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Abstract. How can we “scale down” an n-node network G to a smaller network

G′, with k ≪ n nodes, so that G′ (approximately) maintains the important struc-

tural properties of G? There is a voluminous literature on many versions of this

problem if k is given in advance, but one’s tolerance for approximation (and the

resulting value of k) will vary. Here, then, we formulate a “rescalable” version of

this approximation task for complex networks. Specifically, we propose a node

ordering version of graph summarization: permute the nodes of G so that the sub-

graph induced by the first k nodes is a good size-k approximation of G, averaged

over the full range of possible sizes k. We consider as a case study the phono-

logical network of English words, and discover two natural word orders (word

frequency and age of acquisition) that do a surprisingly good job of rescalably

summarizing the lexicon.
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1 Introduction

At SIGGRAPH 2007, Shai Avidan and Ariel Shamir presented a remarkable technique

for “content-aware image resizing” [5]: shrink the size of an image while preserving, to

the greatest extent possible, its important visual qualities. This problem can be solved

crudely by simple cropping or rescaling, but Avidan and Shamir’s approach is more

subtle: they identify an ordering of the “seams” (contiguous edge-to-edge paths through

the image) from least important to most important. Their algorithm allows a user to

shrink an image from n pixels on a side to any size k ≤ n, with k chosen by the user in

real time, by eliminating the n− k least important seams.

What would it mean to perform an analogous “resizing” for a complex network? Is

there a meaningful way to shrink an n-node network to any size k ≤ n, with k chosen on

the fly by the user—say, ordering the nodes by “representativeness”—while preserving
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important graph-theoretic qualities, so that the graphs in the resulting nested sequence

are “as much like” the original as possible?

Approximating complex networks. When members of the complex-networks com-

munity describe a network as “complex,” we seem to have in mind a fuzzy constel-

lation of properties, expecting the network to exhibit many of these desiderata: e.g.,

“small-world” properties [49], a heavy-tailed degree distribution [12], community struc-

ture [17], and degree assortativity [38]. We probably also expect the network to be

“large.” (Despite the now-ostentatious attention to Zachary’s Karate Club [51], few re-

searchers would argue for it as a paradigmatic complex network; how much complexity

can 34 nodes admit?) For a variety of reasons, though, the large size of a network can

be problematic. This issue is immediate in the sense of computational complexity—one

cannot afford Ω(n2) time on a billion-node social network—and it is even more of an

issue if one seeks some kind of real-world intervention.

With these sorts of motivations in mind, many researchers have performed signifi-

cant work on the task of taking a large complex network and performing a type of lossy

compression on it; that is, identifying some smaller graph (either by deleting or aggre-

gating nodes) that is a useful approximation to the original. But this problem is difficult

for a number of reasons: algorithms for the network approximation problem itself often

have running times that grow unfavorably in the size of the full network; the result-

ing smaller network may vary widely depending on the size of the desired subnetwork;

and it is unclear as to the right way to assess the quality of the smaller subnetwork.

(See [1, 33, 34] and Section 3.)

The present work: node ordering as (rescalable) network summarization. The goal

of these graph summarization algorithms is to preserve “interesting” properties of the

graph, while reducing the size of the graph as much as possible. But a major challenge

here—highlighted clearly by Liu et al. [34]—is that what counts as “interesting” will

differ from one researcher to another (and, for that matter, so will what counts as “pre-

served”). And size-reduction algorithms may well require us to precommit to the size

of the desired smaller network and to the network properties of interest, both of which

may be undesirable. (Though see [35].)

Here, we propose a task that embraces these differences in the desired level of ap-

proximation: given a complex network G, we seek to identify an order v1,v2, . . . ,vn of

the nodes of G such that the “prefix graph” for a given size k—that is, the subgraph

induced by the node set {v1,v2, . . . ,vk}—is as close an approximation to G as possible,

for any desired size k. We quantify success for this Node Ordering Problem in both the

sense of global statistics about the graph, and local statistics about the importance of

individual nodes in the full graph and the subgraphs.

We will focus on a particular complex network as a case study for our discussion:

the phonological network, in which nodes correspond to words in a natural language

(here, English), and edges connect pairs of nodes whose pronunciations differ by a

single edit [4, 43, 47, e.g.]. We will describe some natural node orderings in this net-

work, including two derived from external data sources—word frequency and age of

acquisition—that do a remarkably good job of “unkinking” the phonological network,

producing a nested sequence of graphs that reproduce to a surprising extent the statisti-

cal properties of the lexicon as a whole.
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2 The Node Ordering Problem: Approximating Degree

Our framework of successively approximating a graph via one-by-one additions of

nodes is quite broad; we could apply it with a variety of graph-theoretic quantities,

and also with a variety of ways to quantify the difference between two graphs with

respect to any particular quantity. But, to start, we will formalize one specific version

of the Node Ordering Problem, using what is perhaps the simplest nontrivial way to

compare graphs: the degree of the graphs’ nodes. Let δ (u,G) be a function reporting

the degree of the node u in any graph G.

Prefix graphs. First, we fix a bit of terminology. We are given an undirected graph

G = 〈V,E〉, called the full network. Denote by n = |V | the number of nodes in G. We

will refer to a permutation of the vertices π = π1,π2, . . . ,πn as a node ordering.

Any particular permutation π defines a sequence of n prefix networks, one of each

size between 1 and n; specifically, the k-node prefix network of G under π is the sub-

graph of G induced by the nodes {π1,π2, . . . ,πk}. (The subgraph of G = 〈V,E〉 induced

by a set A ⊆V is the graph GA with nodes A and containing all edges in E that join two

nodes in A; that is, GA = 〈A,{(u,v) ∈ E : u ∈ A and v ∈ A}〉.)

See Figure 1 for a small example. (Note that, as always, the last prefix network is

the full network—i.e., in Figure 1, we have G = G{1,2,3,4}.)

Measuring structural quality of a subnetwork. Any node ordering defines a nested

sequence of prefix graphs, starting with a single isolated node and ending with G itself.

We must now describe the objective function—i.e., how do we assess the quality of

a particular permutation? Our evaluation is guided by three principles. First, we seek

low discrepancy between the sequence of prefix graphs and the full network (averaged

over all n different prefix sizes). Second, we measure discrepancy using relative error:

if the prefix graph exhibits a value x and the full network a value x∗, then we compute

the error as
|x−x∗|

x∗
. Third, we want to capture both global error (does the prefix graph

have similar average statistics to the full network?) and local error (do those nodes that

appear in the prefix graph have similar statistics there as they do in the full network?).

In keeping with these principles, we define two notions of error:

Definition 1 (Global Error). For a prefix graph GA, the global (relative) degree error

is the relative error of the mean degree of GA compared to that of G = 〈V,E〉:

global error of GA =

∣

∣

∣

1
|A|

·[∑v∈A δ (v,GA)]−
1
|V |

·[∑v∈V δ (v,G)]
∣

∣

∣

1
|V |

·[∑v∈V δ (v,G)]
.

Definition 2 (Local Error). For a prefix graph GA, the local (relative) degree error is

the mean relative error of each node in GA compared to G = 〈V,E〉, averaged across

all nodes present in GA:

local error of GA = 1
|A| ·∑v∈A

|δ (v,GA)−δ (v,G)|
δ (v,G) .

The errors for the prefix graphs for our small sample graph are also given in Figure 1.
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(a)

G{1}

1

2

(b)

G{1,2}

1

2

3

(c)

G{1,2,3}

1

2

3

4

(d)

G{1,2,3,4}

G{1} G{1,2} G{1,2,3} G{1,2,3,4}

average degree 0.0 1.0 0.667 1.5

node 1 error 1.0 0.5 0.5 0.0

node 2 error 0.5 0.5 0.0

node 3 error 0.0 0.0

node 4 error 0.0

global error 1.0 0.333 0.556 0.0

local error 1.0 0.5 0.333 0.0

For this permutation (i.e., 〈1,2,3,4〉): average global error

= 1.0+0.333+0.556+0.0
4

≈ 0.472

average local error

= 1.0+0.5+0.333+0.0
4

≈ 0.458

Fig. 1: Consider the full network G with nodes {1,2,3,4} and edges {(1,2),(2,4),(1,4)}, under

the permutation 〈1,2,3,4〉. First, we show the four prefix graphs for this network under this

permutation. Then, we show the stage-by-stage local and global errors. (For example, node 2’s

local error in G{1,2} is 0.5 because it has degree 1 in G{1,2} and degree 2 in G, so its local error

is |2−1|/2 = 0.5.) Note that average global and local error are permutation dependent, so these

values would be different for a different ordering of the nodes.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

ABCD EFGH KLMN EJKN

global error 1.0 0.0 0.0 1.0

local error 0.0 0.417 0.0 1.0

Fig. 2: A graph with 14 nodes and 14 edges, and

four different sets of four nodes whose induced

graphs exhibit all four combinations of high/low

local error and high/low global error.

Note that global and local error

measure different things: low global er-

ror corresponds to the density of GA

matching that of G, while low local

error corresponds to specific node de-

grees in GA matching their degrees in

G. It is possible for a graph GA to have

low global error while simultaneously

having high local error (i.e., this graph

maintains the average degree of G, but

the average arises from different local

connections among nodes in the two

graphs), or vice versa. See Figure 2.

Here, then, is the formal statement of our problem:

Definition 3 (Node Ordering Problem [Degree Version]). Given an undirected graph

G = 〈V,E〉, output the permutation of V that minimizes the average total error (global

+ local), where the average is taken across all |V | prefix graphs.

Although we have focused on degree as the node-level measure of interest, all of

our definitions apply for an arbitrary node-level function. Many other measures are at

least as interesting to consider as degree—but even this “simple” measure will reveal

some surprisingly complex and subtle network features.

3 Related Work

Here we will (nonexhaustively) highlight some of the work in the many areas of related

research. First, though, we note that our Node Ordering Problem is fundamentally dif-
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ferent from ranking the nodes by some kind of centrality measure, in which the most

important nodes appear earliest; rather, we are trying to produce an order of the nodes

that is “always” roughly as important as the list as a whole; how good a node is to

include next depends on which nodes have already been selected.

Summarizing and sampling in networks. The most closely related body of research—

and also the most voluminous—studies algorithms to shrink large complex networks.

Closest is work on simplifying graphs through the removal of nodes (or, less similarly,

edges) [19, 40, 46]. There is also a great deal of work on sampling graphs, in which

one tries to choose a good set of representative nodes from a large network on the fly,

generally without knowing the full graph [20, 30, 35, 36, 39]. The excellent surveys of

Liu et al. [34], Lin et al. [33], and Ahmed et al. [1] describe much more of this line of

work—beyond the highly incomplete list cited here—including research on other kinds

of graph compression (e.g., the aggregation of many nodes into supernodes) that are

further afield from our task.

Modeling the evolution of graphs. In Section 4, we examine how a particular graph

G evolves—namely, how the phonological network changes as we add words, one by

one, in the order that an average person learns them. When nodes are ordered by arrival

time, the prefix graphs form a flipbook of G’s temporal evolution. Questions about how

particular complex networks evolve over time are well studied, ranging from the local

(which new links will form, and when?) [8, 29, 32] to the global (how will density and

diameter change over time?) [31]. That work generally considers both nodes and edges

arriving over time; here, we “know the future” of the network—the edge (u,v) forms at

precisely the moment that the second of the two nodes arrives in the graph—so the kind

of graph evolution that we see is generally quite different from the changes studied in

this literature.

Graph drawing, minimum linear arrangement, and comparing permutations with

costs varying depending on position. Multiple computational communities (from

graph drawing to VLSI design) have considered the task of ordering the nodes of a

graph so that edges connect nodes at nearby positions in the ordering. In the graph-

drawing context, the resulting images are called arc diagrams [37, 48]; ordering nodes

to minimize the total length of edges in an arc diagram is called “minimum linear ar-

rangement (MinLA)” [14, 16], which is NP-hard. (This problem is also similar to that

of approximating a general metric as a line [15].)

MinLA is a close match for our notion of local error. In MinLA, one seeks to mini-

mize ∑(u,v)∈E |πu−πv|; here, the number of prefix graphs in which exactly one of {u,v}
appears is precisely |πu −πv|. But there are important differences: we consider relative,

not absolute, error, and we average error across all prefix graphs rather than summing

error over edges; a single node’s local error counts less when there are more nodes in

the ordering (because that cost is divided by a larger population size). In most ordering

problems, as in MinLA, the cost measure does not depend on the location of any errors,

though a few researchers have recently studied scenarios that, like ours, penalize errors

differently depending on where the error sits [21, 25].
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4 Case Study: Word Recognition and the Phonological Network

In this section, as a case study, we consider a particular medium-sized complex net-

work. Our network comes from the psycholinguistics literature on spoken-word recog-

nition [4, 47]: nodes represent the words in the language, and we join two words w and

w′ by an edge if their pronunciations differ only by a single phonemic insertion, dele-

tion, or substitution. For example, neighbors of cowl /kaUl/ include scowl /skaUl/ (an

insertion), owl /aUl/ (a deletion), and fowl /faUl/ (a substitution). This network has

many of the properties that we discussed previously: a giant component, small average

path lengths, high clustering coefficients, degree assortativity, etc. [4, 43, 47]. We ob-

tained our list of words and pronunciations from the English Lexicon Project [6]. We

discarded words for which we had no word frequency or age of acquisition data (see

below), and removed homophones, keeping only the highest frequency word with each

pronunciation. The resulting graph Glex contains n = 30,515 words, with an average

degree ≈3.5.

Ordering nodes randomly. As a baseline, we begin with a random ordering of the

nodes of Glex. Figure 3 shows both global and local error rates for 16 random orderings

of the words in Glex, as the fraction of nodes included in the graph ranges from 0% to

100%. To calculate a single measure of the quality of each order π , we compute the

average error rates across all n prefix graph sizes of π , resulting in a pair of numbers

per ordering. (We calculate this average approximately, averaging the error for prefix

graphs of size 100,200, . . . ,n, and round to the hundredths place.)

When the nodes are ordered randomly, we see a linear trend for both global and local

error, as we could expect. Let G[α] denote the prefix graph resulting from including a

random α-fraction of the nodes of Glex. The global error of G[α] is the fraction by which

G[α]’s average degree is lower than Glex’s average degree; in expectation, this fraction

drops linearly with α . (A particular edge from Glex is included in G[α] with probability

≈ α2—both endpoints must appear in G[α]—so G[α] will contain n ·α nodes and, on

average, |E| ·α2 edges, and thus an average degree of (2|E|α2)/(nα) = (2|E|/n) ·α .

The average degree of Glex is 2|E|/n.) Average local error is similarly linear, though

starting at about 0.7 instead of 1.0: about 30% of the nodes in Glex are isolated (i.e.,

have no neighbors); these nodes have zero local error at the very moment that they are

added into the graph.

Fig. 3 Global error (left)

and local error (right) rates

for 16 random orderings

of the words in the lexi-

con. In these orders, the

average global error was

always in {0.49,0.50,0.51}
(median = 0.50); local error

was always 0.33 or 0.34

(median = 0.34).
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Ordering nodes by network properties. To minimize local error for a node u as

quickly as possible, we want as many edges incident to u to appear in the graph as

soon after u in the order as possible. Adding nodes greedily by degree, highest degree

first, tends to achieve this goal, because Glex is assortative with respect to degree. Thus

ordering nodes by degree, breaking ties randomly, seems promising. While this greedy-

by-degree order is good for local error, though, it does poorly with global error: the

average degree rapidly shoots far above Glex’s 3.5, and stays well above that target

for almost all prefix sizes. Greedy-by-degree ordering yields local error 0.10 and global

error 1.19 (median across 16 different random tiebreakers), substantially worse than the

random ordering. (Note that relative errors exceed one when the prefix graph’s average

degree is more than twice that of Glex.)

We find a similar effect when we order the nodes by closeness or betweenness cen-

trality: the most central nodes’ degrees are too high, and the global average goes, and

stays, too high (closeness global error 1.18, local 0.10; betweenness global error 0.85,

local 0.17). We could also greedily add nodes by degree, lowest first; this strategy has

an analogous problem, but with a persistently too-low global average.

Ordering nodes by external properties. Indeed, it is hard to formulate a network-

theoretic property that would intuitively yield good performance. Somehow we need

a sequence of nodes in which we tend to add “regions” of the graph at a similar time

(so that newly added nodes’ local error drops quickly), while also ensuring that those

regions have nodes that are typical of the whole graph (so that the global error stays

low). Of course, one could explicitly select for these desired properties—e.g., repeat-

edly greedily removing the node whose removal increases total error by the least—but

here we consider another option: ordering the nodes by psycholinguistic properties that

are, at least nominally, independent of graph position:

– Frequency. We obtained word frequency counts for all the words in our lexicon

from the SUBTLEXUS corpus of 51 million words of American subtitles [9], stored

as frequency per million words.

– Age of acquisition. We used ratings of the age at which a given word was learned, its

age of acquisition (AoA), from Kuperman et al. [26]. These data were obtained by

adults retrospectively self-reporting the age at which they learned a given word; the

data are expanded so that w’s AoA is recorded based on the “lemma” of w—e.g.,

endorsed is recorded as being acquired at the same age as endorse. Despite the

inherent limitations of such self-reporting, Kuperman et al. [26] argue that these

estimates accurately reflect the order in which words were learned, and the data

have proven predictive in other psycholinguistic settings [10, 13].

Although higher frequency words tend to be acquired earlier, these two quantities cap-

ture different phenomena, particularly for the lemma-expanded version of AoA. Many

pairs of words (29.5%) are inverted in the AoA vs. frequency orders (e.g., water is early

in both lists, watered is early AoA [because its lemma is water] but low frequency, and

business is high frequency but acquired fairly late).

The analogue to Figure 3 for these two orderings is shown in Figure 4. (We resolve

any ties in the ordering by randomizing, executing 16 distinct runs for each measure.)

We see notable improvement in the global error over the random ordering: the average
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Fig. 4 Global (left) and

local (right) error rates

for degree for three word

orders: random (green),

frequency [high to low]

(gold), and AoA [low to

high] (blue). Frequency has

the lower global error and

AoA the lower local error;

both are better than random

in both measures.

global error for frequency is 0.12, and for AoA is 0.17 (vs. 0.50 for random). For

local error, the difference is less pronounced, but error is still smaller than that for the

random ordering: frequency’s average local error is 0.29 and AoA’s is 0.21 (vs. 0.34 for

random). Note that the points at which AoA and frequency’s global error first hits zero,

at ≈10% of the full graph, are the points at which the prefix graphs’ average degree first

exceeds Glex’s average: to the left of that point, the prefix graphs are too sparse; to the

right, the prefix graphs are too dense.

We also tried ordering the nodes by two other properties that are nominally unre-

lated to network position: in increasing order of orthographic length (how many letters

are in the spelling of the word?) and phonological length (how many phonemes are in

the pronunciation of the word?). These orderings suffer from the same problem as or-

dering by centrality: the fraction of possible k-phoneme strings that are actually words

decreases with k, so short words have many more neighbors than average; the global

error for word-length orderings is quite high (>0.8) as a result.

Going beyond degree: clustering coefficient. Although we introduced it strictly in

the context of degree, we can consider versions of the Node Ordering Problem for any

node-level property. Here, we consider clustering coefficient: the fraction of pairs of a

node’s neighbors that are directly joined by an edge. (Clustering coefficient of Glex has

been studied in several psycholinguistic contexts [2, 11, 50].) See Figure 5: frequency

and AoA both vastly outperform random ordering for global error, and are roughly

comparable in local error. (Figure 5 shows that they achieve this local error in different

ways, though: the random ordering benefits from the fact that about 65% of words have

degree ≤1, and ergo clustering coefficient =1. Frequency and AoA tend to do poorly

on their early prefix graphs, before overtaking the random ordering about a third of the

way through the graph.)

5 Discussion and Future Directions

The task that we introduced in this paper is a broad one: order the nodes of a given com-

plex network in a permutation π such that the prefix graph induced by {π1,π2, . . . ,πk}
is a good (global and local) approximation to the full network, averaging over the pos-

sible values of k. There are, of course, a slew of ways to measure the similarity of the

prefix graph and the full network, many more than the degree and clustering coefficient
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Fig. 5 Global (left) and lo-

cal (right) error rates for

clustering coefficient for

words ordered randomly

(green), by decreasing fre-

quency (gold), and increas-

ing AoA (blue). All other

orders mentioned previ-

ously (degree, betweenness,

closeness, and word length)

have worse average total

error (global+local) than

random (0.40+0.21); both

frequency (0.15+0.23) and

AoA (0.32+0.22) are again

better than random.

measures that we examined here. Understanding the extent to which a good node order

for these two measures is also a good node order for other key graph-theoretic proper-

ties is an obvious next step. Many of the summarization and sampling algorithms for

complex networks (see Section 3) could potentially be adapted to this setting, too.

For any particular fixed node-level property, there is a natural greedy algorithm that

applies: starting from the full graph, repeatedly put at the end of the node order that

vertex whose removal increases total error by the least. Hill-climbing algorithms could

also be adapted fairly straightforwardly to this setting. These approaches differ from the

measure-agnostic view of the ordering task that we have taken so far (we seek a node

order that “in all important ways” reproduces the full graph), but one may approach

the problem from a measure-specific perspective (see [35]). This style of algorithm

may be computationally prohibitive, though; incremental algorithms for the measure

in question (e.g., [28, 41]) are necessary, but not sufficient, to make the computation

feasible.

Node ordering in the phonological network. The most salient fact from our examina-

tion of the phonological network is that ordering words by frequency or age of acqui-

sition results in remarkably low error, both global and local, and that these orderings

outperform the random baseline in both degree and clustering coefficient. Shorter words

tend to appear early in these lists, and shorter words tend to have higher degree—but

both frequency and AoA outperform degree-based and word-length–based orders for

the nodes.

Why might AoA and frequency do such a good job in ordering the nodes of the

phonological network for degree and clustering coefficient? In part, it seems, their suc-

cess stems from a sense in which these word properties interpolate between two com-

peting goods: soon after a node u appears in the order, we want to add many of u’s

neighbors (so that u’s local error drops quickly), but we must avoid too much BFS-style

exhaustive exploration of a dense “community” involving u (which would cause the

global average, and thus the global error, to spike).



10 Brown, Chen, Hedayati, Sikes, Strand, Wilson, and Liben-Nowell

These two successful orderings generally do some BFS-style exploration around

words as they are added: e.g., the frequency of write and an inflected form like writes

are quite similar—and their lemma-expanded AoAs are exactly identical—so writes

comes along soon after write. But AoA and frequency avoid immediately flooding the

immediate neighborhood: most phonological neighbors of write are semantically (and

thus morphologically) unrelated to writing, and therefore would not generally have a

particularly similar frequency or AoA to write. (Note, then, that frequency is on the

slightly more global side of the global/local tradeoff, and AoA is on the slightly more

local side. This observation is consistent with their local and global error rates.) Or-

dering nodes by degree does much worse than ordering by frequency, e.g., despite the

positive correlation between degree and frequency [27], the degree order is too local in

its exploration and thus suffers in global error.

Node ordering in other complex networks. There is a simple and more basic obser-

vation implied by the good results of AoA and frequency in ordering the nodes of the

phonological network: that there exists some ordering of its nodes that “unkinks” its

nodes in a way that leads to a sequence of good approximations to the network as a

whole. That observation may say something important about AoA and frequency—or

it may say something important about Glex. Indeed, “unkinkability” may point to some

extraordinarily odd features of the network. (Some recent research has begun to ask

key questions about whether graph-theoretic properties of Glex reflect interesting facts

about English, or whether they are simply an artifact of the way that the network is

constructed [18, 42, 44, 45].)

Perhaps the most compelling direction for further research on the node ordering

problem is this: is there any meaningful analogue to Age of Acquisition in other kinds

of complex networks? What happens if one tries to order the nodes of, say, a social

network instead?

Although the superficial processes are quite different, after some reflection on the

two just-discussed ways that node orders can perform poorly (being too local or not

being local enough), an analogy between AoA and “social influence” begins to emerge.

For example, in models of the spread of some behavior like the adoption of some new

technology, that behavior can fail to spread widely by being too local (a small com-

munity adopts but it never spreads beyond that corner of the graph) or by not being

local enough (adopters are too far apart, leading to isolated early adopters that have no

common neighbors to jointly influence into adopting). It is an interesting open ques-

tion as to whether ordering nodes by their order of adoption in, e.g., an Independent

Cascade–style spread of behavior [22] (or perhaps the “backbone” of a network’s sys-

temic communication lines [24]) might yield good performance.

Indeed, there are several real-world phenomena that seem to exhibit complex, high-

dimensional behavior—and yet there is a way to unwind them into linear orders that

approximate them remarkably well. This is true of postal codes in the United States,

in which physical distance between locations is well approximated by the numerical

difference in ZIP codes [3, 23]. It is also true of the web graph, in which links can

be represented very efficiently if the underlying graph is stored with its nodes sorted

lexicographically by URL [7]. Is there a way to linearly order the nodes of a social

network, or indeed any other complex network, in a similar way?
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