
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Meta-optimization for Deep Learning via Nonstochastic Control

Anonymous Authors1

Abstract

Hyperparameter tuning in mathematical optimiza-
tion is a notoriously difficult problem. Recent
tools from online control give rise to a provable
methodology for hyperparameter tuning in con-
vex optimization called meta-optimization. In
this work, we extend this methodology to noncon-
vex optimization and the training of deep neural
networks. We present an algorithm for noncon-
vex meta-optimization that leverages the reduc-
tion from nonconvex optimization to convex opti-
mization, and investigate its applicability for deep
learning tasks on academic-scale datasets.

1. Introduction
Hyperparameter tuning for deep learning is notoriously dif-
ficult and resource-consuming. It is therefore an extremely
well-studied problem, with numerous approaches including
Bayesian optimization (Snoek et al., 2012), bandit algo-
rithms (Li et al., 2018), meta-gradient methods (Baydin
et al., 2017), and spectral methods (Hazan et al., 2018).

A recent paradigm based on online control (Chen & Hazan,
2023) gives the first provable guarantees for hyperparemeter
tuning for smooth convex optimization. There are several
novel aspects to this approach: (1) Instead of learning the
hyperparameters in one shot, the goal is to repeatedly solve
the given optimization problem, learning from experience
and converging to the performance of the best hyperparame-
ters. (2) Parameters are automatically tuned by a feedback
control algorithm based on novel techniques from online
control.

Convexity is important for meta optimization since it is
based on regret minimization, which is in general intractable
for nonconvex problems. Regret minimization for the con-
vex objectives of meta-optimization allows convergence to
the best method in hindsight, and it is not immediately clear

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

what the nonconvex analogue is.

In this work, we extend the online control based framework
of meta-optimization to nonconvex optimization. Given the
framework’s guarantees for smooth convex functions, we
leverage a reduction from nonconvex to convex optimization
inspired by (Agarwal et al., 2019). We propose an algorithm
that can learn to adapt to the problem over many episodes
and eventually reach an approximate stationary point. As
the number of episodes increases, it converges at a rate that
is determined by the performance of the best optimization
algorithm from a class of methods.

We conduct experiments on academic-scale workloads, in-
cluding image classification and machine translation. These
initial experiments demonstrate the applicability of the al-
gorithm. In addition, we ablate over several design choices
and empirically verify our assumptions.

1.1. Related work

Parameter-free optimization Parameter-free optimiza-
tion methods are adaptations of first-order methods that
remove the need to tune certain hyperparameters, such as
the learning rate. Methods in this space include coin-betting
(Orabona & Pál, 2016), adaptation to the diameter of the
decision set (Defazio & Mishchenko, 2023), and many more
(Ivgi et al., 2023), (Cutkosky et al., 2024), (Lu et al., 2022).
The meta-optimization approach is more general in two as-
pects: (1) it attempts to learn the best algorithm for specific
objective functions, rather than a class of functions (for
example smooth functions with a specific smoothness pa-
rameter) (2) for quadratic problems, it has guarantees over
a larger class of methods, including precoditioned methods
with a fixed precoditioner. However, it is not parameter-free
since there are tunable paramters in the method.

Control for optimization Control and optimization are
closely related fields, starting from Lyapunov’s work and
its application to the design and analysis of optimization
algorithms, see (Chen & Hazan, 2023) for more background.
(Lessard et al., 2016) apply control theory to the analysis
of optimization algorithms on a single problem instance,
giving a general framework for obtaining convergence guar-
antees for a variety of gradient-based methods. (Casgrain
& Kratsios, 2021) study the characterization of the regret-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Meta-optimization for Deep Learning

optimal algorithm given an objective function, using a value
function-based approach motivated by optimal control. Our
work builds upon (Chen & Hazan, 2023), which studies an
online control based methodology for regret minimization
and apply it to convex optimization.

2. Preliminaries
Meta-optimization In meta-optimization (Chen & Hazan,
2023), we are given a sequence of optimization problems,
called episodes. The goal is to design an algorithm that, over
many episodes , can perform as well as the best algorithm
in a benchmark algorithm class. We denote the number of
episodes as N , and in each episode, we perform T steps
of optimization. Since the given problems are solved in-
dividually, we assume that at the beginning of an episode,
the iterate is reinitialized to an arbitrary starting point xi,1.
(Chen & Hazan, 2023) proposes a method based on online
control, and guarantees that over N episodes, the method
converges to the performance of the best first-order gradient
method from a general class of methods.

Extension to nonconvex stochastic optimization We ex-
tend the meta-optimization framework to nonconvex op-
timization in the finite-sum setting. Denote the sequence
of N objective functions as {fi}Ni=1, in this setting, each
function is a finite sum of n nonconvex functions :

fi(x) =
1

n

n∑
j=1

fi,j(x).

In each episode, we are given an objective function fi, and
at each time step, we have access to a mini-batch of fi,j’s.
Notably, this setting formalizes the problem of neural net-
work training, where the objective function is the average
loss on training examples.

The goal of stochastic nonconvex optimization is to obtain
an ε-stationary point in expectation for each objective func-
tion: an xi such that E [∥∇fi(xi)∥] ≤ ε for every i ∈ [N].
The expectation is taken over the randomness of the mini-
batches and possibly the optimization algorithm. As is
standard in the literature, we assume each fi,j is smooth
and has bounded function value.

Definition 1. We say a function is β-smooth if for every
x, y, ∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥.

Assumption 1. For all i, j, 0 ≤ fi,j(x) ≤ M for all x, and
fi,j is β-smooth.

In episode i, at time t (denoted as step (i, t)), an optimiza-
tion algorithm A chooses a point xi,t ∈ Rd. Then it receives
a mini-batch of examples Bi,t of size b, and suffers the non-
convex cost fi,t(xi,t) =

1
b

∑
j∈Bi,t

fi,j(xi,t). The protocol
of this setting is formally defined in Algorithm 2 in the

appendix. Our goal is to design an algorithm A whose con-
vergence rate for finding an approximate stationary point
approaches that of the best algorithm in a benchmark class.

Reduction from nonconvex to convex optimization It is
known that deterministic non-convex optimization can be
reduced to solving a sequence of strongly convex problems
(Agarwal et al., 2019; Paquette et al., 2018; Wang & Srebro,
2019). Each of the sub-problems in this sequence regular-
izes the original nonconvex function with the ℓ2 regularizer,
so that the sub-problem is strongly convex. The reduction is
stated in Algorithm 3 in the appendix.

3. Algorithm and guarantees
We leverage the reduction from nonconvex to convex opti-
mization to design our algorithm. The reduction shows that
if one can minimize a sequence of strongly convex prob-
lems, then an approximate stationary point can be found
among these minimizers. Using this framework, we can
apply convex meta-optimization to the sequence of strongly
convex functions and obtain a method whose convergence
is characterized by the performance of the best method on
that sequence of strongly convex functions. This guarantee
is different from the meta-optimization guarantee one can
achieve in convex optimization through regret minimization.
In general, regret minimization for nonconvex functions is
computationally intractable, and alternative notions of regret
were introduced in (Hazan et al., 2017).

Algorithm 1 Nonconvex stochastic meta-optimization
Require: episode number N , epoch number K, inner step

number S such that KS = T , smoothness parame-
ter β, initial points {xi,1}i, convex meta-optimization
algorithm A.

1: for i = 1, . . . , N do
2: Re-initialize iterate to xi,1.
3: for k = 1, . . . ,K do
4: Set xi,k,1 = xi,k and denote fi,k(x) = fi(x) +

β∥x− xi,k∥2 as the regularized objective.
5: for s = 1, . . . , S do
6: Play xi,k,s and receive a batch of examples

Bi,k,s of size b.
7: Define fi,k,s(x) = 1

b

∑
j∈Bi,k,s

fi,j(x) +

β∥x− xi,k∥2.
8: Update xi,k,s+1 = A(f1,1,1, . . . , fi,k,s).

9: Update xi,k+1 = 1
S

∑S
s=1 xi,k,s.

We present the guarantee of our main algorithm, Algorithm
1, in the theorem below. The class of benchmark algorithms
π contains methods whose updates are linear functions of
past gradients. If the losses are quadratic, it can simulate
first-order gradient-based methods such as gradient descent,

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Meta-optimization for Deep Learning

momentum, and preconditioned methods. Due to limited
space, we defer additional assumptions and technical details
to Appendix B.
Theorem 2. Let x∗

i,k be a minimizer of fi,k, and let g2k =
1
K

∑K
k=1 ∥fi(xi,k)∥2 be the average squared gradient norm.

Under Assumptions 1, 2, and 4, using the bandit meta-
optimization algorithm (Algorithm 4 in appendix) as A in
Algorithm 1 yields the following guarantee:

E

 1

N

N∑
j=1

g2k

 ≤ O

(
1

K

)
+ Õ((NKS)−

1
4)

+
6β

NKS
min
π∈Π

E

[
N∑
i=1

K∑
k=1

S∑
s=1

(
fi,k,s(x

π
i,k,s)− fi,k(x

∗
i,k)
)]

.

Note that the last term in the guarantee is at least of order
O(1

S), since the iterates are reset for every k and i. As
N grows large, the convergence rate is thus dominated by
O(1

K)+O(1
S), and since T = KS, we set K,S = O(

√
T).

Under this choice of K and S, the convergence rate is con-
sistent with the rate of SGD. However, it is possible to refine
the bound for certain cases, as we show in the appendix.

4. Experiments
We run experiments on three deep learning workloads of
increasing scale: MNIST handwritten digit recognition,
CIFAR-10 image classification, and WMT-17 English-to-
German machine translation. On each dataset, we apply a
fundamental deep learning architecture (MLP, CNN, and
transformer, respectively) and compare our method against
the common deep learning optimization techniques. We
train in two optimization settings: gradient descent on a
fixed batch (i.e. fi,j ≡ fi for a fixed fi) and stochas-
tic gradient descent (i.e. a minibatch of fi,j’s is sampled
i.i.d. each step). For the methods labeled ”ours”, we
make practical modifications to Algorithm 1 with the con-
siderations mentioned in Appendix E.1 to arrive at Algo-
rithm 6; this is done in Jax and the code may be found
at https://anonymous.4open.science/r/meta-opt-8916/. We
compare against the following fully-tuned baselines: vanilla
gradient descent, momentum, Adam with weight decay
(AdamW), hypergradient descent (Baydin et al., 2017),
Distance-over-Gradients (Ivgi et al., 2023), D-Adaptation
(Defazio & Mishchenko, 2023), and the Mechanic algorithm
(Cutkosky et al., 2024). Each of the latter 4 optimizers is
built on top of either vanilla gradient descent or vanilla
Adam; to reduce clutter, we only plot these final 4 opti-
mizers when they match or outperform their tuned vanilla
counterparts. We refer to AdamW, D-Adaptation, and Me-
chanic collectively as the ”adaptive methods”, which are not
captured theoretically by our benchmark algorithm class.

See Appendix E.2 for more information about baselines
and experimental hyperparameters such as batch size and
number of iterations.

5. Results
We present our main experimental results below, for addi-
tional ablations and empirical verification of our assump-
tions, see Appendix E.3.

Deterministic optimization The training loss in the de-
terministic setting (i.e. where each training step is over the
same subset of data) allows us to inspect the optimization
performance of our algorithm without the effect of noise. In
Figure 1, the training losses of the various optimization algo-
rithms are plotted across episodes. We see that our method
improves over time – during the first episode it is worse
than gradient descent, but after a handful of deterministic
episodes it matches or outperforms many other baselines
(note that on WMT there is a separation between adaptive
methods and non-adaptive methods). Though complexity
and the required number of iterations vary between tasks,
we find compelling evidence that even on large deep learn-
ing workloads our method finds consistent improvement
over episodes.

(a) MNIST full GD (b) CIFAR full GD

(c) WMT full GD

Figure 1. Full gradient descent training with a fixed batch on the
three workloads. MNIST and CIFAR are averaged over 5 trials.
Losses smoothed with a mean filter.

Furthermore, since meta-optimization is a convex relaxation
of the learning to learn problem, we expect that the meta-
optimization process is well-behaved in the deterministic
setting. This is indeed seen experimentally, as the improve-

3

https://anonymous.4open.science/r/meta-opt-8916/

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Meta-optimization for Deep Learning

ment across episodes is monotonic. Moreover, for each
fixed workload, the resulting optimal controller is indepen-
dent of the initial learning rate η or the hyperparameters of
the nonstochastic control algorithm. This stability allows
our algorithm to converge properly every time we run it; by
contrast, none of the self-tuning baselines converged on the
CIFAR workload and only the adaptive methods converged
on WMT.

Stochastic optimization We also test meta-optimization
in the stochastic deep learning setting. Experimentally, we
found that the meta-optimization algorithm in the stochastic
setting was not as stable on large workloads (see Appendix
E.3 for a short explanation). To mitigate this, we take the
controllers learned in the deterministic setting and deploy
them with frozen parameters to the stochastic setting. Figure
2 shows the performance with this approach. Our method
is able to outperform the non-adaptive baselines in terms
of training loss, demonstrating that the optimal controllers
transfer from deterministic to the stochastic setting. For
evaluation metrics, we see that on MNIST and CIFAR our
method is able to generalize as well as the baselines. On the
WMT workload, however, we once again see a qualitative
separation between the adaptive methods and non-adaptive
methods (those roughly captured by our benchmark algo-
rithm class). We are investigating this generalization gap
in our ongoing work (see Appendix F for a discussion of
current questions and future work). When we compare
our method to the self-tuning baselines, we see that meta-
optimization is consistently competitive in training while
methods like DoG, D-Adaptation, and Mechanic can unpre-
dictably suffer on certain workloads.

6. Conclusion
In this work, we show that the meta-optimization frame-
work is a promising direction towards the automation of
optimization methods in deep learning. On the theoretical
side, we extend meta-optimization to the nonconvex setting
by leveraging a nonconvex to convex reduction. We give the
accompanying convergence guarantee of our method, which
depends on the performance of the best algorithm in a class
of algorithms. Experimentally, we demonstrated our algo-
rithm’s ability to improve an optimizer across episodes to
become competitive against tuned baselines on deep learn-
ing workloads. We hope that this initial exploration of meta-
optimization in deep learning inspires investigation into the
generalization properties, scaling or transfer behavior, and
efficient parallelization of the algorithm.

References
Agarwal, N., Bullins, B., Chen, X., Hazan, E., Singh, K.,

Zhang, C., and Zhang, Y. Efficient full-matrix adaptive

(a) MNIST stochastic (b) CIFAR stochastic

(c) WMT stochastic

Figure 2. Stochastic minibatch gradient descent on the three work-
loads. MNIST and CIFAR are averaged over 5 trials. Losses
smoothed with a mean filter.

regularization. In Chaudhuri, K. and Salakhutdinov, R.
(eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 102–110. PMLR, 09–15
Jun 2019.

Anava, O., Hazan, E., and Mannor, S. Online convex opti-
mization against adversaries with memory and applica-
tion to statistical arbitrage, 2014.

Baydin, A. G., Cornish, R., Rubio, D. M., Schmidt, M.,
and Wood, F. Online learning rate adaptation with hy-
pergradient descent. arXiv preprint arXiv:1703.04782,
2017.

Casgrain, P. and Kratsios, A. Optimizing optimizers: Regret-

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Meta-optimization for Deep Learning

optimal gradient descent algorithms. In Proceedings of
Thirty Fourth Conference on Learning Theory, pp. 883–
926. PMLR, 2021.

Chen, X. and Hazan, E. Online control for meta-
optimization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Cutkosky, A., Defazio, A., and Mehta, H. Mechanic: A
learning rate tuner. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Defazio, A. and Mishchenko, K. Learning-rate-free learning
by d-adaptation. In International Conference on Machine
Learning, pp. 7449–7479. PMLR, 2023.

Flaxman, A. D., Kalai, A. T., and McMahan, H. B. Online
convex optimization in the bandit setting: gradient de-
scent without a gradient. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’05, pp. 385–394, USA, 2005. Society for Indus-
trial and Applied Mathematics. ISBN 0898715857.

Gradu, P., Hallman, J., and Hazan, E. Non-stochastic control
with bandit feedback. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in
Neural Information Processing Systems, volume 33, pp.
10764–10774. Curran Associates, Inc., 2020.

Gradu, P., Hazan, E., and Minasyan, E. Adaptive regret for
control of time-varying dynamics. In Matni, N., Morari,
M., and Pappas, G. J. (eds.), Proceedings of The 5th An-
nual Learning for Dynamics and Control Conference, vol-
ume 211 of Proceedings of Machine Learning Research,
pp. 560–572. PMLR, 15–16 Jun 2023.

Hazan, E. and Singh, K. Introduction to online nonstochastic
control, 2023.

Hazan, E., Singh, K., and Zhang, C. Efficient regret mini-
mization in non-convex games. In Precup, D. and Teh,
Y. W. (eds.), Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pp. 1433–1441. PMLR,
06–11 Aug 2017.

Hazan, E., Klivans, A., and Yuan, Y. Hyperparameter opti-
mization: a spectral approach. In International Confer-
ence on Learning Representations, 2018.

Ivgi, M., Hinder, O., and Carmon, Y. Dog is sgd’s best
friend: A parameter-free dynamic step size schedule.
In International Conference on Machine Learning, pp.
14465–14499. PMLR, 2023.

Lessard, L., Recht, B., and Packard, A. Analysis and de-
sign of optimization algorithms via integral quadratic
constraints. SIAM Journal on Optimization, 26(1):57–95,
2016.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and
Talwalkar, A. Hyperband: A novel bandit-based approach
to hyperparameter optimization. Journal of Machine
Learning Research, 18(185):1–52, 2018.

Lu, Z., Xia, W., Arora, S., and Hazan, E. Adaptive gra-
dient methods with local guarantees. arXiv preprint
arXiv:2203.01400, 2022.

Orabona, F. and Pál, D. Coin betting and parameter-free on-
line learning. Advances in Neural Information Processing
Systems, 29, 2016.

Paquette, C., Lin, H., Drusvyatskiy, D., Mairal, J., and
Harchaoui, Z. Catalyst for gradient-based nonconvex
optimization. In Storkey, A. and Perez-Cruz, F. (eds.),
Proceedings of the Twenty-First International Conference
on Artificial Intelligence and Statistics, volume 84 of
Proceedings of Machine Learning Research, pp. 613–622.
PMLR, 09–11 Apr 2018.

Snoek, J., Larochelle, H., and Adams, R. P. Practical
bayesian optimization of machine learning algorithms.
Advances in neural information processing systems, 25,
2012.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2023.

Wang, W. and Srebro, N. Stochastic nonconvex optimiza-
tion with large minibatches. In Garivier, A. and Kale, S.
(eds.), Proceedings of the 30th International Conference
on Algorithmic Learning Theory, volume 98 of Proceed-
ings of Machine Learning Research, pp. 857–882. PMLR,
22–24 Mar 2019.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Meta-optimization for Deep Learning

A. Additional preliminaries
A.1. Additional algorithms

The protocol for meta-optimization and the reduction from nonconvex to convex optimization are presented in the following
algorithms.

Algorithm 2 Meta-optimization
Require: number of episodes N , number of steps per episode T , algorithm A, initializers {xi,1}Ni=1.

1: for i = 1, . . . , N do
2: for t = 1, . . . , T do
3: Play xi,t = A(f1,1, x1,1, . . . , fi,t−1, xi,t−1) ∈ Rd if t > 1; else play xi,1.
4: Receive a mini-batch of examples Bi,t of size b.
5: Obtain the loss function fi,t =

1
b

∑
j∈Bi,t

fi,j .

6: Suffer loss fi,t(xi,t) and compute the stochastic gradient ∇̃fi,t = 1
b

∑
j∈Bi,t

∇fi,j(xi,t).

Algorithm 3 Reduction from nonconvex to convex optimization
Require: epoch number K, number of inner steps S such that T = KS, convex optimization algorithm A, smoothness

parameter β, initial point x1, nonconvex function f .
1: for k = 1, . . . ,K do
2: Consider the function fk(x) = f(x) + β∥x− xk∥2.
3: Starting from xk, apply A for S steps on fk with mini-batch access, obtain xk+1.
4: return x∗ = argmin{xk}K

k=1
∥∇f(xk)∥.

B. Algorithm details
The framework of meta-optimization applies online control methods to a particular dynamical system that describes the
optimization process. We apply meta-optimization to the stochastic, ℓ2-regularized strongly convex functions fi,k,s, and
describe the dynamical system below. The dynamical system is similar to the one for smooth convex optimization put forth
in (Chen & Hazan, 2023).

The dynamical system For each episode i, denote Hi,k,s to be the matrix that satisfies

∇fi,k,s(xi,k,s) = Hi,k,s(xi,k,s − xi,k,s−1) +∇fi,k,s(xi,k,s−1). (1)

If each fi,j is quadratic, then Hi,k,s has the following explicit form,

Hi,k,s =
1

b

∑
j∈Bi,k,s

∇2fi,j + 2β.

For general smooth functions that are twice differentiable, this matrix exists and each row contains certain second-order
information of fi,k,s. To see this, observe that we can apply the mean value theorem to each coordinate of ∇fi,k,s to obtain
Hi,k,s.

The linear dynamical system we consider is xi,k,s+1

xi,k,s

∇fi,k,s(xi,k,s)

 =

(1− δ)I 0 −ηI
I 0 0

Hi,k,s −Hi,k,s 0

×

 xi,k,s

xi,k,s−1

∇fi,k,s−1(xi,k,s−1)

 (2)

+

I 0 0
0 0 0
0 0 0

× ui,k,s +

 0
0

∇fi,k,s(xi,k,s−1)

 . (3)

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Meta-optimization for Deep Learning

For notational convenience, we write the dynamical system as

zi,k,s+1 = Ai,k,szi,k,s +Bui,k,s + wi,k,s,

where Ai,k,s is the system dynamics, B is a constant control-input matrix, and wi,k,s is the non-stochastic disturbance that
contains the gradient.

The system above is linear time-varying (LTV), and we introduce the following notion of stability for LTV systems standard
in the non-stochastic control literature (Gradu et al., 2023; Chen & Hazan, 2023).

Definition 3 (Sequentially stable). A time-varying linear dynamical system with dynamics A1, . . . , AT is (κ, γ) sequentially
stable if for all intervals I = [r, s] ⊆ [T], ∥

∏r
t=s At∥ ≤ κ2(1− γ)|I|.

Assumption 2. We assume that the dynamical system (2) is (κ, γ) sequentially stable with κ ≥ 1.

We in addition make the following two assumptions on the system dynamics and the iterates, following the meta-optimization
framework. In meta-optimization, the iterates are re-initialized to starting points with bounded norm in each episode; in our
algorithm, we essentially have NK episodes, and the iterates are re-initialized with xi,k at the beginning of each episode.
We note that since each fi,k,s is strongly convex, the iterates effectively stay within a bounded region, potentially justifying
the latter assumption below.

Assumption 3. For all i ∈ [N], k ∈ [K], s ∈ [S], ρ(Hi,k,s) ≤ β.

Assumption 4. For all i ∈ [N], k ∈ [K], ∥xi,k∥ ≤ R.

The benchmark algorithm class The benchmark algorithm class we consider consists of methods whose updates are
linear functions of past gradients. Since we view optimization from the perspective of online control, this class of methods
correspond to a general class of controllers that often appear in the online control literature. This class of controllers is
called Disturbance-feedback controllers (DFCs), and for linear time-invariant systems, they can approximate any stabilizing
state-feedback controllers. Consequently, if our objective functions are quadratic with uniformly bounded Hessians,
this benchmark class of algorithms can simulate gradient descent, momentum, and preconditioned methods with a fixed
preconditioner. Since these algorithms have to be stabilizing on the dynamical system described above, only certain values
of learning rate, momentum, and preconditioners are allowed. For example, the learning rate can be at most O(1/β), and
the preconditioner P needs to satisfy ρ(PH) < 1/8, where H is the Hessian. For more detailed specifications of the range
of parameters, see the full version of (Chen & Hazan, 2023).

C. Proofs for Section 3
Proof of Theorem 2. Since all fi,k,s(x) are convex and smooth, we can use the bandit meta-optimization algorithm (Algo-
rithm 4) as the black-box optimizer A. For any policy π ∈ Π, let xπ

i,k,s be its updates, and by Corollary 6 we have the
following guarantee:

min
π∈Π

E

[
N∑
i=1

K∑
k=1

S∑
s=1

(
fi,k,s(xi,k,s)− fi,k,s(x

π
i,k,s)

)]
= Õ((NKS)

3
4). (4)

Denote π∗ = argminπ∈ΠE
[∑N

i=1

∑K
k=1

∑S
s=1 fi,k,s(x

π
i,k,s)

]
as the optimal algorithm in Π.

By Theorem A.3 in (Agarwal et al., 2019), since each fi,k is smooth and strongly convex, for any i, k,

fi,k(xi,k)−min
x

fi,k(x) ≥
∥∇fi,k(xi,k)∥2

6β
.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Meta-optimization for Deep Learning

In addition, we have the following decomposition

fi(xi,k)− fi(xi,k+1) ≥ fi,k(xi,k)−min
x

fi,k(x)− (fi,k(xi,k+1)−min
x

fi,k(x))

= fi,k(xi,k)−min
x

fi,k(x)−

(
1

S

S∑
s=1

fi,k(x
π∗

i,k,s)−min
x

fi,k(x)

)

+

(
1

S

S∑
s=1

fi,k(x
π∗

i,k,s)− fi,k(xi,k+1)

)

≥ fi,k(xi,k)−min
x

fi,k(x)−

(
1

S

S∑
s=1

fi,k(x
π∗

i,k,s)−min
x

fi,k(x)

)

+

(
1

S

S∑
s=1

fi,k(x
π∗

i,k,s)−
1

S

S∑
s=1

fi,k(xi,k,s)

)
.

Rearranging the terms, we have

fi,k(xi,k)−min
x

fi,k ≤ fi(xi,k)− fi(xi,k+1) +
1

S

S∑
s=1

fi,k(x
π∗

i,k,s)−min
x

fi,k(x) (5)

+

(
1

S

S∑
s=1

fi,k(xi,k,s)−
1

S

S∑
s=1

fi,k(x
π∗

i,k,s)

)
. (6)

Using the lower bound on the left hand side and summing up over k = 1, 2, . . . ,K,

K∑
k=1

∥∇fi,k(xi,k)∥2

6β
≤ M +

1

S

∑
s,k

(
fi,k(x

π∗

i,k,s)−min
x

fi,k(x)
)

+

 1

S

∑
s,k

fi,k(xi,k,s)−
1

S

∑
s,k

fi,k(x
π∗

i,k,s)

 .

Summing over i and taking an average,

1

NK

∑
i,k

∥∇fi(xi,k)∥2 ≤ O

(
1

K

)
+

1

NKS

∑
i,s,k

fi,k(x
π∗

i,k,s)−min
x

fi,k(x)


+

1

NKS

∑
i,s,k

fi,k(xi,k,s)−
∑
i,s,k

fi,k(x
π∗

i,k,s)

 .

The theorem follows by taking an expectation over the randomness of the batches, and using the guarantee (4).

Refinement of Theorem 2 We use an approach inspired by (Agarwal et al., 2019) to refine our guarantee. Define λi,k as
the ratio

1

S

S∑
s=1

fi,k(x
π∗

i,k,s)−min
x

fi,k(x) ≤ λi,k

√
fi,k(xi,k)−minx fi,k(x)

βS
. (7)

Then in the inequality (5) above, we have

fi,k(xi,k)−min
x

fi,k − λi,k

√
fi,k(xi,k)−minx fi,k(x)

βS
≤ fi(xi,k)− fi(xi,k+1)

+

(
1

S

S∑
s=1

fi,k(xi,k,s)−
1

S

S∑
s=1

fi,k(x
π∗

i,k,s)

)
.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Meta-optimization for Deep Learning

Observe that when a variable y satisfies y2 − ay ≤ b, we can complete the squares and obtain (y − a
2)

2 ≤ b+ a2

4 . Taking a
square root, we have y ≤

√
b+ a, and squaring both sides, we arrive at y2 ≤ 2b+ 2a2. Using this result, we have

∥∇fi(xi,k)∥2

6β
≤

λ2
i,k

βS
+ 2

(
fi(xi,k)− fi(xi,k+1) +

1

S

S∑
s=1

fi,k(xi,k,s)−
1

S

S∑
s=1

fi,k(x
π∗

i,k,s)

)
.

Summing over i, k, and taking an average,

1

NK

∑
i,k

∥∇fi(xi,k)∥2 ≤ O

(
1

K

)
+O

(∑
i,k λ

2
i,k

NKS

)
+

6β

NSK

∑
i,s,k

fi,k(xi,k,s)− fi,k(x
π∗

i,k,s).

In particular, we have that

E

[
1

N

N∑
i=1

min
k

∥∇fi(xi,k)∥2
]
≤ O

(
1

K
+

∑
i,k λ

2
i,k

NKS
+ Õ((NKS)−

1
4)

)
.

Let λ0 denote an upper bound of λi,k. As N grows large, the right hand side is dominated by the first two terms, and
therefore in this regime we can write

E

[
1

N

N∑
i=1

min
k

∥∇fi(xi,k)∥2
]
≤ O

(
1

K
+

λ2
0

S

)
.

As defined in Equation (7), λi,k scales with the function value optimality gap of the average iterate under π∗, and
√

1
βS . By

the online to batch reduction, SGD on strongly convex functions converges at a rate of Õ(1
S). The learning rate of SGD that

attains this rate depends on the strong convexity parameter and the gradient upper bound of the loss function. If all the fi’s
have the same smoothness parameter, and under the assumption of bounded domain, taking π∗ to be SGD with the optimal
learning rate, λ0 can be as small as Õ

(
1√
S

)
.

D. Bandit meta-optimization
We give the details of the bandit meta-optimization algorithm in this section. For any set M and δM > 0, define the
Minkowski subset MδM = {x : 1

1−δM
x ∈ M}, and let Sd1 be the d-dimensional unit sphere.

Theorem 4 (Theorem 5.1 in (Gradu et al., 2020), Theorem 3.3 in (Chen & Hazan, 2023)). Under Assumptions 1, 2, 3, 4,
Algorithm 4 with η ≤ 1, L = Θ(logNKS), and setting ηMi,k,s = Θ((N(i − 1) +K(k − 1) + s)−3/4L−3/2G−2/3), and
perturbation constant δM = Θ((NKS)−1/4L−1/2) gives the guarantee

E

∑
i,k,s

fi,k,s(xi,k,s)

− min
A∈Π

∑
i,k,s

fi,k,s(x
A
i,k,s) ≤ Õ((NKS)3/4),

where Õ, Θ contain polynomial factors in γ−1, β, κ,R, b, d,M , and Õ in addition contains logarithmic factors in K,S,N .
The benchmark algorithm class Π is the class of DFCs discussed in Appendix B.

The theorem above guarantees the performance of Algorithm 4 under any adversarially chosen functions fi,k,s. However,
for our setting of nonconvex stochastic optimization, is it more useful to derive a guarantee in expectation for randomly
chosen functions. We show that such extension is possible, and we start from the bandit convex optimization with memory
(BCOwM) problem (Gradu et al., 2020). The guarantee for bandit online control and hence bandit meta-optimization can be
derived as corollaries of the BCOwM guarantee.

Consider the basic online learning with memory problem under bandit feedback, where the loss functions ft are β-smooth,
G-Lipschitz, and M -bounded. The domain of decisions K has diameter D, and the ft’s are random functions determined by
previous decisions of the player. Same as before, let Kδ be the Minkowski set of K, and let Sd1 be the d-dimensional unit
sphere. The algorithm below, proposed by (Gradu et al., 2020), is an application of zeroth-order method (Flaxman et al.,
2005) to the Online Convex Optimization with Memory (OCOwM) setting (Anava et al., 2014).

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Meta-optimization for Deep Learning

Algorithm 4 Bandit meta-optimization
Require: episode number K, system parameters η, δ, κ, γ, learning rates {ηMi,k,s}, history length L, δM , starting points

{xi,1}Ni=1.
1: Set: M = {M = {M1, . . . ,ML} : ∥M l∥ ≤ κ3(1− γ)l}.
2: Initialize any M1,1 = · · · = ML,1 ∈ MδM , zi,1,1 = [x⊤

i,1 x⊤
i,1 0]⊤.

3: Sample ϵ1,1, . . . , ϵL,1 ∈R SL×3d×3d
1 , set M̃l,1 = Ml,1 + δM ϵl,1 for l = 1, . . . , L.

4: for i = 1, . . . , N do
5: If i > 1, set zi,1,1 = zi−1,K,S+1,Mi,1,1 = Mi−1,K,S+1.
6: for k = 1, . . . ,K do
7: If k > 1, set zi,k,1 = zi,k−1,S+1,Mi,k,1 = Mi,k−1,S+1.
8: for s = 1, . . . , S do
9: Choose ui,k,s =

∑L
l=1 M̃

l
i,k,swi,k,s−1.

10: Receive fi,k,s, compute wi,k,s = ∇fi,k,s(xi,k,s−1). If s = S, compute xi,k+1 = 1
S

∑S
s=1 xi,k,s, and

wi,k,S =

xi,k+1 − ((1− δ)xi,k,S − η∇fi,k,S−1(xi,k,S−1) + ūi,k,S)
xi,k+1 − xi,k,S

∇fi,k,S(xi,k,S−1)−∇fi,k,S(xi,k,S)

 , (8)

where ūi,k,S is the first d coordinates of the control signal ui,k,s.
11: Suffer control cost fi,k,s(xi,k,s).

12: Store the gradient estimator gi,k,s =
9d2L

δM
fi,k,s(xi,k,s)

L∑
l=1

ϵi,k,s−l if s ≥ L, else 0.

13: Perform gradient update on the controller parameters:

Mi,k,s+1 = ΠMδM
(Mi,k,s − ηMi,k,s · gi,k,s−L).

14: Sample ϵi,k,s+1 ∈R SL×3d×3d
1 , set M̃i,k,s+1 = Mi,k,s+1 + δM ϵi,k,s+1.

15: If k = K, compute wi,K,S similar to (8), so the next state evolves to zi,K,S+1 = [x⊤
i,1,1 x⊤

i,1,1 0⊤].

Algorithm 5 BCO with Memory
Require: Decision set K, time horizon T , history length L, learning rates {ηt} and noise magnitude δ.

1: Initialize x1 = · · · = xL ∈ Kδ arbitrarily, and sample noise u1, . . . , uL ∈ Sd1.
2: Set yi = xi + δui for i = 1, . . . , L, gi = 0 for i = 1, . . . , L− 1.
3: Predict yi for i = 1, . . . , L− 1.
4: for t = L, . . . , T do Play yt, and suffer loss ft(yt−L+1:t).

5: Store gradient estimate gt =
d
δ ft(yt−L+1:t)

L−1∑
i=0

ut−i.

6: Set xt+1 = Π
Kδ

[xt − ηt · gt−L+1].

7: Sample ut+1 ∈ Sd1, set yt+1 = xt+1 + δut+1.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Meta-optimization for Deep Learning

Theorem 5. Suppose the loss functions ft are random functions determined by previous iterates y1, . . . , yt−1. Let O denote
polynomial dependence on D, d,M,L,G, β. Taking ηt = O(t−3/4), δ = O(T−1/4), Algorithm 5 produces yt’s that satisfy

E

[
T∑

t=L

ft(yt−L+1:t)

]
−min

x∈K
E

[
T∑

t=L

ft(x, . . . , x)

]
≤ O(T 3/4).

Proof. We largely follow the proof of Theorem 3.1 in (Gradu et al., 2020). Let x∗ be any comparator in K, and x∗
δ be the

projection of x∗ in the Minkowski set. Let f̃(x) = f(x, . . . , x) be the shorthand notation.

E

[
T∑

t=L

ft(yt−L+1:t)−
T∑

t=L

f̃t(x
∗)

]
= E

[
T∑

t=L

(ft(yt−L+1:t)− f̃t(x
∗))

]
− E

[
T∑

t=L

f̃t−L+1(xt)− f̃t−L+1(x
∗
δ)

]
(9)

+ E

[
T∑

t=L

f̃t−L+1(xt)− f̃t−L+1(x
∗
δ)

]
(10)

We bound (9) and (10) separately. We start with (9), which can be bounded for any sequence of random variables u1, . . . , uT .
Fix u1, . . . , uT , we have

ft(yt−L+1:t)− f̃t(xt+L−1) = ft(xt−L+1:t + δut−L+1:t)− f̃t(xt+L−1)

≤ ft(xt−L+1:t)− f̃t(xt+L−1) + δG
√
L

≤ G∥xt−L+1:t − (xt+L−1, . . . , xt+L−1)∥+ δG
√
L

≤ 2dMGL2ηt−L+1

δ
+ δG

√
L,

where the first and second inequalities hold by the Lipschitz property of ft, and the last inequality is due to Lemma 7.
Furthermore, the Lipschitz property of ft gives

|f̃t(x∗
δ)− f̃t(x

∗)| ≤ G∥(x∗
δ , . . . , x

∗
δ)− (x∗, . . . , x∗)∥ ≤ δGD

√
L.

Putting the two inequalities together, and accounting for the shift in the index of f̃t−L+1(x
∗
δ),

(2) ≤ 2δGD
√
LT +

2dMGL2

δ

T∑
t=1

ηt + 2LM.

The term (10) can be decomposed as follows,

E

[
T∑

t=L

f̃t−L+1(xt)− f̃t−L+1(x
∗
δ)

]
≤ E

[
T∑

t=L

∇f̃t−L+1(xt)
⊤(xt − x∗

δ)

]

= E

[
T∑

t=L

(gt−L+1 + (Eut−2L+2:t−L+1
[gt−L+1]− gt−L+1)

]
+ E

[
(∇f̃t−L+1(xt)− Eut−2L+2:t−L+1

[gt−L+1]))
⊤(xt − x∗

δ)
]
.

Since xt+1 is a projected gradient descent step from xt with the gradient estimator gt−L+1, we have

2g⊤t−L+1(xt − x∗
δ) ≤

1

ηt
(∥xt − x∗

δ∥2 − ∥xt+1 − x∗
δ∥2) + ηt∥gt−L+1∥2, (Eq. 3.2 in (Gradu et al., 2020))

and
T∑

t=L

g⊤t−L+1(xt − x∗
δ) ≤

1

2

T∑
t=L

(
∥xt − x∗

δ∥2
(

1

ηt
− 1

ηt−1

)
+ ηt∥gt−L+1∥2

)
+

∥xL − x∗
δ∥2

ηL−1

≤ D2

2

(
1

ηT
+

1

ηL−1

)
+

d2M2L

2δ2

T∑
t=L

ηt,

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Meta-optimization for Deep Learning

where the bound on ∥gt∥ is in the proof of Lemma 7.

By Lemma 8, we also have

E
[
(∇f̃t−L+1(xt)− Eut−2L+2:t−L+1

[gt−L+1]))
⊤(xt − x∗

δ)
]

≤ E
[
∥∇f̃t−L+1(xt)− Eut−2L+2:t−L+1

[gt−L+1]∥∥xt − x∗
δ∥
]

≤ DE
[
∥∇f̃t−L+1(xt)− Eut−2L+2:t−L+1

[gt−L+1]∥
]

≤ 2ηt−L+1
dML5/2βD

δ
+

dδL2D

2
.

Lastly, by Lemma 9,

E

[
T∑

t=L

(Eut−2L+2:t−L+1
[gt−L+1]− gt−L+1)

⊤(xt − x∗
δ)

]
≤ 2d2M2L2

δ2

T∑
t=L

ηt−L+1.

Summing up the the three inequalities, (3) can be bounded by

(3) ≤ D2

ηT
+

(
3d2M2L2

δ2
+

2dML5/2βD

δ

) T∑
t=1

ηt +
dδL2DT

2
.

Putting everything together, the expected regret can be bounded by

E

[
T∑

t=L

ft(yt−L+1:t)−
T∑

t=L

f̃t(x
∗)

]
≤ 2LM +

D2

ηT
+

(
3d2M2L2

δ2
+

4dGML5/2βD

δ

) T∑
t=1

ηt

+
5dδGL2DT

2
.

Let O denote polynomial dependence on D, d,M,L,G, β. Taking ηt = O(t−3/4), δ = O(T−1/4), we have
∑T

t=1 ηt ≤
O(T 1/4), and

E

[
T∑

t=L

ft(yt−L+1:t)−
T∑

t=L

f̃t(x
∗)

]
≤ O(T 3/4).

Corollary 6. Under the same assumptions as Theorem 5, and setting ηMi,k,s, δM , L correctly, Algorithm 4 produces a
sequence of controls Mi,k,s that satisfy

E

∑
i,k,s

fi,k,s(xi,k,s)

 ≤ min
π∈Π

E

∑
i,k,s

fi,k,s(x
π
i,k,s)

+ Õ((NKS)3/4).

Lemma 7 (Variant of Lemma A.6 in (Gradu et al., 2020)). Fixing u1, . . . , uT , Algorithm 5 produces a sequence of xt such
that

∥xt−H+1:t − (xt+H−1, . . . , xt+H−1)∥ ≤ 2ηt−H+1
dCH2

δ
.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Meta-optimization for Deep Learning

Proof. Fix u1, . . . , uT .

∥xt−L+1:t − (xt+L−1, . . . , xt+L−1)∥2 =

L−1∑
i=0

∥xt−i − xt+L−1∥2

≤
L−1∑
i=0

i+L−1∑
j=1

∥xt+L−j − xt+L−j−1∥

2

≤
L−1∑
i=1

i+L−1∑
j=1

ηt+L−1−j∥gt−j∥

2

≤ η2t−L+1

L−1∑
i=1

i+L−1∑
j=1

∥gt−j∥

2

≤ 4η2t−L+1L
3 d

2M2L

δ2
,

where the second-to-last inequality holds since the stepsize is non-increasing, and the last inequality is true because for any
t,

∥gt∥ =
d

δ
∥ft(yt−L−1:t)

L−1∑
i=0

ut−i∥ ≤ dM

δ

√
L.

The lemma follows by taking a square root on both sides.

Lemma 8 (Variant of Lemma A.12 in (Gradu et al., 2020)). Conditioned on u1, . . . , ut−2L+1, for any sequence of
ut−2L+2:t−L+1 that determines xt,

∥Eut−2L+2:t−L+1
[gt−L+1]−∇f̃t−L+1(xt)∥ ≤ 2ηt−L+1

dML5/2β

δ
+

dδL2

2
.

Proof. By definition, after fixing u1:t−2L+1, the following quantities and functions are deterministic: g1, . . . , gt−2L+1,
x1, . . . , xt−L+1, and f1, . . . , ft−L+2. For a function f that takes in L inputs, let ∇if(x0, . . . , xL−1) = ∂f(x0,...,xL−1)

xi

denote the gradient of f with respect to xi.

By triangle inequality,

∥Eut−2L+2:t−L+1
[gt−L+1]−∇f̃t−L+1(xt)∥ ≤ ∥Eut−2L+2:t−L+1

[gt−L+1]−
L−1∑
i=0

∇ift−L+1(xt−2L+2:t−L+1)∥

+ ∥
L−1∑
i=0

∇ift−L+1(xt−2L+2:t−L+1)−∇f̃t−L+1(xt)∥

≤ dδL2

2
+ ∥

L−1∑
i=0

∇ift−L+1(xt−2L+2:t−L+1)−∇f̃t−L+1(xt)∥,

where the second inequality is due to Corollary A.10 in (Gradu et al., 2020). The norm of the sum can be bounded by
smoothness: for any sequence of ut−2L+2:t−L+1,

∥
L−1∑
i=0

∇ift−L+1(xt−2L+2:t−L+1)−∇f̃t−L+1(xt)∥2 ≤ L

L−1∑
i=0

∥∇ift−L+1(xt−2L+2:t−L+1)−∇ift−L+1(xt:t)∥2

= L∥∇ft−L+1(xt−2L+2:t−L+1)−∇ft−L+1(xt:t)∥2

≤ Lβ2∥xt−2L+2:t−L+1 − (xt, . . . , xt)∥2

≤ 4η2t−L+1

d2M2L5β2

δ2
,

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Meta-optimization for Deep Learning

by Lemma 7. Hence

∥
L−1∑
i=0

∇ift−L+1(xt−2L+2:t−L+1)−∇f̃t−L+1(xt)∥ ≤ 2ηt−L+1
dML5/2β

δ
,

and

∥Eut−2L+2:t−L+1
[gt−L+1]−∇f̃t−L+1(xt)∥ ≤ 2ηt−L+1

dML5/2β

δ
+

dδL2

2

Lemma 9. Conditioned on u1, . . . , ut−2L+1,

Eut−2L+2:t−L+1

[(
Eut−2L+2:t−L+1

[gt−L+1]− gt−L+1

)⊤
(xt − x∗

δ)
]
≤ ηt−L+1

2d2M2L2

δ2
.

Proof. For convenience, let E denote the expectation over ut−2L+2:t−L+1. Note that xt is a function of gt−L+1, which
depends on ut−2L+2:t−L+1. We have

E
[
(E[gt−L+1]− gt−L+1)

⊤
(xt − x∗

δ)
]
= E

[
(E[gt−L+1]− gt−L+1)

⊤
(xt−L+1 − x∗

δ)
]

+ E
[
(E[gt−L+1]− gt−L+1)

⊤
(xt − xt−L+1)

]
.

Note that xt−L+1 is fixed conditioned on u1, . . . , ut−2L+1, so

E
[
(E[gt−L+1]− gt−L+1)

⊤
(xt−L+1 − x∗

δ)
]
= 0.

The second term satisfies, for any sequence of ut−2L+2:t−L+1,

(E[gt−L+1]− gt−L+1)
⊤
(xt − xt−L+1) ≤ ∥E[gt−L+1]− gt−L+1∥ ∥xt − xt−L+1∥

≤ 2 max
ut−2L+1:t−L+1

∥gt−L+1∥∥xt − xt−L+1∥

≤ 2dM
√
L

δ
∥xt − xt−L+1∥.

Similarly to the proof of Lemma 7, we have

∥xt − xt−L+1∥ ≤
L−2∑
i=0

∥xt−i − xt−i−1∥ ≤
L−2∑
i=0

ηt−i−1∥gt−i−L∥ ≤ ηt−L+1
dML3/2

δ
.

Therefore,

(E[gt−L+1]− gt−L+1)
⊤
(xt − xt−L+1) ≤ ηt−L+1

2d2M2L2

δ2
,

and the lemma follows by summing the two terms.

E. Experiments
E.1. Meta-optimization implementation

The implementation used for the deep learning experiments is the convex stochastic meta-optimization algorithm detailed
in Algorithm 2 with the Gradient Perturbation Controller (GPC) as our algorithm A. This has two key differences with
what is used in our proofs: (1) we do not use the regularized loss functions of the form f(x) + β∥x − xk∥2 and (2) we
use the full GPC algorithm from nonstochastic control (Algorithm 3 in (Hazan & Singh, 2023), as opposed to the bandit
version developed in (Gradu et al., 2020)). Note that in the full GPC algorithm, the controller minimizes a surrogate loss
that is computed through counterfactual rollouts; therefore, the implemented algorithm must backpropagate through several

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Meta-optimization for Deep Learning

training steps in order to perform each meta-update. For more information on nonstochastic control and the counterfactual
nature of the GPC algorithm, please see Chapter 7 of (Hazan & Singh, 2023). We learn scalar controller coefficients for
computational efficiency (instead of full matrices, though we observed no difference when using diagonal matrices), and we
use the Adam optimizer with learning rate 10−4 and β1 = 0.9, β2 = 0.999 within the GPC algorithm instead of gradient
descent.

An open-source implementation of the algorithm is available at https://anonymous.4open.science/r/meta-opt-8916/. For
clarity and reproducibility, we also provide a specification of our practical meta-optimization algorithm (in more standard
deep learning terminology) as Algorithm 6. In the algorithm below, we set H = 32 (except for WMT, where H = 16 due to
memory constraints), L = 2, A as Adam with learning rate 10−3 and (β1, β2) = 0.9, 0.999, and the initializers selected
at random; however, the behavior is quite robust to all these parameters. Note that the memory usage scales with H , and
computation time scales with both H and L.

Algorithm 6 Meta-optimization, deep learning implementation
Require: number of episodes N , number of steps per episode T , window size H , rollout length L, meta-optimizer A,

initializers {xi,1}Ni=1, initial learning rate η.
1: Initialize buffers of the past L + 1 model parameters and data batches, and a buffer for the past H + L stochastic

gradients.

2: Initialize scalar controller parameters {ηi,t,h}H−1
h=0 ⊂ R with ηi,t,h =

{
η h = 0

0 h ≥ 1
.

3: for i = 1, . . . , N do
4: for t = 1, . . . , T do
5: Play xi,t = xi,t−1 −

∑H−1
h=0 ηi,t,h∇̃fi,t−h if t > 1; else play xi,1 (if t− h < 0, set ∇̃fi,t−h = 0).

6: Receive a mini-batch of examples Bi,t of size b.
7: Obtain the loss function fi,t =

1
b

∑
j∈Bi,t

fi,j .

8: Suffer loss fi,t(xi,t) and compute the stochastic gradient ∇̃fi,t = 1
b

∑
j∈Bi,t

∇fi,j(xi,t).
9: If t ≥ H +L, compute the surrogate loss by rolling out for L training steps starting from xi,t−L using the past

batches {Bi,t−ℓ}1ℓ=L with the current controller {ηi,t,h}H−1
h=0 and the past gradients. Evaluate the loss on Bi,t for

the parameters at the end of the rollout, and take the gradient with respect to (ηi,t,h)h.
10: Update the controller using this gradient via A, and discard the parameters from the end of the rollout.
11: Append ∇̃fi,t to the gradient buffer, xi,t to the parameter buffer, and Bi,t to the data buffer.

E.2. Experimental setup

Architectures We used the following commonplace deep learning architectures for the three workloads, and note that the
deterministic setting uses the same batch of data throughout training:

• MNIST: a 3-layer multilayer perceptron (MLP) with ReLU and 784, 100, 100, and 10 neurons in the input layer,
two hidden layers, and output layer, respectively, totaling 90K parameters. We used a batch size of 512 in both the
deterministic and stochastic settings with no preprocessing. For the deterministic setting we trained for N = 16
episodes of T = 500 iterations each, and for the stochastic setting we train for 5,000 iterations.

• CIFAR: a VGG-16 architecture with an output layer of 10, totaling 15M parameters. We used a batch size of 512 in
both the deterministic and stochastic settings with no preprocessing. For the deterministic setting we trained for N = 8
episodes of T = 500 iterations each, and for the stochastic setting we train for 9,000 iterations.

• WMT: a base Transformer architecture (as specified in (Vaswani et al., 2023) and implemented in Flax’s WMT tutorial)
totaling 65M parameters. We evaluated on the WMT-14 English-to-German dataset, and we used a batch size of 16
in both the deterministic and stochastic settings. For the deterministic setting we trained for N = 12 episodes of
T = 8, 000 iterations each, and for the stochastic setting we train for 100,000 iterations.

Baselines For each of the above workloads, we tried the following deep learning optimizers:

• SGD: Gradient descent with weight decay. To tune this baseline, we used a grid search over the learning rate η and the
weight decay parameter δ taking values η ∈ [0.001, 0.01, 0.1, 0.2, 0.4, 1.0] and δ ∈ [0, 10−5, 10−4, 10−3], respectively.

15

https://anonymous.4open.science/r/meta-opt-8916/

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Meta-optimization for Deep Learning

• MOMENTUM: Gradient descent with momentum and weight decay. To tune this baseline, we used a grid
search over the learning rate η, the momentum parameter µ, and the weight decay parameter δ taking values
η ∈ [0.001, 0.01, 0.1, 0.2, 0.4, 1.0], µ ∈ [0.9, 0.95, 0.99], and δ ∈ [0, 10−5, 10−4, 10−3], respectively.

• ADAMW: Adam optimizer, with weight decay. To tune this baseline, we used a grid search and swept the learning
rate η, momentum parameters β1, β2, and weight decay parameter δ with the values η ∈ [10−4, 4 · 10−4, 10−3],
β1 ∈ [0.9, 0.99], β2 ∈ [0.9, 0.99, 0.999], and δ ∈ [0, 10−5, 10−4, 10−3], respectively.

• HGD: Hypergradient descent acting on the standard gradient descent algorithm (Algorithm 4 in (Baydin et al., 2017)).
To tune this baseline, we set the initial learning rate to be the tuned SGD learning rate and swept the meta-learning
rate β with the values β ∈ [10−5, 10−4, 10−3, 10−2]. Hypergradient descent never performed better than tuned vanilla
SGD, so we do not plot it in Figures 1 or 2.

• DOG: The Distance-over-Gradients (DoG) algorithm (Ivgi et al., 2023). We run this baseline with the given hyperpa-
rameters since it is self-tuning, and we use the optax.contrib implementation.

• D-ADAPTATION: D-Adaptation algorithm acting on the Adam optimizer (Algorithm 5 in (Defazio & Mishchenko,
2023)). We run this baseline with the given hyperparameters since it is self-tuning, and we use the optax.contrib
implementation.

• MECHANIC: the Mechanic (Cutkosky et al., 2024) algorithm acting on the AdamW optimizer described earlier. We
tune this baseline with the same grid search used to tune the AdamW optimizer, and we use the optax.contrib
implementation.

E.3. Ablations & other experiments

Sequential stability One assumption we make that is nonstandard in the deep learning optimization literature is Assumption
2 – the sequential stability of the LTV dynamical system. We numerically verify this notion of stability in Figure 3 for the
dynamical system induced by training a small neural network on MNIST (since the size of these matrices scales quadratically
with number of parameters, computing this for larger networks is infeasible).

Figure 3. Decay of spectral norm of
∥∥∏r

t=s At

∥∥ as a function of |r − s| for a small neural network at the beginning of training. Averaged
over 10 trials. Assumption 2 is satisfied in this instance with a value of κ ≈ 2.0.

Stochastic meta-optimization In Figure 4, we show what may happen if the meta-optimization algorithm is run in the
stochastic setting; as can be seen, the performance degrades between episodes. This occurs on the more complex datasets,
and so we believe it to be a characteristic of how backpropagation through rollouts responds to noise between batches.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Meta-optimization for Deep Learning

Figure 4. Behavior of the meta-optimization algorithm when training unfrozen in the stochastic regime. The optimizer’s performance
degrades over time.

F. Future work
In this work, we presented an initial exploration into the behavior of our meta-optimization algorithm in deep learning
environments. As such, our investigations and design decisions leave much room for improvement and discovery, and we
hope that the promising results inspire research to make such methods more practical. We list below several directions of
investigation that we think will be fruitful.

Generalization As seen in Figure 2, on the WMT workload there is a noticeable generalization gap between adaptive
methods (algorithms like Adam and its derivatives) and non-adaptive methods (vanilla gradient descent, momentum, and
fixed preconditioners). This mirrors what is seen in many related works, where versions of hyperparameter-tuning algorithms
that are built on top of Adam variants perform better than those built on vanilla gradient descent. While training with
adaptive methods does not induce a linear dynamical system, we consider it a problem of practical importance to incorporate
this adaptivity into the meta-optimization algorithm.

Scaling We have demonstrated that the meta-optimization approach is competitive on workloads of different scales.
However, for the largest workloads, it would be valuable to understand the transferability of learned optimizers across model
scales. Progress in this direction could allow for one to learn a controller on a smaller architecture and transfer it to a larger
one, potentially allowing for meta-optimization of large frontier models.

Optimizer pre-training The paradigm we proposed for meta-optimization on general deep learning workloads was to
learn an optimizer in the deterministic setting on a fixed batch and deploy it in the stochastic setting. However, we are still
investigating the effects of the data selection itself on the downstream performance: how do batch size, dataset complexity,
and using the same frozen batch affect the optimal controller, and does this impact its transferability to the stochastic setting?
Depending on the answers to these questions, there may be more principled or practical ways to learn a robust optimizer that
can be deployed in the stochastic minibatch setting.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Meta-optimization for Deep Learning

Efficient implementation There is much room for improvement in terms of the implementation and parallelization of
the meta-optimization algorithm. At the moment, the optimizer state needs to retain the past H gradients, which for large
models can be a significant memory burden; however, there is ample structure in the gradient buffer and how it is used, and
so we expect that an efficient sharding of optimizer state is possible. Furthermore, we anticipate that there are cleverer ways
to use Jax’s machinery in order to help with the computational cost of backpropagating through rollouts.

18

