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Abstract
Neural models learn data representations which
lie on low dimensional manifolds, yet modelling
the relation between these representational spaces
is an ongoing challenge. By integrating spec-
tral geometry principles into neural modeling, we
show that this problem can be better addressed
in the functional domain, mitigating complex-
ity, while enhancing interpretability and perfor-
mances on downstream tasks. To this end, we
introduce a multi-purpose framework to the repre-
sentation learning community which allows to: (i)
compare different spaces in an interpretable way
and measure their intrinsic similarity; (ii) find cor-
respondences between them, both in unsupervised
and weakly supervised settings, and (iii) to effec-
tively transfer representations between distinct
spaces. We validate our framework on various
applications, ranging from stitching to retrieval
tasks, demonstrating that latent functional maps
can serve as a swiss-army knife for representation
alignment.

1. Introduction
Recent studies have shown that neural models often develop
similar representations when exposed to similar stimuli,
both in biological (Haxby et al., 2001; Laakso & Cottrell,
2000) and artificial settings (Morcos et al., 2018; Kornblith
et al., 2019; Moschella et al., 2023). Notably, internal repre-
sentations of distinct models can often be aligned through
a linear transformation (Wang et al., 2018; Roeder et al.,
2021) (e.g. when subject to different initializations). This
indicates a level of consistency in how NNs process informa-
tion, showing the importance of characterizing these internal
representations and their geometric relation. In this paper,
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Figure 1. Framework overview: Given the spaces X , Y their sam-
ples lie on two manifold X , Y , which can be approximated with
the KNN graphs GX ,GY ; We can optimize for a latent functional
map C between the eigenbases of the graphs. This map serves
as a map between functions defined on the two manifolds and
can be leveraged for comparing representational spaces, solving
correspondence problems, and transferring information.

we shift our focus from characterizing relationships between
samples in distinct latent spaces to modelling a map between
function spaces defined on these latent manifolds. We lever-
age the framework of functional maps (Ovsjanikov et al.,
2012), applying it for the first time to the field of representa-
tion learning. Functional maps represent correspondences
between function spaces on different manifolds: in this set-
ting, many complex constraints can be expressed compactly
(Ovsjanikov et al., 2016). For instance, as shown in Figure
1, the mapping in the functional space (C) becomes a lin-
ear map with a sparse structure. Our contributions can be
listed as follows: (i) We introduce the framework of Latent
Functional Maps as a way to model the relation between
distinct representational spaces of neural models. (ii) We
show that LFM allows us to find correspondences between
representational spaces, both in weakly supervised and un-
supervised settings, and to transfer representations across
distinct models. (iii) We showcase LFM capabilities as a
meaningful and interpretable similarity measure between
representational spaces. (iv) We validate our findings in
retrieval and stitching tasks across different models, modali-
ties and datasets, demonstrating that LFMs can lead to better
performance and sample efficiency than other methods.

For a complete overview of the related work and contextual-
ization of the proposed approach, see Appendix B.
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2. Method
We provide the basic notions to understand the framework
of functional maps applied to manifolds in the Appendix A.

Setting. We consider deep neural networks f := f1 ◦ f2 ◦
...fn where each layer fi is associated to a representational
space X corresponding to the image of fi. We assume
that elements x ∈ X are sampled from a latent manifold
M. Considering pairs of spaces (X ,Y), and corresponding
manifolds M,N our objective is to characterize the relation
between them by mapping the space of functions F(M) to
F(N ). Our framework is depicted in Figure 1. In the
following, we will start by approximating X from a sample
estimate, building a graph in the latent space.

Latent Functional Maps. We model each space using a
subset of training samples X = {x1, . . . , xn} and Y =
{y1, . . . , yn} and build a k-NN graphs GX and GY from
these samples, respectively with a given distance metric (for
deatils about the graph construction see Appendix C.1.1).
For each graph, we compute the graph Laplacian LG and
derive the first k eigenvalues ΛG and eigenvectors ΦG =
[ϕ1, . . . , ϕk], which serve as the basis for the function space
defined on the latent spaces.

Given the set of corresponding functions FGX
=

[fGX
1 , . . . , fGX

nf
] and FGY

= [fGY
1 , . . . , fGY

nf
], we consider

the optimization problem defined in Equation 2 and incorpo-
rate regularizers for Laplacian and descriptor operator com-
mutativity, as defined in (Nogneng & Ovsjanikov, 2017):

argmin
C

||CF̂GX
− F̂GY

||2 + αρL(C) + βρf (C) (1)

where F̂G = ΦT
GFG are the spectral coefficients of the

functions FG, ρL and ρf are the Laplacian and descriptor
operator commutativity regularizers respectively. We spec-
ify how we compute the regularizers in Appendix C. As a
set of corresponding functions, we use the geodesic distance
functions computed from a point x ∈ X to all other points
in X , where x is a point for which we know the correspond-
ing point y ∈ Y in the other latent space. Once we have
solved the optimization problem defined in Equation 1, we
refine the resulting functional map C using the algorithm
proposed by (Melzi et al., 2019).

In the following paragraphs, we detail our application of
the functional representation to compare and analyze la-
tent spaces. To our knowledge, this is the first use of the
functional map framework for these tasks.

LFMs as a similarity measure. Once computed, the
functional map C can serve as a measure of similarity be-
tween spaces. The reason is that for isometric transfor-
mations between manifolds, the functional map is volume
preserving (see Thm 5.1 in (Ovsjanikov et al., 2012)), and
this is manifested in orthogonal C. By defining the inner
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Figure 2. Similarity across layers Similarity matrices between
internal layer representations of CIFAR10 comparing our LFM-
based similarity with the CCA and CKA baselines, averaged across
10 models. For each method, we report the accuracy scores for
matching the corresponding layer by maximal similarity.

product between functions h1, h2 ∈ F(M) as ⟨h1, h2⟩ =∫
M h1(x)h2(x)µ(x), it holds that ⟨h1, h2⟩ = ⟨ĥ1, ĥ2⟩

when the map preserves the local area, where ĥ denotes
the functional representation of h. In other words, when the
transformation between the two manifolds is an isometry,
the matrix CTC will be diagonal. By measuring the ratio
between the norm of the off-diagonal elements of CTC and
the norm of its diagonal elements, we can define a measure
of similarity sim(X,Y ) = 1− ||off((CTC)||F

||diag(CTC)||F . Furthermore,
this quantity is interpretable; the first eigenvector of CTC
can act as a signal to localize the area of the target mani-
fold where the map has higher distortion (Ovsjanikov et al.,
2013).

Transfering information with LFM. The functional map
computed between two latent spaces can be utilized in vari-
ous ways to transfer information from one space to the other.
In this paper, we focus on two methods: (i) Expressing arbi-
trary points in the latent space as distance function on the
graph and transferring them through the functional domain
(see C.1.2 for details); (ii) Obtaining a point-to-point cor-
respondence between the representational spaces from the
LFM, starting from none to few known pairs, and leverage
off-the-shelf methods to learn a transformation between the
spaces (see C.1.3 for details). Additional strategies could be
explored in future work.

3. Experiments
In the following sections, we demonstrate experimentally
the benefits of the Latent Functional Maps framework (i) as
an analysis tool and similarity measure between represen-
tational spaces (Section 2), (ii) to stitch together individual
neural modules in a zero shot fashion (Section 3), (iii) to
transfer information between latent spaces to efficiently
solve retrieval tasks (Appendix E.1).

Analysis. We demonstrate the benefits of using latent func-
tional maps for comparing distinct representational spaces,
using the similarity metric defined in Section 2.

Experimental setting. In order to validate experimentally
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Figure 3. Robustness of LFM similarity Left: Similarity scores as a function of perturbation strength: while the CKA baseline degrades,
our LFM similarity scores are robust to perturbations that preserve linear separability of the space. Right: Visualization of area distortion
of the map by projecting the first singular component of the LFM in the perturbed space: the distortion localizes on the samples of the
perturbed class, making LFM similarity interpretable.

if LFMs can serve as a good measure of similarity between
distinct representational spaces, we run the same sanity
check as in (Kornblith et al., 2019). We train 10 CNN
models (the architecture is depicted in Appendix D.1) on the
CIFAR-10 dataset (Krizhevsky et al., 2009), changing the
initialization seed. We compare their inner representations at
each layer, excluding the logits and plot them as a similarity
matrix, comparing with Central Kernel Alignment (CKA)
measure (Kornblith et al., 2019) and Canonical Correlation
Analysis (CCA) (Hotelling, 1992; Raghu et al., 2017). We
then measure the accuracy of identifying corresponding
layers across models and report the results comparing with
CKA and CCA as baselines. For CCA, we apply average
pooling on the spatial dimensions to the embeddings of
the internal layers, making it more stable numerically and
boosting the results for this baseline compared to what was
observed in (Kornblith et al., 2019).

Result analysis. Figure 2 shows that our LFM-based similar-
ity measure behaves correctly as CKA does. Furthermore,
the similarities are less spread around the diagonal, favoring
a slightly higher accuracy score in identifying the corre-
sponding layers across models.

While CKA (Centered Kernel Alignment) is a widely used
similarity metric in deep learning, recent research by (Davari
et al., 2022) has shown that it can produce unexpected or
counter-intuitive results in certain situations. Specifically,
CKA is sensitive to transformations that preserve the linear
separability of two spaces, such as local translations. Our
proposed similarity measure is robust to these changes and
demonstrates greater stability compared to CKA.

Experimental setting. We compute the latent representations
from the pooling layer just before the classification head

for the CIFAR10 train and test sets. Following the setup
in (Davari et al., 2022), we train a Support Vector Machine
(SVM) classifier on the latent representations of the training
samples to find the optimal separating hyperplane between
samples of one class and others. We then perturb the sam-
ples by translating them in a direction orthogonal to the
hyperplane, ensuring the space remains linearly separable.
We measure the CKA and LFM similarities as functions of
the perturbation vector norm, as shown in Figure 3a. In the
accompanying plot on the right, we visualize the area distor-
tion of the map by projecting the first singular component
of the LFM C into the perturbed space and plotting it on a
2d TSNE (Van der Maaten & Hinton, 2008) projection of
the space.

Result Analysis. We start by observing that, when the latent
space is perturbed in a way that still preserves its linear
separability, it should be considered identical from a clas-
sification perspective, as this does not semantically affect
the classification task. Figure 3a shows that while CKA
degrades as a function of perturbation intensity, the LFM
similarity remains stable to high scores. To understand this
difference, we can visualize the area distortion as a function
of the samples by projecting the first singular component
of C onto the perturbed space. In Figure 3b, we use t-SNE
(Van der Maaten & Hinton, 2008) to project the perturbed
samples and the distortion function into 2D. The visual-
ization reveals that distortion is localized to the samples
corresponding to the perturbed class.

Zero-shot stitching. We test the use of the latent func-
tional map in the task of zero-shot stitching, as defined in
(Moschella et al., 2023), to combine independent encoders
and decoders (e.g., classifiers, generators) without subse-
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quent training or fine-tuning.

Experimental Setting. We consider four pre-trained image
encoders (see Appendix D.2 for details) and stitch their la-
tent spaces to perform classification using a Support Vector
Machine (SVM) on two different labelings of CIFAR100
(Krizhevsky et al., 2009): coarse and fine-grained. To eval-
uate the effectiveness of integrating the functional map,
we extend the correspondences to determine an orthogonal
transformation (Maiorca et al., 2024) between the latent
spaces. For each encoder, we compute a graph of 3,000
points with 300 neighbors per node. We optimize the prob-
lem in Equation 1 using the first 50 eigenvectors of the graph
Laplacian and consider two different descriptors: the dis-
tance functions defined from the anchors (LFM+Ortho) and
the labels (LFM+Ortho (Labels)). For each dataset class,
the latter provides an indicator function with 1 if the point
belongs to the class and 0 otherwise. This descriptor type
does not require any anchor as input, representing a pioneer-
ing example of stitching requiring no additional information
beyond the dataset.

Result Analysis. Figure 4 presents the accuracy results for
all possible combinations of encoder stitching. The addition
of the latent functional map (LFM+Ortho) shows higher per-
formance with a low number of anchors in both labelings of
CIFAR100. Even without any anchors, the label descriptors
(LFM+Ortho (Labels)) provide the best performance for the
latent functional map framework in both labelings. Comput-
ing the orthogonal transformation directly from the anchors
(Ortho) proves to have comparable performance only with
500 anchors, where the performance of LFM is limited by
the number of eigenvectors used. This experiment shows
that the latent functional map is highly effective when few
anchors are available (≤ 50). It significantly enhances per-
formance in zero-shot stitching tasks, outperforming direct
orthogonal transformations at low or no anchor counts. This
suggests that the latent functional map method provides a
robust means of aligning latent spaces with minimal corre-
spondence data, making it a valuable tool for tasks requiring
the integration of independently trained models.

In Appendix E.1, we extend our analysis to the retrieval
task, where we look for the most similar embedding in the
aligned latent space. The results confirm that the latent
functional map significantly enhances retrieval performance
with a minimal number of anchors, making it an efficient
approach for aligning latent spaces.

4. Conclusions
In this paper, we introduced latent functional maps (LFM) to
enhance the understanding and utilization of neural network
representations by leveraging spectral geometry for compar-
ing and aligning different latent spaces. While LFM shows

promise in unsupervised and weakly supervised settings,
it faces challenges with the optimal number of eigenvec-
tors and handling complex transformations. Future research
will focus on improving scalability, effectiveness in fully
unsupervised settings, and managing more complex trans-
formations.
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A. Background
This section provides the basic notions to understand the
framework of functional maps applied to manifolds. We
refer to (Ovsjanikov et al., 2016) for a comprehensive
overview.

Consider two manifolds M and N equipped with a ba-
sis such that any function f : M → R can be repre-
sented as a linear combination of basis functions ΦM:
f =

∑
i aiΦ

M
i = aΦM. Given the correspondence

T : M → N between points on these manifolds, for any
real-valued function f : M → R, one can construct a cor-
responding function g : N → R such that g = f ◦ T−1.
In other words, the correspondence T defines a mapping
between two function spaces TF : F(M,R) → F(N ,R).
(Ovsjanikov et al., 2012) showed how such a mapping is
linear and can be represented as a (possibly infinite) matrix
C such that for any function f represented as a vector of
coefficients a, we have TF (a) = Ca.

The functional representation is particularly well-suited for
map inference (i.e., constrained optimization). When the
underlying map T (and by extension the matrix C) is un-
known, many natural constraints on the map become linear
constraints in its functional representation. In practice, the
simplest method for recovering an unknown functional map
is to solve the following optimization problem:

argmin
C

||CA−B||2 + ρ(C) (2)

where A and B are sets of corresponding functions ex-
pressed in the bases on M and N , respectively, and ρ(C)
represents additional constraints deriving from the proper-
ties of the matrix C (Ovsjanikov et al., 2016). When the
shapes are approximately isometric and the descriptors are
well-preserved by the (unknown) map, this procedure pro-
vides a good approximation of the underlying map. In the
case where the correspondence T is encoded in a matrix
S, the functional map can be retrieved as C = Φ†

NSΦM
where ΦM and ΦN are the bases of the functional spaces
F(M,R) and F(N ,R), respectively, and † denotes the
pseudo-inverse.

B. Related Work
Similarity between latent spaces. Comparing representa-
tions learned by neural models is of fundamental importance
for a diversity of tasks, ranging from representation analysis
to latent space alignment and neural dynamics. In order
to do so, a similarity measure between different spaces
must be defined (Klabunde et al., 2023). This can range
from functional similarity (matching the performance of
two models) to similarity defined in representational space
(Kornblith et al., 2019), which is where our framework
falls in. A classical statistical method is Canonical Cor-
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relation Analysis (CCA) (Hotelling, 1992), known for its
invariance to linear transformations. Various adaptations of
CCA aim to enhance robustness, such as through Singular
Value Decomposition (SVD) and Singular Vector Canon-
ical Correlation Analysis (SVCCA) (Raghu et al., 2017),
or to decrease sensitivity to perturbations using methods
like Projection-Weighted Canonical Correlation Analysis
(PWCCA) (Morcos et al., 2018). Closely related to these
approaches, Centered Kernel Alignment (CKA) (Kornblith
et al., 2019) measures the similarity between latent spaces
while ignoring orthogonal transformations. However, recent
research (Davari et al., 2022) reveals that CKA is sensitive
to shifts in the latent space.

We propose to leverage LFMs as a tool to measure the
similarity, or how much two spaces differ from an isometry
w.r.t. to the metric that has been used to construct the graph.

Latent communication. This relatively new concept, intro-
duced by (Moschella et al., 2023), builds on the hypothesis
that latent spaces across neural networks (pre-)trained with
many variation factors, from random seed initialization to
architecture or even data modality, are intrinsically compati-
ble. This notion is supported by numerous empirical studies
(Morcos et al., 2018; Li et al., 2016; Kornblith et al., 2019;
Bonheme & Grzes, 2022; Tsitsulin et al., 2020; Barannikov
et al., 2022; Vulić et al., 2020; Lample et al., 2018; Lenc
& Vedaldi, 2015; Bengio et al., 2012; Movshovitz-Attias
et al., 2017; Chang et al., 2022), with the phenomenon being
particularly evident in large and wide models (Somepalli
et al., 2022; Mehta et al., 2022). The core idea is that rela-
tions between data points (i.e., distances according to some
metric) are preserved across different spaces because the
high-level semantics of the data are the same and neural
networks learn to encode them similarly (Huh et al., 2024) .
With this "relative representation", the authors show that it
is possible to stitch (Lenc & Vedaldi, 2015) together model
components coming from different models, with little to no
additional training as long as a partial correspondence of
the spaces involved is known.

Indeed, (Lähner & Moeller, 2024; Maiorca et al., 2024;
Merullo et al., 2023; Moayeri et al., 2023) show that a simple
linear transformation is usually enough to map one latent
space into another measured by performance on desired
downstream tasks.

With LFMs, we change the perspective from merely relat-
ing samples of distinct latent spaces to relating function
spaces defined on the manifold that the samples approxi-
mate, showing that processing information in this dual space
is convenient as it boosts performance while also being in-
terpretable.

Functional Maps. The representation we propose is directly
derived from the functional maps framework for smooth

manifolds introduced in the seminal work by (Ovsjanikov
et al., 2012). This pioneering study proposed a compact
and easily manipulable mapping between 3D shapes. Sub-
sequent research has aimed at enhancing this framework.
For instance, (Nogneng & Ovsjanikov, 2017) introduced
regularization techniques to improve the informativeness of
the maps, while (Melzi et al., 2019) developed refinement
methods to achieve more accurate mappings. The functional
map framework has been extended as well outside the 3d
domain, for example, in (Wang et al., 2019) and (Hermanns
et al., 2021), who applied the functional framework to model
correspondences between graphs, and in (Pegoraro et al.,
2023), who demonstrated its utility in graph learning tasks.
In particular, they have shown that the functional map repre-
sentation retains its advantageous properties even when the
Laplace basis is computed on a graph.

Inspired by these advancements, our work leverages the
functional representation of latent spaces. We demonstrate
how this representation can be easily manipulated to high-
light similarities and facilitate the transfer of information
between different spaces, thereby extending the applicability
of the functional maps framework to the domain of neural
latent spaces.

C. Latent Functional Map
C.1. Details

C.1.1. BUILDING THE GRAPH

To leverage the geometry of the underlying manifold, we
model the latent space of a neural network building a
symmetric k-nearest neighbor (k-NN) graph (MAI, 2009).
Given a set of samples X = {x1, . . . , xn}, we construct
an undirected weighted graph G = (X,E,W) with nodes
X , edges E, and weight matrix W. The weight matrix
is totally characterized by the choice of distance function
d(x,xj) with x,xj ∈ X . Suitable choices include the L2
metric or the angular distance. Edges E are defined as
E = {(xi, xj) ∈ X ×X | xi ∼k xj or xj ∼k xi}, where
xi ∼k xj indicates that xj is among the k nearest neighbors
of xi. The weight matrix W ∈ Rn×n

≥0 assigns a weight
ω(xi, xj) to each edge (xi, xj) ∈ E, and W(i, j) = 0
otherwise.

Next, we define the associated weighted graph Laplacian
LG = I − D−1/2WD−1/2, where D is the diagonal de-
gree matrix with entries D(i, i) =

∑n
j=1 W(i, j). LG is a

positive semi-definite, self-adjoint operator (Von Luxburg,
2007)), therefore, it admits an eigendecomposition LG =
ΦGΛGΦ

T
G, where ΛG is a diagonal matrix containing the

eigenvalues, and ΦG is a matrix whose columns are the
corresponding eigenvectors. The eigenvectors form an or-
thonormal basis for the space of functions defined on the
graph nodes (i.e., ΦT

GΦG = I).
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Throughout this paper, we assume the eigenvalues (and
corresponding eigenvectors) are sorted in non-descending
order 0 = Λ1 ≤ Λ2 ≤ · · · ≤ Λn. One may consider a
subset of eigenvectors, namely those associated with the
k smallest eigenvalues, to compactly approximate a graph
signal, employing techniques akin to Fourier analysis.

As demonstrated in many recent works (Ting et al., 2011;
Calder & Trillos, 2022), the eigenvalues and eigenvectors of
the graph Laplacian associated with a k-NN graph approx-
imate the weighted Laplace-Beltrami operator, placing us
in a setting similar to the original one of (Ovsjanikov et al.,
2012).

C.1.2. SPACE OF FUNCTIONAL COEFFICIENTS

The space of functional coefficients offers an alternative
representation for points in the latent space X . Using the
equation f̂G = ΦT

GfG, any function fG ∈ F(G,R) can
be uniquely represented by its functional coefficients f̂G.
We leverage this property to represent any point x ∈ X as
a distance function fd ∈ F(G,R) from the set of points
XG, which correspond to the nodes of the graph G. The
functional map C between two latent spaces X and Y aligns
their functional representations, enabling the transfer of any
function from the first space to the second. This functional
alignment can be used similarly to the method proposed by
(Moschella et al., 2023) to establish a "relative" space where
the representational spaces X and Y are aligned.

C.1.3. EXTENDING SPACES CORRESPONDENCES

As explained in Section A, the functional map C represents
the bijection T in a functional form. (Ovsjanikov et al.,
2012) demonstrated that this bijection can be retrieved as
a point-to-point map by finding the nearest neighbor for
each row of ΦGY

C in ΦGX
. This process can be efficiently

implemented using algorithms such as kd-tree. Given a few
correspondences (anchors) between the two spaces X and
Y , we can extend these correspondences to the entire set
of nodes X and Y . This extended set of anchors can then
be used to determine a transformation between the latent
spaces, as described by (Maiorca et al., 2024). In the follow-
ing section, we demonstrate that by using a small number
of anchors (≤ 50), we can retrieve optimal transformations
that facilitate near-perfect stitching and retrieval.

C.2. Additional Regularizers

In Equation 1, we improve the computation of the functional
map by incorporating two additional regularizers: Laplacian
commutativity and descriptor operator commutativity. Both
regularizers exploit the preservation of linear functional
operators SG : F(G,R) → F(G,R), enforcing that the
functional map C commutes with these operators: ||SG

i C−
CSGX

i || = 0.

The Laplacian commutativity regularizer, first introduced
by (Ovsjanikov et al., 2012), is formulated as:

ρL(C) = ||ΛGY
C−CΛGX

||2 (3)

where ΛG represents the diagonal matrices of eigenvalues.
This regularizer ensures that the functional map C preserves
the spectral properties of the Laplacian.

The descriptor operator commutativity regularizer, intro-
duced by (Nogneng & Ovsjanikov, 2017), extracts more
detailed information from a given descriptor, resulting in a
more accurate functional map even with fewer descriptors.
The formulation of this regularizer is as follows:

ρf (C) =
∑
i

||SGY
i C−CSGX

i ||2 (4)

where SG
i = ΦT

GDiag(fG
i )ΦG are the descriptor operators.

D. Experimental details
D.1. Architecture Details

All non-ResNet architectures are based on All-CNN-C
(Springenberg et al., 2014)

Tiny-10

3× 3 conv. 16-BN-ReLu ×2
3× 3 conv. 32 stride 2-BN-ReLu
3× 3 conv. 32-BN-ReLu ×2
3× 3 conv. 64 stride 2-BN-ReLu
3× 3 conv. 64 valid padding-BN-ReLu
1× 1 conv. 64-BN-ReLu
Global average pooling
Logits

Table 1.

D.2. Pre-trained models

In Section 3 we used four pretrained models: 3 variations
of (Dosovitskiy et al., 2020) (’google-vit-base-patch16-
224’, ’google-vit-large-patch16-224’, ’WinKawaks-vit-
small-patch16-224’) and the model proposed by (Oquab
et al., 2023) ( ’facebook-dinov2-base’).

D.3. Parameters and resources

In all our experiments we used gpu rtx 3080ti and 3090. In
order to compute the eigenvector and functional map on a
graph of 3k nodes we employ not more than 2 minutes.
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D.4. Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) is a commonly used metric
to evaluate the performance of retrieval systems (Moschella
et al., 2023). It measures the effectiveness of a system by
calculating the rank of the first relevant item in the search
results for each query.

To compute MRR, we consider the following steps:

1. For each query, rank the list of retrieved items based
on their relevance to the query.

2. Determine the rank position of the first relevant item in
the list. If the first relevant item for query i is found at
rank position ri, then the reciprocal rank for that query
is 1

ri
.

3. Calculate the mean of the reciprocal ranks over all
queries. If there are Q queries, the MRR is given by:

MRR =
1

Q

Q∑
i=1

1

ri
(5)

Here, ri is the rank position of the first relevant item
for the i-th query. If a query has no relevant items in
the retrieved list, its reciprocal rank is considered to be
zero.

MRR provides a single metric that reflects the average per-
formance of the retrieval system, with higher MRR values
indicating better performance.

E. Additional Results
E.1. Retrieval

We extend our analysis to the retrieval task, where we look
for the most similar embedding in the aligned latent space.

Experimental Setting. We consider two different English
word embeddings, FastText (Bojanowski et al., 2017) and
Word2Vec (Mikolov et al., 2013). Following the approach
of (Moschella et al., 2023), we extract embeddings of 20K
words from their shared vocabulary using pre-trained mod-
els. We use 2K random corresponding samples to construct
the k-NN graphs and evaluate the retrieval performance
on the remaining 18K word embeddings. We test two set-
tings in our experiments: (i) Aligning functional coefficients
(LFM Space). (ii) Computing an orthogonal transformation
using the correspondences obtained by the functional map
(LFM+Ortho). For this experiment, we construct k-NN
graphs with a neighborhood size of 300 and compute the
functional map using the first 50 eigenvectors. We evalu-
ate the methods’ performance using the Mean Reciprocal
Rank (MRR), as detailed in Appendix D.4. Our functional

map methods are compared with the method proposed by
(Moschella et al., 2023) (Relatives) and the orthogonal trans-
formation method proposed by (Maiorca et al., 2024) (Or-
tho).

Result Analysis. Figure 5 shows the performance of these
methods as the number of anchors increases. The numerical
results are detailed in Table 2. The functional map signifi-
cantly improves performance with just 5 anchors, achieving
an MRR of over 0.8. As the number of anchors increases, the
performance of competing methods improves but still falls
short of FMAP+Transform at 300 anchors, which reaches
an MRR of 0.99. Interestingly, the performance of the func-
tional map methods does not improve beyond 5 anchors, sug-
gesting that this number of anchors is sufficient to achieve
an optimal functional map between the spaces. In Table 2,
we report the numerical results for the experiment in Figure
5 adding more transformations from the method of (Maiorca
et al., 2024): orthogonal (Ortho), linear (Linear) and affine
(Affine). From the value in the table, we can see that all
the methods that involve the latent functional map (LFM)
saturate at 5 anchors, reaching top performance. We further
analyze how the results improve as the number of eigenvec-
tors used to compute the functional map increases. In Figure
5b, we show how the performance of the latent functional
map methods depends on the number of eigenvectors used
to compute the map. In particular, we notice that the per-
formance drastically increases at 25 eigenvectors, reaching
the same score when using the functional map computed
from the ground truth correspondences (LFMGT). These
results confirm that the latent functional map is a valuable
tool in settings with little knowledge about correspondences.
It significantly enhances retrieval performance with a mini-
mal number of anchors, making it an efficient approach for
aligning latent spaces. Moreover, its performance can be
improved using a higher number of eigenvectors.
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Figure 5. Ablation on Retrieval of word embeddings. We compare the retrieval performance of the functional map framework with
state-of-the-art models as the number of anchors increases. The left panel shows the Mean Reciprocal Rank (MRR) across different
numbers of anchors. The right panels depict the first two components of PCA for a subsample of the latent space (b) and the functional
space (c), both before and after alignment using the functional map.
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Figure 6. Retrieval of word embeddings. The panels depict the first two components of PCA for a subsample of the latent space (b) and
the functional space (c), both before and after alignment using the functional map.

Table 2. MRR Score for the retrieval of word embeddings. We report the value of the results depicted in Figure 5 adding more kind
transformation between spaces (Orthogonal, Linear and Affine).

Number of anchors
Method 2 5 10 25 50 75 100 150 200 300

LFM+Ortho 0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
LFM+Linear 0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
LFM+Affine 0.01 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Ortho 0.01 0.01 0.01 0.03 0.15 0.34 0.60 0.82 0.93 0.97
Linear 0.01 0.01 0.01 0.05 0.26 0.49 0.66 0.77 0.74 0.01
Affine 0.01 0.01 0.01 0.04 0.19 0.45 0.64 0.81 0.89 0.95

LFM Space 0.01 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Relatives 0.01 0.01 0.05 0.28 0.55 0.72 0.79 0.84 0.87 0.90
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