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Abstract

Al-generated content proliferation in Chinese
e-commerce platforms faces challenges in in-
tegrity and consumer trust. While existing de-
tection methods show promising performance
within specific domains, their cross-domain ro-
bustness remains largely unexplored for Chi-
nese e-commerce reviews. We present the first
systematic cross-domain robustness evaluation
for Chinese Al-generated text detection, con-
structing a high-fidelity benchmark dataset us-
ing a systematic data generation approach and
developing a progressive out-of-distribution
evaluation framework. Through extensive ex-
periments across multiple detection approaches,
we provide systematic analysis of cross-dataset
generalization patterns. Our evaluation reveals
that fine-tuned large language models, partic-
ularly Qwen-2.5-7B, achieve superior perfor-
mance across all scenarios (94.8% F1-score in-
domain, 63.9% in extreme cross-domain con-
ditions), while contrastive learning approaches
show significant performance degradation un-
der distribution shifts (F1-score declining from
86.8% to 35.1%). These findings provide cru-
cial insights into detection paradigm trade-
offs and cross-domain robustness challenges
in practical deployment.

1 Introduction

In 1950, Alan Turing proposed a test to evaluate ma-
chine intelligence: if a human evaluator could not
distinguish between responses from a machine and
a human, the machine could be considered intelli-
gent (Turing, 1950). Today, as large language mod-
els (LLMs) achieve unprecedented fluency, we face
the inverse challenge: distinguishing Al-generated
content from human writing has become increas-
ingly difficult, raising critical concerns about the
integrity of digital information.

The advancement of modern LLMs, from GPT-
3’s few-shot learning capabilities (Brown et al.,
2020) to GPT-4’s enhanced reasoning (OpenAl,

2023), has fundamentally transformed content cre-
ation capabilities, generating text that closely mir-
rors human writing in coherence, contextual rele-
vance, and stylistic nuance. As recent comprehen-
sive evaluations demonstrate (Chang et al., 2024),
this progress presents significant challenges for Al-
generated text detection, where existing methods
suffer from poor generalization ability when de-
ployed across different domains, models, or text
styles. Recent work has highlighted these funda-
mental limitations (Doughman et al., 2025), show-
ing that traditional approaches relying heavily on
binary classification frameworks often overfit to
specific training distributions and fail when con-
fronted with out-of-distribution scenarios, as the
detection task extends far beyond simple "Al vs
humans" classification (Ji et al., 2024).

The proliferation of Al-generated content poses
particular risks in Chinese e-commerce platforms,
where authenticity directly impacts consumer trust
and market fairness, as consumer reviews signifi-
cantly influence purchasing decisions through their
linguistic and emotional expression patterns (Kron-
rod and Danziger, 2013). Chinese e-commerce re-
views present unique challenges including complex
linguistic characteristics (emojis, internet slang, di-
alectal variations), text brevity (100-500 charac-
ters), and domain-specific terminology that differ
substantially from general text domains. Current
detection methods inadequately address these char-
acteristics, and existing datasets primarily focus on
English academic or news domains. While datasets
like ASAP (Bu et al., 2021) (46,730 Chinese restau-
rant reviews with aspect sentiments) provide valu-
able Chinese review resources for sentiment anal-
ysis, they lack the Al-generated counterparts nec-
essary for detection research, leaving a significant
gap for Chinese e-commerce applications.

Most importantly, the literature lacks system-
atic evaluation of cross-dataset generalization ca-
pabilities for Chinese Al text detection. While



benchmarks like MGTBench (He et al., 2023) and
M4GT-Bench (Wang et al., 2024) have established
evaluation frameworks for Al-generated text detec-
tion, and recent work like MAGE (Li et al., 2024)
has highlighted the critical importance of out-of-
distribution robustness in detection systems, their
focus remains primarily on English domains. The
robustness of detection approaches under out-of-
distribution conditions, particularly across differ-
ent generation models, text styles, and domains,
remains largely unexplored in the Chinese context.

To address these critical gaps, our work makes
the following contributions:

* First comprehensive Chinese e-commerce
Al detection benchmark with systematic
out-of-distribution (OOD) evaluation. We
construct the first high-fidelity Chinese e-
commerce Al detection dataset using a sys-
tematic data generation approach, with sys-
tematic LLM evaluation establishing optimal
generation models. Our multi-level OOD eval-
uation framework provides foundational in-
frastructure for fine-grained cross-dataset gen-
eralization analysis.

¢ Systematic comparative evaluation reveal-
ing performance trade-offs across detec-
tion paradigms. We provide the first system-
atic comparison of contemporary detection ap-
proaches including fine-tuned pre-trained lan-
guage models (PLMs) and contrastive learn-
ing methods under progressive OOD scenar-
i0s. Our evaluation reveals that fine-tuned
models, particularly Qwen-2.5-7B, achieve
superior robustness across all scenarios, while
contrastive learning approaches show signif-
icant limitations under extreme distribution
shifts.

¢ Empirical insights into cross-domain ro-
bustness patterns and practical deployment
considerations. Through comprehensive ex-
periments, we establish performance bench-
marks and identify fundamental challenges in
cross-domain Al text detection for Chinese
e-commerce applications, providing crucial
insights for practical system deployment and
future research directions.

2 Related Work

The detection of Al-generated text has evolved
from early statistical methods to sophisticated deep

learning approaches, with comprehensive surveys
documenting this rapid progression (Wu et al.,
2025). Current state-of-the-art methods primar-
ily rely on fine-tuning pre-trained language models
like BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) for binary classification, with recent
approaches integrating linguistic features to en-
hance classification performance (Yadav and M
C, 2024). However, a fundamental challenge in
this field is the poor out-of-distribution (OOD) gen-
eralization of detection systems. Models trained
on specific domains or generation models often
fail when tested on different distributions, as they
learn spurious correlations rather than fundamen-
tal authorship markers (Wang et al., 2024). Recent
studies have further highlighted the vulnerability of
these detectors to adversarial perturbations (Huang
et al., 2024), while promising work on restricted
embeddings shows potential for improving robust-
ness (Kuznetsov et al., 2024).

The generalization problem is particularly se-
vere in Al text detection, where traditional detec-
tors tend to overfit to specific training distributions
and perform poorly when confronted with different
generation models, text styles, or domains. Re-
search on syntactic template detection has revealed
that generated texts often exhibit systematic pat-
terns that may not generalize across different con-
texts (Shaib et al., 2024). While benchmarks like
M4GT-Bench (Wang et al., 2024) have highlighted
these issues, and multilingual detection efforts have
emerged (Agrahari et al., 2025), systematic evalu-
ation frameworks for cross-domain robustness re-
main limited, especially for non-English languages.

Contrastive learning has shown promising re-
sults in various NLP tasks by learning robust rep-
resentations through contrasting positive and neg-
ative sample pairs (Jaiswal et al., 2021). Recent
work has explored contrastive learning for Al text
detection, with DetectGPT (Mitchell et al., 2023)
demonstrating zero-shot detection capabilities. No-
tably, He et al. (Guo et al., 2024) proposed DeTeC-
tive, a multi-level contrastive learning framework
that argues the key to Al text detection lies in dis-
tinguishing writing styles rather than simple binary
classification.

Despite significant attention to Al text detection,
research specifically targeting Chinese text remains
limited. The foundation for Chinese NLP has been
strengthened by advances in pre-trained models
like ERNIE (Sun et al., 2019) and Chinese BERT
with whole word masking (Cui et al., 2021), yet



their application to Al text detection remains un-
derexplored. Chinese e-commerce reviews present
unique challenges including complex morphologi-
cal structures, widespread use of emojis and inter-
net slang, and domain-specific terminology. While
research on utilizing reviews for recommendation
justification (Ni et al., 2019) demonstrates the im-
portance of review authenticity in e-commerce con-
texts, existing datasets like HC3 (Guo et al., 2023)
primarily focus on academic domains, leaving a
significant gap for Chinese e-commerce applica-
tions that our work addresses.

3 Methodology

In this work, we systematically address the criti-
cal challenge of cross-domain robustness in Chi-
nese Al-generated text detection. Our methodology
comprises two principal contributions: (1) the con-
struction of a high-fidelity benchmark dataset with
systematic out-of-distribution evaluation frame-
work, and (2) comprehensive comparative evalua-
tion of multiple detection paradigms including fine-
tuned models and contrastive learning approaches.
We provide the first systematic evaluation of detec-
tion methods under progressive OOD conditions,
enabling fine-grained analysis of generalization pat-
terns in Chinese Al text detection.

3.1 Dataset Construction and Evaluation
Framework

A key limitation of existing detection benchmarks
is the "fidelity gap" that arises from using generic
prompts, which fail to replicate the nuanced, aspect-
driven nature of real-world product reviews. To
overcome this, we developed a "controlled synthe-
sis" pipeline to generate a parallel corpus where
Al-generated reviews are thematically and senti-
mentally aligned with human-written counterparts,
compelling the detector to learn stylistic rather than
topic-based cues.

Realistic Prompt Generation.

The dataset construction process begins with the
ASAP corpus (Bu et al., 2021), a large-scale col-
lection of Chinese product reviews annotated with
fine-grained aspect and sentiment labels. For each
human-written review, the corresponding meta-
data, including overall star rating and aspect-level
sentiment polarities (e.g., "Taste#Flavor," "Ser-
vice#Queueing"), are extracted to form a compre-
hensive "emotional-semantic profile." These struc-
tured profiles are then transformed into diverse,

Algorithm 1: Realistic Prompt Generation for Con-
trolled Synthesis

procedure GeneratePrompts(Dpyman)

Input: Dpyman, dataset of human reviews with aspect
sentiments
for each review R; in Dpyman do

Step 1 - Create Profile:

P «+ Extract aspect sentiments from R;

key < Sort and join elements of P

R;.profile + Simplify(key)

Step 2 - Generate Prompt:

details <+ Parse(R;.profile)

Taspecty Tsent, Tother <— Generate templates using
details, R;.star

if Tospect # 0 and random() < 0.7 then

prompt <— RandomChoice(T,spect)
else
prompt <— RandomChoice(Tyspect UTsent UTother)

end if

R;.prompt < prompt
end for
return StratifiedSample(Dpyman, Size=1000)

Table 1: Realistic Prompt Generation Algorithm for
Controlled Synthesis

natural-language prompts using a rule-based gen-
erator with multiple template variations, ensuring
stylistic diversity and naturalness. This approach
guarantees that the resulting Al-generated reviews
are not only fluent but also maintain a semantically
isomorphic relationship with their human counter-
parts in both topical coverage and sentiment distri-
bution, thereby greatly reducing the adverse impact
of structural and emotional imbalance on the Al-
generated text detection task.

Generation Model Selection and Chinese
LLM Benchmark. To ensure the fidelity and di-
versity of the Al-generated corpus while minimiz-
ing model-specific artifacts, we conducted the first
systematic evaluation of mainstream LLMs for Chi-
nese e-commerce review generation. This bench-
mark evaluation represents a significant contribu-
tion, providing authoritative performance rankings
of contemporary LLMs on Chinese text generation
tasks.

Four state-of-the-art large language models
(GPT-40-mini, deepseek-chat-v3-0324, qwen-
turbo, and gemini-2.0-flash) were each tasked with
generating 1,000 reviews using a standardized
prompt set. This systematic comparison provides
the first comprehensive assessment of these mod-
els’ capabilities in generating authentic Chinese
e-commerce content.

The resulting corpora were evaluated with the
metrics reported in Table 2: Self-BLEU (Alihos-
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Figure 1: An overview of the Dataset Generation pipeline

Model TTR Avg Length Self-BLEU Self-BERTScore JSD vs Human Rank
Human (Reference) 0.0923 283.23 0.1214 0.0007 0.0000 -
deepseek-chat-v3-0324  0.0376 202.64 0.5258 0.0074 0.4131 1
qwen-turbo 0.0281 183.11 0.5932 0.0097 0.4188 2
gemini-2.0-flash-001 0.0285 102.40 0.5842 0.0100 0.4196 3
gpt-40-mini 0.0216 157.39 0.6281 0.0146 0.4527 4

Table 2: Comprehensive benchmark evaluation of mainstream LLMs for Chinese e-commerce review generation.

Divergence

M Gemini-2.0-Flash DeepSeek-Chat-v3 [l Qwen-Turbo [l GPT-40-Mini

Figure 2: Model Performance Comparison (Lower val-
ues indicate closer similarity to human writing)

seini et al., 2019) (diversity), Type-Token Ratio
(TTR, lexical richness), average review length, Self-
BERTScore (Zhang et al., 2020) (semantic diver-
sity), and Jensen-Shannon Divergence (JSD, distri-
butional similarity to human writing). The detailed
descriptions of these metrics are provided in Ta-
ble 3.

As shown in Figure 2 and Table 2, deepseek-

chat-v3-0324 consistently achieves the best overall
balance across these criteria, producing text that
most closely matches human review characteristics
in both lexical and structural aspects.

Dataset Composition and Statistics. The fi-
nal dataset comprises training, validation, and test-
ing splits, plus three progressive out-of-distribution
(OOD) test sets for systematic robustness evalu-
ation. The training, validation, and standard test
sets contain Al-generated texts produced by the
selected model (DeepSeek-Chat-v3) for in-domain
evaluation. The three OOD test sets (OOD-1, OOD-
2, 00D-3) are designed to incrementally stress-test
different aspects of model generalization: model
variation, stylistic robustness, and domain transfer.
Detailed statistics are provided in Table 4, with the
progressive OOD evaluation design presented in
Table 5.

The progressive nature of these test sets allows
for fine-grained analysis of performance degrada-
tion patterns, enabling identification of specific
vulnerabilities in detection models and providing
insights into the relative importance of different
robustness factors.



Metric Description Test Set Distribution Shift Factors
TTR Type-Token Ratio, measuring lexical In-Domain  Baseline: Same generation model
richness. Higher values suggest more (Deepseek-Chat-v3), domain (food re-
varied vocabulary. views), and original text style as training
Avg. Len. Average review length (in characters). data.
Closer to human indicates better fi- 0O0OD-1 + Model Shift: Multiple generation mod-
delity. els (GPT-4.1, Gemini-2.5-Flash, Deepseek-
Self-BLEU (n=4) Measures intra-text similarity within Chat-v3, Qwen—Tur‘b(.)) while maintaining
food domain and original style.
the generated corpus. Lower scores
indicate higher diversity. 0OO0D-2 + Style Shift: OOD-1 conditions plus Al-
Self-BERTScore ~ Semantic similarity among gener- based paraphrasmg t.hr.ough th same qu_
. > =, els to introduce stylistic variations and in-
ated reviews. Lower values indicate . ;
. R crease detection difficulty.
higher semantic diversity.
JSD vs Human Jensen-Shannon Divergence between 0OD-3 + Domain .Shlft: OOD-2 condmor}s plus
Lo AU cross-domain transfer from food reviews to
the linguistic feature distributions of . .
general e-commerce categories (electronics,
generated and human corpora. Lower . .
. . . clothing, home products) using Amazon
values indicate higher fidelity. o :
multilingual review corpus (Keung et al.,
Rank Overall ranking based on weighted 2020).

aggregation of all metrics.

Table 3: Evaluation metrics for the generation model
selection.

Dataset Human Machine Total
Training 8,000 8,000 16,000
Validation 1,000 1,000 2,000
Testing 1,000 1,000 2,000
Testing (OOD-1) 1,000 1,000 2,000
Testing (OOD-2) 1,000 1,000 2,000
Testing (OOD-3) 1,000 1,000 2,000
Overall 13,000 13,000 26,000

Table 4: Statistics of the constructed dataset.

3.2 Detection Framework and Baseline
Methods

We evaluate multiple detection approaches to pro-
vide comprehensive comparative analysis of differ-
ent paradigms and their relative performance under
cross-domain conditions.

Baseline Detection Models. We compare
against representative detection paradigms includ-
ing fine-tuned pre-trained language models (PLMs)
and contemporary large language models:

* Fine-tuned PLMs: We evaluate bert-base-
chinese and chinese-roberta-wwm-ext, specif-
ically designed for Chinese text understand-
ing, as well as multilingual models including
Llama-3-8B and Qwen-2.5-7B. These models
represent the current state-of-the-art in super-
vised fine-tuning approaches for text classifi-
cation.

* Training Strategy: All baseline models are

Table 5: Progressive out-of-distribution evaluation
framework with cumulative distribution shift factors.

fine-tuned using standard binary classifica-
tion objectives on our training data, where
Al-generated content is labeled as class 1 and
human-written content as class 0. We ensure
fair comparison by using consistent hyperpa-
rameters across different model architectures.
Detailed training configurations are presented

in Table 6.
Parameter Value
Learning Rate 2e-5
Batch Size 8
Max Epochs 5
Temperature 7 0.07
Contrastive Weight \ 0.1
Max Sequence Length 512
Optimizer AdamW

Table 6: Training configuration for all models.

Contrastive Learning Framework. We em-
ploy a contrastive learning approach adapted from
the DeTeCtive framework (Guo et al., 2024), us-
ing the hfl/chinese-bert-wwm-ext (Cui et al.,
2021) model as our text encoder. This model is
specifically chosen for its superior performance on
Chinese text understanding tasks and its proven ef-
fectiveness in capturing nuanced linguistic patterns
in Chinese content.

Following the multi-level contrastive learning
paradigm, this approach provides an alternative per-
spective for distinguishing writing styles through
representation learning rather than simple binary



Test Scenario Metric Llama-3-8B  Qwen-2.5-7B BERT-Chinese Chinese-RoBERTa Contrastive Learning
Accuracy 80.65 94.85 88.15 85.40 86.95
Precision 85.92 94.32 89.69 87.72 89.15
In-Domain Test Recall 80.40 94.57 88.15 85.40 86.95
F1-Score 79.90 94.84 88.03 85.17 86.76
AUC-ROC 0.926 0.996 0.961 0.954 0.943
Accuracy 79.40 94.35 83.90 80.05 80.10
Precision 83.03 94.69 87.08 84.07 85.21
OOD-1 Recall 80.40 94.35 83.90 80.05 80.10
F1-Score 78.41 94.33 83.52 79.41 79.31
AUC-ROC 0.919 0.992 0.934 0.932 0.911
Accuracy 58.85 82.60 68.95 63.85 64.80
Precision 70.85 85.15 78.81 74.95 77.53
0O0D-2 Recall 58.85 78.99 68.95 63.85 64.80
F1-Score 50.46 82.07 66.04 59.33 60.20
AUC-ROC 0.819 0.976 0.860 0.850 0.805
Accuracy 53.45 67.30 58.80 50.10 50.80
Precision 68.24 74.98 75.59 75.03 75.20
OOD-3 Recall 53.45 62.40 58.80 50.10 50.80
F1-Score 40.57 63.90 50.72 33.56 35.09
AUC-ROC 0.739 0.843 0.807 0.713 0.748

Table 7: Comprehensive performance comparison across all evaluation metrics and test scenarios. Shows results for
five models across four test datasets with five evaluation metrics. Bold indicates best performance for each metric
and test scenario.

RoBERTa-Chinese
Accuracy: 85.4%

Liama-3-88
Accuracy: 80.7%

Qwen-2.5-7B
Accuracy: 94.8%
0 00

BERT-base-Chinese
Accuracy: 88.2%

Contrastive Learning
Accuracy: 87.0%

B

£ < £ < &l < G

&

Percentage (%)

Percentage (%)

True Label

True Label
True Label

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

uman AG uman ‘A-Generated
Predicted Label Predicted Label

Figure 3: Confusion matrix comparison of all evaluated models (Llama-3-8B, Qwen-2.5-7B, bert-base-chinese,
chinese-roberta-wwm-ext, Contrastive Learning) on the in-domain test set. Each matrix shows true/false positive
and negative counts and percentages. Qwen-2.5-7B achieves the highest accuracy and lowest misclassification,

while other models show varying error patterns.

classification. The contrastive learning objective is
formulated as:

exp(sim(h;, hj)/T)

SN exp(sim(hy, hy)/7)

where h; is the representation of the anchor sam-
ple, h;r is the positive sample representation, 7
is the temperature parameter (set to 0.07), and
sim(+, -) denotes cosine similarity. We construct
positive pairs from text samples of the same cate-
gory (both human or both AI) and negative pairs
from different categories.

The total training objective combines contrastive
learning with cross-entropy classification:

Ly =—lo (1)

Ltotal = »Cce + A‘Ccl (2)

where )\ is a weighting parameter (set to 0.1)
and L. is the standard cross-entropy loss. This ap-

proach provides an additional evaluation dimension
by learning distinctive features through representa-
tion learning, offering insights into how different
methodological approaches handle cross-domain
generalization and stylistic pattern recognition.

4 Experiments

4.1 Experimental Design

We evaluate five detection approaches across our
progressive OOD framework: Llama-3-8B, Qwen-
2.5-7B, bert-base-chinese, chinese-roberta-wwm-
ext, and our contrastive learning method. All ex-
periments are conducted on Google Colab with hy-
perparameters kept as consistent as possible across
different model architectures (Table 6). We report
accuracy, precision, recall, F1-score, and AUC-
ROC, with results averaged over 5 independent
runs to ensure reliability.



Model Performance Degradation: F1-Score Across Test Scenarios
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Figure 4: Fl-score degradation across progressive out-of-distribution scenarios (In-Domain, OOD-1, OOD-2,
OOD-3). Error bars represent standard deviation across 5 independent runs.

rd Cloud Analysis:

4.2 Results

Table 7 presents comprehensive results across
all evaluation scenarios. The results demon-
strate clear performance hierarchies across dif-
ferent approaches. Qwen-2.5-7B achieves the
strongest overall performance, maintaining 94.8%
F1-score in-domain and demonstrating superior
cross-domain robustness with 63.9% F1-score in
the most challenging OOD-3 scenario.

Our comparative analysis reveals distinct degra-
dation patterns across approaches: fine-tuned mod-
els like Qwen-2.5-7B show moderate degradation
(94.8% — 63.9%), while contrastive learning ex-
hibits steeper decline (86.8% — 35.1%). bert-base-
chinese and chinese-roberta-wwm-ext show inter-
mediate patterns, dropping to 50.7% and 33.6%
respectively in OOD-3 conditions. Statistical sig-
nificance testing using paired t-tests across 5 in-
dependent runs confirms these performance dif-
ferences (p < 0.001 for all pairwise comparisons
between Qwen-2.5-7B and other methods in OOD
scenarios).

As shown in Figure 4, this systematic evalu-
ation reveals distinct degradation patterns, with
the progression from OOD-1 (model variation) to
OOD-2 (stylistic shifts) to OOD-3 (domain trans-
fer) demonstrating the relative impact of each distri-
bution shift factor on detection robustness. The con-
fusion matrix analysis (Figure 3) confirms Qwen-
2.5-7B’s superior classification accuracy and low-
est misclassification rates across all test scenarios.

4.3 Visualization Analysis

To better understand the representational properties
of our contrastive learning approach, we conduct
comprehensive interpretability analysis combining
lexical feature importance and embedding visual-
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Figure 5: Chinese word cloud visualization showing
the most important lexical features for distinguishing
human-written and Al-generated e-commerce reviews.

ization. We begin with word cloud analysis to
identify the most discriminative linguistic features,
followed by t-SNE dimensionality reduction to vi-
sualize learned representations.

Building on these lexical insights, we conduct
embedding visualization using t-SNE (t-distributed
Stochastic Neighbor Embedding) dimensionality
reduction on text embeddings, following estab-
lished practices in representation learning analysis
for Al text detection.

Figure 6 shows the clustering behavior of text
embeddings in a 2D space. Before contrastive
learning training (left), human and Al-generated
texts show overlapping distributions with poor sep-
arability (Separation Index: 2.981). After applying
our contrastive learning framework (right), the em-
bedding space is reorganized achieving improved
class separation (Separation Index: 5.661), demon-
strating clearer spatial boundaries between human
and Al-generated content. This embedding visual-
ization illustrates how contrastive learning affects
representation space organization, complementing
the lexical feature analysis shown in Figure 5 and
providing insights into the representational changes
induced by different training methodologies.
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Figure 6: t-SNE visualization of text embeddings before and after contrastive learning training. Separation Index
improves from 2.981 to 5.661, indicating better class discrimination.

5 Discussion

Our evaluation reveals distinct robustness patterns
across detection paradigms. Fine-tuned large lan-
guage models demonstrate superior cross-domain
stability, with Qwen-2.5-7B showing gradual F1-
score degradation (OOD-1: 0.5%] — OOD-2:
13.5%] — OOD-3: 32.6%.) compared to steeper
declines in Chinese-specific models (bert-base-
chinese: 5.1%| — 25.0%) — 42.4%]) and con-
trastive learning approaches (8.6%, — 30.6%] —
59.6%). This performance hierarchy suggests that
model scale and architectural sophistication con-
tribute significantly to cross-domain robustness.

The substantial decline in OOD-3 scenarios re-
flects the inherent complexity of cross-domain
transfer in Chinese e-commerce contexts. Mod-
els trained on food-specific vocabulary and review
patterns face challenges when encountering diverse
product categories (electronics, clothing, home
products) that exhibit different linguistic conven-
tions and evaluation structures. This domain gap
represents a fundamental technical challenge in Al
text detection, where semantic feature spaces vary
significantly across e-commerce domains, requir-
ing domain-adaptive strategies for practical deploy-
ment.

6 Conclusion

This work establishes the first systematic bench-
mark for cross-domain robustness in Chinese Al-
generated text detection, providing foundational in-
frastructure for evaluating detection methods under
realistic deployment conditions. Our findings ex-
pose significant language-specific adaptation gaps
in contemporary multilingual models and highlight
the critical need for domain-adaptive training in

Chinese commercial contexts. Future research pri-
orities include developing Chinese-specific adver-
sarial training strategies, investigating hybrid archi-
tectures that combine fine-tuning robustness with
contrastive interpretability, and extending evalua-
tion frameworks to emerging domains. This sys-
tematic approach provides methodological founda-
tions and empirical baselines for advancing Chi-
nese Al text detection research toward more robust
and deployable systems.

Limitations

Our evaluation framework requires substantial com-
putational resources and high-quality training data,
with potential risks of dataset leakage and anno-
tation errors affecting reliability. The focus on
e-commerce reviews limits generalization to other
critical domains (social media, academic, news
content), while the temporal evolution of Chinese
internet language poses ongoing adaptation chal-
lenges.

Deployment of such detection systems raises eth-
ical concerns including potential misclassification
of authentic human voices, particularly minority
dialects or creative writing styles, and possible mis-
use for content censorship. The adversarial nature
of this field presents recursive challenges: as de-
tection methods improve, generation strategies will
correspondingly evolve, requiring continuous sys-
tem updates and validation.
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A Prompt Engineering Strategy

Our controlled synthesis approach employs two
complementary prompt generation strategies to
maximize stylistic diversity while maintaining se-
mantic coherence. This dual-strategy framework
ensures comprehensive coverage of authentic re-
view patterns. The comprehensive statistics for our
prompt generation process are presented in Table 8,
while Tables 9 and 10 provide detailed examples
of the template categories used in our dual-strategy
approach.

Prompt Characteristic Value Coverage
Total Generated Prompts 10,000 100%
Unique Prompt Variants 8,333 83.3%
Profile-based Templates 5,000 50.0%
Rewrite-based Templates 5,000 50.0%

Distinct Template Patterns 20+ High diversity

Table 8: Prompt generation statistics demonstrating
comprehensive template diversity and balanced strat-
egy distribution.
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Category Templates

E— BRI/

Write a positive/negative restaurant

. review

Direct Requests WIS NE T
Help me write a restaurant evalua-
tion
BT BN FR S0F
Write a restaurant comment/review
G IERAET
Write a positive restaurant evalua-
tion
5—MWEET L
Write a satisfied restaurant review
BIXFKBITENIFT
Write a favorable review for this
restaurant
SNETN, HHGEEE
Write a review mentioning good
taste
IR RS S ERIFHRT

Review restaurant with excellent

Sentiment-Guided

Aspect-Specific

service

RPN & ENET

Review reasonably priced restau-
rant

NIRRT

Review restaurant with satisfactory
environment

Table 9: Profile-based prompt templates for controlled
review generation across multiple semantic dimensions.

Strategy Templates

BETUTEXIEREES —
Style Mimicry %M HYBITEE(r: (review) . &
K PREFHERIF RS, A
FFATT= -
Rewrite a similar restaurant review
based on: {review}. Maintain emo-
tional tone with different expres-
sions.

SEXMRITFRRE, §—
Content Variation /I\ ZE@Z: B E\/‘] P {reyiew} ’

TR REFEHAEMES—

Y

Reference this review’s style for dif-

ferent content: {review}. Maintain

consistent perspective and tone.

B LTS R, Bl

Stylistic Imitation «E%ﬁﬁ /\]:%Eill—{m: {review} . &
K: EIHAFEIL S BAELL -
Imitate the writing style to create
new review: {review}. Maintain
similar tone and expression pat-
terns.

Table 10: Style-transfer prompt templates for sophisti-
cated linguistic pattern replication.
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