
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MITIGATING GOAL MISGENERALIZATION
VIA MINIMAX REGRET

Anonymous authors
Paper under double-blind review

ABSTRACT

Robustness research in reinforcement learning often focuses on ensuring that the
policy consistently exhibits capable, goal-driven behavior. However, not every
capable behavior is the intended behavior. Goal misgeneralization can occur when
the policy generalizes capably with respect to a ‘proxy goal’ whose optimal be-
havior correlates with the intended goal on the training distribution, but not out of
distribution. Though the intended goal would be ambiguous if they were perfectly
correlated in training, we show progress can be made if the goals are only nearly
ambiguous, with the training distribution containing a small proportion of disam-
biguating levels. We observe that the training signal from disambiguating levels
could be amplified by regret-based prioritization. We formally show that approxi-
mately optimal policies on maximal-regret levels avoid the harmful effects of goal
misgeneralization, which may exist without this prioritization. Empirically, we
find that current regret-based Unsupervised Environment Design (UED) methods
can mitigate the effects of goal misgeneralization, though do not always entirely
eliminate it. Our theoretical and empirical results show that as UED methods
improve they could further mitigate goal misgeneralization in practice.

1 INTRODUCTION

As reinforcement learning (RL) is increasingly applied in complex, open-ended, real-world environ-
ments, it becomes infeasible for training to comprehensively cover all situations that an agent will
face in deployment. A particular challenge arises when insufficiently diverse training creates a ‘proxy
goal’ that, compared to the true goal, induces similar behavior during training but radically different
behavior out of distribution. In the face of proxy goals, standard RL methods sometimes find a policy
that internalizes the wrong goal, completely ignoring the true goal in favor of capably pursuing the
proxy goal out of distribution (Langosco et al., 2022; Shah et al., 2022). This phenomenon, known as
goal misgeneralization, is a pressing problem in assuring the safety of RL agents (Ngo et al., 2023).

If the true goal and the proxy goal are perfectly correlated in the training distribution, then goal
generalization comes down to the algorithm’s inductive biases. However, we find that we can make
progress on goal misgeneralization regardless of the algorithm’s biases by working in a relaxed
setting where the training distribution is only nearly ambiguous, providing a weak training signal in
favor of optimizing the true goal. In particular, we model a complex environment as comprising a
series of levels (Cobbe et al., 2020; Kirk et al., 2023) which can be designed during training (Dennis
et al., 2020). We assume that while most training levels leave the true goal ambiguous, a small
proportion of levels are available to disambiguate the goals by incentivizing different behavior. In
this setting, we show that the standard RL training method of domain randomization (DR; Tobin
et al., 2017), which optimizes for expected return on the training level distribution, may still induce
goal misgeneralization if the proportion of disambiguating levels in training is sufficiently small.

However, we observe that even when following the proxy goal is approximately optimal in terms of
maximum expected return on the training distribution, it is clearly sub-optimal in terms of minimax
expected regret (MMER; Savage, 1951), since it leaves the true goal unfulfilled in disambiguating
levels. We hypothesize that MMER-based training methods such as unsupervised environment design
(UED; Dennis et al., 2020) should naturally mitigate this kind of goal misgeneralization, anticipating
a possible distribution shift and amplifying the weak training signal from disambiguating levels. In
this paper, we contribute the following theoretical and empirical results in support of this hypothesis:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• In Section 3, we formalize our setting involving a nearly-ambiguous training distribution
and a distribution shift to a test distribution involving mostly disambiguating levels.

• In Section 4.1, we prove our main theoretical result, that in the face of such a distribution
shift, (A) approximate DR is susceptible to goal misgeneralization, but (B) approximately
optimizing MMER is robust to goal misgeneralization.

• In Section 4.2, we introduce an abstract model of the consequences of goal misgeneralization
in RL based on the existence of a finite resource that can be allocated to either the true goal
or the proxy goal. This provides a broad sufficient condition for our main result to hold.

• In Section 5, we complement our theoretical findings with experiments in custom JAX-based
grid-world environments with procedurally-generated levels exhibiting proxy goals. We
show that two UED methods—namely (PLR⊥; Jiang et al., 2022) and (ACCEL; Parker-
Holder et al., 2023)—are significantly more robust to goal misgeneralization than DR.

These results support regret-based UED methods as a promising approach for safe goal generalization.
We note that this approach requires the ability to design training levels, but this requirement is often
satisfied in practice, having a simulator in sim-to-real transfer (Tobin et al., 2017; Peng et al., 2018;
Kumar et al., 2021; Makoviychuk et al., 2021; Muratore et al., 2022; Ma et al., 2024), having a
generative environment model (Bruce et al., 2024), or having a world model (Ha & Schmidhuber,
2018; Hafner et al., 2019; Schrittwieser et al., 2020; Hafner et al., 2023; Valevski et al., 2024).

2 PRELIMINARIES

2.1 UNDERSPECIFIED MARKOV DECISION PROCESSES

A reward-free underspecified Markov decision process (UMPD) is a tuple M = ⟨A,Θ, S, I, T ⟩
where A is the agent’s action space, Θ is the space of the free parameters of the environment, S
is a state space, I : Θ → ∆(S) is an initial state distribution, and T : Θ × S × A → ∆(S) is
a conditional transition distribution. An agent’s behavior in an UMDP is represented by a policy,
a conditional action distribution π : Θ × S → ∆(A). We denote by Π the set of all policies.
Given a level θ ∈ Θ we have a reward-free MDP Mθ = ⟨A,S, I(θ), T (θ,−,−)⟩ and an agent’s
level-specific policy π(θ,−). We omit θ when not relevant or clear from the context. Together
with the initial state distribution and transition distribution a policy π induces a distribution over
trajectories τ = (s0, a0, s1, a1, . . .) with s0 ∼ I(θ), at ∼ π(θ, st), and st+1 ∼ T (θ, st, at). Given
a full trajectory τ = (s0, a0, . . .) we denote by τ̄ = (s0, s1, . . .) the corresponding state trajectory.
A given policy similarly induces a distribution over state trajectories. We denote by T the set of state
trajectories with positive probability under some policy.

Given a reward-free UMDP M and a level θ ∈ Θ, let R : S ×A× S → R be a reward function, and
let γ ∈ [0, 1] be a discount factor. Together, M , R and γ make a regular UMDP, but we define the
reward functions separately so that we can more easily talk about one environment given different
reward functions. We define the return (with respect to R), UR(τ), as the discounted reward collected
across trajectory τ , UR(τ) =

∑∞
t=0 γ

tR(st, at, st+1). We assume reward functions are normalized
such that the returns lie in the range [0, 1]. We define the expected return of a policy π under R as
UR(π; θ) = Eτ

[
UR(τ)

]
with the expectation taken over the distribution of trajectories induced

by the policy π and the level θ. Given a distribution over levels Λ ∈ ∆(Θ), we further define the
expected return of a policy over a UMDP as UR(π; Λ) = Eθ∼Λ

[
UR(π; θ)

]
.

Let ε ≥ 0 be an approximation threshold. Given a reward function R and a level θ we define the ap-
proximately optimal policy set as Π⋆

ε(R, θ) = {π | UR(π; θ) ≥ maxπ′ UR(π′; θ)−ε}. Analogously,
given a distribution Λ ∈ ∆(Θ), define Π⋆

ε(R,Λ) = {π | UR(π; Λ) ≥ maxπ′ UR(π′; Λ)− ε}.

2.2 UNSUPERVISED ENVIRONMENT DESIGN

The standard method of training in an UMDP is to use domain randomization (DR), training on levels
sampled independently from a fixed level distribution. This leads to a policy that (approximately)
maximizes the expected return given that distribution. Formally, given a fixed training distribution
Λ ∈ ∆(Θ) and reward function R, DR seeks to maximize the objective Eθ∼Λ

[
UR(π; θ)

]
. The set

of approximately optimal DR policies, denoted ΠDR
ε (R,Λ), is simply Π⋆

ε(R,Λ).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Unsupervised environment design (UED; Dennis et al., 2020) proposes training in UMDPs via a
two-player game, where an agent is trained on levels selected by an adversary. In regret-based UED,
the agent tries to minimize expected regret while the adversary tries to maximize it, where the regret
on a level is the shortfall of return achieved by the policy compared to an optimal policy, GR(π; θ) =
maxπ′ UR(π′; θ)− UR(π; θ). This is a zero-sum game, and at the Nash equilibrium, the agent plays
a minimax expected regret (MMER) policy, achieving minπ∈Π maxΛ∈∆(Θ) Eθ∼Λ

[
GR(π; θ)

]
. Note

that MMER is distinct from maximizing minimum expected return (cf. Dennis et al., 2020).

Given a policy π, the adversary’s best response set BR(π;R) ⊆ ∆(Θ) is defined as

BR(π;R) = argmax
Λ∈∆(Θ)

Eθ∼Λ

[
GR(π; θ)

]
(1)

The set of approximately optimal policies under the MMER objective is therefore defined as

ΠMMER
ε (R) =

{
πMMER

∣∣∣πMMER ∈ Π⋆
ε(R,ΛMER) and ΛMER ∈ BR(πMMER;R)

}
(2)

Note that while the policy is approximately optimal, the adversary’s response is optimal.

3 PROBLEM SETTING

When the true goal and the proxy goal perfectly correlate on the entire training distribution, it is
impossible to distinguish between polices optimizing for either goal. Hence, we propose to study
goal misgeneralization in a relaxed setting with a nearly ambiguous training distribution—we assume
that a small subset of training levels provide a weak training signal that disambiguates the true goal
from the proxy goal. This relaxation mirrors the assumptions made in previous work on spurious
correlations in supervised learning (Liu et al., 2021; Zhang et al., 2022).

To formalize our setting, we next introduce and define the concepts of proxy goals, what it means for
a level to be disambiguating or ambiguating, and of a C-distinguishing distribution shift.
Definition 3.1 (Proxy goal). Given a reward-free UMDP M , a level distribution Λ ∈ ∆(Θ), and a
(true) reward function R, we say a reward function R̃ : S ×A× S → R is a proxy goal if there exists
a proxy policy π̃ which is approximately optimal with respect to both the given goal and the proxy
goal: ∃π̃ ∈ Π⋆

ε(R,Λ) ∩Π⋆
ε(R̃,Λ).

Definition 3.2 (Ambiguating level). Given a reward-free UMDP and a pair of reward functions R
and R̃, a level θ ∈ Θ is (perfectly) ambiguating if all optimal policies with respect to either reward
are approximately optimal with respect to the other as well, that is,

Π⋆
0(R, θ) = Π⋆

0(R̃, θ)

Definition 3.3 (C-disambiguating level). Given a reward-free UMDP, a pair of reward functions R
and R̃, and a constant C > 0, a level θ ∈ Θ is C-disambiguating if all policies that are optimal with
respect to R̃ achieve C-sub-optimal return with respect to R, that is,

Π⋆
0(R̃, θ) ∩Π⋆

C(R, θ) = ∅

We note that some levels may be neither perfectly ambiguating nor C-disambiguating for any C > 0.
Definition 3.4 (C-distinguishing distribution shift). Consider a reward-free UMDP, a pair of reward
functions R and R̃, a pair of level distributions ΛTrain,ΛTest ∈ ∆(Θ), a pair of ratios α, β ∈ [0, 1],
and a constant C > 0. A distribution shift from ΛTrain to ΛTest is C-distinguishing if the following
conditions hold.

1. ΛTrain has probability α on C-disambiguating levels and the rest on ambiguating levels.

2. ΛTest has probability β on C-disambiguating levels and the rest on ambiguating levels.

We focus on the setting where α is small and β is large. When α is small, the training distribution
is nearly entirely ambiguous. In this setting, if R is the true goal then there exists a proxy policy
π̃ ∈ Π⋆

ε(R,ΛTrain) ∩Π⋆
ε(R̃,ΛTrain) ∩Π⋆

0(R̃,ΛTest) that optimizes R̃ on C-disambiguating levels.
This proxy policy makes R̃ a proxy goal with respect to ΛTrain. Furthermore, when β is large, this
proxy policy performs sub-optimally with respect to the true goal R after the distribution shift to
ΛTest. If an RL system learns the proxy policy π̃ on ΛTrain and then is subject to a distribution shift
to ΛTest, this is an example of goal misgeneralization.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 THEORETICAL RESULTS

In Section 4.1, we prove that, while training on a fixed level distribution can lead to goal misgeneral-
ization, regret-based prioritization of levels can prevent this. Intuitively, this is because pursuing a
proxy goal on C-disambiguating levels generates high regret, and the adversary will play these levels,
incentivizing the agent to pursue the true goal.

In Section 4.2, we give a model of the negative consequences of goal misgeneralization. In particular,
we give a sufficient condition for a level to be C-disambiguating. This model is based on the
existence of some abstract limited “resource” that, if put towards optimizing the proxy goal, would
leave the true goal unfulfilled. We take inspiration from prior work on the consequences of objective
misspecification (Zhuang & Hadfield-Menell, 2020). However, we adapt and generalize these
arguments to the sequential decision-making context.

As a running example to illustrate these theoretical results, consider Figure 1. The agent begins with a
finite number of coins, which are the limited resource. At each time step, the agent may be presented
with either apples, baskets, both, or neither and can choose from actions “buy” or “move”. The “buy”
action acquires all the objects presented. The cost for the “buy” action is always positive. The true
reward function assigns +0.5 for an apple, while the proxy assigns +0.5 to the basket.

Figure 1: Example illustrating the concepts introduced in Sections 3 and 4. At each time step,
the agent is presented with an apple, a basket, both, or neither. The true reward R and the proxy R̃
correspond to buying apples and baskets respectively. An agent has a certain amount of resources
(money), which can be allocated towards R or R̃. (I) shows an ambiguating level. (II/III) shows a
C-disambiguating level for C ∈ (0, 1), in (II) the agent pursues R̃, while in (III) it pursues R.

4.1 MINIMAX EXPECTED REGRET MITIGATES GOAL MISGENERALIZATION

In this section, we show that under a C-distinguishing distribution shift, the DR objective of maxi-
mizing the expected value on the training distribution of levels permits an approximately optimal
policy that performs poorly on the test distribution, as an instance of goal misgeneralization. On
the other hand, we show that any policy that is approximately optimal with respect to the MMER
objective is approximately optimal on the test distribution, avoiding the negative consequences of
goal misgeneralization.

Rather than modeling the reasons why an optimization algorithm might prefer a proxy policy over a
correctly generalizing policy, we characterize the possibility for some optimizer to select a proxy
policy, regardless of inductive biases. In other words, our result does not depend on the mechanisms
by which the optimization algorithm misgeneralizes.
Theorem 4.1. Consider a reward-free UMDP, a pair of reward functions R, R̃, a pair of distributions
ΛTrain,ΛTest ∈ ∆(Θ), a pair of ratios α, β ∈ [0, 1], and a constant C > 0. Let πR be any optimal
policy w.r.t. R. If the distribution shift from ΛTrain to ΛTest is C-distinguishing, then

(A) ∃πDR ∈ ΠDR
α (R,ΛTrain) such that UR(πDR,ΛTest) < UR(πR,ΛTest)− β · C

(B) ∀πMMER ∈ ΠMMER
α (R) we have UR(πMMER,ΛTest) ≥ UR(πR,ΛTest)− α

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The proof can be found in Appendix A.1.

Consider our running example. Assume the agent is trained mostly in levels like (I), where the
apples are almost always sold in baskets, and then tested mostly in levels like (II/III), where the
apples and baskets are mostly separated. This is a C-distinguishing distribution shift for C ∈ (0, 1).
Theorem 4.1(A) says it would be approximately optimal under DR for the agent to learn a policy that
always buys baskets, leading to harsh consequences in the test distribution. In contrast, if training
levels are prioritized to maximize regret, then Theorem 4.1(B) says that the only policies even
approximately optimal will buy apples rather than baskets in the test distribution, preventing these
harsh consequences.

4.2 GOAL MISGENERALIZATION AND ITS CONSEQUENCES

In this section we provide criteria which imply that a given level is C-disambiguating with respect
to a specific true goal R and proxy goal R̃. It follows that in such levels optimizing R̃ will lead
to consequences that are negative as measured under R. Intuitively, these consequences can be
thought of as the result of optimizing a misspecified objective, as has been studied previously
by Zhuang & Hadfield-Menell (2020). Our argument follows a similar structure to theirs—optimizing
a misspecified objective, whose performance is constrained by a limited resource, will force the agent
to take that resource away from optimizing the true objective. We generalize this argument to the RL
setting, and define these resources in terms of features of the local state trajectory.

An agent’s resource could represent some physical resource explicit in the state, time in discounted
MDPs, or simply the opportunity cost of taking one action instead of another. At the outset of an
episode, the agent possesses some amount of this resource and decides how to allocate it throughout
the episode in order to achieve a high return. We always consider limited resources—once consumed,
a resource cannot be regained. In other words, a limited resource it is a non-increasing function along
each state trajectory.

Definition 4.2 (Limited resource). A limited resource is defined as F : S ×T → R such that for any
state trajectory τ̄ = (s0, . . .) ∈ T, ∀i < j, it holds that F (sj , τ̄) ≤ F (si, τ̄).

In terms of our running example, when we say that the number of coins the agent has remaining is a
limited resource, we mean that it is non-increasing along each state trajectory.

While there may be many limited resources in a given level, not all limited resources cause a trade-off
between two reward functions. Intuitively, the strongest trade-off would occur when a resource can be
allocated to exclusively one of the reward functions. This motivates the idea of a resource allocation
tracking the division of the resource between two reward functions across a trajectory.

Definition 4.3 (Resource allocation). A resource allocation of a resource F is defined by a tuple
⟨GR, GR̃, G∅, f1, f2⟩ where GR, GR̃ : S×A×S → R≥0 are functions describing how the resources
allocated at a transition S × A × S are divided amongst the two reward functions, G∅ : S ×
A × S → R≥0 tracks how much of the resource is allocated to neither reward function, and
f1, f2 : S × A × S × R → R, are conversion functions, which describe how spent resources
correspond to increased value for R and R̃ respectively.

This tuple must satisfy the following conditions for all trajectories τ = (s0, a0, s1, . . .):

• f1, f2 are monotonically non-decreasing in their last input arguments

• GR(st, at, st+1) +GR̃(st, at, st+1) +G∅(st, at, st+1) = F (st, τ̄)− F (st+1, τ̄)

•
∑|τ̄ |−1

t=0 f1(st, at, st+1, GR(st, at, st+1)) = UR(τ)

•
∑|τ̄ |−1

t=0 f2(st, at, st+1, GR̃(st, at, st+1)) = U R̃(τ)

For example, in Figure 1(II) the resource is the number of coins remaining, and in the first two time
steps the resource is allocated only to the proxy reward of buying baskets, with a conversion rate of 4
coins per basket. In Figure 1(III), the resources are instead allocated to the true reward of buying
apples at a rate of 4 coins per apple. In Figure 1(I), where the agent can only ever buy baskets and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

apples simultaneously, there are many valid resource allocations. For instance, every buy action could
allocate 2 coins to the true reward of apples and 2 coins to the proxy reward of baskets, each at an
exchange rate of 0.5 reward per 2 coins.

There is a tension between maximizing R and R̃ when there is a limited resource which is critical for
good performance with respect to R but is marginally useful to an agent pursuing R̃.
Definition 4.4 (C-critical resource). Consider a reward-free UMDP, a level θ ∈ Θ, a pair of
reward functions R, R̃, a constant C > 0, a limited resource F , and a resource allocation
⟨GR, GR̃, G∅, f1, f2⟩. F is C-critical w.r.t. R if

∀π, τ ∼ π s.t.
|τ̄ |−1∑
t=0

GR(st, at, st+1) = 0,∃π′ s.t. UR(π′, θ) > UR(π, θ) + C

Definition 4.5 (Marginally useful resource). Consider a reward-free UMDP, a level θ ∈ Θ, a pair of
reward functions R, R̃, a limited resource F , and a resource allocation ⟨GR, GR̃, G∅, f1, f2⟩. F is
marginally useful w.r.t. R̃ if

∀π, τ ∼ π s.t.
|τ̄ |−1∑
t=0

GR̃(st, at, st+1) < F (s0, τ̄)− F (s|τ |, τ̄),∃π′ ∈ Π s.t. U R̃(π, θ) < U R̃(π′, θ)

For instance, in Figure 1(II/III), coins are needed to buy apples and do well by R, but are also useful
to buy baskets and maximize R̃.

Finally, we show that if there is a resource that is critical to R and marginally useful to R̃, then
optimizing R̃ motivates the agent to completely exhaust the resource in pursuit of R̃, resulting in low
reward according to R. It follows that the level is C-disambiguating in the sense of Section 3.

Theorem 4.6. Consider a reward-free UMDP, a level θ ∈ Θ, a pair of reward functions R, R̃, a
constant C > 0, a limited resource F , and a resource allocation ⟨GR, GR̃, G∅, f1, f2⟩. If F is
C-critical w.r.t R and marginally useful w.r.t. R̃, then for any policies πR, πR̃ optimal w.r.t. R, R̃
respectively,

UR(πR̃, θ) < UR(πR, θ)− C

In other words, θ is a C-disambiguating level.

The proof can be found in Appendix A.2.

Returning to the running example, if the agent is pursuing baskets, as long as there is a way to spend
coins to buy more of them, even for a significant cost, then coins are marginally useful for R̃. Thus
the agent would want to spend all the coins on buying baskets. However, as long as there are many
apples available to buy that do not come with those baskets, the coins are critical for R—the agent
will not have any coins left to spend on the apples, resulting in low reward under R.

5 EXPERIMENTS

Regret-based UED methods have been motivated by their potential to improve sample efficiency and
robustness. We have shown that, in theory, the MMER objective is also well-suited to mitigating
goal misgeneralization in the face of a C-distinguishing distribution shift. In this section, we validate
that existing UED methods are empirically capable of mitigating goal misgeneralization, showing
that their level-generating adversaries are able to locate the region of the level space containing
disambiguating levels, recognize when the policy has high regret in those levels, and amplify the
weak training signal provided by these levels. We call this the amplification effect.

We construct two custom procedurally-generated grid-world environments that exhibit a C-
distinguishing distribution shift. For each environment we construct a distribution of ambiguating
levels Λ1, a distribution of (primarily) disambiguating levels Λ2, and from these a training distribu-
tion ΛTrain

α = (1− α)Λ1 + αΛ2 where α ∈ [0, 1] is a mixture weight controlling the proportion of
disambiguating levels. We select training levels with DR in addition to a range of UED methods
described in Section 5.1. We describe the environment constructions in Sections 5.2 and 5.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For all training runs we use a network architecture based on that of IMPALA (Espeholt et al., 2018)
with a dense feed-forward layer replacing the LSTM block (following Langosco et al., 2022). We
truncate rollouts at a large finite time horizon and perform policy updates with PPO (Schulman et al.,
2017) and GAE (Schulman et al., 2015). We document all hyperparameters in Table 1.

5.1 UNSUPERVISED ENVIRONMENT DESIGN METHODS

We train policies with DR and also with the following two existing regret-based UED methods.

1. PLR⊥ (robust prioritized level replay; Jiang et al., 2022): Explores the level space by
sampling levels from an underlying level distribution, estimating the regret of the current
policy on each level, and keeping high-regret levels in a finite level buffer. The policy is
trained on levels sampled from the buffer rather than from the underlying distribution.

2. ACCEL (adversarially compounding complexity by editing levels; Parker-Holder et al., 2023):
Extends PLR⊥ by, in addition to occasionally sampling new levels from an underlying level
distribution, also exploring the level space in the neighborhood of the levels already in the
buffer using a mutation operation µ : Θ → ∆(Θ) to generate similar levels. As with PLR⊥,
we keep high-regret levels in a level buffer used to train the policy.

We quantify the amplification effect by tracking the average frequency at which disambiguating
levels are sampled from the adversary’s level buffer throughout training. This gives an estimate of the
average probability the adversary assigns to disambiguating levels over training. We compare this to
the proportion of disambiguating levels in the underlying training distribution (the mixture weight α).

Regret estimation Both PLR⊥ and ACCEL involve estimating regret. Several estimators were
previously proposed by Jiang et al. (2022), but we found that they were outperformed by a simple
and flexible estimator which we call the max-latest regret estimator, defined as

ĜR
max-latest(π; θ) = ÛR

max(θ)− ÛR
latest(π; θ) (3)

where ÛR
max(θ) is the highest empirical return ever achieved for level θ throughout training (during

rollouts collected with the current policy or any previous policy since the start of training), and
ÛR
latest(π; θ) is the empirical average return achieved on θ in the latest batch of rollouts with the

current policy π only. We use this regret estimator for both PLR⊥ and ACCEL in most of our
experiments. In Appendix E, we compare to an estimator that replaces ÛR

max(θ) with an oracle.

Mutation operations ACCEL additionally requires specifying a mutation operation that makes n
various environment-specific edits to the level (e.g. moving walls or changing the agent’s starting
position; n is a hyperparameter). We consider three distinct classes of mutation operations that differ
in how they affect the balance between ambiguating and disambiguating levels, as follows.

1. Constant goal mutation operation (ACCELc): We make n − 1 random edits that do not
affect goal ambiguity, followed by one edit that transforms the level into a disambiguating
version of the level with probability α or an ambiguating version with probability 1 − α
(irrespective of whether the input level is disambiguating or ambiguating). Applying this
operation to any distribution of levels results in a distribution with the same proportion of
disambiguating and ambiguating levels as the training distribution.

2. Identity goal mutation operation (ACCELid): We make n random edits that do not affect the
goal ambiguity of the level, and no other edits. Applying this operation to any distribution of
levels results in a distribution with the same proportion of disambiguating and ambiguating
levels as the input distribution.

3. Binomial goal mutation operation (ACCELbin): We make a fixed number of edits n where
each edit is independently chosen to be either a random edit that does not affect goal
ambiguity (with probability 1− 1

n) or otherwise (with probability 1
n) an edit that transforms

the level into a disambiguating version of the level with probability α or an ambiguating
version with probability 1− α. This has essentially the same effect as ACCELc, except in
the event that no goal ambiguity edits are sampled (with probability (1 − 1

n)
n) in which

case it has the same effect as ACCELid.

Thus we experiment with a total of five methods: DR, PLR⊥, ACCELc, ACCELid, and ACCELbin.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

A B

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

...

· · ·

C

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
R

(π
;δ

2)

· · ·

D

DR PLR⊥ ACCELc ACCELbin ACCELid

Figure 2: Cheese in the corner. We construct training distributions with both ambiguating levels
(e.g., A) and disambiguating levels (e.g., B). We vary the mixture weight α (the proportion of
disambiguating levels in the training distribution). We report both (C) the average proportion of
disambiguating levels sampled during training and (D) the generalization performance on a fixed
batch of disambiguating levels after training on approx. 250 million environment steps. We plot
means over three seeds, shading shows standard error (individual runs in Appendix B.1). Except for
the vertical axis in (D) we use clipped log scales with values below a given threshold labeled 0.

5.2 ENVIRONMENT 1: CHEESE IN THE CORNER

This environment is inspired by the Maze 1 environment from Langosco et al. (2022). The agent
navigates a maze as a mouse looking for cheese. Observations are Boolean grids with one channel
for the maze layout and one each for the mouse and cheese positions. The true goal assigns +1
reward when the mouse reaches the cheese, while the proxy goal assigns +1 reward the first time the
mouse reaches the top left corner. Given these goals, levels with the cheese in the top left corner are
ambiguating and levels with the cheese away from the corner are disambiguating.

We procedurally generate levels by randomly placing walls and the mouse. For ambiguating levels
we place the cheese in the top left corner (e.g. Figure 2(A)). We generate disambiguating levels by
randomly placing the cheese anywhere (e.g. Figure 2(B)). Our mutation operations delete or insert a
number of walls and sometimes randomize the position of the mouse, and may toggle the level’s goal
ambiguity by moving the cheese into or out of the corner, as described in Section 5.1.

2 4 6 8 10 12
corner size c

0
0.

00
1

0.
1

1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

2 4 6 8 10 12
corner size c

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
(π

;r
,δ

2)

DR PLR⊥ ACCELc ACCELbin ACCELid

Figure 3: Robustness experiments for cheese in the cor-
ner. We train on a distribution comprised of ambiguating
levels (cheese spawns in the corner) and disambiguating lev-
els where the cheese spawns within a restricted corner region
of size c. The mixture weight α is set to 3e-3 (other values
in Appendix C.1). Runs are averaged across 3 seeds, shading
shows standard error. Left: Proportion of disambiguating lev-
els sampled during training. Right: Return on disambiguating
levels where the cheese spawns anywhere in the maze.

Figure 2(D) shows that DR is suscep-
tible to goal misgeneralization until
the mixture weight α is between 3e-2
and 1e-1 (that is, the training distribu-
tion has 3–10% of its mass on disam-
biguating levels). In contrast, all of
the UED methods exhibit the amplifi-
cation effect (C) and correct goal mis-
generalization (D) at a much lower α.
The best performing UED algorithm,
ACCELid, fully corrects goal misgen-
eralization at a very low α = 3e-4
(0.03%). Note that some of the lev-
els in the disambiguating test distribu-
tions are unsolvable, hence why none
of the methods achieve perfect return.

In Figure 3, we design an experiment
to investigate the robustness of the
agents trained via the methods con-
sidered. We train our agent with the disambiguating mixture weight α = 3e-3 (we also show other
values in Appendix C.1). However, we do not train on ‘fully disambiguating’ levels. The training
distribution comprised of ambiguating levels and ‘restricted’ disambiguating levels where the cheese
spawns in a top-left corner region of size c times c. The return is evaluated on fully disambiguating
levels, where the cheese spawns anywhere in the maze. Figure 3(Left) shows all of the UED methods
exhibit the amplification effect. Figure 3(Right) shows all of the UED methods are able to make use
of the subtler training signal, while DR achieves very low return across all corner sizes c.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

E F

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

...

· · ·

G

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

O
O

D
re

tu
rn

U
R

(π
,δ

2)

· · ·

H

DR PLR⊥ ACCELc ACCELbin ACCELid

Figure 4: Cheese on a dish. We train with both ambiguating levels (e.g., E) and disambiguating
levels (e.g., F). We vary the mixture weight α. We report both (G) the average proportion of
disambiguating levels sampled during training and (H) the generalization performance on a fixed
batch of disambiguating levels after training for approx. 500 million environment steps. Means over
three or more runs, shading shows standard error (individual runs in Appendix B.2). Except for the
vertical axis in (H) we use clipped log scales with values below a given threshold labeled 0.

5.3 ENVIRONMENT 2: CHEESE ON A DISH

This environment is inspired by the Maze 2 environment from Langosco et al. (2022). This time
the mouse navigates a maze containing both cheese and a secondary object—a dish. The true goal
assigns +1 reward for reaching the cheese, while the proxy goal assigns +1 reward for reaching the
dish. Episodes terminate when the mouse hits either object (or after a fixed time horizon). Levels
with the cheese and dish co-located are ambiguating, and levels with the cheese and dish separated
are disambiguating. The observations are Boolean grids with six additional channels redundantly
coding the dish position (breaking symmetry to elicit a clearer case of goal misgeneralization).

1 3 6 12 24
Number of features of dish

0
0.

00
1

0.
1

1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

1 3 6 12 24
Number of features of dish

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
R

(π
;δ

2)

DR PLR⊥ ACCELc ACCELbin ACCELid

Figure 5: Robustness experiments for cheese on a dish.
We use vary the number of channels (features) encoding the
dish position. We fix α = 3e-4 (see also Appendix C.2).
Left: Proportion of disambiguating levels sampled during
training. Right: Return on disambiguating levels.

We procedurally generate levels by
randomly placing walls, the mouse,
and the dish. For ambiguating lev-
els, we place the cheese on the dish
(e.g. Figure 4(E)). For disambiguating
levels we randomly place the cheese
and the dish independently (e.g. Fig-
ure 4(F)). Our mutation operations
delete or insert a number of walls and
sometimes randomize the position of
the mouse, and may toggle the level’s
goal ambiguity by moving the cheese
onto or away from the dish, as de-
scribed in Section 5.1.

Figure 4(H) shows that DR is susceptible to goal misgeneralization until the mixture weight α
is around 3e-3 (that is, the training distribution has around 0.3% of its mass on disambiguating
levels). In contrast, all UED methods exhibit a strong amplification effect (G), and reduce goal
misgeneralization (H) at significantly lower α. ACCELid corrects goal misgeneralization at a notably
low α = 1e-4 (that is, 0.01%).

In Figure 5, we vary the inductive bias through the number of channels coding the dish position at a
fixed mixture weight α = 3e-4 (other values in Appendix C.2). The UED methods are significantly
more robust than DR. Additional channels significantly increase DR’s susceptibility to goal misgen-
eralization, while UED methods retain comparably similar performance. The amplification effect
appears essentially constant. We hypothesize that the number of channels does not stop the adversary
from noticing high-regret disambiguating levels, though it may affect how the policy responds.

6 RELATED WORK

Unsupervised environment design (UED). Our work shows that UED methods are powerful tools
to improve inner alignment of reinforcement learning agents. While it is well-known that UED

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

methods improve capabilities generalization and general robustness of RL agents, this work is the first
demonstration of their power for improving alignment of RL agents as well. UED was formalized by
Dennis et al. (2020). Following works have since proposed additional UED algorithms, like PLR⊥

and ACCEL used in this work (Jiang et al., 2022; Parker-Holder et al., 2023).

Goal misgeneralization. Alignment of reinforcement learning agents is a very challenging problem.
A distinction can be made between outer alignment and inner alignment (Ngo et al., 2023). Inner
misalignment occurs when an agent fails to robustly pursue the preferences of the principal despite
correct specification of the reward function (Hubinger et al., 2019). Goal misgeneralization can be
considered a type of inner alignment failure. Inner alignment failures can also arise due to lack of
adversarial robustness (Lu et al., 2023). Compared to outer alignment, very few works exist that
are explicitly focused on assuring inner alignment of RL agents. Specific to goal misgeneralization,
Langosco et al. (2022) and Shah et al. (2022) demonstrated the occurrence of goal misgeneralization
in various setups, but do not propose any methods to mitigate it. Starace (2023) approaches goal
misgeneralization as ‘task-underspecification’ and conditions decision transformer style models on
natural language descriptions of goals instead of scalar reward values. This is a complementary
approach aimed at influencing the inductive biases in RL to favor the true goal in more circumstances.

Underspecification. Goal misgeneralization in some sense arises from underspecification present
in the training setup (Shah et al., 2022). When a machine learning problem is underspecified,
multiple models may exist that behave similarly on in-distribution data but behave in qualitatively
different ways on out-of-distribution data (Teney et al., 2022). Prior works have discussed how
underspecification can lead to erroneous evaluation of reinforcement learning (Jayawardana et al.,
2022), and machine learning models in general (D’Amour et al., 2022). Underspecification underlying
goal misgeneralization is also related to the identifiability of reward functions. Goal misgeneralization
occurs when there exist proxies that highly correlate with the true reward function on the training
domain, thus, posing a challenge for the learning agent to correctly identify the right reward function.
A reward function is generally not identifiable from behavioral data within a single environment
(Ng et al., 2000; Skalse et al., 2023; Schlaginhaufen & Kamgarpour, 2023). However, in multi-
environment setups, it is sometimes possible to uniquely identify the reward function (Amin et al.,
2017; Cao et al., 2021; Büning et al., 2022; Rolland et al., 2022).

7 CONCLUSIONS

We studied goal misgeneralization arising from a nearly ambiguous training distribution followed by
a C-distinguishing distribution shift. In this setting, we have contributed a combination of theoretical
and empirical results characterizing the ability of the minimax expected regret (MMER) objective and
regret-based unsupervised environment design (UED) methods to mitigate goal misgeneralization.
Our results also highlight the pitfalls of training with fixed level distributions.

We have provided a formal framework of the potential negative consequences of goal misgeneral-
ization in sequential decision-making. Using this framework, we have proven the first theoretical
guarantees of the effectiveness of different training methods in avoiding these negative consequences
in the setting of C-distinguishing distribution shifts.

We have also empirically established that existing regret-based UED methods are capable of ampli-
fying weak training signals favoring correct goal generalization via the amplification effect. These
results signal UED’s potential as a defense against goal misgeneralization—the amplification effect
is in a position to become increasingly powerful as UED methods improve since more successful
UED methods should be even more capable of detecting and amplifying rare, high-regret levels.
Moreover, while prioritization-based UED methods like PLR⊥ are confined to the support of the
training distribution, ACCEL is only limited by the span of its mutation operations, and more powerful
UED methods could in principle surface disambiguating levels from anywhere in the level space.

Future work must address the setting of fully ambiguous training distributions and distribution shifts
beyond the reach of UED algorithms, in which case we again face the challenge of understanding the
internal dynamics of our learning algorithms and our learned policies. We are hopeful that our work
will instigate further research on the problem of goal misgeneralization, which remains a critical,
open problem in alignment and safe generalization of reinforcement learning agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kareem Amin, Nan Jiang, and Satinder Singh. Repeated inverse reinforcement learning. Advances in
Neural Information Processing Systems, 30, 2017.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
interactive environments. In Forty-first International Conference on Machine Learning, 2024.

Thomas Kleine Büning, Anne-Marie George, and Christos Dimitrakakis. Interactive inverse rein-
forcement learning for cooperative games. In International Conference on Machine Learning, pp.
2393–2413. PMLR, 2022.

Haoyang Cao, Samuel Cohen, and Lukasz Szpruch. Identifiability in inverse reinforcement learning.
Advances in Neural Information Processing Systems, 34:12362–12373, 2021.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 2048–2056.
PMLR, 2020.

Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel,
Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Hoffman, et al. Underspecification
presents challenges for credibility in modern machine learning. Journal of Machine Learning
Research, 23(226):1–61, 2022.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. In Advances in Neural Information Processing Systems, volume 33, pp. 13049–13061.
Curran Associates, Inc., 2020.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. Impala:
Scalable distributed deep-rl with importance weighted actor-learner architectures, 2018.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Max Victor Skalse, and Scott Garrabrant.
Risks from learned optimization in advanced machine learning systems, 2019.

Vindula Jayawardana, Catherine Tang, Sirui Li, Dajiang Suo, and Cathy Wu. The impact of task
underspecification in evaluating deep reinforcement learning. Advances in Neural Information
Processing Systems, 35:23881–23893, 2022.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design, 2022.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot
generalisation in deep reinforcement learning. Journal of Artificial Intelligence Research, 76:
201–264, 2023.

Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. Rma: Rapid motor adaptation for
legged robots. arXiv preprint arXiv:2107.04034, 2021.

Lauro Langosco Di Langosco, Jack Koch, Lee D Sharkey, Jacob Pfau, and David Krueger. Goal
misgeneralization in deep reinforcement learning. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
12004–12019. PMLR, July 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pp. 6781–6792. PMLR,
2021.

Chris Lu, Timon Willi, Alistair Letcher, and Jakob Nicolaus Foerster. Adversarial cheap talk. In
International Conference on Machine Learning, pp. 22917–22941. PMLR, 2023.

Yecheng Jason Ma, William Liang, Hung-Ju Wang, Sam Wang, Yuke Zhu, Linxi Fan, Osbert Bastani,
and Dinesh Jayaraman. Dreureka: Language model guided sim-to-real transfer. arXiv preprint
arXiv:2406.01967, 2024.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Fabio Muratore, Fabio Ramos, Greg Turk, Wenhao Yu, Michael Gienger, and Jan Peters. Robot
learning from randomized simulations: A review. Frontiers in Robotics and AI, 9:799893, 2022.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
pp. 2, 2000.

Richard Ngo, Lawrence Chan, and Sören Mindermann. The alignment problem from a deep learning
perspective, 2023.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design,
2023.

Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018 IEEE international conference on robotics
and automation (ICRA), pp. 3803–3810. IEEE, 2018.

Paul Rolland, Luca Viano, Norman Schürhoff, Boris Nikolov, and Volkan Cevher. Identifiability
and generalizability from multiple experts in inverse reinforcement learning. Advances in Neural
Information Processing Systems, 35:550–564, 2022.

Leonard J. Savage. The theory of statistical decision. Journal of the American Statistical Association,
46(253):55–67, 1951.

Andreas Schlaginhaufen and Maryam Kamgarpour. Identifiability and generalizability in constrained
inverse reinforcement learning. In International Conference on Machine Learning, pp. 30224–
30251. PMLR, 2023.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rohin Shah, Vikrant Varma, Ramana Kumar, Mary Phuong, Victoria Krakovna, Jonathan Uesato,
and Zac Kenton. Goal misgeneralization: Why correct specifications aren’t enough for correct
goals, 2022.

Joar Max Viktor Skalse, Matthew Farrugia-Roberts, Stuart Russell, Alessandro Abate, and Adam
Gleave. Invariance in policy optimisation and partial identifiability in reward learning. In Interna-
tional Conference on Machine Learning, pp. 32033–32058. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

G. Starace. Addressing goal misgeneralization with natural language interfaces. Master’s thesis,
Faculty of Science (FNWI), University of Amsterdam, 2023.

Damien Teney, Maxime Peyrard, and Ehsan Abbasnejad. Predicting is not understanding: Recogniz-
ing and addressing underspecification in machine learning. In European Conference on Computer
Vision, pp. 458–476. Springer, 2022.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time
game engines. arXiv preprint arXiv:2408.14837, 2024.

Michael Zhang, Nimit S Sohoni, Hongyang R Zhang, Chelsea Finn, and Christopher Ré. Correct-n-
contrast: A contrastive approach for improving robustness to spurious correlations. arXiv preprint
arXiv:2203.01517, 2022.

Simon Zhuang and Dylan Hadfield-Menell. Consequences of misaligned ai. Advances in Neural
Information Processing Systems, 33:15763–15773, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A THEORETICAL RESULTS AND PROOFS

A.1 PROOF OF THE DR AND MMER THEOREM (THEOREM 4.1)

Theorem 4.1. Consider a reward-free UMDP, a pair of reward functions R, R̃, a pair of distributions
ΛTrain,ΛTest ∈ ∆(Θ), a pair of ratios α, β ∈ [0, 1], and a constant C > 0. Let πR be any optimal
policy w.r.t. R. If the distribution shift from ΛTrain to ΛTest is C-distinguishing, then

(A) ∃πDR ∈ ΠDR
α (R,ΛTrain) such that UR(πDR,ΛTest) < UR(πR,ΛTest)− β · C

(B) ∀πMMER ∈ ΠMMER
α (R) we have UR(πMMER,ΛTest) ≥ UR(πR,ΛTest)− α

Proof. We will prove each part separately.

Part A. For simplicity we assume Θ is discrete. Denote Θ̄ as the subset of levels in ΛTrain such
that θ ∈ θ̄ if and only if θ is C-disambiguating. First, consider the utility function optimized by DR.
Given the probability distribution ΛTrain, we have (defining rK as the expected return of a policy on
a given level w.r.t. to the reward function K),

UK
DR(π,Λ

Train) =
∑

θ∈supp(ΛTrain)

PΛTrain(θ) · rK(π, θ)

Let πDR be any perfectly optimal policy w.r.t. R̃ in all levels.

We first need to prove that πDR ∈ ΠDR
α (R,ΛTrain) = Π⋆

α(R,ΛTrain). We can see that

UR
DR(π

DR,ΛTrain) =
∑

θi∈(supp(ΛTrain)\Θ̄)

PΛTrain(θi) · rR(πR̃, θi) +
∑
θj∈Θ̄

PΛTrain(θj) · rR(πR̃, θj)

≥
∑

θi∈(supp(ΛTrain)\Θ̄)

PΛTrain(θi) · rR(πR̃, θi)

=
∑

θi∈(supp(ΛTrain)\Θ̄)

PΛTrain(θi) · rR(πR, θi)

where the third equality holds by Definition 3.2 and Definition 3.4. Thus, due to returns being
normalized this satisfies the definition of Π⋆

α(R,ΛTrain), and it follows that πDR ∈ Π⋆
ε(R,ΛTrain).

Now, we are left to show that UR(πR,ΛTest)− UR(πDR,ΛTest) > β · C.

Rewrite the utility on test of πDR as

UR
DR(π

DR,ΛTest) =
∑

θi∈(supp(ΛTest)\Θ̄)

PΛTest(θi) · rR(πR̃, θi) +
∑
θj∈Θ̄

PΛTest(θj) · rR(πR̃, θj)

By Definition 3.3 it must be the case that on all of the levels in Θ̄, UR(πR, θ)− UR(πDR, θ) > C
holds. So, since this set Θ̄ has probability PΛTest = β, the set of levels θi ∈

(
supp(ΛTest) \ Θ̄

)
must

have probability 1− β.

Thus, since we are guaranteed of a difference of at least C in Θ̄, it holds that

UR(πR,ΛTest)− UR(πDR,ΛTest) >
∑
θj∈Θ̄

PΛTest(θj) · C = β · C

This concludes the proof of (A).

Part B. Suppose for purposes of contradiction that
UR(πR,ΛTest)− UR(πMMER,ΛTest) > α

Then by Equation (1)
Eθ∼ΛMER

[
GR(πMMER; θ)

]
≥ Eθ∼ΛTest

[
GR(πMMER; θ)

]
> α

But by assumption, πMMER ∈ Π⋆
α(R,ΛMER), so
Eθ∼ΛMER

[
GR(πMMER; θ)

]
≤ α

which is a contradiction. This concludes the proof for (B).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 PROOF OF THE RESOURCE THEOREM (THEOREM 4.6)

Theorem 4.6. Consider a reward-free UMDP, a level θ ∈ Θ, a pair of reward functions R, R̃, a
constant C > 0, a limited resource F , and a resource allocation ⟨GR, GR̃, G∅, f1, f2⟩. If F is
C-critical w.r.t R and marginally useful w.r.t. R̃, then for any policies πR, πR̃ optimal w.r.t. R, R̃
respectively,

UR(πR̃, θ) < UR(πR, θ)− C

In other words, θ is a C-disambiguating level.

Proof. By definition, UR(πR, θ) is the optimal utility achievable under R. We want to show that
UR(πR̃, θ) is low. By definition, it must be that since the resource is marginally useful for R̃ and πR̃

is optimal according to πR̃, any trajectory τ = (s0, a0, . . .) with positive probability under πR̃ must
devote all resources towards R̃:

|τ̄ |−1∑
t=0

GR̃(st, at, st+1) = F (s0, τ̄)− F (s|τ̄ |, τ̄)

But if that is the case, because of the conditions on the resource allocation, it must hold that

|τ̄ |−1∑
t=0

GR(st, at, st+1) = 0

Given the fact that the resource is critical for R, ∃ some π such that UR(π) > UR(πR̃) + C. But
because πR is optimal w.r.t R, UR(πR) ≥ UR(π). It follows that

UR(πR̃) < UR(πR)− C

Now since this holds for all optimal policies πR̃ ∈ Π⋆
0(R̃, θ) it follows that

Π⋆
0(R̃, θ) ∩Π⋆

C(R, θ) = ∅
This concludes the proof.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B INDIVIDUAL RUNS

B.1 ENVIRONMENT 1: CHEESE IN THE CORNER

DR

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

Seed 0
Seed 1
Seed 2
Seed 42

...

· · ·

DR

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
mixture weight α

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
(π

;r
,δ

2)

Seed 0
Seed 1
Seed 2
Seed 42

DR

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

O
D

re
tu

rn
U

(π
;r
,δ

1)

Seed 0
Seed 1
Seed 2
Seed 42

· · ·

PLR

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

Seed 0
Seed 1
Seed 2
Seed 42...

· · ·

PLR

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
mixture weight α

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
(π

;r
,δ

2)
Seed 0
Seed 1
Seed 2
Seed 42

PLR

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

O
D

re
tu

rn
U

(π
;r
,δ

1)

Seed 0
Seed 1
Seed 2
Seed 42

· · ·

ACCELc

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

Seed 0
Seed 1
Seed 2
Seed 42...

· · ·

ACCELc

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
mixture weight α

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
(π

;r
,δ

2)

Seed 0
Seed 1
Seed 2
Seed 42

ACCELc

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

O
D

re
tu

rn
U

(π
;r
,δ

1)

Seed 0
Seed 1
Seed 2
Seed 42

· · ·

ACCELbin

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

Seed 0
Seed 1
Seed 2
Seed 42...

· · ·

ACCELbin

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
mixture weight α

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
(π

;r
,δ

2)

Seed 0
Seed 1
Seed 2
Seed 42

ACCELbin

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

O
D

re
tu

rn
U

(π
;r
,δ

1)

Seed 0
Seed 1
Seed 2
Seed 42

· · ·

ACCELid

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

Seed 0
Seed 1
Seed 2...

· · ·

ACCELid

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
mixture weight α

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
(π

;r
,δ

2)

Seed 0
Seed 1
Seed 2

ACCELid

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

O
D

re
tu

rn
U

(π
;r
,δ

1)

Seed 0
Seed 1
Seed 2

· · ·

Figure 6: Individual runs for cheese in the corner experiments in Figure 2. Each row corresponds
to a training algorithm, displaying the proportion of disambiguating levels during training (left), the
average return on disambiguating levels (OOD levels) at the end of training (center), and the the
average return on ambiguating levels (OD levels) at the end of training (right).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.2 ENVIRONMENT 2: CHEESE ON A DISH

DR

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

Seed 10
Seed 11
Seed 12

...

· · ·

DR

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

U
ni

vo
ca

lr
et

ur
n

U
(π

;r
,δ

2)

Seed 10
Seed 11
Seed 12

· · ·

DR

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

E
qu

iv
oc

al
re

tu
rn

U
(π

;r
,δ

1)

Seed 10
Seed 11
Seed 12

· · ·

PLR⊥

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

Seed 10
Seed 11
Seed 12...

· · ·

PLR⊥

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

U
ni

vo
ca

lr
et

ur
n

U
(π

;r
,δ

2)

Seed 10
Seed 11
Seed 12

· · ·

PLR⊥

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

E
qu

iv
oc

al
re

tu
rn

U
(π

;r
,δ

1)

Seed 10
Seed 11
Seed 12

· · ·

ACCELc

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

Seed 10
Seed 11
Seed 12...

· · ·

ACCELc

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

U
ni

vo
ca

lr
et

ur
n

U
(π

;r
,δ

2)

Seed 10
Seed 11
Seed 12

· · ·

ACCELc

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

E
qu

iv
oc

al
re

tu
rn

U
(π

;r
,δ

1)

Seed 10
Seed 11
Seed 12

· · ·

ACCELbin

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

Seed 10
Seed 11
Seed 12...

· · ·

ACCELbin

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

U
ni

vo
ca

lr
et

ur
n

U
(π

;r
,δ

2)

Seed 10
Seed 11
Seed 12

· · ·

ACCELbin

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1
E

qu
iv

oc
al

re
tu

rn
U

(π
;r
,δ

1)

Seed 10
Seed 11
Seed 12

· · ·

ACCELid

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

Seed 10
Seed 11
Seed 12...

· · ·

ACCELid

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

U
ni

vo
ca

lr
et

ur
n

U
(π

;r
,δ

2)

Seed 10
Seed 11
Seed 12

· · ·

ACCELid

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

E
qu

iv
oc

al
re

tu
rn

U
(π

;r
,δ

1)

Seed 10
Seed 11
Seed 12

· · ·

Figure 7: Individual runs for cheese on a dish experiments in Figure 4. Each row corresponds to
a training algorithm, displaying the proportion of disambiguating levels during training (left), the
average return on disambiguating levels at the end of training (center), and the average return on
ambiguating levels at the end of training (right). Note: The axis labels are from an old version of the
terminology. Equivocal levels = ambiguating levels and univocal levels = disambiguating levels.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C ADDITIONAL ROBUSTNESS EXPERIMENTS

C.1 ENVIRONMENT 1: CHEESE IN THE CORNER

We provide additional experiments similar to Figure 3 with different mixture weights.

2 4 6 8 10 12
corner size c

0
0.

00
1

0.
1

1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

2 4 6 8 10 12
corner size c

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
(π

;r
,δ

2)

2 4 6 8 10 12
corner size c

0
0.

00
1

0.
1

1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

2 4 6 8 10 12
corner size c

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
(π

;r
,δ

2)

2 4 6 8 10 12
corner size c

0
0.

00
1

0.
1

1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

2 4 6 8 10 12
corner size c

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
(π

;r
,δ

2)

DR PLR⊥ ACCELc ACCELbin

Figure 8: Additional robustness experiment, same setting as Figure 3. Left column: Average
proportion of disambiguating levels during training. Right column: Return on disambiguating levels.
First row: α set to 1e-2. Second row: α set to 1e-3. Third row: α set to 3e-4.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.2 ENVIRONMENT 2: CHEESE ON A DISH

We provide additional experiments similar to Figure 5 with different mixture weights.

1 3 6 12 24
Number of features of dish

0
0.

00
1

0.
1

1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

1 3 6 12 24
Number of features of dish

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
R

(π
;δ

2)

1 3 6 12 24
Number of features of dish

0
0.

00
1

0.
1

1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

1 3 6 12 24
Number of features of dish

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
R

(π
;δ

2)

1 3 6 12 24
Number of features of dish

0
0.

00
1

0.
1

1

Pr
op

.O
O

D
tr

ai
ni

ng
le

ve
ls

1 3 6 12 24
Number of features of dish

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
R

(π
;δ

2)

DR PLR⊥ ACCELc ACCELbin ACCELid

Figure 9: Additional robustness experiment, same setting as Figure 5. Right column: Return on
disambiguating levels. Left column: Average proportion of disambiguating levels during training.
First row: α set to 1e-2. Second row: α set to 3e-3. Third row: α set to 1e-3.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

D HYPERPARAMETERS AND IMPLEMENTATION DETAILS

We report all the relevant hyperparameters for our experiments in Table 1. The values have been cho-
sen according to previous work, together with an exploratory analysis which considered individually
the following subsets of parameters:

• learning rate in {1e-5, 5e-5, 1e-4, 5e-4}
• discount factor γ in {0.999, 0.99, 0.995}
• PPO entropy coefficient in {0.0001, 0.001, 0.01}
• replay rate for ACCEL in {0.5, 0.7, 0.9}
• replay rate for PLR in {0.33, 0.5}
• regret estimators { PVL, MaxMC, max-latest }
• PLR staleness coefficient in {0.1, 0.3}
• PLR temperature in {0.1, 0.3}
• ACCEL number of mutations in {2, 4, 6, 12, 16, 32, 64}

When only the first value is compiled for a row, it indicates that all the methods used the same
hyperparameter.

Table 1: Hyperparameters used for training each method.

Parameter DR PLR⊥ ACCELc ACCELid ACCELbin

PPO
γ 0.999
λGAE 0.95
PPO rollout length 128
PPO epochs 5
PPO minibatches per epoch 4
PPO clip range 0.1
PPO # parallel environments 256
Adam learning rate 5e-5
PPO max gradient norm 0.5
PPO value clipping yes
PPO critic coefficient 0.5
PPO entropy coefficient 1e-3

UED
Replay rate, p – 0.33 0.5 0.5 0.5
Buffer size, K – 4096 4096 4096 4096
Regret estimator – max-latest max-latest max-latest max-latest
Prioritization – rank rank rank rank
Temperature, β – 0.1 0.1 0.1 0.1
Staleness coefficient – 0.1 0.1 0.1 0.1

ACCEL
Number of mutations per step – – 12 12 12

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTS WITH ORACLE MAX RETURN

In Section 5, we showed that even with the simple max-latest estimator (equation (3)), existing UED
methods are capable of mitigating the negative effects of goal misgeneralization in some cases. We
argue that our theoretical results assuming a strong adversary show that this benefit will increase
as more sophisticated and powerful UED methods are developed. As an example of this dynamic,
we ran a variant of the experiment in Section 5.2 (Figure 2) using a modified oracle-latest regret
estimator using knowledge of the true maximum return for each level,

ĜR
oracle-latest(π; θ) = max

π′
UR(π′; θ)− ÛR

latest(π; θ) (4)

where ÛR
latest(π; θ) is, as in Section 5.1, the empirical average return achieved by the current policy.

The maximum return for a level, maxπ′ UR(π′; θ), is computationally intractable to obtain in a
general environment. However, in cheese in the corner, we can easily compute the optimal return as
γd where d is the length of the shortest path from the mouse’s spawn position to the cheese position.

In Figure 10, we plot the generalization performance of the four UED methods alongside their variant
based on the oracle-latest regret estimator. The results show the variants with more powerful regret
estimators significantly outperform their counterparts. In particular, Figure 10 (bottom left/right)
show that the oracle-based UED methods are able to mostly mitigate goal misgeneralization even for
mixture weight α = 1e-5.

These results show there is ample room for improvement for regret estimation. A plausible mechanism
for the under-performance of the max-latest estimator is that it does not notice that a level has high
true regret if the current policy never produces a trajectory containing the cheese. In this situation, the
UED methods may still form a curriculum and mitigate goal misgeneralization, but not as effectively.
Future work in UED may reveal more effective strategies for regret estimation, such as using a
separate policy network to estimate the maximum return along the lines of Dennis et al. (2020).

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
R

(π
;δ

2)

· · ·
0 1e-5 1e-4 1e-3 1e-2 1e-1 1

Mixture weight α

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
R

(π
;δ

2)

· · ·

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
R

(π
;δ

2)

· · ·
0 1e-5 1e-4 1e-3 1e-2 1e-1 1

Mixture weight α

0

.2

.4

.6

.8

1

O
O

D
re

tu
rn

U
R

(π
;δ

2)

· · ·

DR PLR⊥

PLRoracle
⊥

ACCELc

ACCELoracle
c

ACCELbin

ACCELoracle
bin

ACCELid

ACCELoracle
id

Figure 10: Cheese in the corner, estimated max return vs. oracle max return. Generalization
performance on a fixed batch of disambiguating levels after training for approx. 250M time steps,
using DR (black baseline) or a UED algorithm using either the max-latest estimator (equation (3),
dark line) or the oracle-latest estimator (equation (4), light line). Shading: standard error, 3 seeds.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

F ADDITIONAL EXPERIMENTS WITH KEYS AND CHESTS ENVIRONMENT

In addition to the environments considered in the main text, this appendix considers experiments in a
third environment inspired by the Keys and Chests environment studied in Langosco et al. (2022).

In this environment, once again, a mouse navigates a maze grid-world. This maze contains both keys
and chests. The mouse collects keys and uses collected keys to open chests. The true goal assigns +1
reward for each open chest. Episodes terminate when the mouse collects all available (true) reward,
or after a fixed maximum episode length. Levels are procedurally generated with randomized wall,
key, chest, and mouse positions. The observations are Boolean grids with one channel respectively
coding the position(s) of the walls, mouse, keys, and chests, and a fifth channel used to code the
presence of keys that have been collected but not yet used to open chests.

Consider a distribution of sparse-key levels with a small number of keys and a large number of chests.
One proxy goal assigns +1 reward for collecting each key and a small positive reward for opening
each chest. An example proxy policy collects all available keys and then subsequently opens as many
chests as keys collected. Sparse-key levels are ambiguating (at least approximately, see below). Dense-
key levels, with a large number of keys and a small number of chests, are disambiguating—pursuing
the proxy goal incentivizes collecting all of available keys before opening any chests.

While still a grid-world, this environment is more complex than those studied in Section 5. Firstly,
rather than receiving reward for carrying out a single navigation task, the policy has to achieve a
compound task of navigating first to a key and then to a chest. In fact, since there are multiple keys
and chests, the policy has to solve multiple of these tasks concurrently. Secondly, as noted, sparse-key
levels are only approximately ambiguating. Optimizing the proxy goal by collecting all keys before
opening any chests is approximately optimal according to the true goal, since the reward from delayed
chest opening is slightly discounted. Thirdly, the nature of goal ambiguity in sparse-key levels is
richer. Collecting keys is subject to delayed reinforcement, and ambiguity arises as to whether the
key collection was merely instrumentally valuable or was intrinsically valuable.

Langosco et al. (2022) showed that in a similar ProcGen environment (Cobbe et al., 2020) that a
policy trained on sparse-key levels with DR can misgeneralize, collecting keys in dense-key levels.
We extend this finding to the case where the training distribution also contains a small proportion
of dense-key levels. We study UED methods PLRheuristic

⊥ and ACCELheuristic which estimate the
maximum return available on a level with a simple heuristic (+1 for each reachable chest if there is
a corresponding reachable key, not accounting for discounting). For ACCELheuristic, the mutation
operation randomly toggles a subset of walls or moves a subset of keys, chests, and the mouse. We
use the hyperparameters from Table 1 excepting a smaller number of mutations per step (6) and a
larger PPO entropy coefficient (1e-2) to encourage more exploration for this complex task. Figure 11
shows the results. We see that DR is susceptible to goal misgeneralization until α = 1e-1 (10%),
whereas PLR⊥ successfully mitigates goal misgeneralization at α = 3e-2 (3%) and ACCEL mitigates
goal misgeneralization at all positive mixture weights tested (including as low as α = 3e-4).

A B

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
1e

-5
1e

-3
1e

-1
1

P
ro

p.
O

O
D

tr
ai

ni
ng

le
ve

ls

..
.

· · ·

C

0 1e-5 1e-4 1e-3 1e-2 1e-1 1
Mixture weight α

0
.5
1

1.5
2

2.5
3

O
O

D
re

tu
rn

U
R

(π
;δ

2
)

· · ·

D

DR PLRheuristic
⊥ ACCELheuristic

Figure 11: Keys and chests. We construct training distributions with both (approximately) ambiguat-
ing levels (e.g. A) and disambiguating levels (e.g. B). We vary the mixture weight α (the proportion
of disambiguating levels in the training distribution). We report both (C) the average proportion of
disambiguating levels sampled during training and (D) the generalization performance on a fixed
batch of disambiguating levels after training on approximately 400 million environment steps. We
plot the mean value over three seeds with the shaded region marking the standard error. Except for
the vertical axis in (D) we use clipped log scales with values below a given threshold labeled 0.

22

	Introduction
	Preliminaries
	Underspecified Markov decision processes
	Unsupervised environment design

	Problem setting
	Theoretical results
	Minimax expected regret mitigates goal misgeneralization
	Goal misgeneralization and its consequences

	Experiments
	Unsupervised environment design methods
	Environment 1: Cheese in the corner
	Environment 2: Cheese on a dish

	Related work
	Conclusions
	Theoretical Results and Proofs
	Proof of the DR and MMER Theorem (Theorem 4.1)
	Proof of the Resource Theorem (Theorem 4.6)

	Individual runs
	Environment 1: Cheese in the corner
	Environment 2: Cheese on a dish

	Additional robustness experiments
	Environment 1: Cheese in the corner
	Environment 2: Cheese on a dish

	Hyperparameters and implementation details
	Additional experiments with oracle max return
	Additional experiments with keys and chests environment

