
An Intrinsic Vector Heat Network

Alexander Gao 1 2 Maurice Chu 3 Mubbasir Kapadia 3 Ming C. Lin 2 Hsueh-Ti Derek Liu 1

Abstract
Vector fields are widely used to represent and
model flows for many science and engineering
applications. This paper introduces a novel neural
network architecture for learning tangent vector
fields that are intrinsically defined on manifold
surfaces embedded in 3D. Previous approaches to
learning vector fields on surfaces treat vectors as
multi-dimensional scalar fields, using traditional
scalar-valued architectures to process channels
individually, thus fail to preserve fundamental in-
trinsic properties of the vector field. The core idea
of this work is to introduce a trainable vector heat
diffusion module to spatially propagate vector-
valued feature data across the surface, which we
incorporate into our proposed architecture that
consists of vector-valued neurons. Our architec-
ture is invariant to rigid motion of the input, iso-
metric deformation, and choice of local tangent
bases, and is robust to discretizations of the sur-
face. We evaluate our Vector Heat Network on
triangle meshes, and empirically validate its in-
variant properties. We also demonstrate the ef-
fectiveness of our method on the useful industrial
application of quadrilateral mesh generation.

1. Introduction
Tangent vector fields on Riemannian manifolds are a fun-
damental ingredient in scientific computation, with appli-
cations ranging from modeling physical processes on earth
(Sabaka et al., 2010), to robotic navigation on complex
terrains (van den Berg et al., 2008), to mesh generation
(de Goes et al., 2016). The majority of works on learning
of tangent vector fields rely on neural network architectures
that consist of scalar neurons (e.g., the standard multilayer
perceptron). Despite being straightforward to implement,
these scalar-valued architectures assume that each scalar

1Roblox Research 2Department of Computer Science, Univer-
sity of Maryland, College Park, USA 3Roblox Core AI. Correspon-
dence to: Alexander Gao <awgao@umd.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

e0

e1

e0e1 e0

e1

p p p

Figure 1: The tangent plane TpM at point p on a manifold
M does not have a canonical choice of basis vectors e0, e1.
Our proposed architecture for learning tangent vector fields
is invariant to choice of tangent bases.

channel can be processed independently of the others (e.g.
as with RGB color channels in images). However, the mul-
tiple channels of a directional vector must be considered
jointly rather than independently, as they represent entan-
gled properties (length and orientation). As an example, a
simple rotation requires adjusting all channels of the vector
to maintain its length; a scalar-valued neural network does
not inherently disentangle such vector properties. Scalar-
valued architectures also disregard fundamental invariances
of tangent vector fields, such as the choice of local tangent
bases in which the vectors are expressed (see Fig. 1). This
prohibits their generalization to unseen data that does not
share the same (arbitrary) choice of bases.

In this work, we present a neural network architecture for
processing tangent vector fields defined on 2-manifolds em-
bedded in R3. The key idea is to maintain vector-valued
features throughout the architecture, and utilize a trainable
vector heat diffusion process (not to be confused with Diffu-
sion Models (Yang et al., 2022)) to ensure our architecture
maintains necessary invariances for tangent vector field pro-
cessing. We begin by reviewing necessary background on
tangent vector field processing in Sec. 3. In Sec. 4, we de-
tail our proposed architecture. In Sec. 5, we show that our
approach is invariant to choice of local tangent bases, rigid
transformation, and isometric deformation of the input, and
is robust to different discretizations of the manifold surface.
Finally, in Sec. 6, we highlight an application of our work
in quadrilateral mesh generation for animation.

2. Related Work
Our work is an instance of geometric deep learning (Bron-
stein et al., 2021) focused on learning tangent vector fields
defined on discrete surfaces embedded in R3. Such sur-

1

An Intrinsic Vector Heat Network

faces can be represented as point clouds (Guo et al., 2021),
implicits (Xie et al., 2022), or analytical functions (Cohen
et al., 2019) for simple shapes, e.g. a sphere. While other
researchers have focused on learning vector fields defined
on the entire volume, such as (Yang et al., 2023), we fo-
cus on tangent vector fields defined on the triangle mesh, a
widely used surface representation for graphics, scientific
computing, and engineering applications.

A majority of works on this subject focus on developing
fundamental operators in neural networks (such as convo-
lutions) to process scalar fields defined on triangle mesh
elements, such as vertices (Gong et al., 2019; Lahav & Tal,
2020), edges (Hanocka et al., 2019; Liu et al., 2020; Ludwig
et al., 2023), and faces (Feng et al., 2019; Hertz et al., 2020;
Hu et al., 2022). As a triangle mesh is merely a graph with
triangular faces, graph neural networks (GNNs) (Wu et al.,
2021) have also been deployed to learning tasks on meshes,
such as (Milano et al., 2020; Pfaff et al., 2021). Despite
being effective, the fact that these operations are defined
based on the connectivity of the mesh makes them sensitive
to the quality of the triangulation.

In lieu of this, spectral approaches (Wiersma et al., 2022;
Sharp et al., 2022) operate on the functional space charac-
terized by differential operators. Network architectures that
operate on these function spaces, such as the eigenvectors of
the Laplace operator, are more robust to discretization and
are able to generalize to other domains (e.g., point clouds)
as long as the differential operators are defined.

The basic building block of our architecture is the vector
heat diffusion process with the connection Laplacian. This
shares similarities with GNN architectures motivated by
diffusion processes. As pointed out in Hansen & Gebhart
(2020), the graph convolution can be viewed as heat dif-
fusion with the connection Laplacian using forward Euler
integration. This perspective motivates the development of
Sheaf Neural Networks (Hansen & Ghrist, 2019; Bodnar
et al., 2022; Battiloro et al., 2023) which learn a graph-
and task-specific connection Laplacian to improve expres-
siveness of GNNs. But given domain knowledge of the
underlying graph (e.g., a graph that approximates a Rieman-
nian manifold), Barbero et al. (2022) demonstrate that a
pre-determined connection Laplacian could lead to better
performance and generalization. Accordingly, since our
method indeed focuses on a specific type of graph, manifold
triangle meshes, we build a connection Laplacian derived
from differential geometry (Sharp et al., 2019). Our archi-
tecture with a deterministic connection Laplacian leads to
superior generalization across triangle meshes, compared to
approaches that rely on learning graph-specific Laplacians.

Despite the existence of several learning approaches for
scalar data, few approaches have been proposed for learn-
ing vector fields on surfaces. Previous methods such as

(Dielen et al., 2021) rely on scalar-valued architectures to
output multiple scalar channels that are naively interpreted
as vectors. Such approaches treat each channel indepen-
dently and thus fail to capture key invariances (see Sec. 5).
This severely hinders generalization to unseen triangula-
tions and shapes. In contrast, our architecture maintains the
vector-valued features throughout the forward pass, similar
to (Deng et al., 2021), ensuring invariance to isometry, rigid
motion, and choice of tangent bases.

3. Preliminaries
We draw inspiration from differential geometry to define the
building blocks of our architecture, based on the notion of
tangent vectors (Sec. 3.1), parallel transport (Sec. 3.2), and
the heat equation (Sec. 3.3), which we describe next.

3.1. Basis Invariant Tangent Vectors

p

u

e0

e1

Given a 2-manifold surface M em-
bedded in R3, the tangent plane
TM
p for a given point p ∈ M is

a 2D space that is orthogonal to
the surface normal of M at point
p. A tangent plane TM

p can be
defined by the spanning of an ar-
bitrary choice of two orthogonal
basis vectors e0, e1. A 2D tangent vector u ∈ TM

p can
then be expressed as a linear combination of bases vectors
u = u0e0 + u1e1. For computational convenience, these
tangent vectors u are often represented as a complex num-
ber u = u0 + ıu1 ∈ C of their coefficients u0, u1 (Knöppel
et al., 2013; Vaxman et al., 2016). Note that the coeffi-
cients u0, u1 will change, by a coordinate transformation,
depending on the choice of tangent bases e0, e1 in order
to represent the same tangent vector. Since the choice of
bases is arbitrary, an important invariance for tangent vector
processing is to guarantee that the method is independent of
the choice of bases (see Fig. 1).

3.2. Parallel Transport of Tangent Vectors

e0

e0

An edge vector eij = vj − vi ∈
R3 between two adjacent vertices
i, j with locations vi,vj ∈ R3 can
be expressed as a tangent vector
in TM

i and TM
j via the logarith-

mic map (sometimes alternately re-
ferred to as the exponential map)
(Schmidt et al., 2006). A simple way to compute the logarith-
mic map is to represent the edge vector eij in the polar coor-
dinate (lij , θj) of the tangent plane TM

i , where lij = ∥eij∥
is the edge length and θj ∈ [0, 2π) denotes the angular
coordinate (normalized to 2π) of this edge vector from a
(arbitrarily chosen) tangent basis e0, see (Knöppel et al.,

2

An Intrinsic Vector Heat Network

Vector Heat
Diffusion

Vector
MLP

Vector
MLP +

Vector Diffusion Block (N)

Vector
MLP

Vector MLP

co
m

pl
ex

 li
ne

ar

ve
ct

or
 a

ct
iv

at
io

n

co
m

pl
ex

 li
ne

ar

ve
ct

or
 a

ct
iv

at
io

n

input output

Figure 2: Our vector heat network is a neural network of complex-valued neurons (Bassey et al., 2021) with (1) a Vector
Heat Diffusion module (see Sec. 4.1) and (2) a vector MLP module (see Sec. 4.2). Starting with a Vector MLP to transform
input features from Cn×cin

to Cn×cl , our method consists of several layers of the Vector Heat Diffusion (red) and Vector
MLP (blue) with skip connections, followed by another Vector MLP to map the feature to output dimensions.

2013) for more details. As the edge vector eij exists in
both tangent planes TM

i , TM
j , one can compute the angu-

lar difference between TM
i , TM

j and obtain the coordinate
transformation rij ∈ C (a rotation) needed to make sure that
logi(eij) ∈ TM

i is mapped to logj(eij) ∈ TM
j (see inset).

Transporting tangent vectors from TM
i to TM

j following the
computed rotation rij leads to as-parallel-as-possible trans-
port, or parallel transport. Note that only the angle of these
vectors varies as we traverse the curved surface; their length
remains unchanged. This motivates constructing a network
that can preserve these disentangled vector properties.

3.3. Vector Heat Diffusion

The heat equation on a tangent vector field u : M → C can
be written as

d

dt
u = ∆cu. (1)

where ∆c is the connection Laplacian. This vector heat
equation characterizes how a “vector” gets diffused in space.
Intuitively, diffusing a single vector heat source will smear
it out to its neighborhood with smaller magnitude while
maintaining its direction to be as-parallel-as-possible (see
Fig. 3). This is different from classic heat diffusion where
no notion of parallel transport is captured and can cause
inconsistent vector directions if one naively applies scalar
heat diffusion to each vector field channel independently.

Discretization Several previous
works (Knöppel et al., 2015; Sharp
et al., 2019; Stein et al., 2020) have
defined the vector heat equation on
a triangle mesh. The main ingredi-
ent is a discrete connection Lapla-
cian Lc ∈ Cn×n which is an n x n
complex-valued matrix, where n denotes the number of ver-
tices in the mesh. One way to build Lc is by accumulating a

3-by-3 complex matrix

−1

2

cj + ck −ckrij −cjrik
−ckrji ck + ci −cirjk
−cjrki −cirkj ci + cj

 (2)

associated to each triangle ijk into the corresponding entries
defined by the vertex index. We use ci = cot θjki , cj =

cot θkij , ck = cot θijk to shorten the expression, and rij ∈ C
(so as rjk, rki) to denote a the 2D rotation (represented as
a unit complex number) that parallel transports a tangent
vector from the tangent plane TM

i at vertex i to the tangent
plane TM

j at vertex j (see Sec. 3.2).

As the forward Euler method is well-known to be unstable
under large time steps, we compute the numerical solution
to the vector heat equation using the implicit Euler method.
Specifically, a single step of the diffusion is defined as

ut+1 = (M+ sLc)
−1Mut (3)

where s to denotes the time-step size, M ∈ Cn×n is a n x
n diagonal mass matrix whose entries are complex-valued,
with vertex area as the real component, and zero imaginary
component. Eq. 3 diffuses a vector into smaller magnitudes
and as-parallel-as-possible orientations (see Fig. 3).

Figure 3: The vector heat diffusion process presented in
Eq. 3 smears out a tangent vector field ut to its neighbors
to obtain another tangent vector field ut+1.

3

An Intrinsic Vector Heat Network

3.4. Generalization to N-Rosy Fields

In several applications, one may want to learn a N-way
rotational symmetry fields (Palacios & Zhang, 2007) that are
invariant under rotation of an integer multiple of 2π/N (see
Fig. 4). For instance, one of our applications in quadrilateral
meshing requires to output a 4-Rosy fields in order to mesh
a surface with the “cross” pattern on most vertices.

The generalization to N-Rosy fields is straightforward given
the complex number representation (Sec. 3.1). Since multi-
plication with (unit) complex numbers represents rotations,
raising a complex number to the power of N factors out
all the N-ways rotational symmetry (de Goes et al., 2016).
Thus, to measure the difference between, e.g., 4-Rosy fields,
one simply measures the difference between u4 (see Sec. 6).

1-RoSy 2-RoSy 3-RoSy 4-RoSy

Figure 4: N-Rosy fields refer to tangent vectors that are
N-way rotationally symmetric (Palacios & Zhang, 2007).
For instance, N = 1 refers to the usual 2D tangent vector,
N = 2 to a straight line, and N = 4 to a “cross” field.

4. Vector Heat Network
Our vector-valued neural network for processing tangent
vector fields utilizes vector-valued neurons (similar to (Deng
et al., 2021; Bassey et al., 2021)) with vector operations (e.g.,
parallel transport and the vector heat equation). Maintaining
the vector nature of our data throughout results in an archi-
tecture that is invariant to isometries, rigid transformations,
and the choice of tangent bases (see Sec. 5)

The input to our network is a set of tangent vectors defined
on the vertices of a surface triangle mesh. A Vector Heat
Network consists of several blocks of learned heat diffusion
to harness local information, and vector MLPs to increase
the expressiveness (see Fig. 2). The output is a set of tangent
vector fields defined on vertices. These output fields could
be regular tangent vectors or tangent vectors with N rota-
tional symmetry (see Sec. 3.4) defined on the tangent plane.
In this section, we will illustrate individual components of
our Vector Heat Network in more details.

4.1. Learned Vector Heat Diffusion

Starting with a set of tangent vectors u ∈ Cn×cl (repre-
sented as complex numbers, see Sec. 3.1), where n denotes
the number of vertices and cl denotes the number of tangent
vector fields. We harness information from local neighbor-

hoods by solving the vector heat equation with the implicit
Euler integration in Eq. 3, inspired by (Sharp et al., 2022).
As the implicit Euler requires an expensive step of solving a
linear system, we utilize spectral acceleration (Donati et al.,
2022) to speed up the process. Specifically, given the solu-
tion of the generalized eigenvalue problem of the discrete
connection Laplacian Lc (see Eq. 2),

LcΦ = MΦΣ (4)

where Φ = {Φi} ∈ Cn×k is the stack of k eigenvectors
with the lowest frequencies and Σ = diag(λi) ∈ Ck×k

is a diagonal matrix with corresponding eigenvalues. We
use M to denote the mass matrix of vertex areas such that
Φ⊤

i MΦi = 1. k is a user-defined number to specify how
many eigenvalues/eigenvectors are in use. Then the vector
diffusion process in Eq. 3 can be approximated with

ut+1 = Φ


e−λ1s

e−λ2s

...
e−λks

⊙ (Φ⊤Mut) (5)

where ⊙ denotes element-wise multiplication. Such a spec-
tral acceleration replaces linear solves with matrix multi-
plications, thus is significantly faster for small k. In our
implementation, we set k = 128.

Inspired by (Sharp et al., 2022), we treat time-step size s in
Eq. 5 as trainable parameters. Intuitively, the network learns
whether to diffuse the vectors over a small or large local
neighborhood. Specifically, each Vector Heat Diffusion
module (Fig. 2) consists of m trainable time steps. Each
time step si will diffuse the input feature Xl ∈ Cn×cl at
layer l into a set of diffused features Yl

i ∈ Cn×cl via Eq. 5.
Thus, a collection of m time steps [s1, · · · , sm] will turn
an input feature Xl with size n x cl into a set of diffused
features Yl = [Yl

1, · · · ,Yl
m] with size n x mcl .

4.2. Vector Linear Layers and Non-linearity

After the vector heat diffusion module, we use a vector-
valued MLP that consists of a per-vertex linear layer

Zl = YlWl (6)

where Wl ∈ Rmcl×cl+1

is a matrix of size mcl-by-cl+1 that
linearly combine the complex-valued features at each vertex
into Zl ∈ Cn×cl+1

. Then we follow the idea presented
by (Wiersma et al., 2022) to apply non-linearities σ (e.g.,
ReLU) on the magnitude of each complex feature as

Xl+1
ij = σ(∥Zl

ij∥ − blj) ·
Zl

ij

∥Zl
ij∥

(7)

4

An Intrinsic Vector Heat Network

train shape
ground truth

test shape
ours

error
ours

test shape
Dielen et al. 2021

error
Dielen et al. 2021

0

1

0

1

Figure 5: Our architecture is invariant to rigid transformation. A model trained on a mesh at one orientation (1st)
generalizes to its rigidly transformed counterpart (2nd), outputting a tangent vector field with no error (3rd). This differs
from the baseline method of Dielen et al. (2021), which outputs a different vector field (4th) with high error (5th).

where we use Zl
ij to denote the entry corresponding to the

ith row and the jth column in Z, blj ∈ R is a bias term for
each channel added to the feature norm. In our experiments,
we use the ReLU activation – if the complex feature norm
∥Zl

ij∥ is smaller than the bias blj , the complex feature is set
to 0, otherwise it is unchanged in the output Xl+1.

In summary, our overall architecture (see Fig. 2) consists
of several Vector Diffusion Blocks. Each block contains a
vector heat diffusion layer (see Sec. 4.1) and a vector-valued
MLP with two hidden layers (see Sec. 4.2). We also have
two extra vector MLPs (green, yellow) to adapt to a differ-
ent number of input/output channels. Our architecture is
invariant to the choice of tangent bases because the Vector
Heat Diffusion module has parallel transport baked in (see
Sec. 3.2), making it invariant to the bases. Furthermore,
the vector heat diffusion process is intrinsic. This ensures
that the entire architecture is also invariant to rigid trans-
formations and isometries of the underlying shape. These
desirable invariances result in a general network architecture
for processing tangent vector fields on manifolds.

5. Experiment: Invariance Properties
Our architecture possesses several fundamental invariances,
which we highlight and empirically validate here, distin-
guishing it from the scalar-valued approach of (Dielen et al.,
2021). For comparison, we faithfully re-implement their
method (Figure 5). These invariances arise from the fact
that all of our operations (gradient, heat diffusion, and the
per-vertex linear layer) are intrinsic, which implies that our
architecture is invariant to how the mesh sits in the space.

Invariance to Rigid Motion If rigid motion invariant
input features are used, then our method will be invariant to
rigid transformations of the underlying shape (see Fig. 5).

Invariance to Tangent Bases We leverage the charac-
teristic that parallel transport has already factored out the
influence of choice of tangent bases, which is baked in to our
connection Laplacian. This property makes our architecture
invariant to the choice of tangent bases (Fig. 6).

ours

Dielen et al. 2021
0

2

0

2

training bases
testing bases ground truthoutput error

Figure 6: Our method is invariant to choice of tangent bases.
Given a model trained on the default bases (light green),
where the arrow indicates direction of e0, our method pro-
duces the same result (blue) as GT (red) even when the
model is evaluated under different choice of bases (dark
green), in contrast to (Dielen et al., 2021) that outputs a
different result with high error (right).

Invariance to Isometry Our method is invariant to iso-
metric deformation (isometries) of the input (see Fig. 7),
due to the intrinsic construction of our method.

Robustness to Discretizations Our main ingredient for
“message passing” relies on the vector heat diffusion with the
connection Laplacian. In contrast to the method by Bodnar
et al. (2022) that learns the connection Laplacian for a graph,

5

An Intrinsic Vector Heat Network

train output test output edge length deviation
(normalized)

error
0

1

0

1

Figure 7: Our method is invariant to isometric deformation. We train on a flat paper (first) and evaluate on its crumpled
counterpart (second). Since these two meshes are nearly isometric (third), our method produces consistent results (fourth).

the connection Laplacian in our set-up is deterministic by
the underlying shape, with connections determined by the
parallel transport (Sec. 3.2). This characteristic ensures that
our learned parameters are generalizable to meshes with
different connectivities. This property is crucial to tangent
vector field processing because the choice of tangent bases
is arbitrary (see Fig. 1): one can find an infinite number of
valid tangent bases e0, e1 that are orthogonal to the normal
vector. On a single vertex, there is already an infinite number
of choices and the total combinations of basis choices also
grows exponentially with the number of vertices in the mesh.
This implies that baking in the property of basis invarance
is important because solving it with data augmentation is
intractable due to the infinite number of basis combinations.

train set output (train) test set output (test)

Figure 8: This work exploits the benefit of the spectral
method (see Eq. 5) and gains robustness to different dis-
cretizations. Trained on one triangulation (1st), our model
generalizes to a different one (3rd), producing consistent
output (quad meshing results from Sec. 6) shown here.)

Baseline Implementation Details Our re-implementation
of the architecture by Dielen et al. (2021) is as consistent as
possible with theirs: for the local feature network ((Gong
et al., 2019)), we use a spiral sequence length of k = 20
vertices, with 4 spiral convolution layers of intermediate
size [16, 256, 512, 1024], where the first 3 layers use vertex-
centric spiral indices, and the last layer uses face-centric
spiral indices; the global feature ((Qi et al., 2017)) consists
of 1024 channels; and each input vertex is represented as its

3D position and normal direction.

6. Experiment: Quadrilateral Remeshing
In this section, we evaluate our method on triangle meshes,
though the same principles apply to other domains where
the connection Laplacian is available (e.g. point clouds).

6.1. Experiment Setup

To demonstrate our method’s effectiveness, we evaluate it on
the task of quadrilateral remeshing. Given a triangle mesh
M, we use the per-channel gradient of the first cin = 15
channels of the Heat Kernel Signature (HKS) (Sun et al.,
2009) as input features to our network, giving cin vector-
valued features per vertex. The output is a 4-Rosy cross field
defined on each vertex (see Sec. 3.4 and Fig. 9). We then
interpolate the per-vertex cross field onto faces (see Equa-
tion 6.1), followed by off-the-shelf algorithms by Bommes
et al. (2009) and (Ebke et al., 2013) to turn the per-face cross
field into a quadrilateral mesh (see Fig. 9).

our output extracted quadrilateral mesh

Figure 9: After obtaining the output cross field by our
network, we use off-the-shelf quad mesh extraction method
by Bommes et al. (2009) to obtain a quadrilateral mesh with
edges aligned with the predicted cross field.

Dataset We train our network on a dataset generated from
the workflow described in (Dielen et al., 2021), with two

6

An Intrinsic Vector Heat Network

modifications: (1) Instead of the DFAUST dataset used by
(Dielen et al., 2021), we assemble a custom library of artist-
created template avatar heads, around which we wrap the
SMPL (Loper et al., 2023) head topology; (2) for each of the
template meshes, we create 100−1, 000 augmentations/vari-
ations, using a custom tool for deforming faces, based upon
normal-driven ARAP deformation (Liu & Jacobson, 2021).
This expands the training data distribution away from the
parametric SMPL model. The training dataset consists of
1100 triangle meshes with associated ground truth vector
fields. The test dataset consists of 115 samples.

Loss Function Since our output is a 4-Rosy field, we
define the loss function as the mean squared error (MSE)
on the output tangent vector field u4 raised to the power
of 4 (see Sec. 3.4). In addition to measuring errors on the
directions, we also want to measure errors on the magnitude
of the cross field (smaller crosses lead to smaller polygon).
Combining the two leads to our following loss function

L(u, û) =
N∑
i=1

Mii

A

[∣∣∣∣∥ui∥ − ∥ûi∥
∥ui∥

∣∣∣∣︸ ︷︷ ︸
magnitude

+

(
1− u4

i

∥u4
i ∥

· ûi
4

∥ûi
4∥

)
︸ ︷︷ ︸

direction

]
(8)

where Mii denotes the vertex area at vertex i, A = Tr(M)
is the total area of the mesh, ui, ûi ∈ C denote the output
and the ground truth tangent vector fields on the vertex i,
respectively. The first “magnitude” term simply measure the
relative difference in magnitude between the output and the
ground truth fields. The second “direction” term measures
their angular difference with the cosine similarity.

Transporting Vectors from Vertices to Faces Our model
predicts vectors at mesh vertices, but in order to directly
leverage existing methods for field-guided quadrilateral
remeshing (Bommes et al., 2009), they should be expressed
on the face tangent planes. Naively averaging the three vec-
tor predictions from a given face’s three incident vertices
will not produce a correct result, as the vectors are expressed
with respect to their individual vector tangent planes, so they
cannot be averaged directly. We must therefore account for
the parallel transport from each of the vertex tangent planes
to the face tangent plane. Once all three vectors are in a
shared frame, then we may simply average their values.

To transport a vector from its tangent plane TiM at a vertex
vi to the tangent plane TijkM at face fijk, we choose an
edge that is incident to both elements (e.g., edge eij or eik).
The chosen edge can be expressed in terms of its angular
rotation from the local basis in both the vertex TiM and
face tangent planes TijkM. Thus, we leverage this angular
difference to transport a vector from vertex to face tangent
plane. This transport can be constructed as an operator in

input triangle mesh vector field-guided quad mesh result

Figure 10: Vector-field-guided quadrilateral meshing re-
sults of various character heads from the test dataset.

a pre-processing step, as it only depends on the mesh, i.e.
once we have computed the angular differences, they may
be used to transport any vectors from vertices to faces. Let
this matrix be Tangle ∈ RF×3, where each row corresponds
to a face, and each of the three values corresponds to the
transition angle (in radians) needed to transport a vector
from the incident vertex at that index, to the face. Then we
can assemble the complex matrix operator:

T = eıTangle (9)

To compute the transported, averaged result per face,

ûf =
1

3

∑
T ⊙ ûv[F] (10)

where the [·] represents an indexed selection from the per-
vertex predictions based on vertex indices from the face
matrix F, and the sum

∑
(·) denotes a per-face addition

along the last dimension of the product T ⊙ ûv[F].

Implementation Details For our experiments, we use
N = 6 vector diffusion blocks with a hidden dimension

7

An Intrinsic Vector Heat Network

training subset

test results

Figure 11: Our learned vector-field-guided quadrilateral remeshing can generalize to other datasets and classes of objects.

of cl = 256 channels (see Fig. 2). We train for 3, 000
epochs, with initial learning rate of 1e − 4, decayed by a
factor of 0.85 every 150 epochs. In the Vector MLP layer,
we use Dropout (Srivastava et al., 2014) set to 0.5, and L2
regularization (weight decay) with a value of 1e− 3, which
mitigates overfitting. We train on a single NVIDIA Tesla T4
GPU, for about 20 hours. For computing a parametrization
from the predicted vector field, we rely on (Bommes et al.,
2009), rather than (Campen et al., 2015) used by (Dielen
et al., 2021), due to the latter not being open sourced.

6.2. Results

Character Heads In Fig. 10, we display several results
of our learned vector field-guided quadrilateral meshing on
the character head dataset. Our model generalizes across
different types of character heads.

Animals Fig. 11 shows results on a different dataset that
we constructed from 40 ground truth quadrilateral meshes
of animals. The trained model generalizes to centaur with

its human-like upper body and horse-like lower body, even
though such a combination is not contained in the train-
ing dataset. The triceratops result generally looks suitable
for downstream usage, though its frill (collar) shows some
irregularity, likely due to lack of sufficient training data.

Quadwild ours

Figure 12: We supervise our method with an optimization-
based quad meshing algorithm – Quadwild by [Pietroni et
al. 2021], faithfully reproducing their result.

8

An Intrinsic Vector Heat Network

input triangle mesh
(61k vertices)

remeshed output

Figure 13: Our method is scalable to high resolution input
meshes. We demonstrate a quad meshing result on this
octopus mesh with over 60k vertices.

Additional experimental results Our method can faith-
fully reproduce the results from existing quad meshing al-
gorithms (Fig. 12), such as Quadwild (Pietroni et al., 2021).
We also note that our method imposes no restriction on the
genus of the shape on which vector fields may be learned,
as demonstrated by successful generalization to genus-one
shapes in Fig. 6 and Fig. 12. We also show that our method
easily scales to high resolution meshes (Fig. 13). Please see
Appendix A for enlarged detail views.

Ablation Studies We compare the test set performance of
various types of input features, including principal curva-
ture directions, and the gradients of: Heat Kernel Signature
(Sun et al., 2009), Gaussian curvature, and mean curvature.
For multi-channeled feature types, we normalize each of
its channels individually, such that its mean vector length
across all vertices is unit. For all feature types except PCD,
we also rotate each channel by π

2 radians, and concatenate
these rotated vector features along the channel dimension.
In principle, this means that each input feature channel and
its rotated counterpart span the local tangent space, allowing
the network to better exploit all degrees of freedom.

Input Feature Type Direction Loss Magnitude Loss

∇HKS 0.106± 0.278 0.077± 0.148
∇GC 0.139± 0.312 0.096± 0.261
∇MC 0.105± 0.276 0.077± 0.514
PCD 0.128± 0.313 0.090± 0.288

Table 1: Input features are evaluated by comparing their
mean test loss and associated variance of their magnitude
and direction components. ∇HKS denotes channel-wise
gradient of the scalar-valued Heat Kernel Signature, ∇GC
denotes gradient of Gaussian Curvature, ∇MC denotes
gradient of Mean Curvature, and PCD denotes scaled prin-
cipal curvature directions. We find that ∇HKS leads to
best overall performance. While ∇MC performs best on the
directional loss component only, it displays high variance
in the magnitude loss component.

7. Conclusion
We present a neural network architecture based on vector
heat diffusion to process tangent vector fields defined on
manifold surfaces. Unlike existing works, our method is
invariant to rigid transformations and the choice of tangent
plane bases, and is robust to different triangulations. These
properties jointly make this network a generalizable archi-
tecture for learning tangent vector fields across surfaces.

Additional Applications We show an application of our
method to robot path planning on curved terrain (Fig. 14).

goal

obstacle

Figure 14: Tangent vector fields are commonly used to
guide a robot’s path planning [Patil et al. 2010]. We train
our method to generate such a navigation vector field on
the terrain mesh to assist motion planing as shown.

Future Directions As the vector heat equation can be de-
fined in different domains, such as point clouds and graphs,
generalizing our architecture to different domains could en-
able a even wider range of applications. Exploring novel
architectures from complex neural networks (Bassey et al.,
2021) or even generalizing to quaternions, such as (Zhu
et al., 2018), could lead to novel variants of our architec-
ture. For the quadrilateral meshing application, developing
a larger, more diverse dataset could be an important step
towards a generic learning-based remesher.

Acknowledgements
Thank you to Jing Liang for help executing the robot mo-
tion planning application in ROS, Jihyun Yoon for help
assembling the 3D heads dataset, and Kiran Bhat for help-
ful discussion. This research is supported in part by Barry
Mersky Endowed Professorship, Capital One Endowed Pro-
fessorship, and Maryland E-Nnovate Initiative Fund.

Impact Statement
The goal of this work is to advance the field of Machine
Learning. There are many potential societal consequences
of our work, none which we feel must be specifically high-
lighted here.

9

An Intrinsic Vector Heat Network

References
Barbero, F., Bodnar, C., de Ocáriz Borde, H. S., Bronstein,

M. M., Velickovic, P., and Liò, P. Sheaf neural networks
with connection laplacians. In Topological, Algebraic and
Geometric Learning Workshops 2022, 25-22 July 2022,
Virtual, volume 196 of Proceedings of Machine Learning
Research, pp. 28–36. PMLR, 2022.

Bassey, J., Qian, L., and Li, X. A survey of complex-valued
neural networks. CoRR, abs/2101.12249, 2021. URL
https://arxiv.org/abs/2101.12249.

Battiloro, C., Wang, Z., Riess, H., Lorenzo, P. D., and
Ribeiro, A. Tangent bundle filters and neural networks:
From manifolds to cellular sheaves and back. In IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing ICASSP 2023, Rhodes Island, Greece, June
4-10, 2023, pp. 1–5. IEEE, 2023.

Bodnar, C., Giovanni, F. D., Chamberlain, B. P., Lió, P., and
Bronstein, M. M. Neural sheaf diffusion: A topological
perspective on heterophily and oversmoothing in gnns.
In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D.,
Cho, K., and Oh, A. (eds.), Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022.

Bommes, D., Zimmer, H., and Kobbelt, L. Mixed-integer
quadrangulation. ACM Transactions On Graphics (TOG),
28(3):1–10, 2009.

Bronstein, M. M., Bruna, J., Cohen, T., and Velickovic,
P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges. CoRR, abs/2104.13478, 2021.
URL https://arxiv.org/abs/2104.13478.

Campen, M., Bommes, D., and Kobbelt, L. Quantized
global parametrization. Acm Transactions On Graphics
(tog), 34(6):1–12, 2015.

Cohen, T., Weiler, M., Kicanaoglu, B., and Welling, M.
Gauge equivariant convolutional networks and the icosa-
hedral CNN. In Chaudhuri, K. and Salakhutdinov, R.
(eds.), Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 1321–1330. PMLR, 2019.

de Goes, F., Desbrun, M., and Tong, Y. Vector field pro-
cessing on triangle meshes. In Special Interest Group on
Computer Graphics and Interactive Techniques Confer-
ence, SIGGRAPH ’16, Anaheim, CA, USA, July 24-28,
2016, Courses, pp. 27:1–27:49. ACM, 2016.

Deng, C., Litany, O., Duan, Y., Poulenard, A., Tagliasacchi,
A., and Guibas, L. J. Vector neurons: A general frame-
work for so(3)-equivariant networks. In 2021 IEEE/CVF
International Conference on Computer Vision, ICCV
2021, Montreal, QC, Canada, October 10-17, 2021, pp.
12180–12189. IEEE, 2021.

Dielen, A., Lim, I., Lyon, M., and Kobbelt, L. Learning
direction fields for quad mesh generation. In Computer
Graphics Forum, volume 40, pp. 181–191. Wiley Online
Library, 2021.

Donati, N., Corman, E., Melzi, S., and Ovsjanikov, M. Com-
plex functional maps: A conformal link between tangent
bundles. Comput. Graph. Forum, 41(1):317–334, 2022.

Ebke, H.-C., Bommes, D., Campen, M., and Kobbelt, L.
Qex: Robust quad mesh extraction. ACM Transactions
on Graphics (TOG), 32(6):1–10, 2013.

Feng, Y., Feng, Y., You, H., Zhao, X., and Gao, Y. Meshnet:
Mesh neural network for 3d shape representation. In The
Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2019, Honolulu, Hawaii, USA, Jan-
uary 27 - February 1, 2019, pp. 8279–8286. AAAI Press,
2019.

Gong, S., Chen, L., Bronstein, M. M., and Zafeiriou, S.
Spiralnet++: A fast and highly efficient mesh convolution
operator. In 2019 IEEE/CVF International Conference
on Computer Vision Workshops, ICCV Workshops 2019,
Seoul, Korea (South), October 27-28, 2019, pp. 4141–
4148. IEEE, 2019.

Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Bennamoun,
M. Deep learning for 3d point clouds: A survey. IEEE
Trans. Pattern Anal. Mach. Intell., 43(12):4338–4364,
2021.

Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman,
S., and Cohen-Or, D. Meshcnn: a network with an edge.
ACM Transactions on Graphics (ToG), 38(4):1–12, 2019.

Hansen, J. and Gebhart, T. Sheaf neural networks. CoRR,
abs/2012.06333, 2020. URL https://arxiv.org/
abs/2012.06333.

Hansen, J. and Ghrist, R. Learning sheaf laplacians from
smooth signals. In IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP 2019,
Brighton, United Kingdom, May 12-17, 2019, pp. 5446–
5450. IEEE, 2019.

Hertz, A., Hanocka, R., Giryes, R., and Cohen-Or, D. Deep
geometric texture synthesis. ACM Trans. Graph., 39(4):
108, 2020.

10

An Intrinsic Vector Heat Network

Hu, S., Liu, Z., Guo, M., Cai, J., Huang, J., Mu, T., and Mar-
tin, R. R. Subdivision-based mesh convolution networks.
ACM Trans. Graph., 41(3):25:1–25:16, 2022.

Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. Glob-
ally optimal direction fields. ACM Trans. Graph., 32(4):
59:1–59:10, 2013.

Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. Glob-
ally optimal direction fields. ACM Transactions on Graph-
ics (ToG), 32(4):1–10, 2013.

Knöppel, F., Crane, K., Pinkall, U., and Schröder, P. Stripe
patterns on surfaces. ACM Trans. Graph., 34(4):39:1–
39:11, 2015.

Lahav, A. and Tal, A. Meshwalker: deep mesh under-
standing by random walks. ACM Trans. Graph., 39(6):
263:1–263:13, 2020.

Liu, H. D. and Jacobson, A. Normal-driven spherical shape
analogies. Comput. Graph. Forum, 40(5):45–55, 2021.

Liu, H. D., Kim, V. G., Chaudhuri, S., Aigerman, N., and
Jacobson, A. Neural subdivision. ACM Trans. Graph.,
39(4):124, 2020.

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., and
Black, M. J. Smpl: A skinned multi-person linear model.
In Seminal Graphics Papers: Pushing the Boundaries,
Volume 2, pp. 851–866. 2023.

Ludwig, I., Tyson, D., and Campen, M. Halfedgecnn for
native and flexible deep learning on triangle meshes. Com-
puter Graphics Forum, 42(5):e14898, 2023.

Milano, F., Loquercio, A., Rosinol, A., Scaramuzza, D.,
and Carlone, L. Primal-dual mesh convolutional neural
networks. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

Palacios, J. and Zhang, E. Rotational symmetry field design
on surfaces. ACM Trans. Graph., 26(3):55, 2007.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Aus-
tria, May 3-7, 2021. OpenReview.net, 2021.

Pietroni, N., Nuvoli, S., Alderighi, T., Cignoni, P., Tarini,
M., et al. Reliable feature-line driven quad-remeshing.
ACM Transactions on Graphics, 40(4):1–17, 2021.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017.

Sabaka, T. J., Hulot, G., and Olsen, N. Mathematical proper-
ties relevant to geomagnetic field modeling. In Handbook
of geomathematics. 2010.

Schmidt, R. M., Grimm, C., and Wyvill, B. Interactive decal
compositing with discrete exponential maps. ACM Trans.
Graph., 25(3):605–613, 2006.

Sharp, N., Soliman, Y., and Crane, K. The vector heat
method. ACM Transactions on Graphics (TOG), 38(3):
1–19, 2019.

Sharp, N., Attaiki, S., Crane, K., and Ovsjanikov, M. Dif-
fusionnet: Discretization agnostic learning on surfaces.
ACM Transactions on Graphics (TOG), 41(3):1–16, 2022.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Stein, O., Wardetzky, M., Jacobson, A., and Grinspun, E.
A simple discretization of the vector dirichlet energy.
Comput. Graph. Forum, 39(5):81–92, 2020.

Sun, J., Ovsjanikov, M., and Guibas, L. A concise and
provably informative multi-scale signature based on heat
diffusion. In Computer graphics forum, volume 28, pp.
1383–1392. Wiley Online Library, 2009.

van den Berg, J. P., Lin, M. C., and Manocha, D. Reciprocal
velocity obstacles for real-time multi-agent navigation.
In 2008 IEEE International Conference on Robotics and
Automation, ICRA 2008, May 19-23, 2008, Pasadena,
California, USA, pp. 1928–1935. IEEE, 2008.

Vaxman, A., Campen, M., Diamanti, O., Bommes, D.,
Hildebrandt, K., Ben-Chen, M., and Panozzo, D. Di-
rectional field synthesis, design, and processing. In Mitra,
N. J. (ed.), SIGGRAPH ASIA 2016, Macao, December
5-8, 2016 - Courses, pp. 15:1–15:30. ACM, 2016.

Wiersma, R., Nasikun, A., Eisemann, E., and Hildebrandt,
K. Deltaconv: anisotropic operators for geometric deep
learning on point clouds. ACM Transactions on Graphics
(TOG), 41(4):1–10, 2022.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S.
A comprehensive survey on graph neural networks. IEEE
Trans. Neural Networks Learn. Syst., 32(1):4–24, 2021.

Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan,
N., Tombari, F., Tompkin, J., Sitzmann, V., and Sridhar,

11

An Intrinsic Vector Heat Network

S. Neural fields in visual computing and beyond. Comput.
Graph. Forum, 41(2):641–676, 2022.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao,
Y., Shao, Y., Zhang, W., Yang, M., and Cui, B. Dif-
fusion models: A comprehensive survey of methods
and applications. CoRR, abs/2209.00796, 2022. doi:
10.48550/ARXIV.2209.00796. URL https://doi.
org/10.48550/arXiv.2209.00796.

Yang, X., Lin, G., Chen, Z., and Zhou, L. Neural vector
fields: Implicit representation by explicit learning. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June
17-24, 2023, pp. 16727–16738. IEEE, 2023.

Zhu, X., Xu, Y., Xu, H., and Chen, C. Quaternion con-
volutional neural networks. In Ferrari, V., Hebert, M.,
Sminchisescu, C., and Weiss, Y. (eds.), Computer Vi-
sion - ECCV 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part VIII,
volume 11212 of Lecture Notes in Computer Science, pp.
645–661. Springer, 2018.

12

An Intrinsic Vector Heat Network

A. Additional experimental results (enlarged detail view)
Our method can faithfully reproduce the results from existing quad meshing algorithms (Fig. 15), such as Quadwild (Pietroni
et al., 2021). We also show that our method easily scales to high resolution meshes (Fig. 16).

Quadwild ours

Figure 15: We supervise our method with an optimization-based quad meshing algorithm – Quadwild by [Pietroni et al.
2021]. Our method is able to reproduce the result from Quadwild.

input triangle mesh
(61k vertices)

remeshed output

Figure 16: Our method is scalable to high resolution input meshes. We demonstrate a quad meshing result on this octopus
mesh with over 60k vertices.

13

