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Abstract001

AI-generated content proliferation in Chinese002
e-commerce platforms faces challenges in in-003
tegrity and consumer trust. While existing de-004
tection methods show promising performance005
within specific domains, their cross-domain ro-006
bustness remains largely unexplored for Chi-007
nese e-commerce reviews. We present the first008
systematic cross-domain robustness evaluation009
for Chinese AI-generated text detection, con-010
structing a high-fidelity benchmark dataset us-011
ing a systematic data generation approach and012
developing a progressive out-of-distribution013
evaluation framework. Through extensive ex-014
periments across multiple detection approaches,015
we provide systematic analysis of cross-dataset016
generalization patterns. Our evaluation reveals017
that fine-tuned large language models, partic-018
ularly Qwen-2.5-7B, achieve superior perfor-019
mance across all scenarios (94.8% F1-score in-020
domain, 63.9% in extreme cross-domain con-021
ditions), while contrastive learning approaches022
show significant performance degradation un-023
der distribution shifts (F1-score declining from024
86.8% to 35.1%). These findings provide cru-025
cial insights into detection paradigm trade-026
offs and cross-domain robustness challenges027
in practical deployment.028

1 Introduction029

In 1950, Alan Turing proposed a test to evaluate ma-030

chine intelligence: if a human evaluator could not031

distinguish between responses from a machine and032

a human, the machine could be considered intelli-033

gent (Turing, 1950). Today, as large language mod-034

els (LLMs) achieve unprecedented fluency, we face035

the inverse challenge: distinguishing AI-generated036

content from human writing has become increas-037

ingly difficult, raising critical concerns about the038

integrity of digital information.039

The advancement of modern LLMs, from GPT-040

3’s few-shot learning capabilities (Brown et al.,041

2020) to GPT-4’s enhanced reasoning (OpenAI,042

2023), has fundamentally transformed content cre- 043

ation capabilities, generating text that closely mir- 044

rors human writing in coherence, contextual rele- 045

vance, and stylistic nuance. As recent comprehen- 046

sive evaluations demonstrate (Chang et al., 2024), 047

this progress presents significant challenges for AI- 048

generated text detection, where existing methods 049

suffer from poor generalization ability when de- 050

ployed across different domains, models, or text 051

styles. Recent work has highlighted these funda- 052

mental limitations (Doughman et al., 2025), show- 053

ing that traditional approaches relying heavily on 054

binary classification frameworks often overfit to 055

specific training distributions and fail when con- 056

fronted with out-of-distribution scenarios, as the 057

detection task extends far beyond simple "AI vs 058

humans" classification (Ji et al., 2024). 059

The proliferation of AI-generated content poses 060

particular risks in Chinese e-commerce platforms, 061

where authenticity directly impacts consumer trust 062

and market fairness, as consumer reviews signifi- 063

cantly influence purchasing decisions through their 064

linguistic and emotional expression patterns (Kron- 065

rod and Danziger, 2013). Chinese e-commerce re- 066

views present unique challenges including complex 067

linguistic characteristics (emojis, internet slang, di- 068

alectal variations), text brevity (100-500 charac- 069

ters), and domain-specific terminology that differ 070

substantially from general text domains. Current 071

detection methods inadequately address these char- 072

acteristics, and existing datasets primarily focus on 073

English academic or news domains. While datasets 074

like ASAP (Bu et al., 2021) (46,730 Chinese restau- 075

rant reviews with aspect sentiments) provide valu- 076

able Chinese review resources for sentiment anal- 077

ysis, they lack the AI-generated counterparts nec- 078

essary for detection research, leaving a significant 079

gap for Chinese e-commerce applications. 080

Most importantly, the literature lacks system- 081

atic evaluation of cross-dataset generalization ca- 082

pabilities for Chinese AI text detection. While 083
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benchmarks like MGTBench (He et al., 2023) and084

M4GT-Bench (Wang et al., 2024) have established085

evaluation frameworks for AI-generated text detec-086

tion, and recent work like MAGE (Li et al., 2024)087

has highlighted the critical importance of out-of-088

distribution robustness in detection systems, their089

focus remains primarily on English domains. The090

robustness of detection approaches under out-of-091

distribution conditions, particularly across differ-092

ent generation models, text styles, and domains,093

remains largely unexplored in the Chinese context.094

To address these critical gaps, our work makes095

the following contributions:096

• First comprehensive Chinese e-commerce097

AI detection benchmark with systematic098

out-of-distribution (OOD) evaluation. We099

construct the first high-fidelity Chinese e-100

commerce AI detection dataset using a sys-101

tematic data generation approach, with sys-102

tematic LLM evaluation establishing optimal103

generation models. Our multi-level OOD eval-104

uation framework provides foundational in-105

frastructure for fine-grained cross-dataset gen-106

eralization analysis.107

• Systematic comparative evaluation reveal-108

ing performance trade-offs across detec-109

tion paradigms. We provide the first system-110

atic comparison of contemporary detection ap-111

proaches including fine-tuned pre-trained lan-112

guage models (PLMs) and contrastive learn-113

ing methods under progressive OOD scenar-114

ios. Our evaluation reveals that fine-tuned115

models, particularly Qwen-2.5-7B, achieve116

superior robustness across all scenarios, while117

contrastive learning approaches show signif-118

icant limitations under extreme distribution119

shifts.120

• Empirical insights into cross-domain ro-121

bustness patterns and practical deployment122

considerations. Through comprehensive ex-123

periments, we establish performance bench-124

marks and identify fundamental challenges in125

cross-domain AI text detection for Chinese126

e-commerce applications, providing crucial127

insights for practical system deployment and128

future research directions.129

2 Related Work130

The detection of AI-generated text has evolved131

from early statistical methods to sophisticated deep132

learning approaches, with comprehensive surveys 133

documenting this rapid progression (Wu et al., 134

2025). Current state-of-the-art methods primar- 135

ily rely on fine-tuning pre-trained language models 136

like BERT (Devlin et al., 2019) and RoBERTa (Liu 137

et al., 2019) for binary classification, with recent 138

approaches integrating linguistic features to en- 139

hance classification performance (Yadav and M 140

C, 2024). However, a fundamental challenge in 141

this field is the poor out-of-distribution (OOD) gen- 142

eralization of detection systems. Models trained 143

on specific domains or generation models often 144

fail when tested on different distributions, as they 145

learn spurious correlations rather than fundamen- 146

tal authorship markers (Wang et al., 2024). Recent 147

studies have further highlighted the vulnerability of 148

these detectors to adversarial perturbations (Huang 149

et al., 2024), while promising work on restricted 150

embeddings shows potential for improving robust- 151

ness (Kuznetsov et al., 2024). 152

The generalization problem is particularly se- 153

vere in AI text detection, where traditional detec- 154

tors tend to overfit to specific training distributions 155

and perform poorly when confronted with different 156

generation models, text styles, or domains. Re- 157

search on syntactic template detection has revealed 158

that generated texts often exhibit systematic pat- 159

terns that may not generalize across different con- 160

texts (Shaib et al., 2024). While benchmarks like 161

M4GT-Bench (Wang et al., 2024) have highlighted 162

these issues, and multilingual detection efforts have 163

emerged (Agrahari et al., 2025), systematic evalu- 164

ation frameworks for cross-domain robustness re- 165

main limited, especially for non-English languages. 166

Contrastive learning has shown promising re- 167

sults in various NLP tasks by learning robust rep- 168

resentations through contrasting positive and neg- 169

ative sample pairs (Jaiswal et al., 2021). Recent 170

work has explored contrastive learning for AI text 171

detection, with DetectGPT (Mitchell et al., 2023) 172

demonstrating zero-shot detection capabilities. No- 173

tably, He et al. (Guo et al., 2024) proposed DeTeC- 174

tive, a multi-level contrastive learning framework 175

that argues the key to AI text detection lies in dis- 176

tinguishing writing styles rather than simple binary 177

classification. 178

Despite significant attention to AI text detection, 179

research specifically targeting Chinese text remains 180

limited. The foundation for Chinese NLP has been 181

strengthened by advances in pre-trained models 182

like ERNIE (Sun et al., 2019) and Chinese BERT 183

with whole word masking (Cui et al., 2021), yet 184
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their application to AI text detection remains un-185

derexplored. Chinese e-commerce reviews present186

unique challenges including complex morphologi-187

cal structures, widespread use of emojis and inter-188

net slang, and domain-specific terminology. While189

research on utilizing reviews for recommendation190

justification (Ni et al., 2019) demonstrates the im-191

portance of review authenticity in e-commerce con-192

texts, existing datasets like HC3 (Guo et al., 2023)193

primarily focus on academic domains, leaving a194

significant gap for Chinese e-commerce applica-195

tions that our work addresses.196

3 Methodology197

In this work, we systematically address the criti-198

cal challenge of cross-domain robustness in Chi-199

nese AI-generated text detection. Our methodology200

comprises two principal contributions: (1) the con-201

struction of a high-fidelity benchmark dataset with202

systematic out-of-distribution evaluation frame-203

work, and (2) comprehensive comparative evalua-204

tion of multiple detection paradigms including fine-205

tuned models and contrastive learning approaches.206

We provide the first systematic evaluation of detec-207

tion methods under progressive OOD conditions,208

enabling fine-grained analysis of generalization pat-209

terns in Chinese AI text detection.210

3.1 Dataset Construction and Evaluation211

Framework212

A key limitation of existing detection benchmarks213

is the "fidelity gap" that arises from using generic214

prompts, which fail to replicate the nuanced, aspect-215

driven nature of real-world product reviews. To216

overcome this, we developed a "controlled synthe-217

sis" pipeline to generate a parallel corpus where218

AI-generated reviews are thematically and senti-219

mentally aligned with human-written counterparts,220

compelling the detector to learn stylistic rather than221

topic-based cues.222

Realistic Prompt Generation.223

The dataset construction process begins with the224

ASAP corpus (Bu et al., 2021), a large-scale col-225

lection of Chinese product reviews annotated with226

fine-grained aspect and sentiment labels. For each227

human-written review, the corresponding meta-228

data, including overall star rating and aspect-level229

sentiment polarities (e.g., "Taste#Flavor," "Ser-230

vice#Queueing"), are extracted to form a compre-231

hensive "emotional-semantic profile." These struc-232

tured profiles are then transformed into diverse,233

Algorithm 1: Realistic Prompt Generation for Con-
trolled Synthesis

procedure GeneratePrompts(Dhuman)
Input: Dhuman, dataset of human reviews with aspect

sentiments
for each review Ri in Dhuman do

Step 1 - Create Profile:
P ← Extract aspect sentiments from Ri

key ← Sort and join elements of P
Ri.profile← Simplify(key)
Step 2 - Generate Prompt:
details← Parse(Ri.profile)
Taspect, Tsent, Tother ← Generate templates using

details, Ri.star
if Taspect ̸= ∅ and random() < 0.7 then

prompt← RandomChoice(Taspect)
else

prompt← RandomChoice(Taspect∪Tsent∪Tother)
end if
Ri.prompt← prompt

end for
return StratifiedSample(Dhuman, size=1000)

Table 1: Realistic Prompt Generation Algorithm for
Controlled Synthesis

natural-language prompts using a rule-based gen- 234

erator with multiple template variations, ensuring 235

stylistic diversity and naturalness. This approach 236

guarantees that the resulting AI-generated reviews 237

are not only fluent but also maintain a semantically 238

isomorphic relationship with their human counter- 239

parts in both topical coverage and sentiment distri- 240

bution, thereby greatly reducing the adverse impact 241

of structural and emotional imbalance on the AI- 242

generated text detection task. 243

Generation Model Selection and Chinese 244

LLM Benchmark. To ensure the fidelity and di- 245

versity of the AI-generated corpus while minimiz- 246

ing model-specific artifacts, we conducted the first 247

systematic evaluation of mainstream LLMs for Chi- 248

nese e-commerce review generation. This bench- 249

mark evaluation represents a significant contribu- 250

tion, providing authoritative performance rankings 251

of contemporary LLMs on Chinese text generation 252

tasks. 253

Four state-of-the-art large language models 254

(GPT-4o-mini, deepseek-chat-v3-0324, qwen- 255

turbo, and gemini-2.0-flash) were each tasked with 256

generating 1,000 reviews using a standardized 257

prompt set. This systematic comparison provides 258

the first comprehensive assessment of these mod- 259

els’ capabilities in generating authentic Chinese 260

e-commerce content. 261

The resulting corpora were evaluated with the 262

metrics reported in Table 2: Self-BLEU (Alihos- 263
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Figure 1: An overview of the Dataset Generation pipeline

Model TTR Avg Length Self-BLEU Self-BERTScore JSD vs Human Rank

Human (Reference) 0.0923 283.23 0.1214 0.0007 0.0000 –

deepseek-chat-v3-0324 0.0376 202.64 0.5258 0.0074 0.4131 1
qwen-turbo 0.0281 183.11 0.5932 0.0097 0.4188 2
gemini-2.0-flash-001 0.0285 102.40 0.5842 0.0100 0.4196 3
gpt-4o-mini 0.0216 157.39 0.6281 0.0146 0.4527 4

Table 2: Comprehensive benchmark evaluation of mainstream LLMs for Chinese e-commerce review generation.

Figure 2: Model Performance Comparison (Lower val-
ues indicate closer similarity to human writing)

seini et al., 2019) (diversity), Type-Token Ratio264

(TTR, lexical richness), average review length, Self-265

BERTScore (Zhang et al., 2020) (semantic diver-266

sity), and Jensen-Shannon Divergence (JSD, distri-267

butional similarity to human writing). The detailed268

descriptions of these metrics are provided in Ta-269

ble 3.270

As shown in Figure 2 and Table 2, deepseek-271

chat-v3-0324 consistently achieves the best overall 272

balance across these criteria, producing text that 273

most closely matches human review characteristics 274

in both lexical and structural aspects. 275

Dataset Composition and Statistics. The fi- 276

nal dataset comprises training, validation, and test- 277

ing splits, plus three progressive out-of-distribution 278

(OOD) test sets for systematic robustness evalu- 279

ation. The training, validation, and standard test 280

sets contain AI-generated texts produced by the 281

selected model (DeepSeek-Chat-v3) for in-domain 282

evaluation. The three OOD test sets (OOD-1, OOD- 283

2, OOD-3) are designed to incrementally stress-test 284

different aspects of model generalization: model 285

variation, stylistic robustness, and domain transfer. 286

Detailed statistics are provided in Table 4, with the 287

progressive OOD evaluation design presented in 288

Table 5. 289

The progressive nature of these test sets allows 290

for fine-grained analysis of performance degrada- 291

tion patterns, enabling identification of specific 292

vulnerabilities in detection models and providing 293

insights into the relative importance of different 294

robustness factors. 295
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Metric Description

TTR Type-Token Ratio, measuring lexical
richness. Higher values suggest more
varied vocabulary.

Avg. Len. Average review length (in characters).
Closer to human indicates better fi-
delity.

Self-BLEU (n=4) Measures intra-text similarity within
the generated corpus. Lower scores
indicate higher diversity.

Self-BERTScore Semantic similarity among gener-
ated reviews. Lower values indicate
higher semantic diversity.

JSD vs Human Jensen-Shannon Divergence between
the linguistic feature distributions of
generated and human corpora. Lower
values indicate higher fidelity.

Rank Overall ranking based on weighted
aggregation of all metrics.

Table 3: Evaluation metrics for the generation model
selection.

Dataset Human Machine Total
Training 8,000 8,000 16,000
Validation 1,000 1,000 2,000
Testing 1,000 1,000 2,000
Testing (OOD-1) 1,000 1,000 2,000
Testing (OOD-2) 1,000 1,000 2,000
Testing (OOD-3) 1,000 1,000 2,000
Overall 13,000 13,000 26,000

Table 4: Statistics of the constructed dataset.

3.2 Detection Framework and Baseline296

Methods297

We evaluate multiple detection approaches to pro-298

vide comprehensive comparative analysis of differ-299

ent paradigms and their relative performance under300

cross-domain conditions.301

Baseline Detection Models. We compare302

against representative detection paradigms includ-303

ing fine-tuned pre-trained language models (PLMs)304

and contemporary large language models:305

• Fine-tuned PLMs: We evaluate bert-base-306

chinese and chinese-roberta-wwm-ext, specif-307

ically designed for Chinese text understand-308

ing, as well as multilingual models including309

Llama-3-8B and Qwen-2.5-7B. These models310

represent the current state-of-the-art in super-311

vised fine-tuning approaches for text classifi-312

cation.313

• Training Strategy: All baseline models are314

Test Set Distribution Shift Factors

In-Domain Baseline: Same generation model
(Deepseek-Chat-v3), domain (food re-
views), and original text style as training
data.

OOD-1 + Model Shift: Multiple generation mod-
els (GPT-4.1, Gemini-2.5-Flash, Deepseek-
Chat-v3, Qwen-Turbo) while maintaining
food domain and original style.

OOD-2 + Style Shift: OOD-1 conditions plus AI-
based paraphrasing through the same mod-
els to introduce stylistic variations and in-
crease detection difficulty.

OOD-3 + Domain Shift: OOD-2 conditions plus
cross-domain transfer from food reviews to
general e-commerce categories (electronics,
clothing, home products) using Amazon
multilingual review corpus (Keung et al.,
2020).

Table 5: Progressive out-of-distribution evaluation
framework with cumulative distribution shift factors.

fine-tuned using standard binary classifica- 315

tion objectives on our training data, where 316

AI-generated content is labeled as class 1 and 317

human-written content as class 0. We ensure 318

fair comparison by using consistent hyperpa- 319

rameters across different model architectures. 320

Detailed training configurations are presented 321

in Table 6. 322

Parameter Value

Learning Rate 2e-5
Batch Size 8
Max Epochs 5
Temperature τ 0.07
Contrastive Weight λ 0.1
Max Sequence Length 512
Optimizer AdamW

Table 6: Training configuration for all models.

Contrastive Learning Framework. We em- 323

ploy a contrastive learning approach adapted from 324

the DeTeCtive framework (Guo et al., 2024), us- 325

ing the hfl/chinese-bert-wwm-ext (Cui et al., 326

2021) model as our text encoder. This model is 327

specifically chosen for its superior performance on 328

Chinese text understanding tasks and its proven ef- 329

fectiveness in capturing nuanced linguistic patterns 330

in Chinese content. 331

Following the multi-level contrastive learning 332

paradigm, this approach provides an alternative per- 333

spective for distinguishing writing styles through 334

representation learning rather than simple binary 335
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Test Scenario Metric Llama-3-8B Qwen-2.5-7B BERT-Chinese Chinese-RoBERTa Contrastive Learning

In-Domain Test

Accuracy 80.65 94.85 88.15 85.40 86.95
Precision 85.92 94.32 89.69 87.72 89.15
Recall 80.40 94.57 88.15 85.40 86.95
F1-Score 79.90 94.84 88.03 85.17 86.76
AUC-ROC 0.926 0.996 0.961 0.954 0.943

OOD-1

Accuracy 79.40 94.35 83.90 80.05 80.10
Precision 83.03 94.69 87.08 84.07 85.21
Recall 80.40 94.35 83.90 80.05 80.10
F1-Score 78.41 94.33 83.52 79.41 79.31
AUC-ROC 0.919 0.992 0.934 0.932 0.911

OOD-2

Accuracy 58.85 82.60 68.95 63.85 64.80
Precision 70.85 85.15 78.81 74.95 77.53
Recall 58.85 78.99 68.95 63.85 64.80
F1-Score 50.46 82.07 66.04 59.33 60.20
AUC-ROC 0.819 0.976 0.860 0.850 0.805

OOD-3

Accuracy 53.45 67.30 58.80 50.10 50.80
Precision 68.24 74.98 75.59 75.03 75.20
Recall 53.45 62.40 58.80 50.10 50.80
F1-Score 40.57 63.90 50.72 33.56 35.09
AUC-ROC 0.739 0.843 0.807 0.713 0.748

Table 7: Comprehensive performance comparison across all evaluation metrics and test scenarios. Shows results for
five models across four test datasets with five evaluation metrics. Bold indicates best performance for each metric
and test scenario.

Figure 3: Confusion matrix comparison of all evaluated models (Llama-3-8B, Qwen-2.5-7B, bert-base-chinese,
chinese-roberta-wwm-ext, Contrastive Learning) on the in-domain test set. Each matrix shows true/false positive
and negative counts and percentages. Qwen-2.5-7B achieves the highest accuracy and lowest misclassification,
while other models show varying error patterns.

classification. The contrastive learning objective is336

formulated as:337

Lcl = − log
exp(sim(hi, h

+
j )/τ)∑N

k=1 exp(sim(hi, hk)/τ)
(1)338

where hi is the representation of the anchor sam-339

ple, h+j is the positive sample representation, τ340

is the temperature parameter (set to 0.07), and341

sim(·, ·) denotes cosine similarity. We construct342

positive pairs from text samples of the same cate-343

gory (both human or both AI) and negative pairs344

from different categories.345

The total training objective combines contrastive346

learning with cross-entropy classification:347

Ltotal = Lce + λLcl (2)348

where λ is a weighting parameter (set to 0.1)349

and Lce is the standard cross-entropy loss. This ap-350

proach provides an additional evaluation dimension 351

by learning distinctive features through representa- 352

tion learning, offering insights into how different 353

methodological approaches handle cross-domain 354

generalization and stylistic pattern recognition. 355

4 Experiments 356

4.1 Experimental Design 357

We evaluate five detection approaches across our 358

progressive OOD framework: Llama-3-8B, Qwen- 359

2.5-7B, bert-base-chinese, chinese-roberta-wwm- 360

ext, and our contrastive learning method. All ex- 361

periments are conducted on Google Colab with hy- 362

perparameters kept as consistent as possible across 363

different model architectures (Table 6). We report 364

accuracy, precision, recall, F1-score, and AUC- 365

ROC, with results averaged over 5 independent 366

runs to ensure reliability. 367
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Figure 4: F1-score degradation across progressive out-of-distribution scenarios (In-Domain, OOD-1, OOD-2,
OOD-3). Error bars represent standard deviation across 5 independent runs.

4.2 Results368

Table 7 presents comprehensive results across369

all evaluation scenarios. The results demon-370

strate clear performance hierarchies across dif-371

ferent approaches. Qwen-2.5-7B achieves the372

strongest overall performance, maintaining 94.8%373

F1-score in-domain and demonstrating superior374

cross-domain robustness with 63.9% F1-score in375

the most challenging OOD-3 scenario.376

Our comparative analysis reveals distinct degra-377

dation patterns across approaches: fine-tuned mod-378

els like Qwen-2.5-7B show moderate degradation379

(94.8% → 63.9%), while contrastive learning ex-380

hibits steeper decline (86.8% → 35.1%). bert-base-381

chinese and chinese-roberta-wwm-ext show inter-382

mediate patterns, dropping to 50.7% and 33.6%383

respectively in OOD-3 conditions. Statistical sig-384

nificance testing using paired t-tests across 5 in-385

dependent runs confirms these performance dif-386

ferences (p < 0.001 for all pairwise comparisons387

between Qwen-2.5-7B and other methods in OOD388

scenarios).389

As shown in Figure 4, this systematic evalu-390

ation reveals distinct degradation patterns, with391

the progression from OOD-1 (model variation) to392

OOD-2 (stylistic shifts) to OOD-3 (domain trans-393

fer) demonstrating the relative impact of each distri-394

bution shift factor on detection robustness. The con-395

fusion matrix analysis (Figure 3) confirms Qwen-396

2.5-7B’s superior classification accuracy and low-397

est misclassification rates across all test scenarios.398

4.3 Visualization Analysis399

To better understand the representational properties400

of our contrastive learning approach, we conduct401

comprehensive interpretability analysis combining402

lexical feature importance and embedding visual-403

Figure 5: Chinese word cloud visualization showing
the most important lexical features for distinguishing
human-written and AI-generated e-commerce reviews.

ization. We begin with word cloud analysis to 404

identify the most discriminative linguistic features, 405

followed by t-SNE dimensionality reduction to vi- 406

sualize learned representations. 407

Building on these lexical insights, we conduct 408

embedding visualization using t-SNE (t-distributed 409

Stochastic Neighbor Embedding) dimensionality 410

reduction on text embeddings, following estab- 411

lished practices in representation learning analysis 412

for AI text detection. 413

Figure 6 shows the clustering behavior of text 414

embeddings in a 2D space. Before contrastive 415

learning training (left), human and AI-generated 416

texts show overlapping distributions with poor sep- 417

arability (Separation Index: 2.981). After applying 418

our contrastive learning framework (right), the em- 419

bedding space is reorganized achieving improved 420

class separation (Separation Index: 5.661), demon- 421

strating clearer spatial boundaries between human 422

and AI-generated content. This embedding visual- 423

ization illustrates how contrastive learning affects 424

representation space organization, complementing 425

the lexical feature analysis shown in Figure 5 and 426

providing insights into the representational changes 427

induced by different training methodologies. 428
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(a) Before contrastive learning (t-sne) (b) After contrastive learning (t-sne)

Figure 6: t-SNE visualization of text embeddings before and after contrastive learning training. Separation Index
improves from 2.981 to 5.661, indicating better class discrimination.

5 Discussion429

Our evaluation reveals distinct robustness patterns430

across detection paradigms. Fine-tuned large lan-431

guage models demonstrate superior cross-domain432

stability, with Qwen-2.5-7B showing gradual F1-433

score degradation (OOD-1: 0.5%↓ → OOD-2:434

13.5%↓ → OOD-3: 32.6%↓) compared to steeper435

declines in Chinese-specific models (bert-base-436

chinese: 5.1%↓ → 25.0%↓ → 42.4%↓) and con-437

trastive learning approaches (8.6%↓ → 30.6%↓ →438

59.6%↓). This performance hierarchy suggests that439

model scale and architectural sophistication con-440

tribute significantly to cross-domain robustness.441

The substantial decline in OOD-3 scenarios re-442

flects the inherent complexity of cross-domain443

transfer in Chinese e-commerce contexts. Mod-444

els trained on food-specific vocabulary and review445

patterns face challenges when encountering diverse446

product categories (electronics, clothing, home447

products) that exhibit different linguistic conven-448

tions and evaluation structures. This domain gap449

represents a fundamental technical challenge in AI450

text detection, where semantic feature spaces vary451

significantly across e-commerce domains, requir-452

ing domain-adaptive strategies for practical deploy-453

ment.454

6 Conclusion455

This work establishes the first systematic bench-456

mark for cross-domain robustness in Chinese AI-457

generated text detection, providing foundational in-458

frastructure for evaluating detection methods under459

realistic deployment conditions. Our findings ex-460

pose significant language-specific adaptation gaps461

in contemporary multilingual models and highlight462

the critical need for domain-adaptive training in463

Chinese commercial contexts. Future research pri- 464

orities include developing Chinese-specific adver- 465

sarial training strategies, investigating hybrid archi- 466

tectures that combine fine-tuning robustness with 467

contrastive interpretability, and extending evalua- 468

tion frameworks to emerging domains. This sys- 469

tematic approach provides methodological founda- 470

tions and empirical baselines for advancing Chi- 471

nese AI text detection research toward more robust 472

and deployable systems. 473

Limitations 474

Our evaluation framework requires substantial com- 475

putational resources and high-quality training data, 476

with potential risks of dataset leakage and anno- 477

tation errors affecting reliability. The focus on 478

e-commerce reviews limits generalization to other 479

critical domains (social media, academic, news 480

content), while the temporal evolution of Chinese 481

internet language poses ongoing adaptation chal- 482

lenges. 483

Deployment of such detection systems raises eth- 484

ical concerns including potential misclassification 485

of authentic human voices, particularly minority 486

dialects or creative writing styles, and possible mis- 487

use for content censorship. The adversarial nature 488

of this field presents recursive challenges: as de- 489

tection methods improve, generation strategies will 490

correspondingly evolve, requiring continuous sys- 491

tem updates and validation. 492
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A Prompt Engineering Strategy 672

Our controlled synthesis approach employs two 673

complementary prompt generation strategies to 674

maximize stylistic diversity while maintaining se- 675

mantic coherence. This dual-strategy framework 676

ensures comprehensive coverage of authentic re- 677

view patterns. The comprehensive statistics for our 678

prompt generation process are presented in Table 8, 679

while Tables 9 and 10 provide detailed examples 680

of the template categories used in our dual-strategy 681

approach. 682

Prompt Characteristic Value Coverage

Total Generated Prompts 10,000 100%
Unique Prompt Variants 8,333 83.3%
Profile-based Templates 5,000 50.0%
Rewrite-based Templates 5,000 50.0%
Distinct Template Patterns 20+ High diversity

Table 8: Prompt generation statistics demonstrating
comprehensive template diversity and balanced strat-
egy distribution.
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Category Templates

Direct Requests

写一个餐厅好评/差评
Write a positive/negative restaurant
review
帮我写个餐厅评价
Help me write a restaurant evalua-
tion
给餐厅写个评论/点评
Write a restaurant comment/review

Sentiment-Guided

写个正面的餐厅评价
Write a positive restaurant evalua-
tion
写一个满意的餐厅评论
Write a satisfied restaurant review
给这家餐厅写个好评
Write a favorable review for this
restaurant

Aspect-Specific

写个餐厅评价，说味道不错
Write a review mentioning good
taste
评论服务态度很好的餐厅
Review restaurant with excellent
service
点评价格合理的餐厅
Review reasonably priced restau-
rant
评价环境满意的餐厅
Review restaurant with satisfactory
environment

Table 9: Profile-based prompt templates for controlled
review generation across multiple semantic dimensions.

Strategy Templates

Style Mimicry

请基于以下真实评论重写一个
类似的餐厅评价：{review}。要
求：保持相同情感倾向，使用不
同表达方式。
Rewrite a similar restaurant review
based on: {review}. Maintain emo-
tional tone with different expres-
sions.

Content Variation

参考这个餐厅评论的风格，写一
个内容不同的评价：{review}。
注意：保持评价角度和语气一
致。
Reference this review’s style for dif-
ferent content: {review}. Maintain
consistent perspective and tone.

Stylistic Imitation

模仿以下评论的写作风格，创
作新的餐厅评价：{review}。要
求：语调和表达习惯相似。
Imitate the writing style to create
new review: {review}. Maintain
similar tone and expression pat-
terns.

Table 10: Style-transfer prompt templates for sophisti-
cated linguistic pattern replication.
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