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Abstract

Retrieval-Augmented Generation (RAG) based on knowledge graphs (KGs) en-
hances large language models (LLMs) with structural and textual external knowl-
edge. Yet, existing KG-based RAG methods struggle to retrieve accurate and
diverse information when handling complex queries. By modeling KG-based
retrieval as a multi-step decision process, Process Reward Models (PRMs) offer a
promising solution to align the retrieval behavior with the query-specific knowledge
requirements. However, PRMs heavily rely on process-level supervision signals
that are expensive and hard to obtain on KGs. To address this challenge, we propose
GraphFlow, a framework that efficiently retrieves accurate and diverse knowledge
required for complex queries from text-rich KGs. GraphFlow employs a detailed
balance objective with local exploration to jointly optimize a retrieval policy and a
flow estimator. The flow estimator factorizes the outcome reward of the retrieval
results into the intermediate retrieval steps. Such reward factorization guides the
retrieval policy to retrieve candidates from KGs in proportion to their outcome
reward. This allows GraphFlow to explore relevant regions of KGs that yield
diverse and accurate results. We evaluate GraphFlow on STaRK benchmark, which
includes real-world queries from multiple domains over text-rich KGs. GraphFlow
outperforms strong KG-based RAG baselines including GPT-4o by 10% perfor-
mance gain on both retrieval accuracy and diversity metrics. GraphFlow also shows
strong generalization by effectively retrieving information from unseen KGs to
support new-domain queries, highlighting its effectiveness and robustness 2.

1 Introduction

Retrieval-Augmented Generation (RAG) [36] has emerged as a promising framework to reduce the
hallucination of Large Language Models (LLMs) by mitigating the gap between model knowledge
and factual knowledge [28, 89, 26]. Traditional RAG usually employs an unstructured vector-indexed
database as the external knowledge source, where the text corpus is indexed using pretrained encoders
to support retrieval. Recent work has explored knowledge graphs (KGs) [68] as a structural alternative
to the external knowledge source of RAG [59]. KGs enjoy several advantages over the vector-indexed
database in traditional RAG, such as representing relational information with graph structures [88],
integrating knowledge from heterogeneous resources [59], and enhancing interpretability by neural-
symbolic reasoning [87]. Thus, KG-based RAG has demonstrated great potential in enhancing LLMs
in many domains, including medical diagnosis [67], biochemistry [77], and physics [72].
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Recent KG-based RAG methods employ two approaches to retrieve information from KGs when
receiving an input query [47, 19, 48]. Retrieval-based approaches [21, 37, 80] leverage pretrained
language models [62] to encode KG text into embeddings, and use retriever models [31] to identify
relational triplets or subgraphs in KGs that most support the query. And agent-based methods treat
LLMs as searching agents to navigate across KGs and retrieve a relational path with supporting
information for a given query [68, 47, 50].

While KG-based RAG methods show promise in retrieving structural information for simple relational
queries, their effectiveness is limited in more complex ones. As shown in Figure 1, structural
information in KGs alone is often sufficient for many relational queries. For example, retrieving the
relation triplet (Alice, daughter, Bob) adequately answers the question "Who is the father of Alice?".

𝑄: Who is the father of Alice? 𝑄: List the papers published by University A related to topic B?
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Figure 1: Comparison of the retrieval tasks between relational and
complex queries.

However, complex queries
typically require leveraging
both structural and textual
information during retrieval
[50]. Consider the paper
searching query "Please list
the papers published by Uni-
versity A relevant to research
topic B". Addressing such a
query requires understanding
authorship and affiliation rela-
tionships, as well as text de-
scriptions of paper content, research topics, institutions, and authors. The fusion of relational and
text knowledge presents a significant challenge for accurate retrieval with KG-based RAG methods.
Another challenge is the diversity of retrieval targets in complex queries. Unlike relational queries

corresponding to a single deterministic retrieval target (e.g., Alice
daughter−−−−−−→ Bob), complex queries

require retrieving a diverse set of candidates. For example, the paper searching query in Figure 1
corresponds to multiple retrieval targets. Therefore, KG-based RAG must emphasize both retrieval
accuracy and diversity when supporting complex queries. Unfortunately, our empirical findings reveal
that existing KG-based RAG methods face challenges in achieving this goal.

To overcome the above challenge, it is essential to align the retrieval process of KG-based RAG
with the diversity and accuracy demands for complex queries. Process Reward Models (PRMs)
[54, 90, 92, 85] offer a promising framework for this goal. By providing step-wise guidance, PRMs
have been widely used in LLM alignment [40], reasoning [7] and planning [6] when treating these
tasks as the multi-step decision. In KG-based RAG, the retrieval process can be naturally viewed as
a multi-step decision process, where an agent traverses a KG and expands its retrieval trajectory at
each step. PRMs can provide step-wise guidance for the agent to retrieve desired information for
complex queries. However, training a PRM needs high-quality preference datasets with fine-grained
and process-level reward signals [57, 76, 27]. In KG-based RAG, assessing the process-level reward
at each step in retrieval trajectories is expensive. Only the outcome reward is easily available (i.e.,
whether the retrieval trajectory can support a query or not).

Proposed Work. We present GraphFlow, a novel framework for supporting complex queries
by retrieving accurate and diverse knowledge from knowledge graphs (KGs), without relying on
process-level reward supervision. Inspired by GFlowNet [3], GraphFlow formulates the problem of
retrieving from KGs as learning a retrieval policy that generates retrieval trajectories with probabilities
proportional to their outcome rewards. Thus, the retrieval trajectory that better supports the query
is retrieved with a higher probability, leading to diverse and accurate retrieval results. To achieve
this, GraphFlow jointly trains the retrieval policy with a flow estimator, which assigns non-negative
flow values to partial trajectories. These flow values decompose the final outcome reward across
intermediate retrieval steps, thereby providing rich supervision signals without requiring explicit
process-level rewards. The retrieval policy is guided by these flow values and receives process-level
supervision “for free”. We adopt the detailed balance objective [64] to co-train the retrieval policy
and the flow estimator. To further enhance training efficiency, we introduce a local exploration
strategy that reduces visits to low-reward regions of the KG. Thus, GraphFlow effectively explores
high-reward regions of the retrieval space, leading to more accurate and diverse retrievals that better
support complex query.
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We evaluate the effectiveness of GraphFlow on the STaRK benchmark [74], which involves retrieving
from text-rich KGs for real-world queries across multiple domains. Extensive experiments demon-
strate that GraphFlow consistently produces high-quality and diverse retrieval results, outperforming
both Process Reward Models (PRMs) and existing KG-based RAG methods. Notably, GraphFlow
surpasses strong KG-based RAG baselines instantiated with GPT-4o, achieving an average improve-
ment of 10% in both retrieval accuracy and diversity metrics. In addition, GraphFlow enjoys strong
generalization capabilities and can retrieve from unseen KGs to support queries in new domains.

2 Preliminary and Notations

2.1 KG-based RAG

We denote a knowledge graph (KG) as G = {V,E} where V and E are the sets of nodes and edges.
The node Vi is associated with a short text description of an entity (e.g. Vi = ‘Alice’). And the edge
eij denotes the relationship between node Vi and Vj . For example, eij = ‘daughter’ represents the
relationship between Vi = ‘Alice’ and Vj = ‘Bob’.

Retrieval-based Approach. For an input query Q, the retrieval-based method [21, 37, 13, 48, 80, 4]
first encodes the texts in nodes and edges into embeddings using a pretrained LM [62]. Then, a
retriever Ret(·) is employed to retrieve a subgraph Gsub from G [84] that can support answering Q:

max
Gsub

P (A|Q, Gsub), Gsub = Ret(G). (1)

Here A is the answer to the input query. Some works employ non-parametric retrievers, such as
dense retriever with vector similarity [1] and Prize-Collecting Steiner Tree (PCST) algorithm [21] to
retrieve from KGs. Other works train parameterized retriever models based on Multi-layer Perceptron
(MLP) and Graph Neural Network (GNN) [82] to retrieve from KGs.

Agent-based Approach. Recent work formulates retrieval on KGs as a multi-step decision process
[68, 47, 38] and employs LLM agents to search on KGs due to their superior capability in plan-
ning. For an input query Q, the agent LLM(·) starts from an initial node V0 and searches T steps
incrementally in a KG to produce a retrieval trajectory τ = V0 → · · · → VT−1 → VT to support Q:

max
τ∈T

P (A|Q, τ), τ = LLM(G). (2)

The inital node V0 can be identified using Entity name recognition (ENR) [18] or vector similarity
matching [63]. At step t, the searching agent expands the trajectory conditioned on the input query
Q, the partial trajectory at t step τ≤t = V0 → · · · → Vt−1 → Vt:

Vt+1 ∼ PLLM(Vt+1|Q, τ≤t), Vt+1 ∈ N (Vt). (3)

Here PLLM is the policy instantiated by an LLM, and N (Vt) is the neighborhood node set of Vt.

2.2 Process Reward Models

Process Reward Models (PRMs) have emerged as a promising framework for aligning large language
models (LLMs) with human preferences [85, 73, 40]. For a multi-step decision problem, denote s ∈ S
as the state and a ∈ A as the action. Training a PRM requires a preference dataset D = {(a+i , a

−
i , si) |

i = 1, · · · , N}, where a+i and a−i are positive and negative actions at state si, respectively. Such
datasets can be constructed through human supervision [40], rule-based heuristics [55], or LLM-
generated annotations [76]. The goal of PRM is to learn a scoring function rθ(a, s) : A× S → R
that assigns real-valued preference scores to action–state pairs by minimizing the following objective:

LPRM = −E(a+
i ,a−

i ,si)∼D log[σ(rθ(a
+
i , si)− rθ(a

−
i , si))], (4)

where σ(·) denotes the sigmoid function. Once trained, the PRM can be used to provide step-wise
preference signals for LLM alignment [40, 73]. Additionally, it can directly guide the multi-step
decision with a soft policy P (st+1|st) ∝ erθ(st,at) [7, 73, 76, 92].

3



𝑃 𝑠𝑡+1|𝑠𝑡

𝐹(𝑠0)

𝐹(𝑠3)

𝐹(𝑠2)
𝐹(𝑠1)

𝜏1

𝜏2

𝑃(𝜏2) ∝ 𝑅(𝜏2)

𝑃(𝜏1) ∝ 𝑅(𝜏1)

LLM

Flow
Head

Policy
Head

𝐹(𝑠𝑡)

𝑃 𝑠𝑡+1|𝑠𝑡

𝑠𝑡

(𝑠𝑡, 𝑎𝑡)

Policy_prompt = Template('''###Information 
trajectory you have visited: {{history}}
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###Candidate Information: {{candidate}}
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Please predict the reward of the 
Information trajectory to the question.''')

(a). Illustration of GraphFlow. (b). LLM-based Implementation of GraphFLow.   

Figure 2: An overview of the proposed GraphFlow framework. (a). GraphFlow employs a flow
estimator F (·) to factorize the outcome reward R(τ) of a retrieval trajectory τ to flow value F (st).
The flow value guides to learn a policy P (st+1|st) that leads to accurate and diverse retrieval results
for complex queries. (b) We introduce an LLM-based implementation of GraphFlow to enhance
KG-based RAG on text-rich KGs.

3 Method

3.1 KG-based RAG as Multi-step Decision

Problem Formulation. Given an input query Q, our goal is to retrieve a set of K target nodes
V∗ = {Vi | i = 1, · · · ,K} from a text-rich knowledge graph (KG) G = {V,E,D} such that the
associated documents D∗ = {D∗

i | i = 1, · · · ,K} can support answering Q. Here, Vi ∈ V is a
node, Eij ∈ E is an edge between Vi and Vj indicating their relation. Each Di denotes the textual
document associated with node Vi (e.g., the content of a paper).

Agent-based Retrieval as a Multi-step Decision Process. To effectively leverage both relational
and text information in the KG, we employ the agent-based approach initiated with an LLM due
to its superior text understanding and planning ability. We formulate the agent-based retrieval as a
multi-step decision problem, consisting of the following components:

• State. The agent starts retrieval from the initial state s0 = (Q, {D0}), where D0 is the
document associated with the source node V0 from which the retrieval process is initiated.
At step t, the agent arrives at node Vt and the current state is defined as st = (Q, {Dj}tj=0),
where {Dj}tj=0 is the set of documents collected along the partial retrieval trajectory
τ≤t = V0 → · · · → Vt.

• Action. Given state st, the agent selects an action at ∈ A(st), corresponding to moving
from Vt to a adjacent node Vt+1 ∈ N(Vt) along edge Et,t+1. The agent then retrieves the
documents Dt+1 associated with Vt+1.

• Transition. The agent transits to state st+1 = (Q, {Dj}t+1
j=0). This process continues until

either the document Dt+1 is deemed sufficient to support the query Q, or a predefined
maximum number of steps is reached.

• Reward. Upon termination, the agent receives a reward R(τ) for the retrieval trajectory τ .
The reward is calculated whether the document DT associated with the terminal node VT of
trajectory τ can the query (i.e. DT ∈ D∗).

Energy-based Modeling for Accurate and Diverse Retrieval. As shown in Figure 2 (a), the goal
of GraphFlow is to learn the policy P (st+1 | st) that can effectively retrieve accurate and diverse
information from a knowledge graph (KG) to support answering an input query. To this end, we
formulate the retrieval process as an energy-based distribution over trajectories:

P (τ) =

T∏
t=0

P (st+1 | st) ∝ R(τ). (5)

The equality in Eq. 5 is due to the Markov property of the state transition.

In contrast to the objectives of prior KG-based RAG methods in Eq. 1 and Eq. 2 that maximize the
likelihood of the most relevant information in KG, the objective of GraphFlow in Eq. 5 reflects the
intuition that high-reward retrieval trajectories (i.e., trajectories ending in high-quality supporting
documents) should be sampled more frequently. Thus, GraphFlow naturally promotes diverse yet
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Table 1: Performance of retrieval accuracy of KG-based RAG methods on STaRK benchmark. Our
GraphFlow outperforms baselines with higher hit rates and MRR scores. GraphFlow also surpasses
strong baselines implemented with GPT-4o on most metrics.

Method
Dataset STaRK-AMAZON STaRK-MAG STaRK-PRIME

Metric Hit@1 ↑ Hit@5↑ MRR↑ Hit@1↑ Hit@5↑ MRR↑ Hit@1↑ Hit@5↑ MRR↑

Retrieval
-based

DenseRetriver 6.10 15.85 10.61 24.44 40.23 32.41 5.43 13.07 8.99
G-Retriever 6.10 11.59 8.54 24.44 31.95 28.08 5.43 8.94 6.95

SubgraphRAG 8.03 12.43 9.90 9.30 25.59 16.11 4.82 8.00 6.17

Agent-
based

(w/o Rerank)

ToG+LLaMA3 4.21 6.16 5.25 12.0 14.09 12.67 21.92 34.0 26.61
ToG+GPT4o 20.67 41.38 30.90 23.33 56.67 36.38 16.67 39.77 27.02

SFT 8.16 15.30 13.54 26.53 28.57 29.10 27.5 40.07 33.06
PRM 20.09 26.25 28.16 26.05 28.0 28.52 21.01 46.72 31.25

GraphFlow 19.63 44.17 31.66 29.32 58.64 41.32 39.84 71.71 54.58

Agent-
based

(Rerank)

ToG+LLaMA3 4.21 6.16 5.25 12.0 14.09 12.67 21.92 34.0 26.61
ToG+GPT4o 27.58 51.72 39.08 26.67 56.67 39.65 53.33 63.73 57.78

SFT 12.24 30.61 21.54 27.55 44.89 36.37 23.75 52.5 35.98
PRM 21.25 42.50 31.97 27.31 44.09 33.69 22.86 28.24 26.94

GraphFlow 47.85 65.03 55.49 39.09 57.51 47.82 51.39 72.11 61.37

accurate retrieval results since the retrieval trajectories resulting in highly relevant documents are
more likely to be explored. Moreover, GraphFlow also enjoys good generalization ability by avoiding
strict likelihood maximization and does not overfit to a few dominant candidates.

3.2 Flow Estimation as Credit Assignment

A major challenge in learning the policy P (st+1 | st) to satisfy Eq. 5 is the lack of process-level
supervision. When collecting retrieval trajectories τ ∈ T for training, only the outcome reward
R(τ) is observable, indicating whether the final retrieved document supports answering the query.
Annotating the process-level reward signals for every intermediate state and action is expensive.
This gives rise to the credit assignment problem [56, 91], which attributes the terminal reward of a
trajectory back to the intermediate decisions. To address this, we adopt the GFlowNet framework [3],
which implicitly performs credit assignment by estimating a non-negative flow value for each state.

Rather than directly maximizing the reward or value of a full trajectory, GFlowNets introduce a flow
function F (s) : S → R≥0 for each intermediate state s. The learning objective enforces a local
consistency constraint between transitions, which is known as the detailed balance condition:

F (st) · P (st+1 | st) = F (st+1) · PB(st | st+1), (6)

where P (st+1 | st) is the forward policy we want to obtain, and PB(st | st+1) is the backward
policy. When this condition holds for all transitions, the retrieval trajectory induced by the policy
P (st+1 | st) satisfies the objective in Eq. 5, leading to diverse and accurate retrieval results on KGs.

While alternative GFlowNet objectives, such as trajectory balance [52] or subtrajectory balance [51],
can also promote diversity, they require computation over entire trajectories or sub-trajectories. In
KG-based RAG, the retrieval trajectory involves multi-hop transitions, and each node is associated
with long documents. These objectives are computation-intensive and often lead to out-of-memory
(OOM) issues. To ensure scalability and efficiency, we thus adopt the detailed balance objective that
operates on state transitions.

Detailed Balance with Local Exploration. Enforcing the detailed balance condition globally across
all transitions in a knowledge graph (KG) is computationally inefficient, since the vast state space
makes many nodes and transitions unreachable during training. To address this, we introduce a
local exploration strategy that focuses the detailed balance objective on the neighborhoods of states
observed in sampled trajectories.

For a retrieval trajectory τ = V0 → · · · → VT with reward R(τ), we apply local exploration to each
non-terminal state st = (Q, {Dj}tj=0) where t ̸= T . Specifically, the agent takes an exploratory
action a′t ∈ A(st) that moves from node Vt to a neighboring node V ′

t+1 ∈ N (Vt) different from the
original next node Vt+1. This results in a new exploratory state s′t+1 = (Q, {Dj}tj=0 ∪ {D′

t+1}),
corresponding to the partial trajectory τ ′≤t+1 = V0 → · · · → Vt → V ′

t+1.
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Table 2: Performance of retrieval diversity of KG-based RAG methods. GraphFlow retrieves more
correct documents to support queries with high diversity.

Method
Dataset STaRK-AMAZON STaRK-MAG STaRK-PRIME

Metric R@20↑ D-R@20↑ R@20↑ D-R@20↑ R@20↑ D-R@20↑

Retrieval
-based

DenseRetriver 13.63 13.63 41.80 41.80 13.92 13.92
G-Retriever 5.35 5.35 25.37 25.37 6.75 6.75

SubgraphRAG 6.53 6.53 27.83 26.95 6.49 6.49

Agent
-based

ToG+LLaMA3 2.61 2.61 6.77 6.77 33.84 33.84
ToG+GPT4o 25.81 23.70 48.03 47.71 54.35 54.35

SFT 25.22 24.97 37.48 35.90 47.72 45.36
PRM 35.72 18.94 36.73 36.73 45.97 45.97

GraphFlow 36.15 36.15 57.18 57.18 79.71 79.59

By performing k such explorations, we generate k exploratory actions {a′t,1, · · · , a′t,k} and their
resulting states {s′t+1,1, · · · , s′t+1,k}. With the ground-truth next state denoted as s′t+1,0 = st+1, we
obtain k + 1 transitions from st to candidate next states for optimizing the detailed balance objective.

The forward policy is then defined as P (st+1 = s′t+1,i|st) = e
rθ(st,a

′
t,i)∑k

i=0 e
rθ(st,a

′
t,i

)
. Here rθ(s, a) is a

learned process reward function parameterized by a neural network with parameters θ. Since the
retrieval process is inherently irreversible (i.e., backtracking is disallowed), we follow prior work
[22] and set the backward policy PB(st | st+1) = 1 in Eq. 5. We yield the following objective for
state st by taking the log function to both sides of Eq. 5:

LDBLE(st) =

k∑
i=0

[logF (st)− logF (s′t+1,i) + logP (st+1 = s′t+1,i|st)]2

=

k∑
i=0

[logF (st)− logF (s′t+1,i) + rθ(st, a
′
t,i)− log

k∑
i=0

erθ(st,a
′
t,i)]2.

(7)

Boundary Condition. We impose boundary conditions on the initial and terminal states to ensure
proper propagation of flow values along the retrieval trajectory: logF (s0) = logF (sT ) = 1. Here s0
is the initial state and sT is the terminal state. The reason is that we only collect retrieval trajectories
that reach target documents during model training. With such boundary conditions, we ensure that
the total incoming and outgoing flow is consistent across the trajectory and enable the flow estimator
to correctly distribute the outcome reward of the terminal state to the intermediate states.

Termination Condition. To allow the retrieval policy P (st+1 | st) to decide when to stop, we
introduce a special self-loop action that retrieves the current node again. At each step, this action
is included among the candidate actions in Eq. 7. Hence, Eq. 7 can also be applied for the terminal
state. If the policy chooses to retrieve the current document (i.e., selects the self-loop), the trajectory
is terminated, indicating that the current document is relevant to the query. Otherwise, the policy
continues to explore the KG. This mechanism enables the agent to adaptively determine when to stop
retrieval based on its experience, rather than relying on a fixed number of steps.

Difference Between GraphFlow, SFT, and PRM. SFT and PRM learn the retrieval policy by
treating the action leading to the ground-truth next state st+1 as a positive sample, and exploratory
actions leads to {s′t+1,1, · · · , s′t+1,k} as negative ones, akin to behavior cloning [70]. GraphFlow
generalizes this by learning state-dependent flow values F (s) and factorizes the outcome reward via
Eq. 7. When setting logF (st) = 1 and logF (s′t+1,i) = 0, GraphFlow reduces to behavior cloning.
However, such as a hard objective limits generalization and cannot learn a policy leading to diverse
and accurate retrieval results for complex queries.

3.3 Instantiating GraphFlow with LLMs

We implement GraphFlow with an LLM due to its ability of text understanding and decision-making,
as shown in Figure 2 (b). The state and state-action pair are decorated with a flow prompt and policy
prompt template, which are encoded using a shared LLM. The embeddings of the final tokens are
used as representations of the state and the state–action pair, respectively. On top of the shared
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Table 3: Quantitative retrieval quality of different KG-based retrieval methods.

Method STaRK-Amazon STaRK-MAG STaRK-PRIME

Step-∆Seper ↑ Answer-∆Seper ↑ Step-∆Seper ↑ Answer-∆Seper ↑ Step-∆Seper ↑ Answer-∆Seper ↑

ToG+GPT-4o 0.031 ± 0.109 0.092 ± 0.128 0.041 ± 0.172 0.065 ± 0.150 0.065 ± 0.125 0.148 ± 0.165
ToG+LLaMA3 0.010 ± 0.118 0.046 ± 0.149 0.068 ± 0.108 0.105 ± 0.146 0.009 ± 0.102 0.021 ± 0.106

SFT 0.079 ± 0.151 0.141 ± 0.160 0.035 ± 0.101 0.084 ± 0.095 0.062 ± 0.132 0.158 ± 0.183
PRM 0.029 ± 0.089 0.071 ± 0.112 0.037 ± 0.117 0.060 ± 0.115 0.057 ± 0.106 0.131 ± 0.174

G-Retriever — 0.024 ± 0.110 — 0.012 ± 0.089 — 0.029 ± 0.117
SubgraphRAG — 0.021 ± 0.093 — 0.039 ± 0.076 — 0.046 ± 0.083

GraphFlow 0.097 ± 0.158 0.219 ± 0.257 0.081 ± 0.137 0.145 ± 0.112 0.091 ± 0.147 0.206 ± 0.192

encoder, we employ two separate multi-layer perceptrons (MLPs) as the policy head and the flow
head, respectively. The policy head predicts the forward transition probability, while the flow head
estimates logarithm of the flow value of the state. During model training, we apply LoRA [23] to
inject learnable adapters into the frozen backbone of the LLM, and update the parameters of the
flow head and the policy head. This design enables joint optimization of policy learning and flow
estimation in a parameter-efficient manner, while also capturing rich contextual information through
the LLM encoder. We present detailed implementation in Supplementary Material due to space limit.

4 Experiment

4.1 Dataset

We employ the STaRK [74] benchmark to validate the retrieval quality of the proposed GraphFlow to
support complex queries. STaRK is a recently proposed benchmark designed to evaluate the retrieval
performance of KG-based RAG methods on text-rich KGs spanning three domains:

• STaRK-AMAZON is an e-commerce KG where the nodes contain detailed product infor-
mation and the edges denotes the properties of products and co-purchase between products.
The retrieval task is to retrieve the diverse products to satisfy the recommendation query.

• STaRK-MAG is an academic graph constructed based on OGB [24] and Microsoft Aca-
demic Graph [66]. The nodes contain author information, institute, and publications. The
retrieval task is to address academic queries such as paper searching.

• STaRK-PRIME is a biomedical KG where the nodes are associated with the detailed
description of drugs, disease, genes, and pathways, and the edges are their relationship. The
retrieval task is to address the biomedical query.

The StaRK benchmark challenges KG-based RAG methods by complex queries corresponding to
diverse retrieval targets and fusion of text and structure information that complicates accurate retrieval.

4.2 Baseline and Evaluation Metrics

Baseline. We choose representative retrieval-based and agent-based baselines with explicit retrieval
results (i.e., the retrieved node index) on the STaRK benchmark [74]. All detailed implementations
are shown in Supplementary Material due to space limit.

For retrieval-based baselines, we consider Dense-Retriever [30], G-Retriever [21], and Sub-
graphRAG [37]. Dense-Retriever is implemented with SentenceBERT [62] to encode both questions
and the documents of KG nodes into dense embeddings and retrieve the documents with top vector
similarity. G-Retriever employs the Prize-Collecting Steiner Tree (PCST) [2] algorithm to extract a
subgraph from KGs relevant to the query. Since computing PCST on STaRK benchmark is infeasible,
we follow the hybrid setting [33, 34] that first identifies a source node in KG via Dense-Retriever and
only computes PCST around the ego-graph up to 2 hops around the identified node. We also adopt the
same hybrid setting for other baselines to ensure computational feasibility on STaRK. SubgraphRAG
integrates a learnable subgraph retrieval module to retrieve from KG.

For agent-based methods, we consider ToG [68], SFT, and PRM [40] as baselines. ToG employs an
LLM agent to search from the KG to retrieve supporting documents. We instantiate ToG using both
LLaMA3-8B-Instruct and GPT-4o as backbone models, denoted as ToG+LLaMA3 and ToG+GPT4o,
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(a). Generalization Results without Rerank

(b). Generalization Results with Rerank

Figure 3: Generalization Performance of KG-based RAG methods. GraphFlow shows superior
cross-domain generalization performance, especially under the rerank setting (best viewed in color).

respectively. SFT and PRM are two popular approaches that fine-tune the LLM agent to enhance RAG
in recent works [76, 12, 25]. SFT, PRM, and GraphFlow are deployed with LLaMA3-8B-Instruct
[17]. For agent-based methods, we use the agent to rerank all the retrieved results.

Evaluation Metrics. All KG-based RAG methods retrieve every input query 20 times and generate
20 retrieval results for diversity and accuracy evaluation following the standard setting in STaRK [74].
We employ the following metrics to evaluate the retrieval performance. Hit@k denotes whether the
ground truth is retrieved in the top-k results. We employ Hit@1 and Hit@5 to measure the retrieval
precision of the different KG-based RAG methods. Mean Reciprocal Rank (MRR) measures the
average of reciprocal ranks of the first ground-truth item in the retrieval results and encourages
the ground-truth item to be retrieved in a higher rank. Recall@k (R@k) is a standard metric to
measure the percentage of ground-truth items that appear in the top-k retrieved results. We employ
Recall@20 (R@20) for evaluation. De-duplicate Recall@k (D-R@k) measures the percentage of
unique ground-truth items that appear in the top-k retrieved results. This metric is used to evaluate
the diversity of the correctly retrieved results. We use De-duplicate Recall@20 (D-R@20).

4.3 Main Results

Accuracy. Table 1 presents the retrieval accuracy of various KG-based RAG methods on STaRK.

Figure 4: GraphFlow shows improved re-
trieval diversity on different difficulty levels
of retrieval queries on STaRK-PRIME.

GraphFlow consistently outperforms other KG-based
RAG approaches on most metrics. In particular, it
achieves higher Hit rates and MRR scores than the
strong baseline ToG+GPT-4o with an average 10% im-
provement in retrieval accuracy. Interestingly, ToG’s
performance is highly sensitive to the choice of back-
end model. When instantiated with LLaMA3-8B, ToG
shows a significant drop in performance compared to
using GPT-4o. Additionally, rerank has no effect in the
ToG+LLaMA3-8B setup, as all retrieved results receive
equally high scores, leaving the ranking unchanged.

Two finetuned agent-based baselines, SFT and PRM,
outperform ToG without finetuning, but still fall short of
GraphFlow. While PRM training can leverage curated
preference datasets with fine-grained process-level re-
wards, such labeling is prohibitively expensive. Instead, GraphFlow achieves high-quality retrieval
with only outcome rewards of retrieval trajectories. For retriever-based approaches, DenseRetriever,
G-Retriever, and SubgraphRAG show moderate performance but are generally inferior to agent-based
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methods. Overall, retriever-based methods remain more lightweight but trail behind agent-based
approaches in retrieval accuracy.

Diversity. Table 2 reports the retrieval diversity of different KG-based RAG methods on the STaRK
benchmark. We evaluate both Recall@20 (R@20) and its de-duplicated variant (D-R@20), which
better captures retrieval diversity. GraphFlow achieves the highest retrieval diversity across all
datasets, outperforming both retriever-based and agent-based baselines. Its results not only match
more ground-truth contents but also avoid redundancy. Notably, GraphFlow exceeds the strongest
baseline (ToG+GPT-4o) by a large margin on the STaRK-PRIME dataset, highlighting its ability to
retrieve results that are both relevant and diverse. Compared with PRM and SFT, GraphFlow also
demonstrates superior diversity. In contrast, retriever-based methods retrieve less diverse content and
cover fewer retrieval targets.

4.4 Quantifying Retrieval Quality

We further employ the Seper score (∆Seper) [9] to quantify the retrieval quality of different KG-based
retrieval methods. The Seper score is a recently proposed metric for evaluating retrieval utility by
measuring semantic perplexity reduction after retrieval: ∆Seper = pM (a|q, d)− pM (a|q). Here, q is
the question, d is the document associated with the retrieval item, and M is an LLM used for question
answering. In our case, we use LLaMA3–8B–Instruct to instantiate M to keep consistent with the
retrieval model. Since there is no ground-truth answer for the questions in the STaRK benchmark,
we use the title or summarized description of the ground-truth retrieval item as a. We design the
following metrics for comprehensive evaluation and report their mean and standard deviation (std).

• Step-∆Seper: the Seper score that quantity the retrieval quality of intermediate retrieval.

• Answer-∆Seper: the Seper score that quantity the retrieval quality of the final result.

As shown in Table 3, GraphFlow consistently achieves higher Step-∆Seper and Answer-∆Seper than
all the baselines, demonstrating stronger information utility during retrieval. These results further
confirm that GraphFlow can significantly improve the information utility when retrieving from text-
rich KGs. Notice that all the methods have high variance in Step-∆Seper and Answer-∆Seper. The
reason is the high variance in natural language entailment when calculating Seper scores. Moreover,
we observe that some retrieval samples have negative Seper scores for all methods, indicating a
negative impact on question answering when retrieving bad contents.

4.5 Further Discussion

Cross-domain Generalization. Figure 3 reports the cross-domain generalization ability of different
KG-based RAG methods. We use Hit@1 to evaluate the retrieval accuracy Compared with Sub-
graphRAG using a small model for retrieval, SFT, PRM, and GraphFlow that finetune the LLM show
better cross-domain generalization ability due to the over-parameterization [35, 15]. GraphFlow
demonstrates superior cross-domain generalization, since it avoids from likelihood maximization
objectives used by SFT and PRM. Instead, GraphFlow adaptively assigns the outcome reward of the
retrieval trajectory to the flow values of intermediate states and guides the retrieval policy, leading to
better generalization ability. More results are shown in Supplementary Material due to space limit.

Performance on Hard Cases. We categorize the retrieval queries with different numbers of retrieval
targets into 4 difficulty levels. Figure 4 shows the D-R@20 scores of KG-based RAG methods on
retrieval queries on STaRK-PRIME at different levels. GraphFlow outperforms the other agent-based
approaches by a large margin by covering more diverse and accurate retrieval targets, especially on
the hard cases containing more than 15 retrieval targets. The performance on hard cases shows the
superior performance of GraphFlow in retrieving more relevant and diverse results. More results of
hard cases are shown in Supplementary Materials due to space limit.

5 Related Work

KG-based RAG. Knowledge graphs (KGs) are widely used as knowledge sources in retrieval-
augmented generation (RAG) [20? ] systems to enhance large language models (LLMs) with both
relational and textual information for answering complex queries [14, 13, 8, 75]. A core challenge in
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KG-based RAG lies in retrieving relevant knowledge from KGs in response to a given query. Recent
methods addressing this problem can be broadly categorized into two approaches. Retrieval-based
methods [80, 53, 21, 61, 93] leverage pretrained language models to encode the textual content in
KGs into embeddings and use small models, such as MLP and GNN, to retrieve relevant information.
In contrast, agent-based methods [68, 88, 50, 47, 45] employ LLMs as agents that iteratively traverse
the KG to locate supporting evidence. While both paradigms have shown promise in knowledge
graph question answering (KGQA) [37], their effectiveness in retrieving diverse and high-quality
candidates for complex queries remains limited. Furthermore, complex queries often require retrieval
from text-rich KGs, necessitating the joint consideration of both relational structure and text content.
Although recent studies [50, 34] have begun to explore this setting and tackle complex queries,
enhancing the diversity and accuracy of KG-based RAG is still underexplored.

Process Reward Models. Process Reward Models (PRMs) [40, 32] have shown great promise in
guiding LLMs with process supervision and have been adopted in many domains such as complex
reasoning [7], alignment [58], and planning [6]. The key to PRMs is to construct a preference dataset
with process supervision [60]. Previous works obtain the process supervision from human feedback
and LLM evaluation. However, fine-grained process-level supervision is expensive for KG-based
RAG due to the potentially vast search space of KGs and the difficulty of accessing the intermediate
state during retrieval. Although early explorations are made to use PRM to guide the retrieval process
of RAG on unstructured knowledge bases [39, 65, 25, 76], they still need a preference dataset with
process-level supervision. How to guide the retrieval process of KG-based RAG on structured KGs
without process supervision data is still challenging.

GFlowNet. GFlowNet [3] aims to sample diverse and high-quality candidates from an unnormalized
density and has received increasing attention in sampling from discrete and vast spaces [16, 46, 11, 10,
49]. The goal of GFlowNet is to learn a policy that can lead to the terminal states with the likelihood
in proportion to their rewards [86]. Some objects are proposed to optimize GFlowNet by regularizing
the state flows and their transitions [69, 52, 51]. Recently, GFlowNet has also been introduced to
improve the generative performance of LLMs and diffusion models by promoting diversity in the
decoding process [71, 22, 81, 29, 43] . Differently, our work focuses on aligning the retrieval results
of KG-based RAG with the knowledge required for real-world queries by estimating the state flow in
multi-step retrieval. Moreover, we introduce a local exploration strategy to avoid visiting less-valued
states, thus efficiently optimizing the detailed balance.

6 Conclusion

We introduce GraphFlow, a novel framework that enhances existing KG-based RAG methods by
enabling accurate and diverse retrieval from text-rich KGs. By jointly optimizing a retrieval policy and
a flow estimator via a detailed balance objective, GraphFlow effectively aligns the retrieval process
with query-specific knowledge demands without explicit process-level reward. Extensive evaluation
on the STaRK benchmark demonstrates that GraphFlow not only surpasses strong baselines deployed
with GPT-4o, but also generalizes well to unseen KGs. These findings underscore the effectiveness
and robustness of GraphFlow in supporting complex queries using textual and structured knowledge.
Our future work will incorporate causality into KG-based RAG to improve the reasoning ability of
LLMs [44, 5, 83], reduce forgetting [41, 42], and explore their scientific applications [78].
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claim in the abstract and introduction accurately reflect the paper’s
contribution and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitation in a separate PDF file due to the space limitation of
the submission.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not contribute new theory or new proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe the details of the proposed GraphFlow framework in Method sec-
tion. We also provide implementation including training details and dataset pre-processing.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available benchmark in our experiment. Moreover, we provide
details on how we use this benchmark in Supplementary Material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Due to space limit, we provide these details in Supplementary Material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The error bar is not accessible in the standard metrics of the benchmark used
in our paper. However, our main results have shown a significant performance gain over the
baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide these details in Supplementary Material.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conform with the NeruIPS Code of Ethics
in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are discussed in Supplementary Material.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: This paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite the open-sourced LLM model and dataset in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowd-sourcing nor research with human objects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowd-sourcing nor research with human objects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We confirm that the core method development in this research does not involve
LLMs.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Introduction of GFlowNet

Generative Flow Networks (GFlowNets) [3] aim to learn a stochastic policy that generates objects
x ∈ X through sequential decisions, such that the marginal probability of generating x is proportional
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to a reward function R(x) > 0. Given a complete trajectory τ = (s0, a1, s1, . . . , aT , sT = x) that
terminates in object x, the forward trajectory probability is:

PF (τ) =

T−1∏
t=0

PF (at+1|st)

and the backward probability (used to reverse the trajectory) is:

PB(τ) =

T∏
t=1

PB(at|st)

Trajectory Balance (TB) Loss [52].. The Trajectory Balance objective ensures the ratio of forward
to backward probability matches the reward:

PF (τ)

PB(τ)
=

R(x)

Z
⇐⇒ logPF (τ)− logPB(τ) = logR(x)− logZ

where Z is the global partition function. The loss function is then defined as:

LTB = (logPF (τ)− logPB(τ)− logR(x) + logZ)
2

In practice, logZ is treated as a learnable scalar parameter.

Subtrajectory Balance (SubTB) Loss [51].. To enable learning from partial trajectories, the
Subtrajectory Balance loss generalizes TB to arbitrary subpaths. For any subtrajectory τi:j =
(si, ai+1, . . . , sj) from state si to sj , the balance condition becomes:

PF (τi:j)

PB(τi:j)
=

Z(sj)

Z(si)
⇐⇒ logPF (τi:j)− logPB(τi:j) = logZ(sj)− logZ(si)

This leads to the Subtrajectory Balance loss:

LSubTB = (logPF (τi:j)− logPB(τi:j)− logZ(sj) + logZ(si))
2

Here, Z(s) denotes the flow or partition function at state s, typically parameterized by a neural
network as Fϕ(s) = logZ(s). SubTB enables more flexible and sample-efficient training, especially
for long-horizon generation tasks. However, directly implementing GFlowNet on KG-based RAG
faces several challenges. First, the objectives such as Trajectory balance and sub-trajectory balance
are computed on the whole trajectories, leading to computational burden in KG-based RAG where
entities are associated with long texts. Second, many states and transitions in KGs are less-valued and
not visited, making the traditional GFlowNet objective inefficient. Second, the discrete and symbolic
nature of KGs poses difficulty in defining state transitions and flow dynamics, especially when
integrating pretrained language models to interpret semantic relevance. These factors collectively
make it challenging to directly apply GFlowNet to KG-based retrieval without significant adaptations
in trajectory design, reward shaping, and exploration strategy.

B Implementation of GraphFlow with LLMs

Model Architecture. We use LLaMA3-8B-Instruct as the backbone LLM to implement GraphFlow.
Specifically, we first employ the following flow prompt template to wrap the retrieval trajectory τ≤t

at state st into a text sequence for flow estimation.

###Information trajectory you have visited: {history}
###Question: {question}
Please predict the reward of the Information trajectory to the question:

Here {history} is the concatenation of documents of previously visited entities. {question} is the
input complex query. The backbone LLM encodes the above wrapped text sequence. The embedding
of the last token is treated as the representation of the wrapped sequence used for flow estimation. We
employ a 1-layer MLP as the flow head, which receives the representation of the wrapped sequence
and outputs the log value of the estimated flow log st.

Then we employ the following policy prompt template to warp the retrieval trajectory τ≤t at state st
into a text sequence for policy learning.
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Figure 5: Training dynamics of GraphFlow.

###Information trajectory you have visited: {history}
###Question: {question}
###Candidate Information: {candidate}
Please predict the score of the candidate to help you find the answer to the question:

Here {history} is the concatenation of documents of previously visited entities. {question} is the
input complex query. And {candidate} is one action at that leads to the next state st+1. The backbone
LLM encodes the above wrapped text sequence. The embedding of the last token is treated as the
representation of the wrapped sequence used for learning P (st+1|st). Specifically, we employ a
1-layer MLP with a ReLU function to parameterize σθ(st, at). The forward policy P (st+1|st) is
calculated as below:

P (st+1|st) =
σθ(st, at)∑
at
σθ(st, at)

. (8)

Training Configuration. we apply LoRA [23] to inject learnable adapters into the frozen backbone
of the LLM, and update the parameters of the flow head and the policy head. This design enables
joint optimization of policy learning and flow estimation in a parameter-efficient manner, while also
capturing rich contextual information through the LLM encoder. The parameters of these modules
are trained by optimizing the detailed balance with local exploration (DBLE) objective:

LDBLE(st) =

k∑
i=0

[logF (st)− logF (s′t+1,i) + logP (st+1 = s′t+1,i|st)]2

=

k∑
i=0

[logF (st)− logF (s′t+1,i) + rθ(st, a
′
t,i)− log

k∑
i=0

erθ(st,a
′
t,i)]2.

(9)

Experimental Settings. To facilitate training the LoRA module and the flow head and the policy
head on the STaRK benchmark, we first collect training dataset consisting of transitions between
states. For a given question Q with the set of ground truth retrieval entities VT in the training set, we
first identify the initial entity V0 using vector similarity between the embedding of Q and V0. Then,
we sample the trajectory τ≤T = V0 → · · · → VT staring from V0 and ending at VT . We collect
the all the transitions between st to st+1 in the example the trajectory τ≤T = V0 → · · · → VT
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Table 4: Parameters of GraphFlow training on STaRK benchmark.

STaRK-AMAZON STaRK-MAG STaRK-PRIME

Accumulation steps 2
alpha 16

batch_size 1
num_gpu 8

depth_cutoff 6
doc_cutoff 400
eval_ratio 0.8
eval_step 100

lora_dropout 0.05
lr 1.00E-05

max_length 1024
n_epochs 1

num_exploration 4
r 32

window_size 3

Table 5: We provide data statistics of STaRK. The statistics are from the STaRK benchmark [74].

entity
type

relation
type

avg.
degree entities relations tokens

STARK-AMAZON 4 5 18.2 1,035,542 9,443,802 592,067,882
STARK-MAG 4 4 43.5 1,872,968 39,802,116 212,602,571
STARK-PRIME 10 18 125.2 129,375 8,100,498 31,844,769

to implement local exploration as introduced in Section 3.2 in the main paper. For every training
step, we construct mini-batch of traditions between states to calculate the loss in Eq. 9. The training
dynamic is shown in Figure 5. Here, training transition loss is calculated using the transition between
non-terminal states. And training starting loss and training end loss are calculated using boundary
condition F (s0) = F (sT ) = 0. Training total loss and eval loss are calculated on all the transitions
between states on the training and evaluation dataset. Eval policy accuracy is the accuracy of policy
P (st+1|st) on the evaluation dataset. We training GraphFlow on these dataset for one epoch, other
important parameters are shown in Table 4.

C Implementations of Baselines

To the best of our knowledge, few KG-based RAG methods are implemented on the text-rich STaRK
benchmark. Instead, many KG-based RAG methods employ simple KGQA datasets such as CWQ,
WEBQSP. Thus, we choose representative retrieval-based and agent-based baselines with explicit
retrieval results (i.e., the retrieved node index) on the STaRK benchmark [74]. We provide the
implementation details of the used baseline methods as below.

Dense-Retriever is implemented with SentenceBERT [62] to encode both questions and the documents
of KG nodes into dense embeddings and retrieve the documents with top vector similarity. We choose
SentenceBERT as the text document to be consistent with prior works [21], where SentenceBERT is
used to encode the text information in KGs. Although STaRK benchmark provide the pre-processed
text embedding of entities and relationships in KGs using text-embedding-ada-002 model, we find
the inconsistency between the entities IDs and the entities embeddings. Some entities in KGs are
not converted into embeddings. Thus, we rerun the encoding model using SentenceBERT to obtain
the full entities embeddings. After encoding the text information into embeddings, we employ the
vector similarity between the question embedding and text embeddings for retrieval. We evaluate the
retrieval performance on top 20 retrieval results.

G-Retriever [21] is a two-stage method for KG-based RAG. It first employs the Prize-Collecting
Steiner Tree (PCST) [2] algorithm to retrieve a subgraph from KGs relevant to the query. Then, the
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retrieved subgraph is encoded into the token space of LLM using a GNN for question answering (QA).
To further improve the QA performance, G-Retriever also applies LoRA module to fine-tune LLM.
Since we focus on the evaluating the retrieval performance of different KG-based RAG methods, we
do not fine-tune the GNN and LLM for QA. To make PCST algorithm feasible on STaRK benchmark,
we adopt a hybrid approach that first identify the 20 seed nodes and implement the PCST algorithm
to extract the subgraphs around 2-hop ego graph around the seed nodes. We drop the seed nodes with
dense neighborhoods to avoid computation overhead [33, 34].

SubgraphRAG [37] integrates a learnable subgraph retrieval module to retrieve from KGs. Since
training the subgraph retrieval module on the STaRK benchmark is infeasible, we employ the ego-
graph setting similar to G-Retriever. We identify the up-to 2 hop neighbor hood graph around the
seed node to construct the training and testing set for SubgraphRAG. We also drop the the seed
node that has dense neighborhood to avoid computation overhead. This ego-graph setting is also
employed to construct the test set for the other KG-based RAG models. We follow the default setting
of SubgraphRAG to reproduce it on STaRK benchmark.

ToG [68] employs an LLM agent to search from the KG to support KG-based question anwsering.
ToG is implemented with frozen LLMs by prompt engineering instead of fine-tuning. Specifically,
ToG employs tree-based search [79] to transverse the KG and search the relevant information for
KG-based QA. Since we focus on evaluating the retrieval performance of KG-based RAG models,
we modify ToG to retrieve the relevant document at each searching steps instead of incorporating
the retrieved document to update the question answering results. Since running ToG on the whole
KGs in STaRK is infeasible, we identify the seed node for ToG searching using vector similarity
and constrain the searching area around the 2-hop neighborhood of the seed node. We instantiate
ToG using both LLaMA3-8B and GPT-4o as backbone models, denoted as ToG+LLaMA3 and
ToG+GPT4o, respectively.

We also implement SFT and PRM as two fine-tuning baselines build upon ToG and LLaMA3-8B-
Instruct. We use the sample training dataset to train ToG using SFT and PRM as GraphFlow for a fair
comparison. We employ the TRL (Transformer Reinforcement Learning) package to fir SFT and
PRM fine-tuning. We apply LoRA funetuning to improve the efficiency.

Other potential baselines but hard to implement on STaRK. There are alternative KG-based RAG
baseline methods for evaluation. However, we find it hard to implemented these baseline on STaRK,
mostly due to the compatibility issues. We list some examples as below.

QAGNN [80] is designed for improving the QA performance on KG-based QA task. Although its
retrieval performance is reported on STaRK benchmark, detailed implementation code on STaRK
is not publicly available. Although recent concurrent work [34, 33] tried to implement QAGNN
on STaRK, the reported performances of QAGNN diverge from the reported results on STaRK
benchmark.

RoG [47] adopts similar approach as it finetunes the LLM to search from KGs. It first employs an
LLM to generate retrieval trajectories for the input queries and use the generated retrieval trajectories
to construct a training dataset to fine-tune the retrieval agent by SFT. However, we find that LLM
usually generate invalid retrieval trajectory, leading to low quality training datasets for SFT fine-
tuning. Thus, we finetune the retrieval agent using the valid retrieval trajectories by SFT in the main
paper.

ToG-2.0 [50] is a recently proposed method to retrieve from the structured database and unstructured
database. The key to ToG-2.0 is to identify the topic entitiies for a given questions. However, the
implementation of topic entity recognition is absent, making it difficult to reproduce ToG-2.0 on
STaRK benchmark.

HybridRAG [33], Mixture of RAG [34], and KAR [75] are recent pre-prints on Arxiv focusing on
retrieving from text-rich KGs. However, their codes are not available yet, making it difficult for us to
reproduce these methods.

D More results of Cross-domain Generalization

We show more generalization performance in terms of Hit@5 in Figure 6.
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(a). Generalization Results without Rerank.

(b). Generalization Results with Rerank.

Figure 6: Generalization Performance (Hit@5) of KG-based RAG methods. GraphFlow shows
superior cross-domain generalization performance, especially under the rerank setting (best viewed
in color).

Figure 7: GraphFlow shows improved retrieval diversity on different difficulty levels of retrieval
queries on STaRK-PRIME.

E More results of Hard Cases

We categorize the retrieval queries with different numbers of retrieval targets into 4 difficulty levels.
We provide the performance of different KG-based RAG on STaRK-PRIME, STaRK-MAG, and
STaRK-AMAZON at different difficulty levels. The results are shown in Figure 7, Figure 8, and
Figure 9.
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Figure 8: GraphFlow shows improved retrieval diversity on different difficulty levels of retrieval
queries on STaRK-AMAZON.

Figure 9: GraphFlow shows improved retrieval diversity on different difficulty levels of retrieval
queries on STaRK-MAG.

F Benchmark Information

We provide benchmark information in Table 5.

G Computing Resources

We run all experiments on 8/16 NVIDIA-A800-SXM4-80GB GPUs and 56 Intel(R) Xeon(R) Platinum
8336C CPUs.
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H Broader Impact and Limitations

GraphFlow introduces a novel framework for retrieval-augmented generation over text-rich knowl-
edge graphs, enabling Large Language Models (LLMs) to reason more effectively through process
supervision using GFlowNets. By modeling retrieval as a generative process that balances diverse
and relevant paths, GraphFlow promotes both interpretability and coverage in knowledge-based
reasoning. This has broad implications for applications such as scientific discovery, open-domain
question answering, and medical decision support, where combining structured knowledge with
free-text reasoning is crucial. Moreover, GraphFlow can serve as a foundation for future research
in integrating generative decision-making with symbolic structures, thereby pushing forward the
synergy between LLMs and knowledge graphs. One potential limitation is that we only evaluate the
generalization ability of GraphFlow on two new domains.

30


	Introduction
	Preliminary and Notations
	KG-based RAG
	Process Reward Models

	Method
	KG-based RAG as Multi-step Decision
	Flow Estimation as Credit Assignment
	Instantiating GraphFlow with LLMs

	Experiment
	Dataset
	Baseline and Evaluation Metrics
	Main Results
	Quantifying Retrieval Quality
	Further Discussion

	Related Work
	Conclusion
	Introduction of GFlowNet
	Implementation of GraphFlow with LLMs
	Implementations of Baselines
	More results of Cross-domain Generalization
	More results of Hard Cases
	Benchmark Information
	Computing Resources
	Broader Impact and Limitations

