
Under review as a conference paper at ICLR 2023

MULTI-GRID TENSORIZED FOURIER NEURAL OPERA-
TOR FOR HIGH RESOLUTION PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

Memory complexity and data scarcity are two main pressing challenges in learn-
ing solution operators of partial differential equations (PDE ) at high resolutions.
These challenges limited prior neural operator models to low/mid-resolution prob-
lems rather than full scale real-world problems. Yet, these problems possess spa-
tially local structures that is not used by previous approaches. We propose to
exploit this natural structure of real-world phenomena to predict solutions locally
and unite them into a global solution. Specifically, we introduce a neural operator
that scales to large resolutions by leveraging local and global structures through
decomposition of both the input domain and the operator’s parameter space. It
consists of a multi-grid tensorized neural operator (MG-TFNO ), a new data effi-
cient and highly parallelizable operator learning approach with reduced memory
requirement and better generalization. MG-TFNO employs a novel multi-grid
based domain decomposition approach to exploit the spatially local structure in
the data. Using the FNO as a backbone, its parameters are represented in a high-
order latent subspace of the Fourier domain, through a global tensor factorization,
resulting in an extreme reduction in the number of parameters and improved gen-
eralization. In addition, the low-rank regularization it applies to the parameters
enables efficient learning in low-data regimes, which is particularly relevant for
solving PDEs where obtaining ground-truth predictions is extremely costly and
samples, therefore, are limited. We empirically verify the efficiency of our method
on the turbulent Navier-Stokes equations where we demonstrate superior perfor-
mance, with 2.5 times lower error, 10× compression of the model parameters, and
1.8× compression of the input domain size. Our tensorization approach yields up
to 400x reduction in the number of parameter without loss in accuracy. Similarly,
our domain decomposition method gives a 7× reduction in the domain size while
slightly improving accuracy. Furthermore, our method can be trained with much
fewer samples than previous approaches, outperforming the FNO when trained
with just half the samples.

1 INTRODUCTION

Real-world scientific computing problems often time require repeatedly solving large-scale and
high-resolution partial differential equations (PDEs). For instance, in weather forecasts, large sys-
tems of differential equations are solved to forecast the future state of the weather. Due to internal
inherent and aleatoric uncertainties, multiple repeated runs are carried out by weather scientists ev-
ery day to quantify prediction uncertainties. Conventional PDE solvers constitute the mainstream
approach used to tackle such computational problems. However, these methods are known to be
slow and memory-intensive. They require an immense amount of computing power, are unable
to learn and adapt based on observed data, and often times require sophisticated tuning (Slingo &
Palmer, 2011; Leutbecher & Palmer, 2008; Blanusa et al., 2022).

Neural operators are a new class of models that aim at tackling these challenging problems (Li et al.,
2020b). They are mappings between function spaces whose trained models emulate the solution
operators of PDEs (Kovachki et al., 2021b). In the context of PDEs, these deep learning models
are orders of magnitude faster than conventional solvers, can easily learn from data, can incorporate
physically relevant information, and recently enabled solving problems deemed to be unsolvable
with the current state of available PDE methodologies (Liu et al., 2022; Li et al., 2021b). Among

1



Under review as a conference paper at ICLR 2023

Figure 1: Overview of our approach. First (left), a multi-grid approach is used to create coarse to
fine inputs that capture high-resolution details in a local region while still encoding global context.
The resulting regions are fed to a tensorized Fourier operator (middle), the parameters of which are
jointly represented in a single latent space via a low-rank tensor factorization (here, a Tucker form).
Here F denotes Fourier transform. Finally, the outputs (right) are stitched back together to form the
full result. Smoothness in the output is ensured via the choice of loss function.

Method L2 test error # Params Model CR Domain CR

FNO 2.54% 58 M 0× 0×
TFNO [Tucker] 1.39% 41 M 1.5× 0×
TFNO [CP] 2.24% 130 K 482× 0×
MG-FNO 1.43% 58 M 0× 1.4×
MG-TFNO [Tucker] 0.85% 5.5 M 10× 1.78×
MG-TFNO [Tucker] 1.89% 5.5 M 10× 7×

Table 1: Overview of the performance on the relative L2 test error of our MG-TFNO approach,
compared with its parts TFNO and MG-FNO and the regular FNO, on Navier-Stokes. CR
stands for compression ratio. For each method, we report the relative L2 error, the number of
parameters, and the compression ratios for both the input domain and the number of parameters.
Tensorization and multi-grid domain decomposition both individually improve performance while
enabling space savings. The two techniques combined lead to further improvements, enabling huge
compression for both input and parameter, while largely outperforming all other approaches.

neural operator models, Fourier neural operators (FNOs) in particular, have seen successful appli-
cation in scientific computing for the task of learning the solution operator to PDEs as well as in
computer vision for classification, in-painting, and segmentation (Li et al., 2020a; Kovachki et al.,
2021a; Guibas et al., 2021). By leverage spectral theory, FNOs have successfully advanced frontiers
in weather forecasts, carbon storage, and seismology (Pathak et al., 2022; Wen et al., 2022; Yang
et al., 2021). While FNOs have shown tremendous speed-up over classical numerical methods, their
efficacy can be limited due to the rapid growth in memory needed to represent complex operators.
This growth may become a bottleneck in their application to high-resolution physical simulations
such as climate or materials modeling. In general, despite significant speed up and better flexibil-
ity, prior works on neural operators suffer from similar memory complexity issues as conventional
solvers do on high-resolution problems.

In the worst case, the large memory complexity is required and, in fact, is unavoidable due to the
need for resolving fine scale features globally. However, many real-world problems, possess local
structure that is not currently exploited by neural operator methods.For instance, consider a weather
forecast where predictions for the next hour are heavily dependent on the weather conditions in local
regions and minimally on global weather conditions. Incorporating and learning this local structure
of the underlying PDEs is the keys to overcoming the curse of memory complexity.

2



Under review as a conference paper at ICLR 2023

In this work, we propose a new, scalable neural operator that addresses these issues by leveraging
the structure in both the domain space and the parameter space, Figure 1. Specifically, we introduce
the multi-grid tensor operator (MG-TFNO ), a model that exploits locality in physical space by a
novel multi-grid domain decomposition approach to compress the input domain size by up to 7×
while leveraging the global interactions of the model parameters to compress them by up to 200×
without any loss of accuracy (see Table 1).

In the input space, to predict the solution in any region of the domain, MG-TFNO decomposes the
input domain into small local regions to which hierarchical levels of global information are added
in a multi-grid fashion. Since a local prediction depends most strongly on its immediate spatial
surroundings, the farther field information is downsampled to lower resolutions, progressively, based
on its distance from the region of interest. Thus, MG-TFNO achieves a low memory complexity by
using high resolution data only locally and coarse resolution data globally. Due to its state-of-the-art
performance on PDE problems and efficient FFT-based implementation, we use the FNO as the
backbone architecture for our method.

In the parameter space, we exploit the spatio-temporal structure of the underlying PDE solution
operator by parameterizing the convolutional weights within the Fourier domain with a low-rank
tensor factorization. Specifically, we impose a coupling between all the weights in the Fourier space
by jointly parameterizing them with a single tensor, learned in a factorized form such as Tucker
or Canonical-Polyadic (Kolda & Bader, 2009). This coupling allows us to limit the number of
parameters in the model without limiting its expressivity. On the contrary, this low-rank regular-
ization on the model mitigates over-fitting and improves generalization. Intuitively, our method
can be thought of as a fully-learned implicit scheme capable of converging in a very few fixed
number of iterations. Due to the global nature of the integral kernel transform, the FNO avoids the
Courant–Friedrichs–Lewy (CFL) condition plaguing explicit schemes, allowing convergence in only
a few steps (Courant et al., 1928). Our weight coupling ensures maximum communication between
the steps, mitigating possible redundancies in the learned kernels and reducing the complexity of the
optimization landscape.

In summary, we make the following contributions:

• We propose MG-TFNO , a novel neural operator parameterized in the spectral domain by a single
low-rank factorized tensor, allowing its size to grow linearly with the size of the problem.

• Our tensor operator achieve better performance with a fraction of the parameters: we outper-
form FNO on solving the turbulent Navier Stokes equations with more than 400× weight compres-
sion ratio, Figure 4a.

• Our method overfits less and does better in the low-data regime. In particular, it outperforms
FNO with less than half the training samples, Figure 5.

• We introduce a novel multi-grid domain decomposition approach, a technique which allows the
operator to predict the output only on local portions of the domain thus reducing the memory usage
by an order of magnitude with no performance degradation.

• Combining tensorization with multi-grid domain decomposition leads to our best model, MG-
TFNO , which is more efficient in terms of task performance, computation, and memory. MG-TFNO
achieves 2.5× lower error with 10× model weight compression, and 1.8× domain compression,
Table 1.

2 BACKGROUND

Here, we review related works and introduce the background necessary to explain our approach.

Neural Operators. Many physical phenomena are governed by PDEs and a wide range of scien-
tific and engineering computation problems are based on solving these equations. In recent years, a
new perspective to PDEs dictates to formulate these problems as machine learning problems where
solutions to PDEs are learned. Prior works mainly focused on using neural networks to train for the
solution map of PDEs (Guo et al., 2016; Zhu & Zabaras, 2018; Adler & Oktem, 2017; Bhatnagar
et al., 2019). The use of neural networks in the prior works limits them to a fixed grid and narrows
their applicability to PDEs where maps between function spaces are desirable. Multiple attempts

3



Under review as a conference paper at ICLR 2023

have been made to address this limitation. For example mesh free methods are proposed that locally
output mesh-free solution (Esmaeilzadeh et al., 2020), but they are local and still limited to fixed
input gird.

A new deep learning paradigm, neural operators, are proposed as maps between function spaces (Li
et al., 2020b; Kovachki et al., 2021b). They are discretization invariants maps. The input functions
to neural operators can be presented in any discretization, mesh, resolution, or basis. The output
functions can be evaluated at any point in the domain. Variants of neural operators deploy a variety
of Nyström approximation to develop new neural operator architecture. Among these, multi-pole
neural operators (Li et al., 2020c) utilize the multi-pole approach to develop computationally effi-
cient neural operator architecture. Inspired by the spectral method, Fourier-based neural operators
show significant applicability in practical applications (Li et al., 2020a; Yang et al., 2021; Wen et al.,
2022; Rahman et al., 2022a). Principle component analysis, wavelet bases, and u-shaped methods
are also considered (Gupta et al., 2021; Bhattacharya et al., 2020; Liu et al., 2022; Rahman et al.,
2022b; Yang et al., 2022). It is also shown that neural operators can solely be trained using PDEs,
resulting in physics-informed neural operators, opening new venues for hybrid data and equation
methods (Li et al., 2021b) to tackle problems in scientific computing.

Tensor methods in deep learning. As we move beyond learning from simple structures to solv-
ing increasingly complex problems, the data we manipulate becomes more structured. To efficiently
manipulate these structures, we need to go beyond matrix algebra and leverage the spatio-temporal
stucture. For all purposes of this paper, tensors are multi-dimensional arrays and generalize the
concept of matrices to more than 2 modes (dimensions). For instance, RGB images are encoded as
third-order (three dimensional) tensors, videos are 4th order tensors and so on and so forth. Tensor
methods methods generalize linear algebraic methods to these higher-order structures. They have
been very successful in various application in computer vision, signal processing, data mining and
machine learning (Panagakis et al., 2021; Janzamin et al., 2019; Sidiropoulos et al., 2017; Papalex-
akis et al., 2016).

Using tensor decomposition Kolda & Bader (2009), previous works have been able to compress and
improve deep networks for vision tasks. Either a weight matrix is tensorized and factorized Novikov
et al. (2015), or tensor decomposition is directly to the convolutional kernels before fine-tuning to
recover-for lost accuracy, which also allows for an efficient reparametrization of the network (Lebe-
dev et al., 2015; Kim et al., 2016; Gusak et al., 2019). There is a tight link between efficient convo-
lutional blocks and tensor factorization and factorized higher-order structures (Kossaifi et al., 2020).
Similar strategies have been applied to multi-task learning (Bulat et al., 2020) and NLP (Papadopou-
los et al., 2022; Cordonnier et al., 2020). Of all these prior works, none has been applied to neural
operator. In this work, we propose the first application of tensor compression to learning operators
and propose a Tensor OPerator (TFNO ).

3 METHODOLOGY

Here, we briefly review operator learning as well as the Fourier Neural Operator, on which we build
to introduce our proposed Tensor OPerator (TFNO ) as well as the Multi-Grid Domain Decomposi-
tion, which together form our proposed MG-TFNO .

3.1 OPERATOR LEARNING

Let A := {a : DA → RdA} and U := {u : DU → RdU } denote two input and output function
spaces respectively. Each function a, in the input function space A, is a map from a bounded, open
set DA ⊂ Rd to the dA-dimensional Euclidean space. Any function in the output function space U
is a map from a bounded open set DU ⊂ Rd to the dU -dimensional Euclidean space. In this work
we consider the case D = DA = DU ⊂ Rd.

We aim to learn an operator G : A → U which is a mapping between the two function spaces. In
particular, given a dataset of N points {(aj , uj)}Nj=1, where the pair (aj , uj) are functions satisfying
G(aj) = uj , we build an approximation of the operator G . As a backbone operator learning
model, we use neural operators as they are consistent and universal learners in function spaces. For

4



Under review as a conference paper at ICLR 2023

an overview of theory and implementation, we refer the reader to Kovachki et al. (2021b). We
specifically use the FNO and give details in the forthcoming section (Li et al., 2020a).

3.2 FOURIER NEURAL OPERATORS

For simplicity, we will work on the d-dimensional unit torus Td and first describe a single, pre-
activation FNO layer mapping Rm-valued functions to Rn-valued functions. Such a layer consti-
tutes the mapping G : L2(Td;Rm) → L2(Td;Rn) defined as

G(v) = F−1
(
F(κ) · F(v)

)
, ∀ v ∈ L2(Td;Rm) (1)

where κ ∈ L2(Td;Rn×m) is a function constituting the layer parameters and F ,F−1 are the Fourier
transform and its inverse respectively. The Fourier transform of the function κ is parameterized
directly by some fixed number of Fourier nodes denoted α ∈ N.

To implement (1), F ,F−1 are replaced by the discrete fast Fourier transforms F̂ , F̂−1. Let v̂ ∈
Rs1×···×sd×m denote the evaluation of the function v on a uniform grid discretizing Td with sj ∈ N
points in each direction. We replace F(κ) with a weight tensor T ∈ Cs1×···×sd×n×m consisting
of the Fourier modes of κ which are parameters to be learned. To ensure that κ is parameterized as
a Rn×m-valued function with a fixed, maximum amount of wavenumbers α < 1

2 min{s1, · · · , sd}
that is independent of the discretization of Td, we leave as learnable parameters only the first α
entries of T in each direction and enforce that T have conjugate symmetry. In particular, we pa-
rameterize half the corners of the d-dimensional hyperrectangle with 2d−1 hypercubes with length
size α. That is, T is made up of the free-parameter tensors T̃1, · · · , T̃2d−1 ∈ Cα×···×α×n×m

situated in half of the corners of T. Each corner diagonally opposite of a tensor T̃j is assigned
the conjugate transpose values of T̃j. All other values of T are set to zero. This is illustrated
in the middle-top part of Figure 1 for the case d = 2 with T̃1 and T̃2. We will use the nota-
tion T(k, · · · ) = T̃k for any k ∈ [2d−1]. The discrete version of (1) then becomes the mapping
Ĝ : Rs1×···×sd×m → Rs1×···×sd×n defined as

Ĝ(v̂) = F̂−1
(
T · F̂(v̂)

)
, ∀ v̂ ∈ Rs1×···×sd×m (2)

where the · operation is simply the matrix multiplication contraction along the last dimension.
Specifically, we have

(
T · F̂(v̂)

)
(l1, . . . , ld, j) =

m∑
i=1

T(l1, . . . , ld, j, i)
(
F̂(v̂)

)
(l1, . . . , ld, i) (3)

From (2), a full FNO layer is build by adding a point-wise linear action to v̂, a bias term, and applying
a non-linear activation. In particular, from an input v̂ ∈ Rs1×···×sd×m, the output q̂ ∈ Rs1×···×sd×n

is given as
q̂(l1, · · · , ld, :) = σ

(
Qv̂(l1, · · · , ld, :) + Ĝ(v̂) + b

)
with σ : R → R a fixed, non-linear activation, and b ∈ Rn, Q ∈ Rn×m, T̃1, · · · , T̃2d−1 ∈
Cα×···×α×n×m are the learnable parameters of the layer. The full FNO model consists of L ∈ N
such layers each with weight tensors T1, · · · ,TL that have learnable parameters T̃(l)

k = Tl(k, · · · )
for any l ∈ [L] and k ∈ [2d−1]. In the case n = m for all layers, we introduce the joint parameter
tensor W ∈ Cα×···×α×n×n×2d−1L so that

W
(
. . . , 2d−1(l − 1) + k + 1

)
= T̃

(l)
k .

Perusal of the above discussion reveals that there are (2dαd + 1)mn + n total parameters in each
FNO layer. Note that, since m and n constitute the respective input and output channels of the
layer, the number of parameters can quickly explode due the exponential scaling factor 2dαd if
many wavenumbers are kept. Preserving a large number of modes could be crucial for applications
where the spectral decay of the input or output functions is slow such as in image processing or the
modeling of multi-scale physics. In the following section we describe a tensorization method that is
able to mitigate this growth without sacrificing approximation power.

5



Under review as a conference paper at ICLR 2023

3.3 TENSOR OPERATORS

In the previous section, we introduced a unified formulation of FNO where the whole operator is
parametrized by a single parameter tensor W. This enables us to introduce the tensor operator,
which parameterizes efficiently W with a low-rank, tensor factorization. In this paper, we focus
mostly on the Tucker decomposition, for its flexibility, but other decompositions such as Canonical
Polyadic can be readily integrated. This joint parametrization has several advantages: i) it applies
a low-rank constraint on the entire tensor W, thus regularizing the model. These advantages trans-
late into i) a huge reduction in the number of parameters, ii) better generalization and an operator
less prone to overfitting. We show superior performance for low-compression ratios (up to 200×)
and very little performance degradation when largely compressing (> 450×) the model, iii) better
performance in low-data regime.

In practice, we express W in a low-rank factorized form, e.g. Tucker or CP. In the case of a Tucker
factorization with rank (R1, · · · , Rd, RL, RI , RO), where RL controls the rank across layers, RI =
RO control the rank across the input and output co-dimension, respectively, and R1, · · · , Rd control
the rank across the dimensions of the operator:

W =

R1∑
r1=1

· · ·
Rd∑

rd=1

RI∑
ri=1

RO∑
ro=1

RL∑
rl=1

G(r1, · · · , rd, ri, ro, rl) ·U(1)(:, r1) · · · · ·U(d)(:, rd)·

U(I)(:, ri) · ·U(O)(:, ro) ·U(L)(:, rl).

Figure 2: Illustration of a Tucker
decomposition. For clarity , we
show W as a 3rd-order tensor
weight.

Here, G is the core of size RL × RI × RO × R1 × · · · × Rd

and U(L),U(I),U(O),U(1), · · · ,U(d) are factor matrices of
size (RL×L), (RI × I), (RO ×O), (R1×α), · · · , (Rd×α),
respectively.

Note that the mode (dimension) corresponding to the co-
dimension can be left uncompressed, by setting RL = L and
U(L) = Id. This leads to a layerwise compression. Also note
that having a rank of 1 along any of the modes would mean
that the slices along that mode differ only by a (multiplicative)
scaling parameter. Also note that during the forward pass, we can pass T directly in factorized form
to each layer by selecting the corresponding rows in U(L). The contraction in equation 3 is then
either done using the reconstructed tensor, or by directly contracting F̂(v̂) with the factors of the
decomposition.

This joint factorization along the entire operator allows us to leverage redundancies both locally and
across the entire operator. This leads to much reduced memory footprint, with only a fraction of the
parameter. It also acts as a low-rank regularizer on the operator, facilitating training. Finally, through
the global parametrization, we introduce skip connections that allow gradient to flow through the
latent parametrization to all the layers jointly, leading to better optimization.

This formulation is general and works with any tensor factorization. For instance, we also explore a
Canonical-Polyadic decomposition (CP) which can be seen as a special case of Tucker with a super-
diagonal core. In that case, we set a single rank R and express the weights as a weighted sum of R
rank-1 tensors. Concretely:

W =

R∑
r=1

λrU
(1)(:, r) · · · · ·U(d)(:, r) ·U(I)(:, r) ·U(O)(:, r) ·U(L)(:, r). (4)

where U(L),U(I),U(O),U(1), · · · ,U(d) are factor matrices of size (R×L), (R×I), (R×O), (R×
α), · · · , (R × α), respectively and λ ∈ RR. Note that the CP, contrarily to the Tucker, has a single
rank parameter, shared between all the dimensions. This means that to maintain the number of
parameters the same, R needs to be very high, which leads to memory issues. This makes CP
more suitable for large compression ratios, and indeed, we found it leads to better performance at
high-compression / very low-rank.

6



Under review as a conference paper at ICLR 2023

(a) Predicting with padded regions. Local region
in the input is padded and used to predict the corre-
sponding region in the output.

(b) MG-Domain Decomposition. Progres-
sively larger spatial regions are added to a lo-
cal region by subsampling.

Figure 3: Domain decomposition in space (3a) and our Multi-Grid based approach. (3b). White
squares represent the region of interest while yellow squares the larger embeddings.

3.4 MULTI-GRID DOMAIN DECOMPOSITION

Having introduced our decomposition in the operator’s parameter space, we now introduce our novel
multi-grid appraoch to decompose the problem domain.

Domain decomposition is a method commonly used to parallelize classical solvers for time-
dependent PDEs that is based on the principal that the solution for a fixed local region in space
depends mostly on the input at the same local region (Chan & Mathew, 1994). In particular, since
the time-step h > 0 of the numerical integrator is small, the solution u(x, t+h), for any point x ∈ D
and t ∈ R+, depends most strongly on the points u(y, t) for all y ∈ B

(
x, r(h)) where B

(
x, r(h)

)
denotes the ball centered at x with radius r(h). This phenomenon is easily seen for the case of the
heat equation where, in one dimension, the solution satisfies

u(x, t+ h) ∝
∫ ∞

−∞
exp

(
−(x− y)2

4h

)
u(y, t) dy ≈

∫ x+4h

x−4h

exp
(
−(x− y)2

4h

)
u(y, t) dy

with the approximation holding since 99.9937% of the kernel’s mass is contained within B(x, 4h).
While some results exist, there is no general convergence theory for this approach, however its
empirical success has made it popular for various numerical methods (Albin & Bruno, 2011).

To exploit this localization , the domain D is split in q ∈ N pairwise-disjoint regions D1, · · · , Dq

so that D = ∪q
j=1Dj . Each region Dj is then embedded into a larger one Zj ⊃ Dj so that points

away from the center of Dj have enough information to be well approximated. A model can then be
trained so that the approximation G(a|Zj

)|Dj
≈ u|Dj

holds for all j ∈ [q]. This idea is illustrated in
Figure 3a where D = [0, 1]2 and all Dj , Zj are differently sized squares. This allows the model to
be ran fully in parallel hence its time and memory complexities are reduced linearly in q.

Multi-Grid. Domain decomposition works well in classical solvers when the time step h > 0 is
small because the mapping u(·, t) 7→ u(·, t+h) is close to the identity. However the major advance-
ment made by machine learning based operator methods for PDEs is that a model can approximate
the solution, in one shot, for very large times i.e. h > 1. But, for larger h, the size of Zj relative
to Dj must increase to obtain the same approximation accuracy, independently of model capacity.
This causes any computational savings made by the decomposition approach to be lost.

To mitigate this, we propose a multi-grid based domain decomposition approach where global in-
formation is added hierarchically at different resolutions. While our approach is inspired by the
classical multi-grid method, it is not based on the V-cycle algorithm (McCormick, 1985). For ease
of presentation, we describe this concept when a domain D = T2 is uniformly discretized by 2s×2s

points, for some s ∈ N, but note that generalizations can readily be made. Given a final level L ∈ N,
we first sub-divide the domain into 22L total regions each of size 2s−L × 2s−L and denote them
D

(0)
1 , · · · , D(0)

22L
. We call this the zeroth level. Then, around each D

(0)
j , for any j ∈ [22L], we

consider the square D
(1)
j of size 2s−L+1 × 2s−L+1 that is equidistant, in every direction, from each

boundary of D(0)
j . We then subsample the points in D

(1)
j uniformly by a factor of 1

2 in each direc-

tion, making D
(1)
j have 2s−L × 2s−L points. We call this the first level. We continue this process

by considering the squares D(2)
j of size 2s−L+2 × 2s−L+2 around each D

(1)
j and subsample them

7



Under review as a conference paper at ICLR 2023

(a) Tensorization: error in logscale as a function of
the compression ratio. We compare the tensor neu-
ral operator with an FNO with the same number of
parameters (trimmed). We achieve over 200x com-
pression ratio with better performance that the
original FNO with Tucker, and over 400x com-
pression ratio with CP.

(b) MG-Domain Decomposition: error as a func-
tion of the domain compression ratio. We compare
MG-TFNO with different numbers of multigrid re-
gions both with and without weight tensor compres-
sion to a full field FNO model. We achieve over 7x
input space compression and 10x parameter space
compression ratios with better performance that
the original FNO.

Figure 4: Impact of Tensorization (4a) and Multi-Grid Domain Decomposition (4b)

uniformly by a factor of 1
4 in each direction to again yield squares with 2s−L × 2s−L points. The

process is repeated until the Lth level is reached wherein D
(L)
j is the entire domain subsampled by

a factor of 2−L in each direction. The process is illustrated for the case L = 2 in Figure 3b. Since
we work with the torus, the region of the previous level is always at the center of the current level.

The intuition behind this method is that since the dependence of points inside a local region dimin-
ishes the further we are from that region, it is enough to have coarser information, as we go farther.
We combine this multi-grid method with the standard domain decomposition approach by building
appropriately padded squares Z(l)

j of size 2s−L + 2p × 2s−L + 2p around each D
(l)
j where p ∈ N

is the amount of padding to be added in each direction. We then take the evaluations of the input
function a at each level and concatenate them as channels. In particular, we train a model so that
Ĝ
(
(a|

Z
(0)
j

, · · · , a|
Z

(L)
j

)
)
|
D

(0)
j

≈ u|
D

(0)
j

. Since the model only operates on each padded region sep-

arately, we reduce the total number of grid points used from 22s to (2s−L + 2p)2 and define the
domain compression ratio as the quotient of these numbers. Furthermore, note that, assuming a is
RdA -valued, a model that does not employ our multi-grid domain decomposition uses inputs with
dA channels while our approach builds inputs with (L + 1)dA channels. In particular, the number
of input channels scale only logarithmically in the number of regions hence global information is
added at very little additional cost. Indeed, FNO models are usually trained with internal widths
much larger than dA hence the extra input channels cause almost no additional memory overhead.

4 EXPERIMENTS

Data. We experiment on a dataset of 10K training samples and 2K test samples of the two-
dimensional Navier-Stokes equation with Reynolds number 500. We also experiment with the one-
dimensional viscous Burgers’ equation. Details about the datasets as well the results on Burgers are
given in Appendices A.2 and A.5 respectively.

Training the operator. Since MG-TFNO predicts local regions which are then stitched together
to form a global function without any communication, aliasing effects can occur where one output
prediction does not flow smoothly into the next. To prevent this, we train our model using the H1

Sobolev norm (Czarnecki et al., 2017; Li et al., 2021a). By matching derivatives, training with this
loss prevents any discontinuities from occurring and the output prediction is smooth.

Tensorizing: better compression. In Figure 4a, we show the performance of our approach (TNO)
compared to the original FNO , for varying compression ratios. In the Trimmed-FNO , we adjust the

8



Under review as a conference paper at ICLR 2023

Figure 5: Error as a function of the number of training samples (left) and training VS testing
loss. We compare TFNO with a regular FNO . Note that on the left we show the testing L2 error
while, for training, the H1 loss is used and that is compared with the H1 test-error on the right.

width in order to match the number of parameters in our TNO. Our method massively outperforms
the Trimmed-FNO at every single fixed parameter amount. Furthermore, even for very large com-
pression ratios, our FNO outperforms the full-parameter FNO model. This is likely due to the
regularizing effect of the tensor factorization on the weight, showing that many of the ones in the
original model are redundant.

Tensorizing: better generalization. Figure 5 (left) shows that our TNO generalizes better with
less training samples. Indeed, at every fixed amount of training samples, the TNO massively outper-
forms the full-parameter FNO model. Even when only using half the samples, our TNO outperforms
the FNO trained on the full dataset. Furthermore, Figure 5 (right) shows that our TNO overfits sig-
nificantly less than FNO, demonstrating the regularizing effect of the tensor decomposition. This
result is invaluable in the PDE setting where we frequently have very little training samples available
due to the high computational cost of traditional PDE solvers.

Multi-Grid Domain Decomposition. We show the impact of multi-grid domain decomposition
on performance in Figure 4b. We find that lower compression ratios (corresponding to a larger
amount of padding in the decomposed regions) perform better which is unsurprising since more
information is incorporated into the model. More surprisingly, we find that using a larger number of
regions (16) performs consistently better than using a smaller number (4) and both can outperform
the full-field FNO. This can be due to the fact that: i) the domain decomposition acts as a form of
data augmentation, exploiting the transnational invariance of the PDE and more regions yield larger
amounts of data, and ii) the output space of the model is simplified since a function can have high
frequencies globally but may only have low frequencies locally. Consistently, we find that the tensor
compression in the weights acts as regularizer and improves performance across the board.

Putting it all together: MG-TFNO . Tensorization and multi-grid domain decomposition not only
improve performance individually, but their advantages compound and lead to a strictly better algo-
rithm that scales well to higher-resolution data by decreasing the number of parameters in the model
as well as the size of the inputs thereby improving performance as well as memory and computa-
tional footprint. Table 1 shows a comparison of FNO with Tensorization alone, multi-grid domain
decomposition alone, and our joint approach combining the two, MG-TFNO . Our results imply that,
under full-parallelization, the memory footprint of the model’s inference can be reduced by 7× and
size of its weights by 10× while also improving performance.

5 CONCLUSION

In this work, we introduced a novel tensor operator (TFNO ) as well as a multi-grid domain decom-
position approach which together form MG-TFNO , an operator model that outperforms the FNO
with a fraction of the parameters and memory complexity requirements. MG-TFNO scales better,
generalizes better, and requires fewer training samples to reach the same performance. In our future
work, we plan to deploy MG-TFNO and tackle very high-resolution large-scale weather forecasts
for which existing deep learning models are prohibitive.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Jonas Adler and Ozan Oktem. Solving ill-posed inverse problems using iterative deep neural net-
works. Inverse Problems, nov 2017.

Nathan Albin and Oscar P. Bruno. A spectral fc solver for the compressible navier–stokes equations
in general domains i: Explicit time-stepping. Journal of Computational Physics, 230(16):6248–
6270, 2011.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
pp. 1–21, 2019.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduc-
tion and neural networks for parametric pdes. arXiv preprint arXiv:2005.03180, 2020.

Mackenzie L Blanusa, Carla J López-Zurita, and Stephan Rasp. The role of internal variability in
global climate projections of extreme events. arXiv preprint arXiv:2208.08275, 2022.

Adrian Bulat, Jean Kossaifi, Georgios Tzimiropoulos, and Maja Pantic. Incremental multi-domain
learning with network latent tensor factorization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 10470–10477, 2020.

Tony F. Chan and Tarek P. Mathew. Domain decomposition algorithms. Acta Numerica, 3:61–143,
1994.

Gary J. Chandler and Rich R. Kerswell. Invariant recurrent solutions embedded in a turbulent two-
dimensional kolmogorov flow. Journal of Fluid Mechanics, 722:554–595, 2013.

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. Multi-head attention: Collaborate
instead of concatenate. arXiv preprint arXiv:2006.16362, 2020.

R. Courant, K. Friedrichs, and H. Lewy. Uber die partiellen differenzengleichungen der mathema-
tischen physik. Mathematische annalen, 100(1):32–74, 1928.

Wojciech M Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pascanu.
Sobolev training for neural networks. Advances in Neural Information Processing Systems, 30,
2017.

Maarten De Hoop, Daniel Zhengyu Huang, Elizabeth Qian, and Andrew M Stuart. The cost-
accuracy trade-off in operator learning with neural networks. arXiv preprint arXiv:2203.13181,
2022.

Soheil Esmaeilzadeh, Kamyar Azizzadenesheli, Karthik Kashinath, Mustafa Mustafa, Hamdi A
Tchelepi, Philip Marcus, Mr Prabhat, Anima Anandkumar, et al. Meshfreeflownet: A physics-
constrained deep continuous space-time super-resolution framework. In SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–15. IEEE,
2020.

Lawrence C. Evans. Partial differential equations. American Mathematical Society, 2010.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
tial equations. Advances in Neural Information Processing Systems, 34:24048–24062, 2021.

Julia Gusak, Maksym Kholiavchenko, Evgeny Ponomarev, Larisa Markeeva, Philip Blagoveschen-
sky, Andrzej Cichocki, and Ivan Oseledets. Automated multi-stage compression of neural net-
works. Oct 2019.

10



Under review as a conference paper at ICLR 2023

Majid Janzamin, Rong Ge, Jean Kossaifi, Anima Anandkumar, et al. Spectral learning on matrices
and tensors. Found. and Trends® in Mach. Learn., 12(5-6):393–536, 2019.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. 2016.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM Rev., 51(3):
455–500, 2009.

Jean Kossaifi. Tensorly-torch. https://github.com/tensorly/torch, 2021.

Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Tensorly: Tensor learning
in python. Journal of Machine Learning Research (JMLR), 20(26), 2019.

Jean Kossaifi, Antoine Toisoul, Adrian Bulat, Yannis Panagakis, Timothy M Hospedales, and Maja
Pantic. Factorized higher-order CNNs with an application to spatio-temporal emotion estimation.
pp. 6060–6069, 2020.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. Journal of Machine Learning Research, 22(290):1–76, 2021a.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces.
arXiv preprint arXiv:2108.08481, 2021b.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V. Oseledets, and Victor S. Lempitsky.
Speeding-up convolutional neural networks using fine-tuned CP-decomposition. 2015.

Martin Leutbecher and Tim N Palmer. Ensemble forecasting. Journal of computational physics, 227
(7):3515–3539, 2008.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020c.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Markov neural operators for learning chaotic systems.
arXiv preprint arXiv:2106.06898, 2021a.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021b.

Burigede Liu, Nikola Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, An-
drew M Stuart, and Kaushik Bhattacharya. A learning-based multiscale method and its applica-
tion to inelastic impact problems. Journal of the Mechanics and Physics of Solids, 158:104668,
2022.

S. F. McCormick. Multigrid methods for variational problems: General theory for the v- cycle.
SIAM Journal on Numerical Analysis, 22(4):634–643, 1985.

Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensorizing neural
networks. pp. 442–450, 2015.

I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33(5):2295–2317, September
2011.

11

https://github.com/tensorly/torch


Under review as a conference paper at ICLR 2023

Yannis Panagakis, Jean Kossaifi, Grigorios G. Chrysos, James Oldfield, Mihalis A. Nicolaou, Anima
Anandkumar, and Stefanos Zafeiriou. Tensor methods in computer vision and deep learning.
Proceedings of the IEEE, 109(5):863–890, 2021. doi: 10.1109/JPROC.2021.3074329.

Christos Papadopoulos, Yannis Panagakis, Manolis Koubarakis, and Mihalis Nicolaou. Efficient
learning of multiple nlp tasks via collective weight factorization on bert. In Findings of the
Association for Computational Linguistics: NAACL 2022, pp. 882–890, 2022.

Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. Tensors for data mining
and data fusion: Models, applications, and scalable algorithms. ACM Trans. Intell. Syst. and
Technol. (TIST), 8(2):1–44, 2016.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. 2017.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
tors. arXiv preprint arXiv:2202.11214, 2022.

Catherine E. Powell, Gabriel Lord, and Tony Shardlow. An Introduction to Computational Stochastic
PDEs. Texts in Applied Mathematics. Cambridge University Press, United Kingdom, 1 edition,
August 2014. ISBN 9780521728522.

Md Ashiqur Rahman, Manuel A Florez, Anima Anandkumar, Zachary E Ross, and Kamyar Aziz-
zadenesheli. Generative adversarial neural operators. arXiv preprint arXiv:2205.03017, 2022a.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural oper-
ators. arXiv preprint arXiv:2204.11127, 2022b.

Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E Papalexakis,
and Christos Faloutsos. Tensor decomposition for signal processing and machine learning. Trans-
actions Signal Processing, 65(13):3551–3582, 2017.

Julia Slingo and Tim Palmer. Uncertainty in weather and climate prediction. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1956):
4751–4767, 2011.

Roger Temam. Infinite-dimensional dynamical systems in mechanics and physics. Applied mathe-
matical sciences. Springer-Verlag, New York, 1988.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Ad-
vances in Water Resources, 163:104180, 2022.

Yan Yang, Angela F Gao, Jorge C Castellanos, Zachary E Ross, Kamyar Azizzadenesheli, and
Robert W Clayton. Seismic wave propagation and inversion with neural operators. The Seismic
Record, 1(3):126–134, 2021.

Yan Yang, Angela F Gao, Jorge C Castellanos, Zachary E Ross, Kamyar Azizzadenesheli, and
Robert W Clayton. Accelerated full seismic waveform modeling and inversion with u-shaped
neural operators. arXiv preprint arXiv:2209.11955, 2022.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for sur-
rogate modeling and uncertainty quantification. Journal of Computational Physics, 2018. ISSN
0021-9991.

A APPENDIX

A.1 NOTATION

We summarize the notation used throughout the paper in Table 2.

12



Under review as a conference paper at ICLR 2023

Variable Meaning Dimensionality

T Tensor of weights in the Fourier domain Cα×···×α×m×n

W Weight tensor parameterizing the entire operator Cα×···×α×n×n×2d−1L

A Input function space Infinite
U output function space Infinite
a Input function Infinite
u Output function Infinite
DA Domain of function a d
DU Domain of function u d
dA Dimension of the co-domain of the input functions 1
dU Dimension of the co-domain of the output functions 1
F Fourier transform Infinite

F−1 Fourier transform Infinite
L Number of integral operation layers In N
l Layer index Between 1 and L
σ Point-wise activation operation Infinite
b Bias vector
v Function at each layer Infinite
α Number of kept frequencies in Fourier space Between 1 and 1

2 min{s1, · · · , sd}

Table 2: Table of notation

A.2 DATA

In this section, we introduce in detail the datasets used for our experiments.

Navier-Stokes. We consider the vorticity form of the two-dimensional Navier-Stokes equation,

∂tω +∇⊥ϕ · ω =
1

Re
∆ω + f, x ∈ T2, t ∈ (0, T ]

−∆ϕ = ω,

∫
T2

ϕ = 0, x ∈ T2, t ∈ (0, T ]
(5)

with initial condition ω(0, ·) = 0 where T2 ∼= [0, 2π)2 is the torus, f ∈ L̇2(T2;R) is a forcing
function, and Re > 0 is the Reynolds number. Then ω(t, ·) ∈ Ḣs(T2;R) for any t ∈ (0, T ] and
s > 0, is the unique weak solution to (5) (Temam, 1988). We consider the non-linear operator
mapping f 7→ ω(T, ·) with T = 5 and fix the Reynolds number Re = 500. We define the Gaussian
measure µ = N (0, C) on the forcing functions where we take the covariance C = 27(−∆+9I)−4,
following the setting in (De Hoop et al., 2022). Input data is obtained by generating i.i.d. samples
from µ by a KL-expansion onto the eigenfunctions of C (Powell et al., 2014). Solutions to (5) are
then obtained by a pseudo-spectral scheme (Chandler & Kerswell, 2013).

Burgers’ Equation. We consider the one-dimensional Burgers’ equation on the torus,

∂tu+ uux = νuxx, x ∈ T, t ∈ (0, T ]

u|t=0 = u0, x ∈ T
(6)

for initial condition u0 ∈ L2(T;R) and viscosity ν > 0. Then u(t, ·) ∈ Hs(T;R), for any t ∈ R+

and s > 0, is the unique weak solution to 6 (Evans, 2010). We consider the non-linear operator
u0 7→ u(T, ·) with T = 0.5 or 1 and fix ν = 0.01. We define the Gaussian measure µ = N (0, C)

where we take the covariance C = 35/2(− d2

dx2 + 9I)−3. Input data is obtained by generating i.i.d.
samples from µ by a KL-expansion onto the eigenfunctions of C. Solutions to (6) are then obtained
by a pseudo-spectral solver using Heun’s method. We use 8K samples for training and 2K for testing.

A.3 TENSOR OPERATOR: TENSOR DECOMPOSITION

In this section, we expand further on the tensor decomposition composing the tensor operator.

13



Under review as a conference paper at ICLR 2023

(a) Train VS Test errors for various compression
ratios. We observe that the gap between training and
test error decreases with the rank (e.g inversely pro-
portional to the compression ratio).

(b) Train VS Test error over time for a TOP with
a TT factorization.

Figure 6: Impact of the rank for a TOP Tucker (6a) and train/test curve for a TOP-TT (6b)

We first rewrite the entire weight parameter for the Tucker case, equivalently, using the more com-
pact n-mode product as:

W = G×1 U
(1) · · · ×d U

(d) ×d+1 U
(I) ×d+2 U

(O) ×d+3 U
(L)

iFFT of the tensorized kernel For any layer l, the (j1, j2) coordinate of the matrix-valued con-
volution function κ(x) is as follows,

[κl(x)]j1, j2 =

m1∑
i1=1

· · ·
md∑
id=1

RL∑
rl=1

RI∑
ri=1

RO∑
ro=1

R1∑
r1=1

· · ·
Rd∑

rd=1

G(r1, · · · , rd, ri, ro, rl)·

U(1)(i1, r1) · · ·U(d)(id, rd) ·U(I)(j1, ri) · ·U(O)(j2, ro) ·U(L)(l, rl)·

exp(2π

d∑
k=1

ixkik)

We also note that other tensor decomposition can be straightforwardly used in our framework, such
as the tensor-train decomposition Oseledets (2011). A rank-(1, R1, · · · , RN , RI , RO, RL, 1) TT
factorization expresses W as:

W(i1, · · · , id, ic, io, il) = G1(i1) · ×GN (id)GI(ic)× · · ·GO(io)× · · ·GL(il).

Where each of the factors of the decompositions Gk are third order tensors of size Rk × Ik ×Rk+1.
We show examples of TFNO trained with a TT factorization in the coming sections.

A.4 IMPLEMENTATION DETAILS

Implementation We use PyTorch Paszke et al. (2017) for implementing all the models. The tensor
operations are implemented using TensorLy and TensorLy-Torch Kossaifi et al. (2019); Kossaifi
(2021). We will release the code and data used upon acceptance of the paper.

Hyper-parameters We train all models via gradient backpropagation using a mini-batch size of
16, the Adam optimizer, with a learning rate of 1e−3, weight decay of 1e−4, for 500 epochs, de-
creasing the learning rate every 100 epochs by a factors of 1

2 . The model width is set in all cases to
64 except when specified otherwise (for the Trimmed FNO ), meaning that the input was first lifted
(with a linear layer) from the number of input channels to that width. The projection layer projects
from the width to 256 and a prediction linear layer outputs the predictions. 10000 samples were used
for training, as well as a separate set of 2000 samples for test. For α, we keep 40 Fourier coefficients
for height and 24 for the width. All experiments are done on a NVIDIA Tesla V100 GPU.

14



Under review as a conference paper at ICLR 2023

Method L2 test error # Params Model CR

FNO 2.54% 58 M 0×
TOP [Tucker] 2.36% 366 K 172×
TOP [CP] 2.03% 350 K 179×
TOP [TT] 1.83% 353 K 178×

Table 3: Relative L2 test error of our MG-TFNO approach for different tensor decompositions
for a comparable compression ratio.

A.5 ABLATION STUDIES

In this section, we further study the properties of our model through ablation studies. We first look
at how TFNO suffers less from overfitting thank to the low-rank constraints, before comparing its
performance with various tensor decompositions. Finally, we perform ablation studies for our multi-
grid domain decomposition on Burger’s equation.

A.5.1 OVERFITTING AND LOW-RANK CONSTRAINT

Here, we show that lower-ranks (higher compressions), lead to reduced overfitting. In Figure 6a,
we show the training and testing H1 errors for our TOP with Tucker decompositions, at varying
compression ratios (2x, 49x and 172x). We can see how, while the test error does not vary much,
the gap between training and test errors reduces as we decrease the rank. As we can see, Tucker,
while being the most flexible, does not perform as well at higher compression ratios, there CP and
Tensor-Train lead to lower error.

A.5.2 TENSOR-TRAIN AND TOP

Our approach is independent of the choice of tensor decomposition. We already showed how Tucker
is most flexible and works well across all ranks. We also showed that CP, while memory demanding
for high rank, leads to better performance and low-rank. Our method can also be used in conjunction
with other decompositions such as tensor-train. To illustrate this, we show here the convergence
behaviour of TNO with a Tensor-Train decomposition, for a compression ratio of 178, figure 6b.

We also compare in Table 3 our TFNO with different tensor decompositions.

A.5.3 BURGERS’ EQUATION

Figure 7: Error on Burgers’ equation with T = 0.5 (left) and T = 1 (right) as a function
of domain compression ratio using standard domain decomposition without our multi-grid
approach. We evaluate the performance of the standard domain decomposition approach. The
radius indicates the size, in physical space, of the padding added to each region.

We test the efficacy of the standard domain decomposition approach by training on two separate
Burgers problems: one with a final time T = 0.5 and one with T = 1. As described in Section 3.4,
we expect that for T = 1, each region requires more global information thus significantly more
padding need to be used in order to reach the same error. The results of Figure 7 indeed confirms this.

15



Under review as a conference paper at ICLR 2023

The domain compression ratios needed for the approach to reach the performance of the full-field
model are higher, indicating the need for incorporating global information. These results motivate
our multi-grid domain decomposition approach.

16


	Introduction
	Background
	Methodology
	Operator Learning
	Fourier Neural Operators
	Tensor OPerators
	Multi-Grid Domain Decomposition

	Experiments
	Conclusion
	Appendix
	Notation
	Data
	Tensor Operator: Tensor Decomposition
	Implementation details
	Ablation studies
	Overfitting and Low-Rank Constraint
	Tensor-Train and TOP
	Burgers' Equation



