
Published as a workshop paper at DeLTa Workshop (ICLR 2025)

ATTENTION SCHEME INSPIRED SOFTMAX REGRES-
SION

Zhihang Li ∗ Zhizhou Sha† Zhao Song‡ Mingda Wan§

ABSTRACT

In this work, we introduce ATTREG (Attention-Inspired Softmax Regression), a
novel theoretical framework designed to advance the understanding of attention
mechanisms within large language models (LLMs). In the area of convex op-
timization such as using the central path method to solve linear programming,
the softmax function has been used as a crucial tool for controlling the progress
and stability of potential functions [Cohen, Lee and Song STOC 2019, Brand
SODA 2020]. By redefining the softmax regression problem through an attention-
inspired approach, we establish a regularized variant, RATTREG (Regularized
Attention-Inspired Softmax Regression), which incorporates an exponential acti-
vation function tailored for enhanced convergence and efficiency. Our comprehen-
sive analysis encompasses the formulation of new problem definitions, the deriva-
tion of first and second-order derivatives to understand gradient dynamics, and a
theoretical investigation into the convergence properties of the proposed models.
We also develop an efficient computational approach using an adapted Newton
method, supported by a sparsification technique, to address the challenges of high
dimensionality and data sparsity inherent in LLMs. The implications of this study
are significant, offering deeper insights into the operational dynamics of attention
mechanisms and opening new avenues for optimizing the training processes of ad-
vanced neural network architectures. In a certain sense, our provable convergence
result provides theoretical support for why we can use greedy algorithms to train
the softmax function in practice.

1 INTRODUCTION

In the past few years, Large Language Models (LLMs) have experienced explosive development.
There is a series of results of LLMs, like Transformer Vaswani et al. (2017), GPT-1 Radford et al.
(2018), BERT Devlin et al. (2018), GPT-2 Radford et al. (2019), GPT-3 Brown et al. (2020), PaLM
Chowdhery et al. (2022), OPT Zhang et al. (2022). The success of a recent chatbot named Chat-
GPT ChatGPT (2022) by OpenAI has exemplified the use of LLMs in human-interaction tasks.
Very recently, OpenAI released their new version of LLM, named GPT-4 OpenAI (2023), which
has been tested to perform much better even than previous ChatGPT Bubeck et al. (2023). These
LLMs are trained on massive amounts of textual data to generate natural language text. They have
already shown their power on various real-work tasks, including natural language translation He
et al. (2021), sentiment analysis Usama et al. (2020), language modeling Martin et al. (2019), and
even creative writing ChatGPT (2022); OpenAI (2023).

In the development of LLMs, the computation of attention plays a crucial role by significantly
improving the model’s capability to concentrate on pertinent sections of the input text, as high-
lighted in multiple foundational studies Vaswani et al. (2017); Radford et al. (2018); Devlin et al.
(2018); Radford et al. (2019); Brown et al. (2020). Typically, the attention computation is de-
fined to be Att(Q,K, V) := D−1AV , where A := exp(QK⊤) ∈ Rn×n is a square matrix and
D := diag(A1n) ∈ Rn×n is a diagonal matrix. Matrix Q ∈ Rn×d represents the query tokens,
which are typically derived from the previous hidden state of the decoder. And we use matrix

∗ lizhihangdll@gmail.com. Huazhong Agricultural University.
† shazz20@mails.tsinghua.edu.cn. Tsinghua University.
‡ magic.linuxkde@gmail.com. The Simons Institute for the Theory of Computing at UC Berkeley.
§ dylan.r.mathison@gmail.com. Anhui University.

1

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

K ∈ Rn×d and V ∈ Rn×d to denote the key tokens and values. We also compute A, each entry
of A is computed as a dot product between the query vector q and the key vector ki, and the soft-
max function is applied to obtain the attention weights Ai,j . The attention mechanism operates by
leveraging the correlations between words or tokens within the text, thereby allowing the model to
dynamically adjust its focus during the processing of information. This process is not only vital for
understanding context but also for making nuanced interpretations of the text. Despite its widespread
use and clear benefits, the underlying theoretical principles of how attention works remain somewhat
elusive and not fully understood.

There remains a substantial gap in the literature concerning a comprehensive theoretical framework
that explains the inner workings and efficacy of attention mechanisms in LLMs. Given the current
state of research, a natural question arises: How in the theory is the Attention module being trained?
To address this question, we delve into the inner workings of attention modules and, inspired by
their mechanisms, we propose a new regression problem, ATTREG (Attention Regression). This
problem is designed to provide a theoretical understanding of the attention mechanism’s convergence
capabilities. Additionally, we incorporate a regularization term into the model formulation to further
refine our approach. To facilitate practical implementation, we also develop and outline an algorithm
specifically tailored to solve this enhanced regression problem, ensuring it effectively captures the
dynamics of attention in LLMs.

We summarize our contributions as follows: (1) We introduce ATTREG (Attention-Inspired Softmax
Regression Problem, Definition 2.6), a novel concept aimed at exploring the convergence capabili-
ties of attention mechanisms. This theoretical framework is designed to enhance our understanding
of the operational dynamics in modern language models. Additionally, we integrate a regularization
component to formulate a regularized version, RATTREG (Attention-Inspired Regularized Softmax
Regression Problem, Definition 2.7). Compared to previous work Li et al. (2023b), we take a step
forward to understanding and explanation of the Attention theory by considering the softmax op-
eration. (2) In our thorough analysis of the proposed models, we provide extensive details on the
mathematical underpinnings of RATTREG. This includes a complete derivation of the first-order
derivatives, which help in understanding the gradient dynamics, and the second-order derivatives,
which are crucial for assessing the curvature of the optimization landscape. These calculations are
elaborated in Section 5. Our analytical approach not only clarifies the theoretical structure of the
models but also lays the groundwork for more efficient computational strategies. (3) Leveraging
these derivatives and the Hessian matrices, and incorporating existing optimization techniques from
the literature Deng et al. (2022); Song et al. (2022), we develop an adapted Newton method en-
hanced with a sparsification tool to efficiently solve RATTREG (Theorem 3.1). The efficiency of
our method is significantly influenced by the sparsity of our input matrices, which aligns well with
the inherently sparse nature of attention mechanism’s weight matrices.

Roadmap. In Section 2 we state the setup of the problem we study. In Section 3 we provide our
main result. In Section 4, we present a technical overview of our work. In Section 5, we provide the
main results for the Hessian analysis. In Section 6, we introduce the approximate Newton method
we use. In Section 7, we restate the formal version of our results. We give a conclusion in Section 8.

2 PRELIMINARY

This section introduces the foundational definitions and optimization problems that serve as the
backbone for our theoretical and algorithmic developments. Section 2.1 provides a detailed expo-
sition of key mathematical constructs, including the softmax function, its associated loss function,
and auxiliary normalized quantities. These elements are central to the problem formulations and an-
alytical framework. Section 2.2 formalizes the two primary optimization problems explored in this
work: the attention-inspired softmax regression problem (ATTREG) and its regularized counterpart
(RATTREG). Together, these definitions set the stage for the results and methods presented in the
following sections.

2.1 KEY CONCEPTS

We define function softmax f as follows

2

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Definition 2.1 (Function f). Given a matrix A ∈ Rn×d. Let 1n denote a length-n vector that
all entries are ones. We define prediction function f : Rd → Rn as f(x) := ⟨exp(Ax),1n⟩−1 ·
exp(Ax).

Definition 2.2 (Loss function Lexp). Given a matrix A ∈ Rn×d and a vector b ∈ Rn. We define
loss function Lexp : Rd → R as Lexp(x) := 0.5 · ∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥22.

For convenient, we define two helpful notations α and c

Definition 2.3 (Normalized coefficients). We define α : Rd → R as α(x) := ⟨exp(Ax),1n⟩. Then,
we can rewrite f(x) (see Definition 2.1) and Lexp(x) (see Definition 2.2) as follows

• f(x) = α(x)−1 · exp(Ax).

• Lexp(x) = 0.5 · ∥α(x)−1 · exp(Ax)− b∥22.

• Lexp(x) = 0.5 · ∥f(x)− b∥22.

Definition 2.4. We define function c : Rd ∈ Rn as c(x) := f(x)− b.. Then we can rewrite Lexp(x)
(see Definition 2.2) as

Lexp(x) = 0.5 · ∥c(x)∥22.

Definition 2.5 (Informal version of Definition B.8). Given matrix A ∈ Rn×d. For a given vector
w ∈ Rn, let W = diag(w). We define Lreg : Rd → R as

Lreg(x) := 0.5∥WAx∥22

2.2 PROBLEM DEFINITION

Here we provide the definition of ATTREG and RATTREG.

Definition 2.6 (ATTREG, Attention-Inspired Softmax Regression Problem). Given A ∈ Rn×d and
b ∈ Rn, the softmax regression problem is aiming for minimize the following objective function

min
x∈Rd

∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥22.

It is natural in practice to consider regularization Li et al. (2023a), then we propose the regularized
version of softmax regression.

Definition 2.7 (RATTREG, Attention-Inspired Regularized Softmax Regression Problem). Given
A ∈ Rn×d, b ∈ Rn, and w ∈ Rn, the goal of the regularized softmax regression is to solve the
following minimization problem,

min
x∈Rd

1

2
· ∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥22 +

1

2
· ∥WAx∥22.

3 MAIN RESULT

We now present our main result. The following theorem proves that RATTREG can be solved in
Õ(nnz(A) + dω) time with high probability, implying that the running time is very low when the
matrix A is sparse. We note that since ⟨exp(Ax),1n⟩−1 exp(Ax) is always a probability distribu-
tion, it is natural to assume that each entry of b is nonnegative and its ℓ1 norm is at most 1.

Theorem 3.1 (Main Result, informal version of Theorem 7.1). Under mild assumptions, the RAT-
TREG (Definition 2.7) can be solved with high precision (the output solution is close the the optimal
solution) by an algorithm (Algorithm 1) in time Õ(nnz(A) + dω), with high probability.

We note that in previous work Li et al. (2023b), the assumption ∥b∥2 ≤ R was made. This is
because their setting does not incorporate the normalization parameter. Assuming ∥b∥1 ≤ 1 would
be unjustified in their context, as they are not attempting to learn the distribution.

3

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

4 TECHNICAL OVERVIEW

This section provides a concise summary of our methods and theoretical analysis. Section 4.1
presents the decomposition of the Hessian matrix for softmax regression and introduces a structured
approach to simplify its computation. Section 4.2 analyzes the positive definiteness of the Hessian
by bounding its components through low-rank and diagonal approximations. Section 4.3 establishes
the Lipschitz continuity of the Hessian, leveraging key decompositions and bounding techniques. Fi-
nally, Section 4.4 outlines an efficient implementation of the Newton method, utilizing sparsification
techniques to approximate the Hessian in near input-sparsity time, which significantly accelerates
the optimization process.

4.1 DECOMPOSITION OF HESSIAN FOR SOFTMAX REGRESSION

Recall the target function of our problem is in the form of

min
x∈Rd

0.5 · ∥f(x)− b∥22 + 0.5 · ∥WAx∥22,

We divide the loss function with respect to above target function to the following two terms L(x) :=
Lexp(x) + Lreg(x), where Lexp(x) := 0.5 · ∥⟨exp(Ax),1n⟩−1 · exp(Ax) − b∥22 and Lreg(x) :=
0.5 · ∥WAx∥22. Calculating the Hessian of Lexp(x) directly is too complicated. To simplify this, we
define two terms of α(x) := ⟨exp(Ax),1n⟩, f(x) := ⟨exp(Ax),1n⟩−1 · exp(Ax). Then, in order
to get the final Hessian to the loss functions, we calculate the Hessian step by step. To be specific,
we divide the Hessian calculation into the following items: (1) Hessian of exp(Ax); (2) Hessian of
α(x) and α−1(x); (3) Hessian of f(x). After that, we notice a structured decomposition of Hessian
of L(x). We show that

d2Lexp

dx2
i

= A⊤
∗,iB(x)A∗,i

and
d2Lexp

dxidxj
= A⊤

∗,iB(x)A∗,j , (1)

where B(x) is only function of x and has no relation with respect to i and j. In order to apply
existing sparsification tool to boost the Hessian calculation (which is one of our main motivations),
we construct specific decomposition to the two terms of B(x). We show that, B can be viewed as
the sum of several rank-1 matrices and diagonal matrices.

4.2 HESSIAN IS POSITIVE DEFINITE

The key insight of this section lies in the analysis of volumetric barrier functions for solving semidef-
inite programming Anstreicher (2000); Huang et al. (2022). With the decomposition of the Hessian
matrix for Lexp, the next step is to bound it. To be specific, by dividing B(x) in the way of low-rank
parts and diagonal parts, we can lower and upper bound each segment of them. And by combining
them, we can get the bound for B(x),

−4In ⪯ B(x) ⪯ 8In.

Now combine the Hessian for Lexp and Lreg(x) (Hessian for Lreg(x) is trivial A⊤W 2A) we get

d2L

dx2
= A⊤(B(x) +W 2)A.

We show that, by assuming all w2
i ’s are lower bounded by 100+l/σmin(A)2 , the Hessian is positive

definite d2L
dx2 ⪰ l · Id. Further more, we show if all w2

i ’s are lower bounded by 100 + l/σmin(A)2,
then the matrix W 2 can approximate the sum of B(x) +W 2 with a constant guarantee, i.e.,

1− 1/10) · (B(x) +W 2) ⪯W 2 ⪯ (1 + 1/10) · (B(x) +W 2).

This allows us to apply sparsification tool on W to approximate the Hessian.

4

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

4.3 LIPSCHITZ PROPERTY FOR HESSIAN

The key insight of this section lies in the analysis of previous analysis for recurrent neural networks
Allen-Zhu et al. (2019a;b). By the above calculation of Hessian, we divide the Hessian matrix to
different segments. Now with the decomposition (to be specific, we divide the Hessian into low-
rank parts and diagonal parts), we show Lipschitz property for each term. We first show Lipschitz
property for the basic terms:

• ∥ exp(Ax)∥2 ≤
√
n · exp(R2)

• ∥ exp(Ax)− exp(Ay)∥2 ≤ R exp(R2) · ∥x− y∥2;

• |α(x)− α(y)| ≤
√
n · ∥ exp(Ax)− exp(Ay)∥2;

• |α(x)−1 − α(y)−1| ≤ β−2 · |α(x) − α(y)|; (Later we will also prove an upper bound for
β−1, see Lemma F.9)

• ∥f(x) − f(y)∥2 ≤ Rf · ∥x − y∥2. (Here Rf is a function of β−1, exp(R2), see concrete
definition in Lemma E.2)

Then, following the decomposition of the Hessian matrix, we show the Lipschitz property for each
of the divided terms (we use Gi for i ∈ 1, . . . , 8 to denote the terms) and combine them together to
get the property of

∥G1∥+
8∑

i=1

∥Gi∥ ≤ 100R · ∥f(x)− f(y)∥2.

With this property and a fact that ∥d
2L

dx2 (x) − d2L
dx2 (y)∥ ≤ ∥A∥ · (∥G1∥ +

∑8
i=1 ∥Gi∥) · ∥A∥, by

assuming any two points x, y satisfy ∥x∥2, ∥y∥2 ≤ R and ∥A(x− y)∥∞ < 0.01, we can show that
the Hessian matrix is Lipschitz, i.e.,

∥d
2L

dx2
(x)− d2L

dx2
(y)∥ ≤ β−2n exp(20R2) · ∥x− y∥2,

for some small constant β ∈ (0, 0.1), which implies the Lipschitz property for the Hessian.

4.4 APPROXIMATED NEWTON METHOD WITH SPARSIFICATION TOOL

Newton method is a widely-used and traditional tool used in optimization questions. For a target
function L(x), one can compute its gradient g(x) : Rd → Rd and Hessian matrix H(x) : Rd →
Rd×d as

g(x) := ∇L(x), H(x) := ∇2L(x)

and use them to update the data point as follows

xt+1 ← xt −H(xt)
−1 · g(xt).

But in many optimization applications, computing ∇2L(xt) or (∇2L(xt))
−1 is quite expensive.

Therefore, a natural motivation is to approximately formulate its Hessian or inverse of Hessian. In
our setting, we want a faster implementation of Newton method. By above steps, we show our
Hessian can be approximated by a matrix in the form of A⊤DA, where D = W 2 is a diagonal
matrix. This inspires us to implement a standard tool Deng et al. (2022); Song et al. (2022) that can
generate a sparse matrix D̃ such that

(1− ϵ) ·A⊤DA ⪯ A⊤D̃A ⪯ (1 + ϵ) ·A⊤DA

in near input-sparsity time of A. By this tool, we can reduce the time for Hessian calculation of
each iteration to the time of Õ(nnz(A) + dω). Here nnz(A) denotes the number of non-zero entries
in matrix A. Let ω denote the exponent of matrix multiplication. Currently, ω ≈ 2.373 Williams
(2012); Le Gall (2014); Alman & Williams (2021).

5

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Algorithm 1 Informal version of Algorithm 2
1: procedure ITERATIVESOFTMAXREGRESSION(A ∈ Rn×d, b ∈ Rn, w ∈ Rn, ϵ, δ) ▷

Theorem 7.1
2: We choose x0 (suppose it satisfies Definition F.1)
3: We use T ← log(∥x0 − x∗∥2/ϵ) to denote the number of iterations.
4: for t = 0→ T do
5: D ← Bdiag(xt) + diag(w ◦ w)
6: D̃ ← SUBSAMPLE(D,A, ϵ1 = Θ(1), δ1 = δ/T) ▷ Lemma F.5
7: Compute gradient
8: H̃ ← A⊤D̃A
9: xt+1 ← xt + H̃−1g

10: end for
11: x̃← xT+1

12: return x̃
13: end procedure

5 ANALYSIS OF HESSIAN

In this section we discover two key properties of L that enables us to use computational efficient
algorithm to tackle the softmax regression problem. Specifically, in Section 5.1 we simplify ∇2L
and decompose it into the sum of several diagonal matrices and low rank matrices. In Section 5.2 we
prove that L is convex. In Section 5.3 we prove that∇2L is lipschitz. With these two key properties,
we can use the approximate newton method to solve the softmax regression problem efficiently.

5.1 SPLITTING THE HESSIAN

In this section, we simplify∇2L and decompose it into the sum of several diagonal matrices and low
rank matrices. As described in Eq. (1), we decompose the Hessian into the specific norm with B(x).
Now in the following lemma, we provide the result that, B(x) can be decomposed into summation
of low-rank matrices and diagonal matrices. By doing so, we simplify the analysis afterwards. The
formal version of this Lemma with detailed analysis can be found in Section C.
Lemma 5.1 (Decomposition of B(x), informal version of Lemma C.15). Let B(x) = B1(x) +
B2(x). where B1(x) ∈ Rn×n is defined as follows:

B1(x) = ⟨f(x), f(x)⟩︸ ︷︷ ︸
scalar

· f(x)︸︷︷︸
n×1

f(x)⊤︸ ︷︷ ︸
1×n

+diag(f(x) ◦ f(x))︸ ︷︷ ︸
n×n diagonal matrix

+ (f(x) ◦ f(x))︸ ︷︷ ︸
n×1

· f(x)⊤︸ ︷︷ ︸
1×n

+(f(x) ◦ f(x))︸ ︷︷ ︸
n×1

· f(x)⊤︸ ︷︷ ︸
1×n

and B2(x) ∈ Rn×n is defined as follows:

B2(x) = 2⟨c(x), f(x)⟩︸ ︷︷ ︸
scalar

· f(x)︸︷︷︸
n×1

f(x)⊤︸ ︷︷ ︸
1×n

+ ⟨c(x), f(x)⟩︸ ︷︷ ︸
scalar

· diag(f(x))︸ ︷︷ ︸
n×n diagonal matrix

+ diag(c(x) ◦ f(x))︸ ︷︷ ︸
n×n diagonal matrix

− (c(x) ◦ f(x))︸ ︷︷ ︸
n×1

f(x)⊤︸ ︷︷ ︸
1×n

− f(x)︸︷︷︸
n×1

(f(x) ◦ c(x))⊤︸ ︷︷ ︸
1×n

Finally, we can show that B(x) ∈ Rn×n satisfies that

B(x) = ⟨3f(x)− 2b, f(x)⟩︸ ︷︷ ︸
scalar

· f(x)︸︷︷︸
n×1

f(x)⊤︸ ︷︷ ︸
1×n

+ ⟨f(x)− b, f(x)⟩︸ ︷︷ ︸
scalar

· diag(f(x))︸ ︷︷ ︸
n×n diagonal matrix

+ diag((2f(x)− b) ◦ f(x))︸ ︷︷ ︸
n×n diagonal matrix

+(b ◦ f(x))︸ ︷︷ ︸
n×1

· f(x)⊤︸ ︷︷ ︸
1×n

+ f(x)︸︷︷︸
n×1

· (b ◦ f(x))⊤︸ ︷︷ ︸
1×n

In summary, B1(x) ∈ Rn×n is constructed by three rank-1 matrices and one diagonal matrix;
B2(x) ∈ Rn×n is constructed by three rank-1 matrices and two diagonal matrices; B(x) ∈ Rn×n

is constructed by three rank-1 matrices and two diagonal matrices.

6

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

5.2 HESSIAN IS POSITIVE SEMIDEFINITE

In this section, we obtained the positive lower bound of ∇2L and thus proved that L is a convex
function, which is one property required to use approximate newton method. We also find the upper
and lower bound of W 2. The formal version of this lemma with detailed analysis can be found
in Section D. The idea is decomposing the Hessian into two terms of B(x) and W , and provide
analysis respectively to show their sum is positive definite.
Lemma 5.2 (Informal version of Lemma D.3). Let l > 0 denote a scalar. If all i ∈ [n], w2

i ≥
4 + l/σmin(A)2, then it holds that

d2L

dx2
⪰ l · Id.

5.3 HESSIAN IS LIPSCHITZ

In this section, we proved that∇2L is Lipschitz by finding the upper bound of ∥∇2L(x)−∇2L(y)∥,
which is another property requires by the approximate newton method. Lemma 5.3 states the main
result of this subsection, and we provide a detailed version with proof in Lemma E.1.
Lemma 5.3 (Informal version of Lemma E.1). Let R > 2 be a constant, we show that under certain
conditions, it holds that

∥H(x)−H(y)∥ ≤ β−2n exp(20R2) · ∥x− y∥2.

6 APPROXIMATE NEWTON METHOD

In this section, we provide an approximate version of the newton method for convex optimization.
Traditional Newton methods utilize the exact Hessian matrix to update the target variable, i.e., for
each step, we use the following equation to update: xt+1 = xt −H(xt)

−1 · g(xt). While in many
real-world tasks, it is very hard and expensive to compute exact ∇2L(xt) or (∇2L(xt))

−1. Thus,
it is natural to consider the approximated computation of the gradient and Hessian. We define the
approximate Hessain computation as
Definition 6.1 (Approximate Hessian). For any Hessian H(xt) ∈ Rd×d, we define the approxi-
mated Hessian H̃(xt) ∈ Rd×d to be a matrix such that the following holds,

(1− ϵ0) ·H(xt) ⪯ H̃(xt) ⪯ (1 + ϵ0) ·H(xt).

In order to get the approximated Hessian H̃(xt) efficiently, here we state a standard tool (see
Lemma 4.5 in Deng et al. (2022)).
Lemma 6.2 (Deng et al. (2022); Song et al. (2022)). Let ϵ0 = 0.01 be a constant precision pa-
rameter. Let A ∈ Rn×d be a real matrix, then for any positive diagonal (PD) matrix D ∈ Rn×n,
there exists an algorithm which runs in time O((nnz(A) + dω) poly(log(n/δ))) and it outputs an
O(d log(n/δ)) sparse diagonal matrix D̃ ∈ Rn×n for which

(1− ϵ0)A
⊤DA ⪯ A⊤D̃A ⪯ (1 + ϵ0)A

⊤DA.

Note that, ω denotes the exponent of matrix multiplication, currently ω ≈ 2.373 Williams (2012);
Le Gall (2014); Alman & Williams (2021).

Following the standard of Approximate Newton Hessian literature Anstreicher (2000); Jiang et al.
(2020a); Brand et al. (2021); Song et al. (2021); Huang et al. (2022); Li et al. (2023b), we consider
the following “Approximate update” process, i.e. xt+1 = xt−H̃(xt)

−1 ·g(xt). Combining this step
with the previous analysis on the Hessian matrix, we can get the guarantee of our main algorithm.
For the full detail and proof of the main theorem, please refer to Appendix 7.

7 FORMAL RESULT

In this section, we present our main result formally in Theorem 7.1 and our efficient algorithm in
Algorithm 2.

7

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Algorithm 2 Here, we present our main algorithm informally. Formal version of Algorithm 1
1: procedure ITERATIVESOFTMAXREGRESSION(A ∈ Rn×d, b ∈ Rn, w ∈ Rn, ϵ, δ) ▷

Theorem 7.1
2: We choose x0 (suppose it satisfies Definition F.1)
3: We use T ← log(∥x0 − x∗∥2/ϵ) to denote the number of iterations.
4: for t = 0→ T do
5: D ← Bdiag(xt) + diag(w ◦ w)
6: D̃ ← SUBSAMPLE(D,A, ϵ1 = Θ(1), δ1 = δ/T) ▷ Lemma F.5
7: g ← A⊤(f(xt)⟨c(xt), f(xt)⟩+ diag(f(xt))c(xt))

8: H̃ ← A⊤D̃A
9: xt+1 ← xt + H̃−1g

10: end for
11: x̃← xT+1

12: return x̃
13: end procedure

Theorem 7.1. Suppose we have matrix A ∈ Rn×d, and vectors b, w ∈ Rn.

Let f(x) := ⟨exp(Ax),1n⟩−1 exp(Ax). Let x∗ be the optimal solution of minx∈Rd 0.5∥f(x) −
b∥22 + 0.5∥diag(w)Ax∥22, where g(x∗) = 0d. and ∥x∗∥2 ≤ R. Let R ≥ 10 be a positive scalar.
Suppose we have ∥A∥ ≤ R Suppose it holds that b ≥ 0n, and ∥b∥1 ≤ 1. Suppose it holds that
w2

i ≥ 100 + l/σmin(A)2 for all i ∈ [n] Suppose it holds that M = n1.5 exp(30R2). Let x0 denote
an initial point for which it holds that M∥x0 − x∗∥2 ≤ 0.1l.

Then for any accuracy parameter ϵ ∈ (0, 0.1) and failure probability δ ∈ (0, 0.1), there exists a
randomized algorithm (Algorithm 2) such that, with probability at least 1−δ, it runs T = log(∥x0−
x∗∥2/ϵ) iterations and outputs a vector x̃ ∈ Rd such that ∥x̃ − x∗∥2 ≤ ϵ, and the time cost per
iteration is O((nnz(A)+dω)·poly(log(n/δ)). Here ω denotes the exponent of matrix multiplication.
Currently ω ≈ 2.373 Williams (2012); Le Gall (2014); Alman & Williams (2021).

Proof. It follows from combining Lemma D.3, Lemma F.8, Lemma F.5, Lemma E.1 and Lemma F.7.

The proof of Upper bound on M follows from Lemma F.10; the proof of Hessian is PD follows
from Lemma D.3; the proof of Hessian is Lipschitz follows from Lemma E.1; the proof of Cost per
iteration follows from Lemma F.5; the proof of Convergence per Iteration follows from Lemma F.7,
where we have ∥xk−x∗∥2 ≤ 0.4 · ∥xk−1−x∗∥2. For the proof of the Number of Iterations, we can
show that after T iterations, we have ∥xT − x∗∥2 ≤ 0.4T · ∥x0 − x∗∥2 By choice of T , we get the
desired bound. The failure probability is following from union bound over T iterations.

8 CONCLUSION

This study delves into the intricacies of the softmax regression problem, drawing inspiration from the
attention paradigm prevalent in LLMs. We specifically focus on the attention mechanism utilized
in these models and redefine the softmax regression issue incorporating an exponential activation
function. This choice is motivated by the computational processes underpinning the attention mech-
anisms in LLMs. Our exploration into this area not only sheds light on the operational dynamics
of attention units but also paves the way for more nuanced understandings and applications in the
realm of language models. Building on this foundation, we introduce a regularized variant of the
softmax regression problem, tailored to enhance its applicability and efficiency. This regularization
is a critical step in refining the problem to better suit real-world scenarios where data sparsity and
computational efficiency are key concerns. Alongside this, we have developed and propose an al-
gorithm capable of solving this regularized problem in input-sparsity time. In summary, our work
makes a notable contribution to the fields of natural language processing and optimization. By of-
fering a novel perspective on the mechanisms driving LLMs and presenting a fast, efficient method
for solving the adapted softmax regression problem, we open up new avenues for application across
a broad spectrum of NLP challenges.

8

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. Advances in neural information processing systems, 32, 2019b.

Josh Alman and Zhao Song. Fast attention requires bounded entries. arXiv preprint
arXiv:2302.13214, 2023.

Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multipli-
cation. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
522–539. SIAM, 2021.

Josh Alman, Jiehao Liang, Zhao Song, Ruizhe Zhang, and Danyang Zhuo. Bypass exponential time
preprocessing: Fast neural network training via weight-data correlation preprocessing. arXiv
preprint arXiv:2211.14227, 2022.

Kurt M Anstreicher. The volumetric barrier for semidefinite programming. Mathematics of Opera-
tions Research, 2000.

Jan van den Brand. A deterministic linear program solver in current matrix multiplication time. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 259–278. SIAM, 2020.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
neural networks in near-linear time. In ITCS, 2021.

Jan van den Brand, Zhao Song, and Tianyi Zhou. Algorithm and hardness for dynamic attention
maintenance in large language models. arXiv preprint arXiv:2304.02207, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

ChatGPT. Optimizing language models for dialogue. OpenAI Blog, November 2022. URL https:
//openai.com/blog/chatgpt/.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh framework for efficient
neural network training. In International Conference on Learning Representations, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Michael B Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal algorithm for approxi-
mating the john ellipsoid. In Conference on Learning Theory, pp. 849–873. PMLR, 2019a.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In STOC, 2019b.

Yichuan Deng, Zhao Song, and Omri Weinstein. Discrepancy minimization in input-sparsity time.
arXiv preprint arXiv:2210.12468, 2022.

Yichuan Deng, Zhihang Li, and Zhao Song. An improved sample complexity for rank-1 matrix
sensing. arXiv preprint arXiv:2303.06895, 2023a.

9

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Yichuan Deng, Sridhar Mahadevan, and Zhao Song. Randomized and deterministic attention sparsi-
fication algorithms for over-parameterized feature dimension. arxiv preprint: arxiv 2304.03426,
2023b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Yeqi Gao, Sridhar Mahadevan, and Zhao Song. An over-parameterized exponential regression.
arXiv preprint arXiv:2303.16504, 2023.

Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint arXiv:2211.06033,
2022.

Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust
alternating minimization in nearly linear time. arXiv preprint arXiv:2302.11068, 2023.

Weihua He, Yongyun Wu, and Xiaohua Li. Attention mechanism for neural machine translation:
A survey. In 2021 IEEE 5th Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), volume 5, pp. 1485–1489. IEEE, 2021.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A
robust ipm framework and efficient implementation. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pp. 233–244. IEEE, 2022.

Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A faster interior
point method for semidefinite programming. In 2020 IEEE 61st annual symposium on foundations
of computer science (FOCS), pp. 910–918. IEEE, 2020a.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting plane
method for convex optimization, convex-concave games and its applications. In STOC, 2020b.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Lichen Zhang. Convex minimization with integer
minima in Õ(n4) time. arXiv preprint arXiv:2304.03426, 2023.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for
faster lps. In STOC, 2021.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. arXiv preprint arXiv:2301.10226, 2023.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th
international symposium on symbolic and algebraic computation, pp. 296–303, 2014.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In Conference on Learning Theory (COLT), pp. 2140–2157. PMLR, 2019.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. arXiv preprint arXiv:2303.04245, 2023a.

Zhihang Li, Zhao Song, and Tianyi Zhou. Solving regularized exp, cosh and sinh regression prob-
lems. arXiv preprint, 2303.15725, 2023b.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suarez, Yoann Dupont, Laurent Romary,
Eric Villemonte de La Clergerie, Djame Seddah, and Benoit Sagot. Camembert: a tasty french
language model. arXiv preprint arXiv:1911.03894, 2019.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm for pro-
jection matrix vector multiplication with application to empirical risk minimization. In AISTATS,
2023a.

10

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Lianke Qin, Zhao Song, and Ruizhe Zhang. A general algorithm for solving rank-one matrix sens-
ing. arXiv preprint arXiv:2303.12298, 2023b.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. ., 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head
attention learns. arXiv preprint arXiv:2103.07601, 2021.

Zhao Song and Zheng Yu. Oblivious sketching-based central path method for linear programming.
In International Conference on Machine Learning, pp. 9835–9847. PMLR, 2021.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural net-
work in subquadratic time. arXiv preprint arXiv:2112.07628, 2021.

Zhao Song, Xin Yang, Yuanyuan Yang, and Tianyi Zhou. Faster algorithm for structured john
ellipsoid computation. arXiv preprint arXiv:2211.14407, 2022.

Mohd Usama, Belal Ahmad, Enmin Song, M Shamim Hossain, Mubarak Alrashoud, and Ghulam
Muhammad. Attention-based sentiment analysis using convolutional and recurrent neural net-
work. Future Generation Computer Systems, 113:571–578, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Nikhil Vyas, Sham Kakade, and Boaz Barak. Provable copyright protection for generative models.
arXiv preprint arXiv:2302.10870, 2023.

Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In Proceed-
ings of the forty-fourth annual ACM symposium on Theory of computing, pp. 887–898, 2012.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. arXiv preprint arXiv:2302.02451, 2023.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in
Neural Information Processing Systems, 33:15383–15393, 2020.

Lichen Zhang. Speeding up optimizations via data structures: Faster search, sample and mainte-
nance. Master’s thesis, Carnegie Mellon University, 2022.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

11

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Appendix
Roadmap. In Section A, we introduce the related works of our paper. In Section B we define the
notations used in our work and provide some useful tools for exact algebra, approximate algebra and
differential computation. In Section C we provide detailed analysis of Lexp, including its gradient
and hessian. In Section D we proved that L = Lexp + Lreg is a convex function. In Section E
we proved that the hessian of Lexp is Lipschitz. In Section F we provide an approximate version
of newton method for solving convex optimization problem which is more efficient under certain
assumptions. In Section 7 we state our result of this paper and provide the algorithm for tackling the
softmax regression problem in an formal way.

A RELATED WORK

Computation. Since the explosion of LLM, there have been a lot of theoretical works about the
computation of attention Kitaev et al. (2020); Chen et al. (2021); Zandieh et al. (2023); Alman &
Song (2023); Brand et al. (2023); Li et al. (2023b); Deng et al. (2023b). Locality sensitive hashing
(LSH) techniques have been employed in research to approximate attention. Kitaev et al. (2020);
Chen et al. (2021); Zandieh et al. (2023). Based on it, Zandieh et al. (2023) proposed KDEformer,
an efficient approximation algorithm for the dot-product attention mechanism, with provable spec-
tral norm bounds and superior performance on various pre-trained models. Recent research has
investigated both static and dynamic approaches to attention computation Alman & Song (2023);
Brand et al. (2023). Additionally, Li et al. (2023b) delved into regularized hyperbolic regression
problems involving exponential, cosh, and sinh functions. Deng et al. (2023b) proposed randomized
and deterministic algorithms to sparsify the attention matrix in large language models, achieving
high accuracy with significantly reduced feature dimension.

Convergence and Optimization. There have been works trying to understanding attention com-
putation on optimization and convergence perspective Zhang et al. (2020); Snell et al. (2021); Gao
et al. (2023); Li et al. (2023b;a). In practical attention models, adaptive methods often performs
better than SGD. To understand this, Zhang et al. (2020) showed that heavy-tailed distribution of
the noise is one of the reason of the bad performance of SGD compared to adaptive methods, and
provided new upper and lower bounds for convergence of adaptive methods under heavy-tailed
noise in attention models. This answered the question of why adaptive methods performs better
in attention models. Snell et al. (2021) explained why models sometimes attend to salient words
and how the attention mechanism evolves throughout training, using a model property they de-
fined, named Knowledge to Translate Individual Words (KTIW), which is learned early on from
word co-occurrence statistics and later used to attend to input words while predicting the output.
Recently, Gao et al. (2023) studied the regression problem inspired by the neural network with
exponential activation function, and showed the convergence of a two-layer NN with large width
(over-parameterized), while Li et al. (2023b) focused on solving regularized exp, cosh and sinh re-
gression problems inspired by Attention computation. Li et al. (2023a) explored how transformers
learn the co-occurrence structure of words by examining attention-based network size, depth, and
complexity through experiments and mathematical analysis, showing that the embedding and self-
attention layers encode topical structure with higher average inner product and pairwise attention
between same-topic words.

Privacy and Security. With the fast development of LLMs, the potential negative impact of abus-
ing LLM has also been considered. To overcome this, without influencing the quality of the gener-
ated text, Kirchenbauer et al. (2023) proposed a novel method to add watermark in LLM-generated
text. The method needs no access to the parameters or API of the LLM. Vyas et al. (2023) intro-
duced a formal definition of near access-freeness (NAF) and develops generative model learning
algorithms to ensure that the model outputs do not resemble copyrighted data by more than k-bits,
with experiments on language (transformers) and image (diffusion) generative models demonstrat-
ing strong protection against sampling protected content.

Applications of Exponential Functions There are many theory problems use exp, sinh, cosh
function as potential functions to prove the convergence of iterative optimization algorithms. In

12

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

the works of Cohen et al. (2019b); Brand (2020); Jiang et al. (2021), they use cosh function to de-
fine a potential function for measuring the central path. Such design can guarantee the central path
method is robust and stable. Let x ∈ Rn denote the primal variables and let s denote the slack
variables of the central path algorithm. The central path is defined as tuple (x, y, s, t) that satisfies

Ax = b, x > 0

A⊤y + s = c, s > 0

xisi = t for all i ∈ [n].

Let t denote the target at one step of central (also mathematically called the complementary gap).
The xs can viewed as real circumstances. In the ideal case, they hope xs = t. However, this is
unlikely to happen. They use the potential function Φ(xs) =

∑n
i=1 cosh(xisi − t) to measure the

difference between reality and target.

In Qin et al. (2023b), they use cosh function to build a potential for rank-1 matrix sensing problem.
Given a matrix A ∈ Rd×n, there are n observations xi, yi and bi = x⊤

i Ayi. The goal of matrix
sensing is to recover A by using observations {(xi, yi, bi)}i∈[n]. They use the potential function
Φ(x, y) =

∑n
i=1 cosh(x

⊤
i Ayi − bi).

In standard linear ℓ2 regression, given matrix A ∈ Rn×d and vector b ∈ Rn, the formulation is
usually L(x) = ∥Ax − b∥22 = (

∑n
i=1(Ax)i − bi)

2. In Li et al. (2023b), they use cosh function to
construct a ℓ2 loss such that L(x) =

∑n
i=1(cosh((Ax)i)− bi)

2. Furthermore, Li et al. (2023b) also
studied exp and sinh functions.

Sketching for Convex Optimization. Sketching techniques has been widely-used in optimization
problems such as integral minimization problem Jiang et al. (2023), cutting plane method Jiang et al.
(2020b), training over-parameterized neural tangent kernel regression Brand et al. (2021); Song et al.
(2021); Zhang (2022); Alman et al. (2022), linear programming Cohen et al. (2019b); Jiang et al.
(2021); Song & Yu (2021); Gu & Song (2022), empirical risk minimization Lee et al. (2019); Qin
et al. (2023a), computing John Ellipsoid Cohen et al. (2019a); Song et al. (2022), matrix sensing
Deng et al. (2023a), matrix completion Gu et al. (2023).

B PRELIMINARY

In this section, we provide the preliminaries used in our paper. In Section B.1 we introduce the
notations we use. In Section B.2 we provide some basic facts for exact computation. In Section B.3
we provide some tools for finding the bound of norms based on vectors. In Section B.4 we provide
some tools for finding the bound of norms related to matrices. In Section B.5, we provide basic
inequalities for psd matrices. In Section B.6, we state several basic rules for calculus. In Section B.7
we provide the regularization term Lreg and compute∇Lreg and ∇2Lreg.

B.1 NOTATIONS

We denote the ℓp norm of a vector x by ∥x∥p, i.e., ∥x∥1 :=
∑n

i=1 |xi|, ∥x∥2 := (
∑n

i=1 x
2
i)

1/2

and ∥x∥∞ := maxi∈[n] |xi|. For a vector x ∈ Rn, exp(x) ∈ Rn denotes a vector where exp(x)i
is exp(xi) for all i ∈ [n]. For n > k, for any matrix A ∈ Rn×k, we denote the spectral norm of
A by ∥A∥, i.e., ∥A∥ := supx∈Rk ∥Ax∥2/∥x∥2. We use σmin(A) to denote the minimum singular
value of A. Given two vectors x, y ∈ Rn, we use ⟨x, y⟩ to denote

∑n
i=1 xiyi. Given two vectors

x, y ∈ Rn, we use x ◦ y to denote a vector that its i-th entry is xiyi for all i ∈ [n]. We use ei ∈ Rn

to denote a vector where i-th entry is 1 and all the other entries are 0. Let x ∈ Rn be a vector. We
define diag(x) ∈ Rn×n as the diagonal matrix whose diagonal entries are given by diag(x)i,i = xi

for i = 1, . . . , n, and all off-diagonal entries are zero. For a symmetric matrix A ∈ Rn×n, we say
A ≻ 0 (positive definite (PD)), if for all x ∈ Rn\{0n}, we have x⊤Ax > 0. For a symmetric matrix
A ∈ Rn×n, we say A ⪰ 0 (positive semidefinite (PSD)), if for all x ∈ Rn, we have x⊤Ax ≥ 0.
The Taylor Series for exp(x) is exp(x) =

∑∞
i=0

xi

i! . We use b ≥ 0n to denote that bi ≥ 0 for all
i ∈ [n].

13

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

B.2 BASIC ALGEBRA

Fact B.1. For vectors u, v, w ∈ Rn. We have

• ⟨u, v⟩ = ⟨u ◦ v,1n⟩

• ⟨u ◦ v, w⟩ = ⟨u ◦ v ◦ w,1n⟩

• ⟨u, v⟩ = ⟨v, u⟩

• ⟨u, v⟩ = u⊤v = v⊤u

Fact B.2. For any vectors u, v, w ∈ Rn, we have

• u ◦ v = v ◦ u = diag(u) · v = diag(v) · u

• u⊤(v ◦ w) = u⊤ diag(v)w

• u⊤(v ◦ w) = v⊤(u ◦ w) = w⊤(u ◦ v)

• u⊤ diag(v)w = v⊤ diag(u)w = u⊤ diag(w)v

• diag(u) · diag(v) · 1n = diag(u)v

• diag(u ◦ v) = diag(u) diag(v)

• diag(u) + diag(v) = diag(u+ v)

B.3 BASIC VECTOR NORM BOUNDS

Fact B.3. For vectors u, v ∈ Rn, we have

• ⟨u, v⟩ ≤ ∥u∥2 · ∥v∥2 (Cauchy-Schwarz inequality)

• ∥ diag(u)∥ ≤ ∥u∥∞

• ∥u ◦ v∥2 ≤ ∥u∥∞ · ∥v∥2

• ∥u∥∞ ≤ ∥u∥2 ≤
√
n · ∥u∥∞

• ∥u∥2 ≤ ∥u∥1 ≤
√
n · ∥u∥2

• ∥ exp(u)∥∞ ≤ exp(∥u∥∞) ≤ exp(∥u∥2)

• Let α be a scalar, then ∥α · u∥2 = |α| · ∥u∥2

• ∥u+ v∥2 ≤ ∥u∥2 + ∥v∥2.

• For any ∥u− v∥∞ ≤ 0.01, we have ∥ exp(u)− exp(v)∥2 ≤ ∥ exp(u)∥2 · 2∥u− v∥∞

• For any u, v ∈ Rd such that ∥u∥2, ∥v∥2 ≤ R, we have ∥ exp(u)− exp(v)∥ ≤ exp(R)∥u−
v∥2

Proof. For all the other facts we omit the details. We will only prove the last fact.

We have

∥ exp(u)− exp(v)∥2 = ∥ exp(u) ◦ (1n − exp(v − u))∥2
≤ ∥ exp(u)∥2 · ∥1n − exp(v − u)∥∞
≤ ∥ exp(u)∥2 · 2∥u− v∥∞,

where the 1st step follows from definition of ◦ operation and exp(), the 2nd step follows from
Fact B.3, the 3rd step follows from | exp(x)− 1| ≤ 2x for all x ∈ (0, 0.1).

14

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

B.4 BASIC MATRIX NORM BOUNDS

Fact B.4. For matrices U, V , we have

• ∥U⊤∥ = ∥U∥

• ∥U∥ ≥ ∥V ∥ − ∥U − V ∥

• ∥U + V ∥ ≤ ∥U∥+ ∥V ∥

• ∥U · V ∥ ≤ ∥U∥ · ∥V ∥

• If U ⪯ α · V , then ∥U∥ ≤ α · ∥V ∥

• For scalar α ∈ R, we have ∥α · U∥ ≤ |α| · ∥U∥

• For any vector v, we have ∥Uv∥2 ≤ ∥U∥ · ∥v∥2.

• Let u, v ∈ Rn denote two vectors, then we have ∥uv⊤∥ ≤ ∥u∥2∥v∥2

B.5 BASIC PSD

Fact B.5. Let u, v ∈ Rn, We have:

• uu⊤ ⪯ ∥u∥22 · In.

• diag(u) ⪯ ∥u∥2 · In

• diag(u ◦ u) ⪯ ∥u∥22 · In

• uv⊤ + vu⊤ ⪯ uu⊤ + vv⊤

• uv⊤ + vu⊤ ⪰ −(uu⊤ + vv⊤)

• (v ◦ u)(v ◦ u)⊤ ⪯ ∥v∥2∞uu⊤

B.6 BASIC DERIVATIVE RULES

Fact B.6. Let f be a differentiable function.

We have

• Part 1. d
dx exp(x) = exp(x)

• Part 2. For any j ̸= i, d
dxi

f(xj) = 0

Fact B.7 (Rules of differentiation). Let f denote a differentiable function.

For all n, i ∈ Z+, we have

• Sum rule 1. d
dt

∑n
l=1 f(xl) =

∑n
l=1

d
dtf(xi)

• Sum rule 2. d
dxi

∑n
l=1 f(xl) =

d
dxi

f(xi)

• Chain rule. d
dxi

f(g(xi)) = f ′(g(xi)) · g′(xi)

• Difference rule. d
dxi

(f(xi)− g(xi)) =
d

dxi
f(xi)− d

dxi
g(xi)

• Product rule. d
dxi

(f(xi)g(xi)) = f ′(xi)g(xi) + f(xi)g
′(xi)

• Constant multiple rule. For any x ̸= y, d
dxi

(yi · f(xi)) = yi · d
dxi

f(xi)

15

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

B.7 REGULARIZATION

Definition B.8 (Formal version of Definition 2.5). Given matrix A ∈ Rn×d. For a given vector
w ∈ Rn, let W = diag(w). We define Lreg : Rd → R as follows

Lreg(x) := 0.5∥WAx∥22
Lemma B.9 (Folklore, see Li et al. (2023b) as an example). For a given vector w ∈ Rn, let W =
diag(w). Let Lreg : Rd → R be defined as Definition B.8.

Then, we have

• The gradient is

dLreg

dx
= A⊤W 2Ax

• The Hessian is

d2Lreg

dx2
= A⊤W 2A

C SOFTMAX REGRESSION LOSS

In this section, we provide detailed computation for ∇Lexp and ∇2Lexp. In Section C.1, we define
f(x) and α(x) to simplify the computation for ∇Lexp and ∇2Lexp. In Section C.2, we compute
∇Lexp step by step. In Section C.3, we define the gradient of Loss function and also prove the
Lipschitz property for gradient. In Section C.4-C.8, we compute∇2Lexp step by step. To be specific,
in Section C.4, we compute ∇2 exp(Ax); in Section C.5, we compute ∇2α(x); in Section C.6, we
compute ∇2α(x)−1; in Section C.7, we compute ∇2f(x); in Section C.8, we compute ∇2Lexp. In
Section C.9, we provide some result to aid the computation in Section C.10. In Section C.10, we
split∇2Lexp into several low rank matrices and diagonal matrices.

C.1 DEFINITIONS

We define function softmax f as follows
Definition C.1 (Function f). Given a matrix A ∈ Rn×d. Let 1n denote a length-n vector that all
entries are ones. We define prediction function f : Rd → Rn as follows

f(x) := ⟨exp(Ax),1n⟩−1 · exp(Ax).

Then we have
Lemma C.2. Let f : Rd → Rn be defined as Definition C.1, then we have for all x ∈ Rd,

• ∥f(x)∥2 ≤ ∥f(x)∥1 ≤ 1.

• 0 ⪯ f(x)f(x)⊤ ⪯ In.

• For any vector b, 0 ⪯ (b ◦ f(x))(b ◦ f(x))⊤ ⪯ ∥b∥2∞f(x)f(x)⊤ ⪯ ∥b∥2∞In

• For any vector b, diag(b ◦ b) ⪯ ∥b∥2∞In

• 0 ⪯ diag(f(x)) ⪯ ∥f(x)∥∞In ⪯ ∥f(x)∥2In.

• 0 ⪯ diag(f(x) ◦ f(x)) ⪯ ∥f(x)∥2∞In ⪯ ∥f(x)∥2In.

Proof. The proofs are very straightforward, so we omitted the details here.

Definition C.3 (Loss function Lexp). Given a matrix A ∈ Rn×d and a vector b ∈ Rn. We define
loss function Lexp : Rd → R as follows

Lexp(x) := 0.5 · ∥⟨exp(Ax),1n⟩−1 exp(Ax)− b∥22.

16

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

For convenient, we define two helpful notations α and c

Definition C.4 (Normalized coefficients). We define α : Rd → R as follows

α(x) := ⟨exp(Ax),1n⟩.
Then, we can rewrite f(x) (see Definition C.1) and Lexp(x) (see Definition C.3) as follows

• f(x) = α(x)−1 · exp(Ax).

• Lexp(x) = 0.5 · ∥α(x)−1 · exp(Ax)− b∥22.

• Lexp(x) = 0.5 · ∥f(x)− b∥22.

Definition C.5. We define function c : Rd ∈ Rn as follows

c(x) := f(x)− b.

Then we can rewrite Lexp(x) (see Definition C.3) as follows

• Lexp(x) = 0.5 · ∥c(x)∥22.

C.2 GRADIENT

Lemma C.6 (Gradient). If the following conditions hold

• Given matrix A ∈ Rn×d and a vector b ∈ Rn.

• Let α(x) be defined in Definition C.4.

• Let f(x) be defined in Definition C.1.

• Let c(x) be defined in Definition C.5.

• Let Lexp(x) be defined in Definition C.3.

For each i ∈ [d], we have

• Part 1.
d exp(Ax)

dxi
= exp(Ax) ◦A∗,i

• Part 2.
d⟨exp(Ax),1n⟩

dxi
= ⟨exp(Ax), A∗,i⟩

• Part 3.

dα(x)−1

dxi
= −α(x)−1 · ⟨f(x), A∗,i⟩

• Part 4.
df(x)

dxi
=

dc(x)

dxi
= − ⟨f(x), A∗,i⟩ · f(x) + f(x) ◦A∗,i

• Part 5.
d⟨f(x), A∗,i⟩

dxi
= −⟨f(x), A∗,i⟩2 + ⟨f(x), A∗,i ◦A∗,i⟩

• Part 6. For each j ̸= i

d⟨f(x), A∗,i⟩
dxj

= −⟨f(x), A∗,i⟩ · ⟨f(x), A∗,j⟩+ ⟨f(x), A∗,i ◦A∗,j⟩

17

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• Part 7.
dLexp(x)

dxi
= A⊤

∗,i · (−f(x)(f(x)− b)⊤f(x) + diag(f(x))(f(x)− b))

Proof. Proof of Part 1. For each j ∈ [n], we have

d(exp(Ax))j
dxi

= exp(Ax)j ·
d(Ax)j
dxi

= exp(Ax)j ·
(Adx)j
dxi

= exp(Ax)j ·Aj,i

where the first step follows from simple algebra, the second step follows from Fact B.6, the third
step follows from simple algebra.

Thus, we have

d exp(Ax)

dxi
= exp(Ax) ◦A∗,i

Proof of Part 2. It trivially follows from arguments in Part 1.

Proof of Part 3.
dα(x)−1

dxi
=

d⟨exp(Ax),1n⟩−1

dxi

= − 1 · ⟨exp(Ax),1n⟩−1−1 · d

dxi
(⟨exp(Ax),1n⟩)

= − ⟨exp(Ax),1n⟩−2⟨exp(Ax), A∗,i⟩
= − α(x)−1⟨f(x), A∗,i⟩

where the first step follows from dyz

dx = z · yz−1 dy
dx , the second step follows from results in Part 2,

the third step follows from simple algebra, the last step follows from the definition of α and f .

Proof of Part 4.
df(x)

dxi
=

d⟨exp(Ax),1n⟩−1 exp(Ax)

dxi

= exp(Ax) · d

dxi
(⟨exp(Ax),1n⟩−1) + ⟨exp(Ax),1n⟩−1 · d

dxi
exp(Ax)

= − ⟨exp(Ax),1n⟩−2 · ⟨exp(Ax), A∗,i⟩ · exp(Ax)

+ ⟨exp(Ax),1n⟩−1 · exp(Ax) ◦A∗,i

= − ⟨f(x), A∗,i⟩ · f(x) + f(x) ◦A∗,i

where the first step follows from Definition of f , the second step follows from differential chain rule,
the third step follows from the result from Part 2 and Part 3, the forth step follows from definition
of f (see Definition C.1).

Proof of Part 5

d⟨f(x), A∗,i⟩
dxi

= A⊤
∗,i

df(x)

dxi

= A⊤
∗,i(−⟨f(x), A∗,i⟩ · f(x) + f(x) ◦A∗,i)

= − ⟨f(x), A∗,i⟩ ·A⊤
∗,if(x) +A⊤

∗,if(x) ◦A∗,i

= − ⟨f(x), A∗,i⟩2 + ⟨f(x), A∗,i ◦A∗,i⟩
where the first step follows from extracting A∗,i and Fact B.1 , the second step follows from result
of Part 4, the third step follows from simple algebra, the last step follows from Fact B.1 .

18

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Proof of Part 6.

d⟨f(x), A∗,i⟩
dxj

= A⊤
∗,i

df(x)

dxj

= A⊤
∗,i(−⟨f(x), A∗,j⟩ · f(x) + f(x) ◦A∗,j)

= − ⟨f(x), A∗,j⟩ ·A⊤
∗,if(x) +A⊤

∗,if(x) ◦A∗,j

= − ⟨f(x), A∗,j⟩⟨f(x), A∗,i⟩+ ⟨A∗,i, f(x) ◦A∗,j⟩
= − ⟨f(x), A∗,i⟩ · ⟨f(x), A∗,j⟩+ ⟨f(x), A∗,i ◦A∗,j⟩

where the 1st step follows from extracting A∗,i and ⟨a, b⟩ = a⊤b = b⊤a, the 2nd step follows from
result of Part 4, the 3rd step follows from simple algebra, the 4th step follows from a⊤b = ⟨a, b⟩ =
⟨b, a⟩, the last step follows from Fact B.1.

Proof of Part 7.
dLexp(x)

dxi
=

d

dxi
(0.5 · ∥f(x)− b∥22)

= (f(x)− b)⊤
d

dxi
(f(x)− b)

= (f(x)− b)⊤(−⟨f(x), A∗,i⟩ · f(x) + f(x) ◦A∗,i)

= −A⊤
∗,if(x)(f(x)− b)⊤f(x) + (f(x)− b)⊤f(x) ◦A∗,i

= −A⊤
∗,if(x)(f(x)− b)⊤f(x) +A⊤

∗,if(x) ◦ (f(x)− b)

= A⊤
∗,i(−f(x)(f(x)− b)⊤f(x) + diag(f(x))(f(x)− b))

where the 1st step follows from the definition of f , the 2nd step follows from d∥y∥2
2

dx = 2y⊤ dy
dx , the

3rd step follows from the result in Part 4, the forth step follows from ⟨a, b⟩ = a⊤b, the 5th step step
follows from Fact B.2, the last step follows from extracting A∗,i and Fact B.2.

C.3 DEFINITION OF GRADIENT

In this section, we use g(x) to denote the gradient of Lexp(x).

Definition C.7. If the following conditions hold

• Let Lexp(x) be defined as Definition C.3.

• Let c(x) be defined as Definition C.5.

• Let f(x) be defined as Definition C.1.

We define g(x) ∈ Rd as follows

g(x) := A⊤︸︷︷︸
d×n

·
(
− f(x)︸︷︷︸

n×1

⟨c(x), f(x)⟩︸ ︷︷ ︸
scalar

+diag(f(x))︸ ︷︷ ︸
n×n

c(x)︸︷︷︸
n×1

)
Equivalently, for each i ∈ [d], we define

g(x)i := −⟨A∗,i, f(x)⟩︸ ︷︷ ︸
scalar

· ⟨c(x), f(x)⟩︸ ︷︷ ︸
scalar

+ ⟨A∗,i, f(x) ◦ c(x)⟩︸ ︷︷ ︸
scalar

.

Lemma C.8. If the following conditions hold

• Let g1 : Rd → Rn be defined as g1(x) := −f(x)⟨c(x), f(x)⟩

• Let g2 : Rd → Rn be defined as g2(x) := diag(f(x))c(x)

19

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• Let Rf be parameter such that

– ∥f(x)− f(y)∥2 ≤ Rf · ∥x− y∥2
– ∥c(x)− c(y)∥2 ≤ Rf · ∥x− y∥2

• Let R∞ ∈ (0, 2] be parameter such that

R∞ := max{∥f(x)∥2, ∥f(y)∥2, ∥c(x)∥2, ∥c(y)∥2}

We can show

• Part 1.

∥g1(x)− g1(y)∥2 ≤ 3RfR
2
∞∥x− y∥2

• Part 2.

∥g2(x)− g2(y)∥2 ≤ 2RfR∞∥x− y∥2

• Part 3.

∥g1(x) + g2(x)− g1(y)− g2(y)∥2 ≤ 8RfR∞∥x− y∥2

• Part 4.

∥g(x)− g(y)∥2 ≤ 8 · ∥A∥ ·Rf ·R∞∥x− y∥2

Proof. Proof of Part 1. We can show

∥g1(x)− g1(y)∥2 = ∥f(x)⟨c(x), f(x)⟩ − f(y)⟨c(y), f(y)⟩∥2
= ∥f(x)⟨c(x), f(x)⟩ − f(y)⟨c(x), f(x)⟩

+ f(y)⟨c(x), f(x)⟩ − f(y)⟨c(y), f(x)⟩
+ f(y)⟨c(y), f(x)⟩ − f(y)⟨c(y), f(y)⟩∥2

≤ ∥f(x)⟨c(x), f(x)⟩ − f(y)⟨c(x), f(x)⟩∥2
+ ∥f(y)⟨c(x), f(x)⟩ − f(y)⟨c(y), f(x)⟩∥2
+ ∥f(y)⟨c(y), f(x)⟩ − f(y)⟨c(y), f(y)⟩∥2

where the 1st step follows from the definition of g1, the second step follows from simple algebra,
the 3rd step follows from Fact B.3.

For the first term, we have

∥f(x)⟨c(x), f(x)⟩ − f(y)⟨c(x), f(x)⟩∥2 ≤ ∥f(x)− f(y)∥2 · |⟨c(x), f(x)⟩|
≤ ∥f(x)− f(y)∥2 · ∥c(x)∥2 · ∥f(x)∥2
≤ Rf · ∥x− y∥2 · ∥c(x)∥2 · ∥f(x)∥2

where the 1st step follows from ∥αa∥2 ≤ |α|∥a∥2(Fact B.3), the 2nd step follows from ⟨a, b⟩ ≤
∥a∥2∥b∥2(Fact B.3), the 3rd step follows from the definition of Rf .

For the second term, we have

∥f(y)⟨c(x), f(x)⟩ − f(y)⟨c(y), f(x)⟩∥2 ≤ ∥f(y)∥2 · |⟨c(x)− c(y), f(x)⟩|
≤ ∥f(y)∥2 · ∥c(x)− c(y)∥2 · ∥f(x)∥2
≤ ∥f(y)∥2 ·Rf · ∥x− y∥2 · ∥f(x)∥2

where the 1st step follows from ∥αa∥2 ≤ |α|∥a∥2(Fact B.3), the 2nd step follows from ⟨a, b⟩ ≤
∥a∥2∥b∥2(Fact B.3), the 3rd step follows from the definition of Rf .

For the third term, we have

∥f(y)⟨c(y), f(x)⟩ − f(y)⟨c(y), f(y)⟩∥2 ≤ ∥f(y)∥2 · |⟨c(y), f(x)− f(y)⟩|
≤ ∥f(y)∥2 · ∥c(y)∥2 · ∥f(x)− f(y)∥2

20

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

≤ ∥f(y)∥2 · ∥c(y)∥2 ·Rf · ∥x− y∥2
the 1st step follows from Fact B.3, the 2nd step follows from ⟨a, b⟩ ≤ ∥a∥2∥b∥2(Fact B.3), the 3rd
step follows from the definition of Rf .

Combining three terms together, we complete the proof.

Proof of Part 2.

We have

∥ diag(f(x))c(x)− diag(f(y))c(y)∥2
= ∥ diag(f(x))c(x)− diag(f(x))c(y) + diag(f(x))c(y)− diag(f(y))c(y)∥2
≤ ∥diag(f(x))c(x)− diag(f(x))c(y)∥2 + ∥ diag(f(x))c(y)− diag(f(y))c(y)∥2

where the first step follows from simple algebra, the second step follows from Fact B.3.

For the first term, we have

∥ diag(f(x))c(x)− diag(f(x))c(y)∥2 = ∥ diag(f(x))(c(x)− c(y))∥2
≤ ∥ diag(f(x))∥ · ∥c(x)− c(y)∥2
≤ ∥f(x)∥∞ · ∥c(x)− c(y)∥2
≤ ∥f(x)∥2 · ∥c(x)− c(y)∥2
≤ ∥f(x)∥2 ·Rf · ∥x− y∥2

where the 1st step follows from Fact B.4, the 2nd step follows from Fact B.3, the 3rd step follows
from Fact B.3, the 4th step follows from the definition of Rf .

For the second term, we have

∥ diag(f(x))c(y)− diag(f(y))c(y)∥2 = ∥(diag(f(x)− f(y)))c(y)∥2
≤ ∥diag(f(x)− f(y))∥∥c(y)∥2
≤ ∥f(x)− f(y)∥2 · ∥c(y)∥2
≤ Rf · ∥x− y∥2 · ∥c(y)∥2

where the first step follows from Fact B.2, the second step follows from Fact B.4, the third step
follows from Fact B.3, the last step follows from the definition of Rf .

Combining two terms together, then we complete the proof.

Proof of Part 3.

It follows from combining Part 1 and Part 2.

Proof of Part 4.

It follows from Part 3.

C.4 HESSIAN CALCULATIONS: STEP 1, HESSIAN OF exp(Ax)

Lemma C.9 (Hessian of exp(Ax)). If the following condition holds

• Given a matrix A ∈ Rn×d.

Then, we have, for each i ∈ [d]

• Part 1.

d2 exp(Ax)

dx2
i

= A∗,i ◦ exp(Ax) ◦A∗,i

• Part 2.

d2 exp(Ax)

dxidxj
= A∗,j ◦ exp(Ax) ◦A∗,i

21

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Proof. Proof of Part 1.

d2(exp(Ax))

dx2
i

=
d

dxi
(
d(exp(Ax))

dxi
)

=
d(exp(Ax) ◦A∗,i)

dxi

= A∗,i ◦
d exp(Ax)

dxi

= A∗,i ◦ exp(Ax) ◦A∗,i

where the 1st step is an expansion of the Hessian, the 2nd step follows from Part 1 in Lemma C.6,
the 3rd step extracts the matrix A∗,i with constant entries out of the derivative, and the last step also
follows from Part 1 in Lemma C.6.

Proof of Part 2.

d2(exp(Ax))

dxidxj
=

d

dxi
(

d

dxj
(exp(Ax)))

=
d

dxi
(exp(Ax) ◦A∗,j)

= A∗,j ◦ exp(Ax) ◦A∗,i

where the 1st step is an expansion of the Hessian, the 2nd step follows from Part 1 in Lemma C.6,
the 3rd step follows extracting A∗,j and Part 1 in Lemma C.6.

22

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

C.5 HESSIAN CALCULATIONS: STEP 2, HESSIAN OF α(x)

Lemma C.10. If the following conditions hold

• Let α(x) be defined as Definition C.4.

Then, we have

• Part 1.

d2α(x)

dx2
i

= ⟨exp(Ax), A∗,i ◦A∗,i⟩

• Part 2.

d2α(x)

dxidxj
= ⟨exp(Ax), A∗,i ◦A∗,j⟩

Proof. Proof of Part 1.

d2α(x)

dx2
i

=
d

dxi
(
d

dxi
⟨exp(Ax),1n⟩)

=
d

dxi
(⟨exp(Ax) ◦A∗,i,1n⟩)

= ⟨A∗,i ◦ exp(Ax) ◦A∗,i,1n⟩
= ⟨exp(Ax), A∗,i ◦A∗,i⟩

, where the 1st step follows from the expansion of hessian, the 2nd step follows from Part 3 of
Lemma C.6, the 3rd step follows from simple algebra, and the last step follows from Fact B.1.

Proof of Part 2.

d2α(x)

dxidxj
=

d

dxj
(
d

dxi
⟨exp(Ax),1n⟩)

=
d

dxj
(⟨exp(Ax) ◦A∗,i,1n⟩)

= ⟨A∗,j ◦ exp(Ax) ◦A∗,i,1n⟩
= ⟨exp(Ax), A∗,i ◦A∗,j⟩

where the 1st step follows from the expansion of hessian, the 2nd step follows from Part 2 of
Lemma C.6, the 3rd step follows from simple algebra, the last step follows from Fact B.1.

C.6 HESSIAN CALCULATIONS: STEP 3, HESSIAN OF α(x)−1

Lemma C.11 (Hessian of α(x)−1). If the following conditions hold

• Let α(x) be defined as Definition C.4

• Let f(x) be defined in Definition C.1.

We have

• Part 1.

d2α(x)−1

dx2
i

= 2α(x)−1 · ⟨f(x), A∗,i⟩2 − α(x)−1 · ⟨f(x), A∗,i ◦A∗,i⟩

= 2α(x)−1A⊤
∗,if(x)f(x)

⊤A∗,i −A⊤
∗,i diag(f(x))A∗,i

23

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• Part 2.
d2α(x)−1

dxidxj
= 2α(x)−1⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩ − α(x)−1⟨f(x), A∗,i ◦A∗,j⟩

= 2α(x)−1A⊤
∗,if(x)f(x)

⊤A∗,j −A⊤
∗,i diag(f(x))A∗,j

Proof. Proof of Part 1.

d2α(x)−1

dx2
i

=
d

dxi
(
d

dxi
α(x)−1)

=
d

dxi
(−α(x)−1⟨f(x), A∗,i⟩)

= − (
d

dxi
α(x)−1) · ⟨f(x), A∗,i⟩ − α(x)−1 d

dxi
⟨f(x), A∗,i⟩

= 2α(x)−1⟨f(x), A∗,i⟩2 − α(x)−1⟨f(x), A∗,i ◦A∗,i⟩
where the 1st step follows from the expansion of hessian, the 2nd step follows from Part 3 of
Lemma C.6, the 3rd step follows from differential chain rule, the 4th step follows from simple
algebra, the last step follows from Fact B.1.

Proof of Part 2.
d2α(x)−1

dxidxj
=

d

dxj
(
d

dxi
α(x)−1)

=
d

dxj
(−α(x)−1⟨f(x), A∗,i⟩)

= − (
d

dxj
α(x)−1) · ⟨f(x), A∗,i⟩ − α(x)−1 d

dxj
⟨f(x), A∗,i⟩

= − (−α(x)−1⟨f(x), A∗,j⟩)⟨f(x), A∗,i⟩ − α(x)−1(−⟨f(x), A∗,j⟩⟨f(x), A∗,i⟩+ ⟨f(x), A∗,i ◦A∗,j⟩)
= 2α(x)−1⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩ − α(x)−1⟨f(x), A∗,j ◦A∗,i⟩

where the 1st step follows from the expansion of hessian, the 2nd step follows from Part 3 of
Lemma C.6, the 3rd step follows from differential chain rule, the 4th step follows from Part 5 and
Part 3 in Lemma C.6, the last step step follows from simple algebra.

C.7 HESSIAN CALCULATIONS: STEP 4, HESSIAN OF f(x)

Lemma C.12 (Hessian of f(x)). If the following conditions hold

• Let f(x) = ⟨exp(Ax),1n⟩−1 exp(Ax) (see Definition C.1).

Then, we have

• Part 1.
d2f(x)

dx2
i

= 2⟨f(x), A∗,i⟩2 · f(x)− ⟨f(x), A∗,i ◦A∗,i⟩ · f(x)

− 2⟨f(x), A∗,i⟩f(x) ◦A∗,i +A∗,i ◦ f(x) ◦A∗,i

• Part 2.
d2f(x)

dxidxj
= 2⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩f(x)− ⟨f(x), A∗,i ◦A∗,j⟩f(x)

− ⟨f(x), A∗,i⟩f(x) ◦A∗,j − ⟨f(x), A∗,j⟩f(x) ◦A∗,i +A∗,i ◦ f(x) ◦A∗,j

24

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Proof. Proof of Part 1.

d2f(x)

dx2
i

=
d

dxi
(
d

dxi
f(x))

=
d

dxi
(−⟨f(x), A∗,i⟩ · f(x) + f(x) ◦A∗,i)

= 2⟨f(x), A∗,i⟩2 · f(x)− ⟨f(x), A∗,i ◦A∗,i⟩ · f(x)
− 2⟨f(x), A∗,i⟩f(x) ◦A∗,i +A∗,i ◦ f(x) ◦A∗,i

where the 1st step follows from the expansion of hessian, the 2nd step follows from Part 4 of
Lemma C.6, the third step follows from differential chain rule and Part 4, Part 5 in Lemma C.6.

Proof of Part 2.
d2f(x)

dxidxj

=
d

dxj
(
d

dxi
f(x))

=
d

dxj
(−⟨f(x), A∗,i⟩ · f(x) + f(x) ◦A∗,i)

= 2⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩f(x)− ⟨f(x), A∗,i ◦A∗,j⟩f(x)
− ⟨f(x), A∗,i⟩f(x) ◦A∗,j − ⟨f(x), A∗,j⟩f(x) ◦A∗,i +A∗,i ◦ f(x) ◦A∗,j

where the 1st step follows from the expansion of hessian, the 2nd step follows from Part 4 of
Lemma C.6, the 3rd step follows from differential chain rule and Part 4, Part 5 in Lemma C.6.

C.8 HESSIAN CALCULATIONS: STEP 5, HESSIAN OF Lexp(x)

Lemma C.13 (Hessian of Lexp(x)). We define

• B1(x) ∈ Rn×n such that

A⊤
∗,iB1(x)A∗,j := (−⟨f(x), A∗,j⟩f(x) + f(x) ◦A∗,j)

⊤ · (−⟨f(x), A∗,i⟩f(x)) + f(x) ◦A∗,i))

• B2(x) ∈ Rn×n such that

A⊤
∗,iB2(x)A∗,j := c⊤ · (2⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩f(x)− ⟨f(x), A∗,i ◦A∗,j⟩f(x)

− ⟨f(x), A∗,i⟩f(x) ◦A∗,j − ⟨f(x), A∗,j⟩f(x) ◦A∗,i +A∗,i ◦ f(x) ◦A∗,j)

Then we have

• Part 1.

d2Lexp

dx2
i

= A⊤
∗,iB1(x)A∗,i +A⊤

∗,iB2(x)A∗,i

• Part 2.

d2Lexp

dxidxj
= A⊤

∗,iB1(x)A∗,j +A⊤
∗,iB2(x)A∗,j

Proof. Proof of Part 1.

d2Lexp

dx2
i

=
d

dxi
(
dLexp

dxi
)

25

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

=
d

dxi
((f(x)− b)⊤︸ ︷︷ ︸

1×n

(−⟨f(x) ◦A∗,i,1n⟩f(x)) + f(x) ◦A∗,i)︸ ︷︷ ︸
n×1

)

= (−⟨f(x), A∗,i⟩f(x) + f(x) ◦A∗,i)
⊤ · (−⟨f(x), A∗,i⟩f(x) + f(x) ◦A∗,i)

+ c⊤ · (2⟨f(x), A∗,i⟩2f(x)− ⟨f(x), A∗,i ◦A∗,i⟩f(x)− 2⟨f(x), A∗,i⟩f(x) ◦A∗,i +A∗,i ◦ f(x) ◦A∗,i)

= A⊤
∗,iB1(x)A∗,i +A⊤

∗,iB2(x)A∗,i

where the 1st step follows from the expansion of hessian, the 2nd step follows from Part 7 of
Lemma C.6, the third step follows from arguments in Lemma C.15.

Proof of Part 2.
d2Lexp

dxidxj

=
d

dxj
(
dLexp

dxi
)

=
d

dxj
((f(x)− b)⊤︸ ︷︷ ︸

1×n

(−⟨f(x), A∗,i⟩f(x) + f(x) ◦A∗,i)︸ ︷︷ ︸
n×1

)

=(−⟨f(x), A∗,j⟩f(x) + f(x) ◦A∗,j)
⊤ · (−⟨f(x), A∗,i⟩f(x) + f(x) ◦A∗,i)

+ c⊤ · (2⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩f(x)− ⟨f(x), A∗,i ◦A∗,j⟩f(x)− ⟨f(x), A∗,i⟩f(x) ◦A∗,j

− ⟨f(x), A∗,j⟩f(x) ◦A∗,i +A∗,i ◦ f(x) ◦A∗,j)

= A⊤
∗,iB1(x)A∗,j +A⊤

∗,iB2(x)A∗,j

where the 1st step follows from the expansion of hessian, the 2nd step follows from Part 7 of
Lemma C.6, the 3rd step is a simplification of step 2 by applying notations α (Definition C.4) and c
(Definition C.5) and arguments in Lemma C.15.

C.9 HELPFUL LEMMA

The goal of this section to prove Lemma C.14. We remark that in this lemma, we can replace f(x)
by any vector. However, for easy of presentation, we use f(x).
Lemma C.14. For any length-n vector c ∈ Rn and any vector f(x) ∈ Rn, we have

• Part 1.

c⊤(A∗,i ◦ f(x) ◦A∗,j) = A⊤
∗,i diag(c ◦ f(x))︸ ︷︷ ︸

n×n

A∗,j

• Part 2.

c⊤f(x)⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩ = A⊤
∗,i f(x)︸︷︷︸

n×1

⟨c, f(x)⟩︸ ︷︷ ︸
scalar

f(x)⊤︸ ︷︷ ︸
1×n

A∗,j

• Part 3.

c⊤⟨f(x), A∗,i ◦A∗,j⟩f(x) = A⊤
∗,i diag(⟨c, f(x)⟩f(x))︸ ︷︷ ︸

n×n

A∗,j

• Part 4.

c⊤⟨f(x), A∗,j⟩f(x) ◦A∗,i = A⊤
∗,i (c ◦ f(x))︸ ︷︷ ︸

n×1

f(x)⊤︸ ︷︷ ︸
1×n

A∗,j

• Part 5.

c⊤⟨f(x), A∗,i⟩f(x) ◦A∗,j = A⊤
∗,i f(x)︸︷︷︸

n×1

(f(x) ◦ c)⊤︸ ︷︷ ︸
1×n

A∗,j

26

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• Part 6.

(⟨f(x), A∗,j⟩f(x))⊤f(x) ◦A∗,i = A∗,i (f(x) ◦ f(x))︸ ︷︷ ︸
n×1

f(x)⊤︸ ︷︷ ︸
1×n

A∗,j

• Part 7.

(f(x) ◦A∗,i)
⊤(f(x) ◦A∗,j) = A⊤

∗,i diag(f(x) ◦ f(x))︸ ︷︷ ︸
n×n

A∗,j

• Part 8.

(⟨f(x), A∗,j⟩f(x))⊤(⟨f(x), A∗,i⟩f(x)) = A⊤
∗,i f(x)︸︷︷︸

n×1

⟨f(x), f(x)⟩︸ ︷︷ ︸
scalar

f(x)⊤︸ ︷︷ ︸
1×n

A∗,j

• Part 9.

(f(x) ◦A∗,i)
⊤(f(x) ◦A∗,j) = A⊤

∗,i diag(f(x) ◦ f(x))A∗,j

Proof. Proof of Part 1.

c⊤(A∗,i ◦ f(x) ◦A∗,j) = A⊤
∗,i(c ◦ f(x) ◦A∗,j)

= A⊤
∗,i diag(c ◦ f(x)) ◦A∗,j

where the 1st step follows from Fact B.2, the 2nd step follows from Fact B.2.

Proof of Part 2.

c⊤f(x)⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩ = ⟨c, f(x)⟩⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩
= A⊤

∗,if(x)⟨c, f(x)⟩(f(x))⊤A∗,j

where the 1st step follows from a⊤b = ⟨a, b⟩ (Fact B.1), the 2nd step follows from ⟨a, b⟩ = a⊤b
(Fact B.1).

Proof of Part 3.

c⊤⟨f(x), A∗,i ◦A∗,j⟩f(x) = c⊤(f(x))⊤A∗,i ◦A∗,jf(x)

= A⊤
∗,i(f(x))

⊤c ◦A∗,jf(x)

= A⊤
∗,i⟨f(x), c⟩ ◦A∗,jf(x)

= A⊤
∗,i diag(⟨f(x), c⟩)f(x)A∗,j

where the 1st step follows from ⟨a, b⟩ = a⊤b (Fact B.1), the 2nd step follows from Fact B.2, the 3rd
step follows from a⊤b = ⟨a, b⟩ (Fact B.1), the last step follows from Fact B.2.

Proof of Part 4.

c⊤⟨f(x), A∗,j⟩f(x) ◦A∗,i = c⊤(f(x))⊤A∗,jf(x) ◦A∗,i

= A⊤
∗,i(f(x))

⊤A∗,jf(x) ◦ c
= A⊤

∗,i(f(x) ◦ c)(f(x))⊤A∗,j

where the 1st step follows from ⟨a, b⟩ = a⊤b (Fact B.1), the 2nd step follows from Fact B.2, the 3rd
step follows from f(x)⊤A∗,j = ⟨f(x), A∗,j⟩ (Fact B.1) is a scalar.

Proof of Part 5.

c⊤⟨f(x), A∗,i⟩f(x) ◦A∗,j = (f(x))⊤A∗,ic
⊤f(x) ◦A∗,j

= (f(x))⊤A∗,iA
⊤
∗,jf(x) ◦ c

= (f(x))⊤A∗,i(f(x) ◦ c)⊤A∗,j

= A⊤
∗,if(x)(f(x) ◦ c)⊤A∗,j

27

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

where the 1st step follows from ⟨a, b⟩ = a⊤b (Fact B.1), the 2nd step follows from Fact B.2, the 3rd
step follows from a⊤b = b⊤a (Fact B.1), the last step follows from a⊤b = b⊤a (Fact B.1).

Proof of Part 6

(⟨f(x), A∗,j⟩f(x))⊤f(x) ◦A∗,i = A⊤
∗,if(x) ◦ ⟨f(x), A∗,j⟩f(x)

= A⊤
∗,if(x) ◦ (f(x))⊤A∗,jf(x)

= A⊤
∗,if(x) ◦ f(x)(f(x))⊤A∗,j

where the 1st step follows from Fact B.2, the 2nd step follows from ⟨a, b⟩ = a⊤b (Fact B.1), the 3rd
step follows from f(x)⊤A∗,j = ⟨f(x), A∗,j⟩ is a scalar (Fact B.1).

Proof of Part 7.

(f(x) ◦A∗,i)
⊤(f(x) ◦A∗,j) = ⟨f(x) ◦A∗,i, f(x) ◦A∗,j⟩

= ⟨f(x) ◦ f(x), A∗,i ◦A∗,j⟩
= (f(x) ◦ f(x))⊤(A∗,i ◦A∗,j)

= A⊤
∗,i(f(x) ◦ f(x) ◦A∗,j)

= A⊤
∗,i diag(f(x) ◦ f(x))A∗,j

where the 1st step follows from a⊤b = ⟨a, b⟩ (Fact B.1), the 2nd step follows from Fact B.1, the 3rd
step follows from ⟨a, b⟩ = a⊤b (Fact B.1), the 4th step follows from Fact B.2, the last step follows
from Fact B.2.

Proof of Part 8.

(⟨f(x), A∗,j⟩f(x))⊤(⟨f(x), A∗,i⟩f(x)) = ⟨f(x), A∗,j⟩f(x)⊤(⟨f(x), A∗,i⟩f(x))
= f(x)⊤A∗,jf(x)

⊤f(x)⊤A∗,if(x)

= f(x)⊤A∗,if(x)
⊤A∗,jf(x)

⊤f(x)

= A⊤
∗,if(x)f(x)

⊤A∗,jf(x)
⊤f(x)

= A⊤
∗,if(x)f(x)

⊤f(x)f(x)⊤A∗,j

= A⊤
∗,if(x)⟨f(x), f(x)⟩f(x)⊤A∗,j

where the 1st step follows from a⊤b = b⊤a (Fact B.1), the 2nd step follows from ⟨a, b⟩ = a⊤b
(Fact B.1), the 3rd step follows from a⊤b = b⊤a (Fact B.1), the 4th step follows from A⊤

∗,if(x) =

⟨A∗,i, f(x)⟩ is a scalar (Fact B.1), the 5th step step follows from f(x)⊤A∗,j = ⟨f(x), A∗,j⟩ is a
scalar (Fact B.1), the last step follows from a⊤b = ⟨a, b⟩ (Fact B.1).

Proof of Part 9.

(f(x) ◦A∗,i)
⊤(f(x) ◦A∗,j) = ⟨f(x) ◦A∗,i, f(x) ◦A∗,j⟩

= ⟨f(x) ◦ f(x), A∗,i ◦A∗,j⟩
= (f(x) ◦ f(x))⊤(A∗,i ◦A∗,j)

= A⊤
∗,i(f(x) ◦ f(x) ◦A∗,j)

= A⊤
∗,i diag(f(x) ◦ f(x))A∗,j

where the 1st step follows from a⊤b = ⟨a, b⟩ (Fact B.1), the 2nd step follows from Fact B.1 , the 3rd
step follows from ⟨a, b⟩ = a⊤b (Fact B.1), the 4th step follows from Fact B.2, the last step follows
from Fact B.2.

C.10 DECOMPOSING B1(x), B2(x) AND B(x) INTO LOW RANK PLUS DIAGONAL

Lemma C.15 (Rewriting B1(x) and B2(x), formal version of Lemma 5.1). If the following condi-
tions hold

28

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• Given matrix A ∈ Rn×d.

• Let f(x) be defined as Definition C.1.

• Let c(x) be defined as Definition C.5.

• Let B(x) = B1(x) +B2(x).

Then, we can show that

• Part 1. For B1(x) ∈ Rn×n, we have

B1(x) = ⟨f(x), f(x)⟩︸ ︷︷ ︸
scalar

· f(x)︸︷︷︸
n×1

f(x)⊤︸ ︷︷ ︸
1×n

+diag(f(x) ◦ f(x))︸ ︷︷ ︸
n×n diagonal matrix

+ (f(x) ◦ f(x))︸ ︷︷ ︸
n×1

· f(x)⊤︸ ︷︷ ︸
1×n

+(f(x) ◦ f(x))︸ ︷︷ ︸
n×1

· f(x)⊤︸ ︷︷ ︸
1×n

– In summary, B1(x) ∈ Rn×n is constructed by three rank-1 matrices and a diagonal
matrix.

• Part 2. For B2(x) ∈ Rn×n, we have

B2(x) = 2⟨c(x), f(x)⟩︸ ︷︷ ︸
scalar

· f(x)︸︷︷︸
n×1

f(x)⊤︸ ︷︷ ︸
1×n

+ ⟨c(x), f(x)⟩︸ ︷︷ ︸
scalar

· diag(f(x))︸ ︷︷ ︸
n×n diagonal matrix

+ diag(c(x) ◦ f(x))︸ ︷︷ ︸
n×n diagonal matrix

− (c(x) ◦ f(x))︸ ︷︷ ︸
n×1

f(x)⊤︸ ︷︷ ︸
1×n

− f(x)︸︷︷︸
n×1

(f(x) ◦ c(x))⊤︸ ︷︷ ︸
1×n

– In summary, B2(x) ∈ Rn×n is constructed by three rank-1 matrices and two diagonal
matrices.

• Part 3. For B(x) ∈ Rn×n, we have

B(x) = ⟨3f(x)− 2b, f(x)⟩︸ ︷︷ ︸
scalar

· f(x)︸︷︷︸
n×1

f(x)⊤︸ ︷︷ ︸
1×n

+ ⟨f(x)− b, f(x)⟩︸ ︷︷ ︸
scalar

· diag(f(x))︸ ︷︷ ︸
n×n diagonal matrix

+ diag((2f(x)− b) ◦ f(x))︸ ︷︷ ︸
n×n diagonal matrix

+ (b ◦ f(x))︸ ︷︷ ︸
n×1

· f(x)⊤︸ ︷︷ ︸
1×n

+ f(x)︸︷︷︸
n×1

· (b ◦ f(x))⊤︸ ︷︷ ︸
1×n

– In summary, B(x) ∈ Rn×n is constructed by three rank-1 matrices and two diagonal
matrices.

Proof. Proof of Part 1. B1(x).

For B1(x), we have:

A⊤
∗,iB1(x)A∗,j = (−⟨f(x), A∗,j⟩f(x) + f(x) ◦A∗,j)

⊤ · (−⟨f(x), A∗,i⟩f(x)) + f(x) ◦A∗,i))

= (−(⟨f(x), A∗,j⟩f(x))⊤ + (f(x) ◦A∗,j)
⊤) · (−⟨f(x), A∗,i⟩f(x)) + f(x) ◦A∗,i))

= (⟨f(x), A∗,j⟩f(x))⊤⟨f(x), A∗,i⟩f(x) + (f(x) ◦A∗,j)
⊤(f(x) ◦A∗,i))

− (⟨f(x), A∗,j⟩f(x))⊤(f(x) ◦A∗,i)− (f(x) ◦A∗,j)
⊤⟨f(x), A∗,i⟩f(x)

= A⊤
∗,if(x)⟨f(x), f(x)⟩f(x)⊤A∗,j +A⊤

∗,i diag(f(x) ◦ f(x))A∗,j

−A⊤
∗,i(f(x) ◦ f(x))f(x)⊤A∗,j −A⊤

∗,i(f(x) ◦ f(x))⊤f(x)A∗,j (2)

where the 1st step follows from the definition of B1(x), the 2nd step follows from (A + B)⊤ =
A⊤ +B⊤, the 3rd step follows from simple algebra, the last step follows from Lemma C.14.

29

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Thus, by extracting A⊤
∗,i and A∗,j , we have:

B1(x) = ⟨f(x), f(x)⟩ · f(x)f(x)⊤ + diag(f(x) ◦ f(x))
+ (f(x) ◦ f(x))f(x)⊤ + f(x)(f(x) ◦ f(x))⊤

Proof of Part 2. B2(x).

For B2(x) ∈ Rn×n, we have:

A⊤
∗,iB2(x)A∗,j

= c(x)⊤ · (2⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩f(x)− ⟨f(x), A∗,i ◦A∗,j⟩f(x)− ⟨f(x), A∗,i⟩f(x) ◦A∗,j

− ⟨f(x), A∗,j⟩f(x) ◦A∗,i +A∗,i ◦ f(x) ◦A∗,j)

Thus, we can rewrite B2(x) as

A⊤
∗,iB2(x)A∗,j

= c(x)⊤ · (2⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩f(x)− ⟨f(x), A∗,i ◦A∗,j⟩f(x)− ⟨f(x), A∗,i⟩f(x) ◦A∗,j

− ⟨f(x), A∗,j⟩f(x) ◦A∗,i +A∗,i ◦ f(x) ◦A∗,j)

= 2c(x)⊤⟨f(x), A∗,i⟩⟨f(x), A∗,j⟩f(x)− c(x)⊤⟨f(x), A∗,i ◦A∗,j⟩f(x) + c(x)⊤A∗,i ◦ f(x) ◦A∗,j

− c(x)⊤⟨f(x), A∗,i⟩f(x) ◦A∗,j − c(x)⊤⟨f(x), A∗,j⟩f(x) ◦A∗,i

= 2A⊤
∗,if(x)⟨c(x), f(x)⟩f(x)⊤A∗,j −A⊤

∗,i diag(⟨c(x), f(x)⟩f(x))A∗,j +A⊤
∗,i diag(c(x) ◦ f(x))A∗,j

−A⊤
∗,if(x)(f(x) ◦ c)⊤A∗,j −A∗,i(c(x) ◦ f(x))f(x)⊤A∗,j (3)

where the 1st step follows from definition of B2(x), the 2nd step follows from simple algebra, the
3rd step follows from simple algebra, the last step follows from Lemma C.14.

By extracting A⊤
∗,i and A∗,j , we have

B2(x) = 2⟨c, f(x)⟩f(x)f(x)⊤ + diag(⟨c, f(x)⟩f(x)) + diag(c ◦ f(x))
− (c(x) ◦ f(x))f(x)⊤ − f(x)(c(x) ◦ f(x))⊤

Proof of Part 3. B(x)

We define

B1,1(x) := ⟨f(x), f(x)⟩ · f(x)f(x)⊤

B1,2(x) := diag(f(x) ◦ f(x))
B1,3(x) := (f(x) ◦ f(x))f(x)⊤

B1,4(x) := f(x)(f(x) ◦ f(x))⊤

Thus, we have:

B1(x) = B1,1(x) +B1,2(x) +B1,3(x) +B1,4(x)

Similarly, we define

B2,1(x) := 2⟨c, f(x)⟩f(x)f(x)⊤

B2,2(x) := diag(⟨c, f(x)⟩f(x))
B2,3(x) := diag(c ◦ f(x))
B2,4(x) := − (c(x) ◦ f(x))f(x)⊤

B2,5(x) := − f(x)(c(x) ◦ f(x))⊤

Thus, we have:

B2(x) = B2,1(x) +B2,2(x) +B2,3(x) +B2,4(x) +B2,5(x)

30

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Merge B1,1(x) and B2,1(x):

B1,1(x) +B2,1(x) = ⟨f(x), f(x)⟩ · f(x)f(x)⊤ + 2⟨c(x), f(x)⟩f(x)f(x)⊤

= ⟨3f(x)− 2b, f(x)⟩f(x)f(x)⊤

Maintain B2,2(x) itself:

B2,2(x) = diag(⟨f(x)− b, f(x)⟩f(x))
= ⟨f(x)− b, f(x)⟩diag(f(x))

Merge B1,2(x) and B2,3(x):

B1,2(x) +B2,3(x) = diag((f(x)− b) ◦ f(x)) + diag(f(x) ◦ f(x))
= diag((2f(x)− b) ◦ f(x))

Merge B1,3(x) and B2,4(x):

B1,3(x) +B2,4(x) = (f(x) ◦ f(x))f(x)⊤ − ((f(x)− b) ◦ f(x))f(x)⊤

= (f(x) ◦ f(x)− f(x) ◦ f(x) + b ◦ f(x))f(x)⊤

= (b ◦ f(x))f(x)⊤

Merge B1,4(x) and B2,5(x):

B1,4(x) +B2,5(x) = f(x)(f(x) ◦ f(x))⊤ − f(x)((f(x)− b) ◦ f(x))⊤

= f(x)(f(x)⊤ ◦ f(x)⊤ − f(x)⊤ ◦ f(x)⊤ + b⊤ ◦ f(x)⊤)
= f(x)(b ◦ f(x))⊤

By combining all the above equations, we have

B(x) = ⟨3f(x)− 2b, f(x)⟩f(x)f(x)⊤︸ ︷︷ ︸
B1,1+B2,1

+ ⟨f(x)− b, f(x)⟩diag(f(x))︸ ︷︷ ︸
B2,2

+ diag((2f(x)− b) ◦ f(x))︸ ︷︷ ︸
B1,2+B2,3

+ (b ◦ f(x))f(x)⊤︸ ︷︷ ︸
B1,3+B2,4

+ f(x)(b ◦ f(x))⊤︸ ︷︷ ︸
B1,4+B2,5

Thus, we complete the proof.

D HESSIAN IS POSITIVE DEFINITE

In this section, we prove that∇2L ⪰ 0 and thus L is convex. In Section D.1, we find the lower bound
of B(x). To be specific, we split B(x) into several terms and find their lower bounds separately. In
Section D.2, we use the result of Section D.1 to prove that lower bound of ∇2L ⪰ 0 and thus L is
convex.

D.1 PSD LOWER BOUND

For convenient, we define B(x)

Definition D.1. We define B(x) as follows

B(x) := ⟨3f(x)− 2b, f(x)⟩f(x)f(x)⊤

31

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

+ (b ◦ f(x))f(x)⊤ + f(x)(b ◦ f(x))⊤

+ ⟨f(x)− b, f(x)⟩ · diag(f(x))
+ diag((2f(x)− b) ◦ f(x))

Further, we define

Brank(x) := ⟨3f(x)− 2b, f(x)⟩f(x)f(x)⊤︸ ︷︷ ︸
:=B1

rank(x)

+(b ◦ f(x))f(x)⊤ + f(x)(b ◦ f(x))⊤︸ ︷︷ ︸
:=B2

rank(x)

Bdiag(x) := ⟨f(x)− b, f(x)⟩ · diag(f(x))︸ ︷︷ ︸
:=B1

diag(x)

+diag((2f(x)− b) ◦ f(x))︸ ︷︷ ︸
:=B2

diag(x)

Lemma D.2. If the following conditions hold

• ∥f(x)∥1 = 1 (see Definition C.1).

• Let B(x) ∈ Rn×n be defined as Definition D.1.

• Let f(x) ≥ 0n.

• Let b ≥ 0n.

• Let B1
rank, B2

rank be defined as Definition D.1.

• Let B1
diag, B2

diag be defined as Definition D.1.

Then we have

• Part 1.

−0.5∥b∥22 · f(x)f(x)⊤ ⪯ B1
rank(x) ⪯ (3∥f(x)∥22) · f(x)f(x)⊤

• Part 2.

−(1 + ∥b∥2∞) · f(x)f(x)⊤ ⪯ B2
rank(x) ⪯ (1 + ∥b∥2∞) · f(x)f(x)⊤

• Part 3.

−0.25∥b∥22 · diag(f(x)) ⪯ B1
diag ⪯ (∥f(x)∥22) · diag(f(x))

• Part 4.

−0.5 · diag(b ◦ b) ⪯ B2
diag ⪯ 2 · diag(f(x) ◦ f(x))

• Part 5. If ∥b∥1 ≤ 1 and ∥f(x)∥1 ≤ 1, then we have

−4In ⪯ B(x) ⪯ 8In

Proof. Recall that in Definition D.1, we split B(x) into four terms

B(x) = B1
rank +B2

rank +B1
diag +B2

diag,

where Bi
rank and Bi

diag are defined as

B1
rank := ⟨3f(x)− 2b, f(x)⟩f(x)f(x)⊤,

B2
rank := (b ◦ f(x))f(x)⊤ + f(x)(b ◦ f(x))⊤,

B1
diag := ⟨f(x)− b, f(x)⟩diag(f(x)),

B2
diag := diag(f(x) ◦ (2f(x)− b)).

Proof of B1
rank.

32

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

On one hand, we can lower bound the coefficient, we have

⟨3f(x)− 2b, f(x)⟩ ≥ 2⟨f(x)− b, f(x)⟩
= 2⟨f(x)− b, f(x)⟩+ 0.5∥b∥22 − 0.5∥b∥22
= 0.5∥2f(x)− b∥22 − 0.5∥b∥22
≥ − 0.5∥b∥22.

Thus,

B1
rank ⪰ −0.5∥b∥22f(x)f(x)⊤.

On the other hard, we have

⟨3f(x)− 2b, f(x)⟩ = 3∥f(x)∥22 − 2⟨b, f(x)⟩
≤ 3∥f(x)∥22

Thus,

B1
rank ⪯ 3∥f(x)∥22 · f(x)f(x)⊤.

Proof of B2
rank(x).

On one hand, we have

B2
rank(x) ⪰ − (b ◦ f(x))⊤(b ◦ f(x))− f(x)f(x)⊤

= − (∥b∥2∞ + 1) · f(x)f(x)⊤,

where the 1st step follows from Fact B.5, , the last step follows from Fact B.5.

On the other hand, we have

B2
rank(x) ⪯ (b ◦ f(x))⊤(b ◦ f(x)) + f(x)f(x)⊤

⪯ (∥b∥2∞ + 1) · f(x)f(x)⊤

where the 1st step follows from Fact B.5 , the 2nd step follows from Fact B.5 .

Proof of B1
diag(x).

For the coefficient, we have

⟨f(x)− b, f(x)⟩ = ⟨f(x)− b, f(x)⟩+ 1

4
∥b∥22 −

1

4
∥b∥22

= ∥f(x)− 1

2
b∥22 −

1

4
∥b∥22

≥ − 1

4
∥b∥22

Thus, we have

B1
diag ⪰ −

1

4
∥b∥22 · diag(f(x)).

We can show

⟨f(x)− b, f(x)⟩ = ∥f(x)∥22 − ⟨b, f(x)⟩
≤ ∥f(x)∥22

We have,

B2
diag ⪯ (∥f(x)∥22) · diag(f(x))

Proof of B2
diag(x).

33

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

For the third term, we have

B2
diag = diag(f(x) ◦ (2f(x)− b) +

1

2
b ◦ b)− 1

2
diag(b ◦ b)

⪰ − 1

2
diag(b ◦ b)

⪰ − 1

2
∥b∥22In

where the 1st step follows from simple algebra, the 2nd step follows from simple algebra, the last
step follows from Fact B.5.

Proof of B(x). It trivially follows from

∥f(x)∥1 ≤ 1, ∥b∥1 ≤ 1

and using Lemma C.2 and Fact B.5

max{f(x)f(x)⊤,diag(f(x)),diag(f(x) ◦ f(x)),diag(b ◦ b)} ⪯ In.

D.2 LOWER BOUND ON HESSIAN

The goal of this section is to prove Lemma D.3.
Lemma D.3 (Formal version of Lemma 5.2). If the following conditions hold

• Given matrix A ∈ Rn×d.

• Let Lexp(x) be defined as Definition C.3.

• Let Lreg(x) be defined as Definition B.8.

• Let L(x) = Lexp(x) + Lreg(x).

• Let W = diag(w) ∈ Rn×n. Let W 2 ∈ Rn×n denote the matrix that i-th diagonal entry is
w2

i,i.

• Let σmin(A) denote the minimum singular value of A.

• Let l > 0 denote a scalar.

Then, we have

• Part 1. If all i ∈ [n], w2
i ≥ 4 + l/σmin(A)2, then

d2L

dx2
⪰ l · Id

• Part 2. If all i ∈ [n], w2
i ≥ 100 + l/σmin(A)2, then

(1− 1/10) · (B(x) +W 2) ⪯W 2 ⪯ (1 + 1/10) · (B(x) +W 2)

Proof. By applying Lemma C.13 and Lemma C.15, we have

d2Lexp

dx2
= A⊤B(x)A

where

B(x) ⪰ −4In (4)

Also, it’s trivial that

d2L

dx2
=

d2Lreg

dx2
+

d2Lexp

dx2
(5)

34

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Thus, by applying Lemma B.9, Eq. (5) can be written as

d2L

dx2
= A⊤B(x)A+A⊤W 2A

= A⊤(B(x) +W 2)A

Let

D = B(x) +W 2

Then, d2L
dx2 can be rewrite as

d2L

dx2
= A⊤DA

Now, we can bound D as follows

D ⪰ − 4In + w2
minIn

= (−4 + w2
min)In

⪰ l

σmin(A)2
In

where 2nd step follows from simple algebra, the 3rd step follows from w2
min ≥ 4 + l/σmin(A)2.

Since D is positive definite, then we have

A⊤DA ⪰ σmin(D) · σmin(A)2Id ⪰ l · Id
Thus, Hessian is positive definite forever and thus the function is convex.

E HESSIAN IS LIPSCHITZ

In this section, we find the upper bound of ∥∇2L(x) − ∇2L(y)∥ and thus proved that ∇2L is
lipschitz. In Section E.2, we prove that some basic terms satisfy the property of Lipschitz. In
Section E.3, we provide a sketch of how we find the bound of ∥∇2L(x)−∇2L(y)∥, to be specific,
we split ∥∇2L(x) − ∇2L(y)∥ into 8 terms and state that all these terms can be bound by using
∥f(x) − f(y)∥. In Section E.4, we use ∥f(x) − f(y)∥ to bound the first term. In Section E.5, we
use ∥f(x) − f(y)∥ to bound the second term. In Section E.6, we use ∥f(x) − f(y)∥ to bound the
third term. In Section E.7, we use ∥f(x) − f(y)∥ to bound the fourth term. In Section E.8, we use
∥f(x) − f(y)∥ to bound the fifth term. In Section E.9, we use ∥f(x) − f(y)∥ to bound the sixth
term. In Section E.10, we use ∥f(x) − f(y)∥ to bound the seventh term. In Section E.11, we use
∥f(x)− f(y)∥ to bound the last term.

E.1 MAIN RESULT

Lemma E.1 (Formal version of Lemma 5.3). If the following condition holds

• Let H(x) = d2L
dx2

• Let R > 2

• ∥x∥2 ≤ R, ∥y∥2 ≤ R

• ∥A(x− y)∥∞ < 0.01

• ∥A∥ ≤ R

• ∥b∥2 ≤ R

• ⟨exp(Ax),1n⟩ ≥ β and ⟨exp(Ay),1n⟩ ≥ β

35

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Then we have

∥H(x)−H(y)∥ ≤ β−2n exp(20R2) · ∥x− y∥2

Proof.

∥H(x)−H(y)∥
≤ ∥A∥ · (2∥G1∥+ ∥G2∥+ · · ·+ ∥G8∥)∥A∥
≤ R2 · (2∥G1∥+ ∥G2∥+ · · ·+ ∥G8∥)
≤ R2 · 100R · ∥f(x)− f(y)∥2
≤ R2 · 100R · β−2n exp(3R2)∥x− y∥2
≤ β−2n exp(20R2)∥x− y∥2

where the 1st step follows definition of Gi and matrix spectral norm, the 2nd step follows from
∥A∥ ≤ R, the 3rd step follows from Lemma E.3, the 4th step follows from Lemma E.2, and the last
step follows from simple algebra.

E.2 A CORE TOOL: LIPSCHITZ PROPERTY FOR SEVERAL BASIC FUNCTIONS

Lemma E.2. If the following conditions hold

• Let A ∈ Rn×d

• Let b ∈ Rn satisfy that ∥b∥1 ≤ 1

• Let β ∈ (0, 0.1)

• Let R ≥ 4

• Let x, y ∈ Rd satisfy ∥A(x− y)∥∞ < 0.01

• ∥A∥ ≤ R

• ⟨exp(Ax),1n⟩ ≥ β

• ⟨exp(Ay),1n⟩ ≥ β

• Let Rf := β−2n exp(3R2)

• Let α(x) be defined as Definition C.4

• Let c(x) be defined as Definition C.5

• Let f(x) be defined as Definition C.1

• Let g(x) be defined as Definition C.7

We have

• Part 0. ∥ exp(Ax)∥2 ≤
√
n exp(R2)

• Part 1. ∥ exp(Ax)− exp(Ay)∥2 ≤ R exp(R2) · ∥x− y∥2

• Part 2. |α(x)− α(y)| ≤
√
n · ∥ exp(Ax)− exp(Ay)∥2

• Part 3. |α(x)−1 − α(y)−1| ≤ β−2 · |α(x)− α(y)|

• Part 4. ∥f(x)− f(y)∥2 ≤ Rf · ∥x− y∥2

• Part 5. ∥c(x)− c(y)∥2 ≤ Rf · ∥x− y∥2

• Part 6. ∥g(x)− g(y)∥2 ≤ 18 ·R ·Rf · ∥x− y∥2

36

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Proof. Proof of Part 0.

We can show that

∥ exp(Ax)∥2 ≤
√
n · ∥ exp(Ax)∥∞

≤
√
n · exp(∥Ax∥∞)

≤
√
n · exp(∥Ax∥2)

≤
√
n · exp(R2),

where the first step follows from Part 4 of Fact B.3, the second step follows from Part6 Fact B.3,
the third step follows from Part Fact B.3, and the last step follows from ∥A∥ ≤ R and ∥x∥2 ≤ R.

Proof of Part 1. We have

∥ exp(Ax)− exp(Ay)∥2 ≤ exp(R2)∥Ax−Ay∥2
≤ exp(R2)∥A∥∥x− y∥2
≤ R exp(R2)∥x− y∥2

where the first step follows from Part 10 of Fact B.3, the second step follows from Part 4 of
Fact B.4, the third step follows from ∥A∥ ≤ R.

Proof of Part 2.

|α(x)− α(y)| = |⟨exp(Ax)− exp(Ay),1n⟩|
≤ ∥ exp(Ax)− exp(Ay)∥2 ·

√
n

where the 1st step follows from the definition of α(x), the 2nd step follows from Cauchy-Schwarz
inequality (Part 1 of Fact B.3).

Proof of Part 3.

We can show that

|α(x)−1 − α(y)−1| = α(x)−1α(y)−1 · |α(x)− α(y)|
≤ β−2 · |α(x)− α(y)|

where the 1st step follows from simple algebra, the 2nd step follows from α(x), α(y) ≥ β.

Proof of Part 4.

We can show that

∥f(x)− f(y)∥2 = ∥α(x)−1 exp(Ax)− α(y)−1 exp(Ay)∥2
≤ ∥α(x)−1 exp(Ax)− α(x)−1 exp(Ay)∥2 + ∥α(x)−1 exp(Ay)− α(y)−1 exp(Ay)∥2
≤ α(x)−1∥ exp(Ax)− exp(Ay)∥2 + |α(x)−1 − α(y)−1| · ∥ exp(Ay)∥2

where the 1st step follows from the definition of f(x) and α(x), the 2nd step follows from triangle
inequality (Part 3 of Fact B.3), the 3rd step follows from ∥αA∥ ≤ |α|∥A∥(Part 5 of Fact B.4).

For the first term in the above, we have

α(x)−1∥ exp(Ax)− exp(Ay)∥2 ≤ β−1∥ exp(Ax)− exp(Ay)∥2
≤ β−1 ·R exp(R2) · ∥x− y∥2 (6)

where the 1st step follows from α(x) ≥ β, the 2nd step follows from Part 1.

For the second term in the above, we have

|α(x)−1 − α(y)−1| · ∥ exp(Ay)∥2 ≤ β−2 · |α(x)− α(y)| · ∥ exp(Ay)∥2
≤ β−2 · |α(x)− α(y)| ·

√
n exp(R2)

≤ β−2 ·
√
n · ∥ exp(Ax)− exp(Ay)∥2 ·

√
n exp(R2)

≤ β−2 ·
√
n ·R exp(R2)∥x− y∥2 ·

√
n exp(R2)

37

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

= β−2 · nR exp(2R2)∥x− y∥2 (7)

where the 1st step follows from the result of Part 3, the 2nd step follows from Part 0, the 3rd step
follows from the result of Part 2, the 4th step follows from Part 1, and the last step follows from
simple algebra.

Combining Eq. (6) and Eq. (7) together, we have

∥f(x)− f(y)∥2 ≤ β−1 ·R exp(R2) · ∥x− y∥2 + β−2 · nR exp(2R2)∥x− y∥2
≤ 2β−2nR exp(2R2)∥x− y∥2
≤ β−2n exp(3R2)∥x− y∥2

where the 1st step follows from the bound of the first term and the second term, the 2nd step follows
from β−1 ≥ 1 and n > 1 trivially, the 3rd step follows from simple algebra.

Proof of Part 5. We have

∥c(x)− c(y)∥2 = ∥f(x)− f(y)∥2 ≤ Rf · ∥x− y∥2,
the first step follows from the definition of c(x), the last step follows from Part 4 and definition of
Rf . Proof of Part 6.

Using Lemma C.8, we have

∥g(x)− g(y)∥2 ≤ 8∥A∥Rf · 2∥x− y∥2
≤ 18RRf · ∥x− y∥2,

where the second step follows from ∥A∥ ≤ R.

Thus, we complete the proof.

E.3 SUMMARY OF EIGHT STEPS

Lemma E.3. If the following conditions hold

• G1 = ∥f(x)∥22f(x)f(x)⊤ − ∥f(y)∥22f(y)f(y)⊤

• G2 = ⟨f(x), b⟩f(x)f(x)⊤ − ⟨f(y), b⟩f(y)f(y)⊤

• G3 = ⟨f(x), f(x)⟩diag(f(x))− ⟨f(y), f(y)⟩diag(f(y))

• G4 = ⟨f(x), b⟩diag(f(x))− ⟨f(y), b⟩diag(f(y))

• G5 = diag(f(x) ◦ (f(x)− b))− diag(f(y) ◦ (f(y)− b))

• G6 = diag(f(x) ◦ f(x))− diag(f(y) ◦ f(y))

• G7 = f(x)(f(x) ◦ b)⊤ − f(y)(f(y) ◦ b)⊤

• G8 = (f(x) ◦ b)f(x)⊤ − (f(y) ◦ b)f(y)⊤

We have

∥G1∥+
8∑

i=1

∥Gi∥ ≤ 100R · ∥f(x)− f(y)∥2

Proof. The proof directly follows from applying Lemma E.4, Lemma E.5, Lemma E.6, Lemma E.7,
Lemma E.8, Lemma E.9, Lemma E.10, Lemma E.11.

E.4 LIPSCHITZ CALCULATIONS: STEP 1. LIPSCHITZ FOR MATRIX FUNCTION
∥f(x)∥22f(x)f(x)⊤

Lemma E.4. If the following condition holds

• G1 = ∥f(x)∥22f(x)f(x)⊤ − ∥f(y)∥22f(y)f(y)⊤

38

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Then

∥G1∥ ≤ 4∥f(x)− f(y)∥2

Proof. We define

G1,1 := ⟨f(x), f(x)⟩f(x)f(x)⊤ − ⟨f(x), f(y)⟩f(x)f(x)⊤

G1,2 := ⟨f(x), f(y)⟩f(x)f(x)⊤ − ⟨f(y), f(y)⟩f(x)f(x)⊤

G1,3 := ⟨f(y), f(y)⟩f(x)f(x)⊤ − ⟨f(y), f(y)⟩f(y)f(x)⊤

G1,4 := ⟨f(y), f(y)⟩f(y)f(x)⊤ − ⟨f(y), f(y)⟩f(y)f(y)⊤

We have

G1 = G1,1 +G1,2 +G1,3 +G1,4

Let us only prove for G1,1, the others are similar,

∥G1,1∥ ≤ |⟨f(x), f(x)− f(y)⟩| · ∥f(x)f(x)⊤∥
≤ ∥f(x)∥2 · ∥f(x)− f(y)∥2 · ∥f(x)f(x)⊤∥
= ∥f(x)∥2 · ∥f(x)− f(y)∥2 · ∥f(x)∥22
≤ ∥f(x)− f(y)∥2

where the 1st step follows from Fact B.4, the 2nd step follows from |⟨a, b⟩| ≤ ∥a∥2∥b∥2 (Fact B.3),
the 3rd step follows from aa⊤ ⪯ ∥a∥22In(Fact B.3), the last step follows from ∥f(x)∥2 ≤
∥f(x)∥1 ≤ 1 (Lemma C.2).

It is obvious that for each i ∈ [4], we have

∥G1,i∥ ≤ ∥f(x)− f(y)∥2 max{∥f(x)∥2, ∥f(y)∥2}3

≤ ∥f(x)− f(y)∥2
where the last step follows from ∥f(x)∥2 ≤ ∥f(x)∥1 ≤ 1.

E.5 LIPSCHITZ CALCULATIONS: STEP 2. LIPSCHITZ FOR MATRIX FUNCTION
⟨f(x), b⟩f(x)f(x)⊤

Lemma E.5. If the following condition holds

• G2 := ⟨f(x), b⟩f(x)f(x)⊤ − ⟨f(y), b⟩f(y)f(y)⊤

Then we have

∥G2∥ ≤ 3∥f(x)− f(y)∥2 · ∥b∥2

Proof. We define

G2,1 := ⟨f(x), b⟩f(x)f(x)⊤ − ⟨f(x), b⟩f(y)f(x)⊤

G2,2 := ⟨f(x), b⟩f(y)f(x)⊤ − ⟨f(x), b⟩f(y)f(y)⊤

G2,3 := ⟨f(x), b⟩f(y)f(y)⊤ − ⟨f(y), b⟩f(y)f(y)⊤

Then it’s apparent that

G2 = G2,1 +G2,2 +G2,3

Since G2,1, G2,2, G2,3 are similar, we only have to bound ∥G2,1∥:

∥G2,1∥ = ∥⟨f(x), b⟩f(x)f(x)⊤ − ⟨f(x), b⟩f(y)f(x)⊤∥
= ∥⟨f(x), b⟩(f(x)− f(y))f(x)⊤∥
≤ |⟨f(x), b⟩| · ∥(f(x)− f(y))f(x)⊤∥
≤ |⟨f(x), b⟩| · ∥f(x)− f(y)∥2 · ∥f(x)∥2

39

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

≤ ∥f(x)∥22 · ∥b∥2∥f(x)− f(y)∥2
≤ ∥f(x)− f(y)∥2 · ∥b∥2

where the 1st step follows from the definition of G2,1, the 2nd step follows from simple algebra, the
3rd step follows from Fact B.4, the 4th step follows from ∥ab⊤∥ ≤ ∥a∥2∥b∥2(Fact B.4), the 5th step
follows from ⟨a, b⟩ ≤ ∥a∥2∥b∥2(Fact B.3), the last step follows from ∥f(x)∥2 ≤ ∥f(x)∥1 ≤ 1.

Thus, we have

∥G2∥ ≤ 3∥f(x)− f(y)∥∥b∥2

E.6 LIPSCHITZ CALCULATIONS: STEP 3. LIPSCHITZ FOR MATRIX FUNCTION
f(x)f(x)⊤ diag(f(x))

Lemma E.6. If the following condition holds

• G3 := ⟨f(x), f(x)⟩diag(f(x))− ⟨f(y), f(y)⟩diag(f(y))

Then we have

∥G3∥ ≤ 3∥f(x)− f(y)∥2

Proof. We define

G3,1 : = ⟨f(x), f(x)⟩diag(f(x))− ⟨f(x), f(y)⟩diag(f(x))
G3,2 : = ⟨f(x), f(y)⟩diag(f(x))− ⟨f(x), f(y)⟩diag(f(y))
G3,3 : = ⟨f(x), f(y)⟩diag(f(y))− ⟨f(y), f(y)⟩diag(f(y))

Thus, it’s trivial that

G3 = G3,1 +G3,2 +G3,3

Since G3,1, G3,2, G3,3 are similar, we only need to bound ∥G3,1∥:

∥G3,1∥ = ∥⟨f(x), f(x)⟩diag(f(x))− ⟨f(x), f(y)⟩diag(f(x))∥
= ∥⟨f(x), f(x)− f(y)⟩diag(f(x))∥
≤ ∥f(x)⊤∥2∥f(x)− f(y)∥2∥ diag(f(x))∥
= ∥f(x)∥22∥f(x)− f(y)∥2
≤ ∥f(x)− f(y)∥2

where the 1st step follows from the definition of G3,1, the 2nd step follows from simple algebra,
the 3rd step follows from ∥αA∥ ≤ |α|∥A∥(Fact B.4), ⟨a, b⟩ ≤ ∥a∥2∥b∥2(Fact B.3), and ∥ab∥ ≤
∥a∥∥b∥(Fact B.4), the 4th step follows from ∥ diag(f(x))∥ = ∥f(x)∥2, the last step follows from
∥f(x)∥2 ≤ ∥f(x)∥1 ≤ 1 (Fact B.3).

Thus, we have

∥G8∥ = ∥G8,1 +G8,2 +G3,3∥
≤ ∥G8,1∥+ ∥G8,2∥+ ∥G3,3∥
= 3∥f(x)− f(y)∥2

where the 1st step follows from the definition of G3, the 2nd step follows from Fact B.4, the last
step follows from the bound of ∥G3,1∥,∥G3,2∥ and ∥G3,3∥.

E.7 LIPSCHITZ CALCULATIONS: STEP 4. LIPSCHITZ FOR MATRIX FUNCTION
⟨f(x), b⟩diag(f(x))

Lemma E.7. If the following condition holds

• G4 := ⟨f(x), b⟩diag(f(x))− ⟨f(y), b⟩diag(f(y))

40

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Then we have

∥G4∥ ≤ 2∥f(x)− f(y)∥2∥b∥2

Proof. We define:

G4,1 : = ⟨f(x), b⟩diag(f(x))− ⟨f(y), b⟩diag(f(x))
G4,2 : = ⟨f(y), b⟩diag(f(x))− ⟨f(y), b⟩diag(f(y))

Thus, it’s trivial that

G4 = G4,1 +G4,2

Since G4,1 and G4,2 are similar, we only need to bound ∥G4,1∥:

∥G4,1∥ = ∥⟨f(x), b⟩diag(f(x))− ⟨f(y), b⟩diag(f(x))∥
= ∥b⊤(f(x)− f(y)) diag(f(x))∥
≤ ∥b⊤∥2∥f(x)− f(y)∥2∥ diag(f(x)∥
≤ ∥b∥2∥f(x)− f(y)∥2∥f(x)∥2
≤ ∥f(x)− f(y)∥2∥b∥2

where the 1st step follows from the definition of G4,1, the 2nd step follows from simple algebra,
the 3rd step follows from ∥ab∥ ≤ ∥a∥∥b∥(Fact B.4) and , the 4th step follows from ∥ diag(x)∥ ≤
∥x∥∞ ≤ ∥x∥2(Fact B.3), the last step follows from ∥f(x)∥2 ≤ ∥f(x)∥1 ≤ 1(Fact B.3).

Thus, we have

∥G4∥ = ∥G4,1 +G4,2∥
≤ ∥G4,1∥+ ∥G4,2∥
= 2∥f(x)− f(y)∥2 · ∥b∥2

where the 1st step follows from the definition of G4, the 2nd step follows from Fact B.4, the last
step follows from the bound of ∥G4,1∥ and ∥G4,2∥.

E.8 LIPSCHITZ CALCULATIONS: STEP 5. LIPSCHITZ FOR MATRIX FUNCTION
diag(f(x) ◦ (f(x)− b))

Lemma E.8. If the following condition holds

• G5 := diag(f(x) ◦ (f(x)− b))− diag(f(y) ◦ (f(y)− b))

Then we have

∥G5∥ ≤ 2∥f(x)− f(y)∥2 + ∥f(x)− f(y)∥ · ∥b∥2

Proof. We define:

G5,1 : = diag(f(x) ◦ (f(x)− b))− diag(f(x) ◦ (f(y)− b))

G5,2 : = diag(f(x) ◦ (f(y)− b))− diag(f(y) ◦ (f(y)− b))

Then, it’s trivial that

G5 = G5,1 +G5,2

Bound ∥G5,1∥:

∥G5,1∥ = ∥ diag(f(x) ◦ (f(x)− b))− diag(f(x) ◦ (f(y)− b))∥
= ∥diag(f(x)) diag(f(x)− f(y))∥
≤ ∥diag(f(x))∥∥diag(f(x)− f(y))∥
≤ ∥f(x)∥2∥f(x)− f(y)∥2

41

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

≤ ∥f(x)− f(y)∥2
where the 1st step follows from the definition of G5,1, the 2nd step follows from Fact B.2, the 3rd
step follows from ∥ab∥ ≤ ∥a∥∥b∥(Fact B.4), the 4th step follows from ∥ diag(a)∥ ≤ ∥a∥∞ ≤
∥a∥2(Fact B.3), the last step follows from ∥f(x)∥2 ≤ ∥f(x)∥1 ≤ 1.

Bound ∥G5,2∥:
∥G5,2∥ = ∥ diag(f(x) ◦ (f(y)− b))− diag(f(y) ◦ (f(y)− b))∥

= ∥diag(f(x)− f(y)) diag(f(y)− b)∥
≤ ∥diag(f(x)− f(y))∥∥diag(f(y)− b)∥
≤ ∥f(x)− f(y)∥2∥f(y)∥2 + ∥f(x)− f(y)∥2∥b∥2
≤ ∥f(x)− f(y)∥2 + ∥f(x)− f(y)∥2∥b∥2

where the 1st step follows from the definition of G5,2, the 2nd step follows from Fact B.2, the 3rd
step follows from Fact B.4, the 4th step follows from ∥ diag(a)∥ ≤ ∥a∥∞ ≤ ∥a∥2(Fact B.3), the
last step follows from ∥f(x)∥2 ≤ ∥f(x)∥1 ≤ 1.

Thus, we have
∥G5∥ = ∥G5,1 +G5,2∥

≤ ∥G5,1∥+ ∥G5,2∥
≤ 2∥f(x)− f(y)∥2 + ∥f(x)− f(y)∥2 · ∥b∥2

where the 1st step follows from the definition of G5, the 2nd step follows from Fact B.2, the 3rd step
follows from the bound of ∥G5,1∥ and ∥G5,2∥.

E.9 LIPSCHITZ CALCULATIONS: STEP 6. LIPSCHITZ FOR MATRIX FUNCTION
diag(f(x) ◦ f(x))

Lemma E.9. If the following condition holds

• G6 := diag(f(x) ◦ f(x))− diag(f(y) ◦ f(y))

Then we have
∥G6∥ ≤ 2∥f(x)− f(y)∥2

Proof. We define:
G6,1 : = diag(f(x) ◦ f(x))− diag(f(x) ◦ f(y))
G6,2 : = diag(f(x) ◦ f(y))− diag(f(y) ◦ f(y))

Then, it’s trivial that
G6 = G6,1 +G6,2

Since, G6,1 and G6,2 are similar, we only need to bound ∥G6,1∥:
∥G6,1∥ = ∥diag(f(x) ◦ f(x))− diag(f(x) ◦ f(y))∥

= ∥diag(f(x))(diag(f(x)− diag(f(y)))∥
≤ ∥f(x)∥2∥f(x)− f(y)∥2
≤ ∥f(x)− f(y)∥

where the 1st step follows from the definition of G6,1, the 2nd step follows from Fact B.2, the 3rd
step follows from ∥ab∥ ≤ ∥a∥∥b∥(Fact B.4) and ∥ diag(a)∥ ≤ ∥a∥∞ ≤ ∥a∥2(Fact B.3), the last
step follows from ∥f(x)∥2 ≤ ∥f(x)∥1 ≤ 1.

Thus, we have
∥G6∥ = ∥G6,1 +G6,2∥

≤ ∥G6,1∥+ ∥G6,2∥
= 2∥f(x)− f(y)∥2

where the 1st step follows from the definition of G6, the 2nd step follows from Fact B.4, the last
step follows from the bound of ∥G6,1∥ and ∥G6,2∥.

42

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

E.10 LIPSCHITZ CALCULATIONS: STEP 7. LIPSCHITZ FOR MATRIX FUNCTION
f(x)(f(x) ◦ b)⊤

Lemma E.10. If the following condition holds

• G7 := f(x)(f(x) ◦ b)⊤ − f(y)(f(y) ◦ b)⊤

Then, we have

∥G7∥ ≤ 2∥f(x)− f(y)∥2 · ∥b∥2

Proof. We define:

G7,1 : = f(x)(f(x) ◦ b)⊤ − f(x)(f(y) ◦ b)⊤

G7,2 : = f(x)(f(y) ◦ b)⊤ − f(y)(f(y) ◦ b)⊤

Since G7,1 and G7,2 are similar, we only need to bound ∥G7,1∥:

∥G7,1∥ = ∥f(x)(f(x) ◦ b)⊤ − f(x)(f(y) ◦ b)⊤∥
= ∥f(x)((f(x)− f(y)) ◦ b)⊤∥
≤ ∥f(x)∥2∥(f(x)− f(y)) ◦ b∥2
≤ ∥f(x)− f(y)∥2∥b∥2

where the 1st step follows from the definition of G7,1, the 2nd step follows from simple algebra, the
3rd step follows from ∥ab⊤∥ ≤ ∥a∥2∥b∥2(Fact B.4) and ∥a⊤∥2 = ∥a∥2, the last step follows from
∥a ◦ b∥2 ≤ ∥a∥∞∥b∥ ≤ ∥a∥2∥b∥2(Fact B.3) and ∥f(x)∥2 ≤ ∥f(x)∥1 ≤ 1.

Thus, we have

∥G7∥ = ∥G7,1 +G7,2∥
≤ ∥G7,1∥+ ∥G7,2∥
= 2∥f(x)− f(y)∥2 · ∥b∥2

where the 1st step follows from the definition of G7, the 2nd step follows from Fact B.4, the last
step follows from the bound of ∥G7,1∥ and ∥G7,2∥.

E.11 LIPSCHITZ CALCULATIONS: STEP 8. LIPSCHITZ FOR MATRIX FUNCTION
(f(x) ◦ b)f(x)⊤

Lemma E.11. If the following condition holds

• G8 := (f(x) ◦ b)f(x)⊤ − (f(y) ◦ b)f(y)⊤

Then we have

∥G8∥ ≤ 2∥f(x)− f(y)∥2 · ∥b∥2

Proof. We define:

G8,1 : = (f(x) ◦ b)f(x)⊤ − (f(x) ◦ b)f(y)⊤

G8,2 : = (f(x) ◦ b)f(y)⊤ − (f(y) ◦ b)f(y)⊤

Then, it’s trivial that

G8 = G8,1 +G8,2

Since G8,1 and G8,2 are similar, we only need to bound ∥G8,1∥:

∥G8,1∥ = ∥(f(x) ◦ b)f(x)⊤ − (f(x) ◦ b)f(y)⊤∥
= ∥(f(x) ◦ b)(f(x)− f(y))⊤∥

43

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

≤ ∥f(x) ◦ b∥2∥f(x)− f(y)∥2
≤ ∥f(x)∥2∥b∥2∥f(x)− f(y)∥2
≤ ∥f(x)− f(y)∥2∥b∥2

where the 1st step follows from the definition of G8,1, the 2nd step follows from simple algebra,
the 3rd step follows from ∥ab⊤∥ ≤ ∥a∥2∥b∥2(Fact B.4), the 4th step follows from ∥a ◦ b∥2 ≤
∥a∥∞∥b∥ ≤ ∥a∥2∥b∥2(Fact B.3), the last step follows from ∥f(x)∥2 ≤ ∥f(x)∥1 ≤ 1 (Lemma C.2).

Thus, we have

∥G8∥ = ∥G8,1 +G8,2∥
≤ ∥G8,1∥+ ∥G8,2∥
= 2∥f(x)− f(y)∥2 · ∥b∥2

where the 1st step follows from the definition of G8, the 2nd step follows from Fact B.4, the last
step follows from the bound of ∥G8,1∥ and ∥G8,2∥.

F APPROXIMATE NEWTON METHOD

In this section, we provide an approximate version of the newton method for convex optimization.
In Section F.1, we state some assumptions of the traditional newton method and the exact update
rule of the traditional algorithm. In Section F.2, we provide the approximate update rule of the
approximate newton method, we also implement a tool for compute the approximation of ∇2L and
use some lemmas from Li et al. (2023b) to analyze the approximate newton method. In Section F.3,
we find a lower bound of α(x). In Section F.4, we use a Lemma from previous Sections to find a
upper bound of M .

F.1 DEFINITION AND UPDATE RULE

Here in this section, we focus on the local convergence of the Newton method. We consider the
following target function

min
x∈Rd

L(x)

with these assumptions:
Definition F.1 ((l,M)-good Loss function). For a function L : Rd → R, we say L is (l,M)-good
it satisfies the following conditions,

• l-local Minimum. We define l > 0 to be a positive scalar. If there exists a vector x∗ ∈ Rd

such that the following holds

– ∇L(x∗) = 0d.
– ∇2L(x∗) ⪰ l · Id.

• Hessian is M -Lipschitz. If there exists a positive scalar M > 0 such that

∥∇2L(y)−∇2L(x)∥ ≤M · ∥y − x∥2

• Good Initialization Point. Let x0 denote the initialization point. If r0 := ∥x0 − x∗∥2
satisfies

r0M ≤ 0.1l

We define gradient and Hessian as follows
Definition F.2 (Gradient and Hessian). The gradient g : Rd → Rd of the loss function is defined as

g(x) := ∇L(x)

The Hessian H : Rd → Rd×d of the loss function is defined as,

H(x) := ∇2L(x)

44

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

With the gradient function g : Rd → Rd and the Hessian matrix H : Rd → Rd×d, we define the
exact process of the Newton method as follows:
Definition F.3 (Exact update of the Newton method).

xt+1 = xt −H(xt)
−1 · g(xt)

F.2 APPROXIMATE OF HESSIAN AND UPDATE RULE

In many real-world tasks, it is very hard and expensive to compute exact∇2L(xt) or (∇2L(xt))
−1.

Thus, it is natural to consider the approximated computation of the gradient and Hessian. The
computation is defined as
Definition F.4 (Approximate Hessian). For any Hessian H(xt) ∈ Rd×d, we define the approxi-
mated Hessian H̃(xt) ∈ Rd×d to be a matrix such that the following holds,

(1− ϵ0) ·H(xt) ⪯ H̃(xt) ⪯ (1 + ϵ0) ·H(xt).

In order to get the approximated Hessian H̃(xt) efficiently, here we state a standard tool (see
Lemma 4.5 in Deng et al. (2022)).
Lemma F.5 (Deng et al. (2022); Song et al. (2022)). Let ϵ0 = 0.01 be a constant precision param-
eter. Let A ∈ Rn×d be a real matrix, then for any positive diagonal (PD) matrix D ∈ Rn×n, there
exists an algorithm which runs in time

O((nnz(A) + dω) poly(log(n/δ)))

and it outputs an O(d log(n/δ)) sparse diagonal matrix D̃ ∈ Rn×n for which

(1− ϵ0)A
⊤DA ⪯ A⊤D̃A ⪯ (1 + ϵ0)A

⊤DA.

Note that, ω denotes the exponent of matrix multiplication, currently ω ≈ 2.373 Williams (2012);
Le Gall (2014); Alman & Williams (2021).

Following the standard of Approximate Newton Hessian literature Anstreicher (2000); Jiang et al.
(2020a); Brand et al. (2021); Song et al. (2021); Huang et al. (2022); Li et al. (2023b), we consider
the following.
Definition F.6 (Approximate update). We consider the following process

xt+1 = xt − H̃(xt)
−1 · g(xt).

We state a tool from prior work,
Lemma F.7 (Iterative shrinking Lemma, Lemma 6.9 on page 32 of Li et al. (2023b)). If the following
condition hold

• Loss Function L is (l,M)-good (see Definition F.1).

• Let ϵ0 ∈ (0, 0.1) (see Definition F.4).

• Let rt := ∥xt − x∗∥2.

• Let rt := M · rt

Then we have

rt+1 ≤ 2 · (ϵ0 + rt/(l − rt)) · rt.

Let T denote the total number of iterations of the algorithm, to apply Lemma F.7, we will need the
following induction hypothesis lemma. This is very standard in the literature, see Li et al. (2023b).
Lemma F.8 (Induction hypothesis, Lemma 6.10 on page 34 of Li et al. (2023b)). For each i ∈ [t],
we define ri := ∥xi − x∗∥2. If the following condition hold

• ϵ0 = 0.01 (see Definition F.4 for ϵ0)

45

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

• ri ≤ 0.4 · ri−1, for all i ∈ [t]

• M · ri ≤ 0.1l, for all i ∈ [t] (see Definition F.1 for M)

Then we have

• rt+1 ≤ 0.4rt

• M · rt+1 ≤ 0.1l

F.3 LOWER BOUND ON β

Lemma F.9. If the following conditions holds

• ∥A∥ ≤ R

• ∥x∥2 ≤ R

• Let β be lower bound on ⟨exp(Ax),1n⟩

Then we have

β ≥ exp(−R2)

Proof. We have

⟨exp(Ax),1n⟩ ≥ max
i∈[n]

exp(−|(Ax)i|)

≥ exp(−∥Ax∥∞)

≥ exp(−∥Ax∥2)
≥ exp(−R2)

the 1st step follows from simple algebra, the 2nd step follows from definition of ℓ∞ norm, the 3rd
step follows from Fact B.3.

F.4 UPPER BOUND ON M

Lemma F.10. If the following conditions holds

• ∥A∥ ≤ R.

• ∥x∥2 ≤ R.

• Let H denote the hessian of loss function L.

• ∥H(x)−H(y)∥ ≤ β−2n1.5 exp(20R2) · ∥x− y∥2 (Lemma E.1)

Then, we have

M ≤ n1.5 exp(30R2).

Proof. It follows from Lemma F.9.

G LIMITATION

This work primarily develops a theoretical framework for softmax regression influenced by atten-
tion mechanisms in large language models. The focus on theory means that the absence of empirical
validation leaves important questions unanswered about the practical effectiveness and robustness
of the proposed methods. Real-world applications could exhibit behaviors not predicted by the
theoretical models, especially under conditions of data variability and deviations from the model

46

Published as a workshop paper at DeLTa Workshop (ICLR 2025)

assumptions that fall outside the scope of this study. The effectiveness of the proposed algorithms is
contingent on several assumptions made about the data and model structure, such as sparsity, distri-
bution characteristics, and the relationships between variables. These assumptions might not always
hold in practical scenarios, potentially limiting the generalizability and real-world applicability of
the results.

In terms of complexity and scalability, while the proposed algorithms are designed to be computa-
tionally efficient in theory, their ability to scale effectively when handling extremely large datasets or
high-dimensional problems remains unexplored. Practical deployment could face challenges such
as memory constraints or performance bottlenecks that were not apparent in the theoretical analysis.
Additionally, the findings are specifically tailored to softmax regression problems, and this narrow
focus may restrict the direct applicability of the results to other types of regression or machine learn-
ing areas that do not use softmax or similar functions. This limitation suggests that further research
would be needed to adapt or extend these methods to broader contexts, ensuring their relevance
across a wider range of applications.

47

	Introduction
	Preliminary
	Key Concepts
	Problem Definition

	Main Result
	Technical Overview
	Decomposition of Hessian for Softmax Regression
	Hessian is Positive Definite
	Lipschitz property for Hessian
	Approximated Newton Method with Sparsification Tool

	Analysis of Hessian
	Splitting the Hessian
	Hessian is Positive Semidefinite
	Hessian is Lipschitz

	Approximate Newton Method
	Formal Result
	Conclusion
	Related Work
	PRELIMINARY
	Notations
	Basic Algebra
	Basic Vector Norm Bounds
	Basic Matrix Norm Bounds
	Basic PSD
	Basic Derivative Rules
	Regularization

	SOFTMAX REGRESSION LOSS
	Definitions
	Gradient
	Definition of Gradient
	Hessian Calculations: Step 1, Hessian of
	Hessian Calculations: Step 2, Hessian of
	Hessian Calculations: Step 3, Hessian of
	Hessian Calculations: Step 4, Hessian of
	Hessian Calculations: Step 5, Hessian of
	Helpful Lemma
	Decomposing , and into Low Rank Plus Diagonal

	HESSIAN IS POSITIVE DEFINITE
	PSD Lower Bound
	Lower bound on Hessian

	HESSIAN IS LIPSCHITZ
	Main Result
	A Core Tool: Lipschitz Property for Several Basic Functions
	Summary of Eight Steps
	Lipschitz Calculations: Step 1. Lipschitz for Matrix Function
	Lipschitz Calculations: Step 2. Lipschitz for Matrix Function
	Lipschitz Calculations: Step 3. Lipschitz for Matrix Function
	Lipschitz Calculations: Step 4. Lipschitz for Matrix Function
	Lipschitz Calculations: Step 5. Lipschitz for Matrix Function
	Lipschitz Calculations: Step 6. Lipschitz for Matrix Function
	Lipschitz Calculations: Step 7. Lipschitz for Matrix Function
	Lipschitz Calculations: Step 8. Lipschitz for Matrix Function

	APPROXIMATE NEWTON METHOD
	Definition and Update Rule
	Approximate of Hessian and Update Rule
	Lower bound on
	Upper bound on

	Limitation

