of 0.02 and perform compactness-based densification every 1000 iterations. We remove
Gaussians with excessively large radii and opacity lower than αmin = 0.05 every 200 iterations.

Traning setup. We use the same focal length, elevation, and azimuth range as those of DreamFusion
(Poole et al., 2023). To sample more uniformly in the camera position, we employ a stratified
sampling on azimuth. We choose the loss weight hyperparameters λSDS = 0.1 and λ3D = 0.01 in
geometry optimization, and λSDS = 0.1, λp = 1.0 and λo = 100.0 in appearance refinement.

5.2 TEXT-TO-3D GENERATION

We evaluate the performance of the proposed GSGEN in the context of general text-to-3D generation
and present qualitative comparison results against state-of-the-art methods. As illustrated in Fig.2, our
approach produces delicate 3D assets with more accurate geometry and intricate details. In contrast,
previous state-of-the-art methods (Tang, 2022; Poole et al., 2023; Lin et al., 2023; Guo et al., 2023;
Chen et al., 2023) struggle in generating collapsed geometry under the same guidance and prompt,
which underscores the effectiveness of our approach. We present more qualitative comparison results
in Fig.5, where we compare the 3D assets generated by GSGEN with those generated by Magic3D
(Lin et al., 2023) and Fantasia3D (Chen et al., 2023). Our approach showcases notable enhancements
in preserving high-frequency details such as the intricate patterns on sushi, the feathers of the peacock,
and the thatched roof. In contrast, Magic3D and Fantasia3D yield over-smoothed geometry due to the
limitation of mesh-based methods, making the generated assets less realistic. For more one-to-one
qualitative comparisons, please refer to the supplemental material for the video results and appendix
B.3 for multi-view image comparison.
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5.3 ABLATION STUDY

Initialization. To assess the impact of initialization, we introduce a variant that initiates the positions
of the Gaussians with an origin-centered Gaussian distribution which emulates the initialization
adopted in DreamFusion (Poole et al., 2023). The qualitative comparisons are shown in Fig.7a. It
is evident that assets generated with DreamFusion-like initialization encounter severe degeneration
issues, especially for prompts depicting asymmetric scenes, resulting in a completely collapsed
geometry. In contrast, Point-E initialization breaks the symmetry by providing an anisotropic
geometry prior, leading to the creation of more 3D-consistent objects.

3D Prior. We evaluate the necessity of incorporating 3D prior by generating assets without point
cloud guidance during geometry optimization. The qualitative comparisons of multi-view images are
visualized in Fig.7b. Although achieved better geometry compared to DreamFusion-like initialization,
relying solely on image diffusion prior still suffers from the Janus problem, which is particularly
evident in cases with asymmetric geometries. In contrast, our approach effectively addresses this
issue with the introduction of 3D prior, rectifying potentially collapsed structures in the geometry
optimization stage and resulting in a 3D-consistent rough shape.

Tpos = 0.0002 Tpos = 0.02
Tpos = 0.02
+compactness

Figure 8: Ablation study on densification strategy. The tex-
tual prompt used in this figure is A mug of hot chocolate with
whipped cream and marshmallows.

Densification Strategy. To valid the
effectiveness of the proposed densifi-
cation strategy, we propose two vari-
ants for comparison: (1) The original
densification strategy that split Gaus-
sians with an average view-space gra-
dient larger than Tpos = 0.0002. (2)
With larger Tpos = 0.02 that avoids
too many new Gaussians. While effec-
tive in 3D reconstruction, the original
densification strategy that relies only
on view-space gradient encounters a
dilemma in the context of score distil-
lation sampling: within limited times
of densification, a large threshold tends to generate an over-smoothed appearance while a small
threshold is easily affected by unstable gradients. As shown in Fig.8, the proposed compactness-based
densification is an effective supplement to the original densification strategy under SDS guidance,
facilitating the generation of highly detailed assets. For more experiments including ablations on the
3D guidance model and 2D diffusion prior, please refer to appendix B.4.

6 LIMITATIONS AND CONCLUSION

Limitations. GSGEN tends to generate unsatisfying results when the provided text prompt contains a
complex description of the scene or with complicated logic due to the limited language understanding
ability of Point-E and the CLIP text encoder used in StableDiffusion. Moreover, although incorpo-
rating 3D prior mitigates the Janus problem, it is far from eliminating the potential degenerations,
especially when the textual prompt is extremely biased in the guidance diffusion models. Concrete
failure cases and corresponding analyses are illustrated in appendix C.

Conclusion. In this paper, we propose GSGEN, a novel method for generating highly detailed and 3D
consistent assets using Gaussian Splatting. In particular, we adopt a two-stage optimization strategy
including geometry optimization and appearance refinement. In the geometry optimization stage, a
rough shape is established under the joint guidance of a point cloud diffusion prior along with the
ordinary image SDS loss. In the subsequent appearance refinement, the Gaussians are further opti-
mized to enrich details and densified to achieve better continuity and fidelity with compactness-based
densification. We conduct comprehensive experiments to validate the effectiveness of the proposed
method, demonstrating its ability to generate 3D consistent assets and superior performance in captur-
ing high-frequency components. We hope our method can serve as an efficient and effective approach
for high-quality text-to-3D generation and could pave the way for more extensive applications of
Gaussians Splatting and direct incorporation of 3D prior.
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ETHICS STATEMENT

In our endeavor to advance 3D generative modeling, we remain steadfast in our commitment to
ethical principles. It is essential to recognize that unscrupulous individuals could potentially exploit
generative models to create deceptive content, particularly when presented in the form of 3D objects,
which can be more convincing than 2D images. Our approach, based on StableDiffusion, inherits any
biases present in the training data. Therefore, great care must be taken when selecting datasets for
text-to-image and image-to-3D models to prevent the perpetuation of harmful content. We firmly
believe that with appropriate regulation, the positive impact of generative models far surpasses their
negative potential.
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A IMPLEMENTATION DETAILS

3D Gaussian Splatting Details. Instead of directly using the official 3D Gaussian Splatting code
provided by Kerbl et al. (2023), we reimplement this algorithm by ourselves due to the need to
support learnable MLP background. The official 3D Gaussian Splatting implementation propagates
the gradients of the Gaussians in an inverse order, i.e. the Gaussians rendered last get gradient first.
Our implementation follows a plenoxel (Yu et al., 2021a) style back propagation that calculates the
gradient in the rendering order, which we found much easier to incorporate a per-pixel background.

The depth maps are rendered using the view-space depth of the centers of the Gaussians, which we
claim is accurate enough due to the tiny scale of the Gaussians (Zwicker et al., 2001). Besides, we
implement a z-variance renderer to support z-var loss proposed by (Zhu & Zhuang, 2023). However,
we found that z-var loss seems to have a limited impact on the generated 3D asset, mainly due to the
sparsity of Gaussians naturally enforcing a relatively thin surface.

During rendering and optimizing, we follow the original 3D Gaussian Splatting to clamp the opacity
of the Gaussians into [0.004, 0.99] to ensure a stable gradient and prevent potential overflows or
underflows.

Guidance Details. All the guidance of 2D image diffusion models we used in this paper is provided
by huggingface diffusers (von Platen et al., 2022). For StableDiffusion guidance, we opt for the
runwayml/stable-diffusion-v1-5 checkpoint for all the experiments conducted in this paper. We also
test the performance of GSGEN under other checkpoints, including stabilityai/stable-diffusion-2-base
and stabilityai/stable-diffusion-2-1-base, but no improvements are observed.

For Point-E diffusion model and its checkpoints, we directly adopted their official implementation.

Training Details. All the assets we demonstrate in this paper and the supplemental video are trained
on 4 NVIDIA 3090 GPUs with a batch size of 8 and take about 30 min to optimize for a prompt. We
have also observed that our approach can be trained on a single GPU with over 11 GB of VRAM
in approximately 1 hour and 40 minutes, using a batch size of 8. The 3D contents we showcase in
this paper and supplemental video are obtained under the same hyper-parameter setting since we
found our parameters robust toward the input prompt. The number of Gaussians after densification is
around [1e5, 1e6].

Open-Sourced Resources and Corresponding Licenses. We summarize open-sourced code and
resources with corresponding licenses used in our experiments in the following table.

Table 1: Open-sourced resources used in the experiment in this work.

Resource License
Stable DreamFusion (Tang, 2022) Apache License 2.0

Fantasia3D (Chen et al., 2023) Apache License 2.0
threestudio (Guo et al., 2023) Apache License 2.0

StableDiffusion (Rombach et al., 2022) MIT License
DeepFloyd IF (Alex et al., 2023) DeepFloyd IF License Agreement

HuggingFace Diffusers Apache License 2.0
OpenAI Point-E MIT License

ULIP BSD 3-Clause License

We use Stable DreamFusion and threestudio to obtain the results of DreamFusion and Magic3D under
StableDiffusion and on the prompts that are not included in their papers and project pages since the
original implementation has not been open-sourced due to the usage of private diffusion models.
The results of Fatansia3D are obtained by running their official implementation with their parameter
setting for dog-like shapes.

B ADDTIONAL RESULTS

B.1 USER-GUIDED GENERATION
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Figure 9: Qualitative comparison results on user-guided gen-
eration. The prompts from left to right are (1)A German
Sheperd; (2)A robot hand, realistic; (3) A teddy bear in a
tuxedo; (4) a lego man; (5) a house made of lego.

Initialization is straightforward for 3D
Gaussian Splatting due to its explicit
nature, thereby automatically support-
ing user-guided generation. We eval-
uate the proposed GSGEN on user-
guided generation with shapes pro-
vided in Latent-NeRF (Metzer et al.,
2022). In this experiment, the ini-
tial points are generated by uniformly
sampling points on the mesh surface.
To better preserve the user’s desired
shape, we opt for a relatively small
learning rate for positions. We com-
pare the 3D content generated by GS-
GEN with those of the state-of-the-
art user-guided 3D generation method
Latent-NeRF (Metzer et al., 2022) and
Fantasia-3D (Chen et al., 2023) in
Fig.9. Our proposed GSGEN achieves
the best results among all alternatives
in both geometry and textures and
mostly keeps the geometrical prior given by the users.

B.2 MORE TEXT-TO-3D RESULTS

We present more general text-to-3D generation results of GSGEN in Fig.14 and Fig.15. Our approach
can generate 3D assets with accurate geometry and improved fidelity. For more delicate assets
generated with GSGEN and their spiral videos, please visit our project page gsgen3d.github.io
or watch our supplemental video.

B.3 MORE QUALITATIVE COMPARISONS

In addition to the qualitative comparison in the main text, we provide more comparisons with
DreamFusion (Poole et al., 2023) in Fig.16 and Fig.17, Magic3D (Lin et al., 2023) in Fig.18,
Fantasia3D (Chen et al., 2023) and LatentNeRF (Metzer et al., 2022) in Fig.19. In order to make a
fair comparison, the images of these methods are directly copied from their papers or project pages.
Video comparisons are presented in the supplemental video.

B.4 MORE ABLATIONS

B.4.1 3D POINT CLOUD GUIDANCE

Point-E guidance ULIP guidance

Figure 10: Point clouds optimized under Point-E
and ULIP. Prompt: A corgi.

Except for the Point-E (Nichol et al., 2022) used
in our proposed GSGEN, we also test a CLIP-
like text-to-point-cloud generation model ULIP
(Xue et al., 2022; 2023). While achieving supe-
rior performance in zero-shot point cloud clas-
sification, ULIP seems ineffective in the context
of generation. Fig.10 demonstrates point clouds
generated under the guidance of ULIP and Point-
E. Under SDS loss, Point-E can guide the point
cloud to a consistent rough shape while ULIP
leads to a mess. We substitute the 3D prior in
GSGEN from Point-E to ULIP in Fig.11, yield-
ing the same results as point cloud optimization.
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GSGEN under Point-E guidance GSGEN under ULIP guidance

Figure 11: Text-to-3D generation qualitative comparison with 3D prior as Point-E or ULIP. Prompt:
A DSLR photo of an ice cream sundae.

B.4.2 2D IMAGE GUIDANCE

Except for StableDiffusion, we also test the performance of GSGEN under the guidance of DeepFloyd
IF, another open-sourced cutting-edge text-to-image diffusion model. Compared to StableDiffusion,
DeepFloyd IF has an Imagen-like architecture and a much more powerful text encoder. We demon-
strate the qualitative comparison between GSGEN under different guidance in Fig.20. Obviously,
assets generated with DeepFloyd IF have a much better text-3D alignment, which is primarily at-
tributed to the stronger text understanding provided by T-5 encoder than that of CLIP text encoder.
However, due to the modular cascaded design, the input to DeepFloyd IF has to be downsampled to
64× 64, which may result in a blurry appearance compared to those generated under StableDiffusion.

C FAILURE CASES

Despite the introduction of 3D prior, we could not completely eliminate the Janus problem, due to
the ill-posed nature of text-to-3D through 2D prior and the limited capability of the 3D prior we used.

(a) A high quality photo of an ostrich
(b) A small red cube is sitting on top of a
large blue cube. red on top, blue on bottom

(c) a zoomed out DSLR photo of a few pool
balls sitting on a pool table

Figure 12: Three typical failure cases of GSGEN.

Fig.12 showcases three typical failure cases we encountered in our experiments. In Fig.12a, the
geometrical structure is correctly established, but the Janus problem happens on the appearance
(another ostrich head on the back head). Fig.12b demonstrates another failure case caused by
the limited language understanding of the guidance model. StableDiffusion also fails to generate
reasonable images with these prompts, as illustrated in Fig.13.

Figure 13: Prompts that StableDiffusion cannot correctly process, which leads to the failure of
corresponding text-to-3D generation.

18
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A bunch of blue rose, highly detailed A high quality photo of a dragon

A plush dragon toy A zoomed out DSLR photo of a plate of fried chicken
and waffles with maple syrup on them

A beautiful dress made of feathers, on a mannequin A high quality photo of a blue tulip

A DSLR photo of a plush triceratops toy, studio lighting,
hight resolution A DSLR photo of a tray of Sushi containing pugs

A DSLR photo of an origami motorcycle A DSLR photo of a pineapple

Figure 14: More 3D assets generated with GSGEN.
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A high quality photo of a stack of pancakes covered in
maple syrup A tarantula, highly detailed

A sliced loaf of fresh bread A high quality photo of a pinecone

A high quality photo of a durian A zoomed out DSLR photo of a table with dim sum on
it

A DSLR photo of a bald eagle A high quality photo of a chow chow puppy

A high quality photo of a kangaroo A high quality photo of a furry rabbit

Figure 15: More 3D assets generated with GSGEN.
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DreamFusion GSGEN
A DSLR photo of pyramid shaped burrito with a slice cut out of it

DreamFusion GSGEN
A DSLR photo of a roast turkey on a platter

DreamFusion GSGEN
A plate of delicious tacos

DreamFusion GSGEN
A zoomed out DSLR photo of a brain in a jar

DreamFusion GSGEN
A zoomed out DSLR photo of a cake in the shape of a train

Figure 16: More comparison results with DreamFusion.
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DreamFusion GSGEN
A zoomed out DSLR photo of an amigurumi motorcycle

DreamFusion GSGEN
A delicious hamburger

DreamFusion GSGEN
A zoomed out DSLR photo of a baby dragon

DreamFusion GSGEN
A zoomed out DSLR photo of a beautiful suit made out of moss, on a mannequin. Studio lighting,

high quality, high resolution

DreamFusion GSGEN
A zoomed out DSLR photo of a complex movement from an expensive watch with many shiny gears,

sitting on a table

Figure 17: More comparison results with DreamFusion.
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Magic3D GSGEN
A zoomed out DSLR photo of a ladybug

Magic3D GSGEN
A zoomed out DSLR photo of a plate piled high with chocolate chip cookies

Magic3D GSGEN
A DSLR photo of a tarantula, highly detailed

Magic3D GSGEN
A DSLR photo of a stack of pancakes covered in maple syrup

Magic3D GSGEN
A zoomed out DSLR photo of a beautifully carved wooden knight chess piece

Figure 18: More comparison results with Magic3D.
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Fantasia3D GSGEN
A fresh cinnamon roll covered in glaze, high resolution

Fantasia3D GSGEN
A delicious croissant

LatentNeRF GSGEN
A photo of a vase with sunflowers

LatentNeRF GSGEN
A house made of lego

Figure 19: More comparison results with LatentNeRF and Fantasia3D.
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GSGEN with StableDiffusion GSGEN with DeepFloyd IF

A nest with a few white eggs and one golden egg

A DSLR photo of a very beautiful tiny human heart organic sculpture made of copper wire and
threaded pipes, very intricate, curved, Studio lighting, high resolution

A DSLR photo of a very beautiful small organic sculpture made of fine clockwork and gears with tiny
ruby bearings, very intricate, caved, curved. Studio lighting, High resolution

An anthropomorphic tomato eating another tomato

Figure 20: Qualitative comparison of GSGEN under StableDiffusion guidance and DeepFloyd IF
guidance.
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