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Abstract

Algorithmic decision-making in practice must be
fair for legal, ethical, and societal reasons. To
achieve this, prior research has contributed vari-
ous approaches that ensure fairness in machine
learning predictions, while comparatively little
effort has focused on fairness in decision-making,
specifically off-policy learning. In this paper,
we propose a novel framework for fair off-policy
learning: we learn decision rules from observa-
tional data under different notions of fairness,
where we explicitly assume that observational
data were collected under a different — potentially
discriminatory — behavioral policy. Importantly,
our framework is applicable to different fairness
notions for off-policy learning, where fairness
is formalized based on actions or policy values.
As our main contribution, we propose a neural
network-based framework to learn optimal poli-
cies under the different fairness notions. We fur-
ther provide theoretical guarantees in the form of
generalization bounds for the finite-sample ver-
sion of our framework. We demonstrate the ef-
fectiveness of our framework through extensive
numerical experiments using both simulated and
real-world data. Altogether, our work enables
algorithmic decision-making in a wide array of
practical applications where fairness must be en-
sured.

1. Introduction

Algorithmic decision-making in practice must avoid discrim-
ination and thus be fair to meet legal, ethical, and societal
demands (Nkonde, 2019; De-Arteaga et al., 2022; Corbett-
Davies et al., 2023). For example, in the U.S., the Fair
Housing Act and Equal Credit Opportunity Act stipulate
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that decisions must not be subject to systematic discrimina-
tion by gender, race, or other attributes deemed as sensitive.

However, research from different areas has provided re-
peated evidence that algorithmic decision-making is often
not fair. A prominent example is Amazon’s tool for automat-
ically screening job applicants that was used between 2014
and 2017 (Dastin, 2018). It was later discovered that the un-
derlying algorithm generated decisions that were subject to
systematic discrimination against women and thus resulted
in a ceteris paribus lower probability of women being hired.

Ensuring fairness in off-policy learning is subject to inher-
ent challenges. The reason is that off-policy learning is
based on observational data that may ingrain existing bias
from historical decision-making.! Hence, one challenge is
that the resulting policy must be fair despite the observa-
tional data being collected under a different — potentially
discriminatory — behavioral policy. Furthermore, one may
erroneously think that a naive approach to achieving fair-
ness in algorithmic decision-making is to simply omit the
sensitive attribute from the observational data. For instance,
to avoid bias against women, one would prevent off-policy
learning from having access to a variable that stores the
gender of an individual. However, in observational data,
other variables may act as proxies for gender, and, hence,
the learned policy may still lead to discrimination due to the
underlying data-generating process (Kilbertus et al., 2017).
Hence, a custom approach for handling sensitive attributes
in off-policy learning is needed.

In this paper, we propose a novel framework for fair off-
policy learning from observational data. Specifically, we
learn fair decision rules from observational data where the
observational may be collected under a different — poten-
tially discriminatory — behavioral policy. Specifically, we
propose a neural framework, called FairPol, to learn optimal
policies under these fairness notions. Therein, we leverage
fair representation learning in combination with custom
training objectives so that the resulting policies satisfy our
fairness notions. To the best of our knowledge, ours is the
first neural approach to fair off-policy learning. We further

'The term “bias” can have different meanings. Here, we use
bias to refer to algorithmic bias, where algorithms discriminate
against individuals from certain sensitive groups. This is in contrast
to the statistical bias of estimators, e.g., due to confounded data.
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provide theoretical guarantees in the form of generalization
bounds for the finite-sample version of our framework.

Our off-policy learning framework is applicable to two dif-
ferent ways how fairness can be expressed, namely with
respect to both the action and the policy value.

1. Fairness with respect to the action ensures that indi-
viduals with different sensitive attributes but otherwise
equal characteristics receive the same decision. In
other words, the choice of action is independent of the
sensitive attribute. For example, in credit lending, this
means that a woman and a man, each with the same
academic subject, have the same chance that their stu-
dent loan is approved. We later refer to this notion as
“action fairness”.

2. Fairness with respect to the policy value allows us
to express fairness in the way that we consider the
utility (i.e., the policy value) for each sensitive group.
Hence, individuals with different sensitive attributes
achieve, on average, a similar utility. For example, this
may allow governments to account for the fact that
some sub-populations have been historically underrep-
resented. Hence, as women have a lower propensity
than men to pursue academic careers in subjects related
to technology, governments may want to strategically
incentivize women through student loans so that the
long-term benefit for society is maximized. We refer
to this notion as “value fairness”. Later, we introduce
two variants of value fairness that build upon envy-free
fairness and max-min fairness.

Our contributions? are three-fold. (1) We then propose a
neural framework, called FairPol, to learn optimal policies
under different fairness notions. For this, we leverage fair
representation learning in combination with custom training
objectives so that the resulting policies satisfy our fairness
notions. (2) We provide theoretical learning guarantees in
the form of generalizations bounds for FairPol. (3) We
also evaluate the effectiveness of our framework through
extensive numerical experiments using both simulated and
real-world data.

2. Related work

We provide an overview on related work on off-policy learn-
ing from observational data, both in the standard machine
learning and algorithmic fairness literature. For further back-
ground on algorithmic fairness and fairness in utility-based
decision models (e.g., reinforcement learning), we refer to
Appendix A.

Off-policy learning: Off-policy learning typically aims
to determine optimal policies from observational data by

2Code is available at
DennisFrauen/FairPol.git.

https://github.com/

maximizing the so-called policy value (e.g., Kallus, 2018;
Athey & Wager, 2021). The policy value is a causal quan-
tity, which can be identified from observational data under
certain assumptions (see Section 3). There are three stan-
dard methods for estimating the policy value: (1) The direct
method (DM) (Qian & Murphy, 2011; Bennett & Kallus,
2020); (2) The inverse propensity score weighted (IPW)
method (Kallus, 2018); and (3) The doubly robust (DR)
(Athey & Wager, 2021; Chernozhukov et al., 2022). Several
works propose extensions of the three standard methods for
specific settings, such as unobserved confounding (Kallus &
Zhou, 2018a; Bennett & Kallus, 2019) or distribution shifts
(Hatt et al., 2022; Kallus et al., 2022), or overlap violations
(Kallus, 2021). Different from our work, none of the above
works deals with algorithmic fairness in off-policy learning.

Fair representation learning: A popular approach to
achieve fairness in machine learning models is to remove
the algorithmic bias incorporated in the training data by
producing a new, fair representation of the data (e.g., Zemel
et al., 2013; Locatello et al., 2019). For this, one typically
uses neural networks that learn such a fair representation,
and, then, the fair representation is used as input to the ac-
tual prediction model. For instance, statistical parity can
be achieved by producing a new representation of the data
that is non-predictive of the sensitive attributes using proba-
bilistic models (Creager et al., 2019) or adversarial learning
methods (Madras et al., 2018). In our work, we adapt fair
representation to satisfy parts of our fairness constraints.
However, our main contribution is not a new method for fair
representation learning, but rather we adapt fairness notions
and provide an understanding of how these fairness notions
interact in the context of off-policy learning.

Algorithmic fairness for off-policy learning from ob-
servational data: The work by Viviano & Bradic (2023)
studies fair off-policy learning for Pareto-optimal policies.
There are two major differences to our work: (1) Viviano &
Bradic (2023) propose to maximize fairness over the set of
Pareto-optimal policies. Here, Pareto optimality is defined
so that the policy value of one sensitive group cannot be
improved without reducing the policy value for the opposite
group. In contrast, we propose to incorporate our fairness
notions by adjusting the off-policy learning objective (value
fairness), and then maximize this objective over the class
of so-called action fair policies. (2). The approach from
Viviano & Bradic (2023) is restricted to learning linear
policies, while our framework enables learning arbitrarily
non-linear policies. This is possible because we can in-
corporate the action fairness constraint by leveraging fair
representation learning to obtain a representation indepen-
dent of the sensitive attribute, which can be used in a second
step to train an optimal policy. Beyond Viviano & Bradic
(2023), other fairness approaches with different fairness no-
tions for off-policy learning exist such as principal fairness
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(Imai & Jiang, 2023).

Causal SCM-based fairness for off-policy learning: This
literature stream rests on the assumption that the causal
graph of the decision problem is known and then seeks
to block specific causal pathways that are deemed unfair
(Nabi et al., 2019; Nilforoshan et al., 2022). However, ap-
proaches from this literature stream require exact knowledge
of the causal structure of the decision problem. That is, the
underlying structural causal model of the data-generating
process must be a prior known. In contrast to that, we do
not make such strong assumptions (e.g., exact knowledge
of the underlying causal structure within our covariates) as
this information is rarely available in practice.

Research gap: In sum, there is — to the best of our knowl-
edge — no neural framework for fair off-policy learning from
observational data. Hence, there are also no baselines that
are applicable later, as there are no previous works that
consider our fairness notions for off-policy learning.

3. Problem setting

We build upon the standard setting for policy learn-
ing from observational data (e.g., Kallus, 2018; Athey
& Wager, 2021). We consider observational data
(Xi,Si, A, Y;), sampled i.i.d. from a data-generating
process (X, S, A,Y) ~ P, which consists of user-specific
covariates X € X, discrete sensitive attributes S € S,
a binary action A € {0,1}, and an outcome Y € R.3
For example, in credit lending, one could model the credit
score of an applicant by X, the gender or age as a sensi-
tive attribute S, a decision A whether to approve or re-
ject the loan, and a profit Y for the lending institution.
The causal graph from our setting
is shown in Fig. 1. Note that mod-
eling the action A as a binary vari-
able is consistent with previous lit-
erature (e.g., Kallus, 2018; Kallus
& Zhou, 2018a; Frauen & Feuer-
riegel, 2023; Hatt et al., 2022) and
is common for decision-making in
a wide range of practical applica-
tions such as, e.g., automated hiring,
credit lending, ad targeting, and per-
sonalized medicine (e.g., Smith et al.,
2023; Yoganarasimhan et al., 2022;
Kozodoi et al., 2022; Feuerriegel et al., 2024).

Figure 1. Causal
graph. We allow
for arbitrary depen-
dence between X
and S.

We make use of the Neyman-Rubin potential outcomes
framework (Rubin, 1978) and denote Y (a) as the potential

3In the literature on causal machine learning, actions are of-
tentimes also called treatments (e.g., Curth & van der Schaar,
2021). Throughout our manuscript, we prefer the term “action” as
it directly relates to the decision-making literature.

outcome, which would have been observed if the action
had been set to A = a. Formally, a policy is a measurable
function 7: X x & — [0, 1], which maps an individual with
covariates (X, .5) onto a probability of receiving an action.
In particular, we assume stochastic policies. Here, the action
probability provided by the policy may be thought of as a
measure of uncertainty about the decision.

The policy value of 7 is then defined as

V(r) = E[Y™] = E[r(X,8) Y (1) + (1 —7(X,5)) Y(O()l].)

We cannot directly estimate the policy value because, for
each observation, only one of the potential outcomes is ob-
served in the observational data. This is known as the funda-
mental problem of causal inference (Pearl, 2009). However,
we can impose the following standard assumptions in order
to identify the policy value V (7) from observational data
(Rubin, 1974).

Assumption 3.1 (Standard causal inference assumptions).
We assume: (i) consistency: Y (A) = Y (ii) positivity:
O<PA=1|X=2,5=s)<1forallz € X; and
(iii) strong ignorability: Y (0),Y (1) 1L A | X, S.

Under Assumption 3.1, the policy value is identified by
V(r) = Ew[¢p™ (7, W)], with observational data W =
(X,S,A,Y) and where ¢™ (7, W) is one of the following
three policy scores:

PPM (i, W) = 7(X, S) u1 (X, S) + (1 — n(X, 8) po(X, 8), (2)

o _ AKX +(A-4) (1 - (X, 5))
W) = X S+ A= A (= m(X,8) ©
PR, W) = PM (e, W) “)

An(X,8)+ (1 - A) (1 - n(X,8))

Amy(X,S) + (L= A) (1 — m(X, ) ¥ —palx,s), )

which refer to the direct method (DM), the inverse
propensity score weighted (IPW) method, and the dou-
bly robust (DR) method, and where p;(X,S) = E[Y |
X,S,A = j|,j € {0,1}, are the response surfaces and
where m,(X,S) = P(A = 1 | X,5) is the propensity
score (i.e., behavioral policy). Both 1, (X, .S) and 1 (X, S)
are also called nuisance parameters. Both are ground-truth
components for the data-generating process which can be
estimated from the observational data.

Task: In standard off-policy learning, the objective is to find
a policy from observational data that maximizes the policy
value via

7 € argmax V), (6)

mell

where II is some predefined class of policies (uf denoting
“unfair”). For example, II may contain all policies param-
eterized by some neural network. Any policy that satisfies
Eq. (6) is an optimal unrestricted policy, as it does not give
any special considerations to the sensitive covariates .S when
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maximizing the policy value. In special cases, the optimal
unrestricted policy may coincide with a policy that satisfies
the desired fairness notion but, in practice, it will generally
not. In many situations, the optimal unrestricted policy will
lead to discrimination because of which fairness must be
explicitly enforced.

4. Fairness notions for off-policy learning

We now consider different, existing fairness notions from
previous research on utility-based decision models, which
we carefully tailored to off-policy learning. Specifically,
fairness may enter off-policy learning at two different stages,
namely with respect to (1) the action and (2) the policy
value. We refer to them as (1) action fairness and (2) value
fairness, respectively. The former, action fairness, prohibits
discrimination with respect to the selected action, while the
latter, value fairness, prohibits discrimination with respect
to the expected utility (i.e., the policy value). We provide a
toy example to discuss our fairness notions in Appendix C.

m Action fairness: The objective in action fairness is that
the prediction of a policy should not depend on an individ-
ual’s sensitive attributes. For example, in credit lending,
credit approval should not be dependent on the gender of
the applicants. We formalize this in the following definition.

Definition 4.1 (Action fairness). A policy 7 € II fulfills
action fairness if it is not a function of S and 7 (X) 1L S,
that is, the recommended action should be independent
of the sensitive attribute. A policy 7t that fulfills action
fairness is optimal if it satisfies 7™ € argmax .y V(T),
where I, = {m € 11|« fulfills action fairness}.

Action fairness is the equivalent of demographic parity for
decision-making (Hardt et al., 2016). It ensures that rec-
ommendations made by the policy are independent of the
sensitive attribute. As such, action fairness is relevant in
many applications such as hiring or credit lending where
legal frameworks mandate that decisions may not discrimi-
nate against certain sensitive attributes (Barocas & Selbst,
2016; Kleinberg et al., 2019).

m Value fairness: The rationale behind value fairness is
that different sub-populations defined by the sensitive at-
tribute may benefit differently from a policy. Hence, we
now express fairness with respect to the policy value and
thus ensure that individuals with different sensitive at-
tributes achieve, on average, a similar utility. To formalize
value fairness, let us denote the conditional policy value
Vi(m) = E[yp™(m, W) | S = s], where we condition on the
sensitive attribute S = s. In the following, we introduce two
variants of value fairness with different aims: (1) envy-free
fairness and (2) max-min fairness. The former, envy-free
fairness, ensures that the conditional policy values V(7),
s € {0,1}, do not differ more than some predefined level «

between the sub-populations. The latter, max-min fairness,
ensures that the worst-case conditional policy value across
sub-populations is being maximized.

Definition 4.2 (Envy-free fairness). A policy w € 11 fulfills
envy-free fairness with level o > 0 if |Vi(7) — Vg (m)| <
aforall s,s" € S. We denote the set of envy-free policies by
II(a) = {7 € 11| 7 is envy free with level a}. An envy-free
policy 7 is optimal if T € arg maX, cyy(q) V().
Definition 4.3 (Max-min fairness). A policy 7™ € 1I
fulfills max-min fairness if it maximizes the worst-case
policy value for the sensitive attributes, that is, ™" €
arg max, oy infgeg Vs ().

The above definitions of value fairness are inspired by previ-
ous literature on resource allocation (e.g., Arnsperger, 1994;
Bertsimas et al., 2011), and we here adopt them here to
off-policy learning, that is, learning from observational data.
Envy-free fairness allows decision-makers to control for
disparities in the utility between the sensitive groups by fix-
ing a. Max-min fairness seeks the best possible worst-case
policy value.

m Combining action fairness and value fairness: Both
action fairness and value fairness can be combined in off-
policy learning so that the obtained policies fulfill both
notions simultaneously. To this end, one simply replaces the
policy class II with IL,¢. This thus restricts the policy class
to all policies that fulfill action fairness, and, as a result, one
obtains policies that fulfill both notions.

Combining action fairness and value fairness has also theo-
retical implications, which we discuss in the following. In
fact, it turns out that the notion of max-min fairness only
yields a useful fairness notion when it is used in combina-
tion with action fairness. We show this in the following
Lemma 4.4.

Lemma 4.4. Let 11 the set of all measurable policies w: X X
S — [0, 1]. Then, there exists a policy that fulfills max-min
fairness, i.e., ™ € argmax oy infseg V() which is also
an optimal unrestricted policy (i.e., a solution to Eq. (6)).

We now turn to the relationship between envy-free fairness
and max-min fairness when combined with action fairness.
As it turns out, under action fairness and some further con-
ditions, max-min fairness can be seen as a special case of
envy-free fairness with o = 0. This is stated in Lemma 4.5.
We provide an additional discussion of the assumptions from
Lemma 4.5 in Appendix D.

Lemma 4.5. Let ITE(z,s*) = pi(z,s*) — po(x,s*)
denote the individual treatment effect for an individual
with covariates (x,s*). We further assume that S =
{0,1} is binary, and let (7™™,s*) be a solution to
maxyer infses Vi(m), and let 7™ (z) fulfill action fair-
ness. Furthermore, we assume that there exists a set of co-
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variates V. C X withP(X € V | S = s) > 0 such that: ei-
ther ITE(x, s*) > 0 and 7™ (z) < 1; or ITE(z,s*) < 0
and T (z) > 0 forallx € V, s € S. Then, m™™ fulfills
envy-free fairness with o = 0. Further, all optimal policies
that both satisfy action fairness and envy-free fairness with
o = 0 also fulfill max-min fairness.

5. Neural framework for off-policy learning

We propose our neural framework, called FairPol, which
learns optimal action and/ or value fair policies in two steps
(see Fig. 2). In Step 1, we ensure action fairness by restrict-
ing the underlying policy class II to a subset of policies
1L,y C IT (Sec. 5.1). In Step 2, we ensure value fairness by
changing the underlying learning objective (Sec. 5.2). We
provide theoretical results in Sec. 5.3.

5.1. Step 1: Fair representation learning for action
fairness

To obtain II,¢, we build upon the idea of fair representa-
tion learning (e.g., Zemel et al., 2013; Madras et al., 2018)
but adapt it to our task of fair off-policy learning. We first
learn a fair representation ®: X — R* of the data so that
O(X) 1L S, but where ®(X) is still predictive of the out-
come Y. This ensures that any policy based on ®(X) satis-
fies action fairness but is still effective in achieving a large
policy value. In our implementation, we parameterize ¢
by feed-forward neural networks that are trained with two
adversarial objectives. As aresult, ® essentially yields a pol-
icy class that is restricted to all policies with action fairness,
thatis, [I% = {mpo ® | § € O}.

Legend

@ @ FE Feed-foward
neural network
Adversarial
FF |FF predictor

T Representation

@—»FF—» ® FF

Step 2

Figure 2. Overview of FairPol which provides an instantiation of
our framework with neural networks.

We use three feed-forward neural networks to learn the
representation ®: (1) a base representation network ®g,,
that takes the non-sensitive attributes X as input and outputs
the representation; (2) an outcome prediction network G(’,/Y
that predicts the outcome Y based on the representation ®;
and (3) a sensitive attribute network Ggs that predicts the
sensitive attribute .S based on the representation. Here 0,
Ay, and fg denote the neural network parameters. The base

representation network ®g_ serves as basis to construct the
fair representation, while Ggy and Ggs allow us to ensure
predictiveness of Y~ and non-predictiveness of .S.

We proceed as follows to find the optimal parameters O,
0y, and 0. We optimize an objective consisting of three
parts: (1) The outcome loss Ly ensures that to our represen-
tation ® and the outcome prediction network are predictive
of the outcome Y. For this, we minimize Ly (0g,0y) =
Ly (G, (®e, (X)) — YZ-)2. (2) The sensitivity loss
L learns the parameters of the sensitive attribute network,
ie., G;?S, so that it is predictive of S. We thus min-
imize ﬁs(@@, 95) = % Z,Zl:l CE (GGSS (@9¢ (Xl)) 5 SZ),
where CE denotes the categorical cross-entropy loss.
(3) The confusion loss L.ont, guided by the sensitive at-
tribute network, aims to render the representation  non-
predictive of S. We thus minimize Lcont(fo,0s) =
3T T by o (G, [0, (X)) where [/ s
the j-th element of a vector.

Both the sensitivity loss and the confusion loss are adversar-
ial to each other. This is crucial for the following reasons:
the sensitive attribute network Ggs is trained to correctly
classify the sensitive attribute by minimizing L£g (04, 60s)
with respect to 05, while the base representation network
®y,, tries to “confuse” the sensitive attribute network by
minimizing Leont(0s, 05) with respect to g, i.e., forcing
the sensitive attribute network to predict a uniform distribu-
tion of the sensitive attribute. This ensures that the learned
representation becomes non-predictive of the sensitive at-
tribute .S. Together, the overall adversarial objective is

0o, 0y = arg min Ly (03, 0y ) + 7Leont (03,0s) (7

@,

Oy
Og = arg min 'yﬁs(écp, 0s) )
s
where v is a parameter that weights the different parts in
the loss function. The objective in Eq. (7) is also known
as counterfactual domain confusion loss (Melnychuk et al.,
2022). We later train the two adversarial objectives from
Eq. (7) via an iterative gradient-based solver. For further
details on our learning algorithm, we refer to Appendix E.

5.2. Step 2: Learning objectives for value fairness

We now address how we incorporate fairness in off-policy
learning, i.e., specify the learning objectives in our frame-
work and how these vary according to the different notions
of value fairness. To do so, we first propose model-agnostic
objectives and then describe how we incorporate these into
Step 2 of FairPol.

Model-agnostic objectives: In expectation, the policy
value is defined as V(r) = Ew[¢™(m,W)], where
m € {DM,IPW,DR}. Further, the conditional pol-
icy value is defined as Vi(w) = E[™(x, W) |
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S = s = E™(x, )]lg:s;]’ where 1(-) de-
notes the indicator function. Hence, we can es-

timate these quantities by replacing the expectations
with finite sample averages. Then, the empirical pol-
icy value becomes V™(m) = LS o (m, Wh),
and the empirical conditional policy value becomes
Vm( ) = lZ?:l ]li,i ;)S ?/Jm(ﬂ' W) with ﬁn(s) =
21 1(85=9)
obtained via 7 € argmax .y V™ (r).

. The optimal unconstrained policy can be

We now state the learning objectives for (1) envy-free fair-
ness and (2) max-min fairness: (1) For envy-free fair-
ness, we reformulate the optimization problem over the
class of envy-free policies into an optimization problem
over an unconstrained policy class. We further replace
the population quantities V() and V;(7) with their cor-
responding estimates V™ (7) and V™ (). We thus yield
€ argmax, . Vi®(7) with V(r) = V™(x) —
Amax, ges |V (1) — VP ()], where A > 0 is a hyper-
parameter controlling envy-free fairness and where larger
values correspond to more fair policies. (2) For max-
min fairness, we proceed analogously and obtain 7™™ &€
arg max, <y minges V" (7).

Incorporating value fairness in FairPol: The second
step of FairPol is to optimize the empirical policy value.
Here, we optimize against the previously introduced learn-
ing objectives. Depending on whether action fairness is
enforced, we optimize the learning objectives over all poli-
cies in IT or the subset II% of policies with action fairness.
Hence, once the representation b = ®;, is trained, we
optimize our objectwes for value fairness over the policy
class H;I’ {mg o ® | & € ©}. Here, we parametrize
my by a neural network with parameters 6 € © that takes
the representation i)(X ) as input and outputs a policy rec-
ommendation 75 (®(X)) € [0,1]. Formally, we thus opti-
mize the policy via maxyce Vm(we), maxgeo V/\m(ﬂ'e), or
maxgee mingeg V2™ (mg), depending on whether there is
no value fairness, envy-free fairness, or max-min fairness,
respectively.*

Implementation details: In our FairPol implementation,
we use feed-forward neural networks with dropout and ex-
ponential linear unit activation functions for the base rep-
resentation network, the outcome prediction network, and
the sensitive attribute network. We use Adam (Kingma &
Ba, 2015) for the optimization in both Steps 1 and 2. We
further follow best practices for hyperparameter tuning. We
first split the data into a training and validation set, and we
then perform hyperparameter tuning using a grid search.
All evaluations are based on the test set so that we capture

“Note that the policies that fulfill no value fairness are either
the optimal unrestricted policies or the policies that fulfill action
fairness.

the out-of-sample performance on unseen data. Additional
details for our framework are in Appendix F.

5.3. Generalization bounds

We derive generalization bounds for the finite-sample ver-
sion of our framework under the following standard bound-
edness assumption.

Assumption 5.1 (Boundedness). We assume there exist
constants C, n, v > 0 such that (i) the outcomes are bounded
with |Y| < C almost surely, (ii) the propensity score is
bounded away from 0 and 1, i.e., P(n < mp(X,S5) <1 —
1) = 1, and (iii) S has full supporton S, i.e., p(s) = P(S =
s) > vforall s € S and some v > 0.

The following result quantifies the deviation of the proposed
finite-sample policy estimators from their respective popula-
tion quantities. Note that the derivations also hold for action
fairness where one would simply need to replace II by IL,¢.

Theorem 5.2 (Generalization bounds). We denote R,,(II)
as the empirical Rademacher complexity of the policy class
IL. Let p(s) = P(S = s) > v forall s € S and some
v > 0. Let p, p1,p2 > 0 and let K, denote a constant that
depends on the estimation method m € {DM,IPW,DR}
as follows: Kpy = 1, Kipw = 2 , and Kpr = L‘H
. Assume that, for {(n,p2) = 1 — v + +/log (|S|/p2) /
it holds that \/lﬁﬁ(n p2) < v. Then, the following three

statements hold: (i) With probability at least 1 — p it holds
that

V() > V() — 2CKyn <R”(H) + %) )
for all m € 1L. (ii) With probability at least 1 — p1 — p2, we
have

8log (4sL
Va(m) > Vit (w) — 2CKm2J;7U R, (1) + #
_ L [ Mp2) 1
vn <V— ﬁf(n,pﬂ) ( O)
for all 7 € 1. (iii) With probability at least 1 — py — py it
holds that
min Va () > min V," (m) (11)

20K 8log (2l$|) 1 £(n, p2)
- (R,,L(HH — +ﬁ (7\}#(%”))

forall m e 1L

Theorem 5.2 shows that, with sufficient sample size, the
oracle policy objectives V™ (7), V™ (), and minse s Vi (7)
are with high probability lower bounded by their empirical
counterpart if the policy class II has a vanishing Rademacher
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complexity R, (IT). Theorem 5.2 has two main qualitative
implications: (i) We can achieve a 1/+/n-convergence rate
for all fairness objectives whenever we optimize over a
model class IT with y/n-vanishing Rademacher complexity
R,(I) = O (n~%/2), such as neural networks. (ii) Com-
pared to the bound for the unrestricted policy (Eq. (9)), the
bounds corresponding to our fairness objectives depend on
v and hence on the population balance within the marginal
distribution of the sensitive attribute S. This implies that
the bounds become loose whenever a sensitive group is
underrepresented in the data.

6. Experiments
6.1. Experiments using simulated data

Setup: We generate a simulated dataset with n = 3000
observations inspired by a credit-lending problem (see Ap-
pendix G for details). Throughout our experiments, we esti-
mate the policies using the data from a training set (80%)
and evaluate the policies using the data from a test set (20%)
to compare the out-of-sample performance. We perform
all evaluations using the following performance metrics:
(1) We report the policy value V™ (). This thus corre-
sponds to the objective function in off-policy learning that
is maximized under the fairness constraints (thus: larger val-
ues are better). (2) We additionally report the policy value
by different sub-populations given by the conditional policy
value V() for s = 0 and s = 1. We provide the results
for our framework across all three different policy scores,
namely m € {DM,IPW, DR} from Eq. (2), Eq. (3), and
Eq. (5), respectively. Of note, we cannot compare our frame-
work against other methods since suitable baselines that can
deal with fair off-policy learning over general policies are
missing.

Table 1. Results for simulated data.

Approach Policy value Action fairness
Overall S=0 S=1
BASELINES
Optimal unrestricted policy 1.24 £0.03 0.74£0.03 1.46=+0.06 2.4240.20
Oracle action fairness 1.03£0.02 0.01£0.07 1.46£0.06 0.00 £ 0.00
OUR FAIRPOL (ACTION FAIR)
FairPol with m = DM 1.02£0.02 0.01£0.06 1.45=£0.06 0.21 £ 0.05
FairPol with m = IPW 1.01£0.03 0.02+0.05 1.43+0.07 0.24 +0.06
FairPol with m = DR 1.01£0.03 0.02+0.05 1.43£0.07 0.23 +0.05
OUR FAIRPOL (ENVY-FREE FAIR)
FairPol with m = DM 0.87+0.17 0.61+0.07 0.99+0.24 0.38+0.22
FairPol with m = IPW 0.874+0.05 0.32+0.17 1.114+0.14 0.79 £ 0.30
FairPol with m = DR 0.86+0.06 0.34+0.17 1.09+0.15 0.754+0.32
OUR FAIRPOL (MAX-MIN FAIR)
FairPol with m = DM 0.734+0.03 0.73£0.03 0.7340.03 0.00 £+ 0.00
FairPol with m = IPW 0.734+0.03 0.73+0.03 0.7340.03 0.00 +0.01
FairPol with m = DR 0.73+£0.03 0.734£0.03 0.73+£0.03  0.00£0.01

Reported: mean = standard deviation (x10) on test set over 5 runs.

Results for action fairness: We now examine whether
our framework is effective in learning policies that fulfill
action fairness. (1) We first report an optimal unrestricted
policy that has access to the ground-truth outcome functions
from the data-generating process and acts as the maximum
achievable policy value for comparison. (2) We further

estimate an oracle policy that fulfills action fairness with
access to the ground-truth outcome functions. It should
be regarded as an upper bound for the policy value that
can be achieved under action fairness. (3) We compare our
FairPol for action fairness, setting v = 0.5. We report three
different variants of our FairPol by varying the underlying
policies scores m, namely DM, IPW, and DR.

The results are in Table 1. Besides policy values, we also
report the performance in terms of action fairness, which we
calculate via E[n (X, X;—1,5 = 1) — 7(Xy, Xs—0,5 =
0)]. We make the following observations. First, the optimal
unrestricted policy has the largest policy value but fails to
achieve action fairness, as expected. Second, the policy
value for the oracle policy with action fairness is lower, and,
by definition, the action fairness achieves a score of zero.
Third, we find that our FairPol is effective in achieving
action fairness. Fourth, we find that our FairPol attains a
policy value that is close to the upper bound given by the
oracle policy with action fairness, which corroborates the
effectiveness of our framework. Finally, we find that our
FairPol achieves a similar performance regardless of the
underlying policy score (i.e., DM, IPW, and DR) and thus
appears robust with respect to the choice of policy score.
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—— Overall —— Overall
s=0 0.125 s
30.10 — s=1 3 0.100 — 5=t
E ., e
< 2.0075
8 3 e
s 0.05 f\ 3 0050
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Regularization parameter y

Figure 3. Sensitivity analysis for the envy-free parameter A (left)
and the regularization parameter ~y (right).

Results for value fairness: We further assess whether our
framework is effective in learning policies that fulfill value
fairness. Here, we report results from our framework with
action fairness for three different fairness notions: (1) no
value fairness, (2) envy-free fairness (A = 0.5), and (3) max-
min fairness. We set v = 0.5 and provide a sensitivity
analysis for the parameter later. The results are in Table 1.
We arrive at the following conclusions. First, the optimal
unrestricted policy has the largest overall policy value, as ex-
pected. Second, our FairPol for envy-free fairness achieves
a smaller overall policy due to the fairness constraints. Third,
our FairPol for max-min fairness is effective in achieving
the desired fairness notion. It achieves a larger worst-case
policy value compared to the optimal unrestricted policy
and a lower difference between groups. In summary, the ex-
perimental results confirm the effectiveness of our empirical
framework in enforcing the proposed fairness notions.

We also examine the sensitivity to the envy-freeness param-
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Table 2. Results for real-world data.

Approach Policy value Action fairness

Overall S = male S = female

0.1374+0.005 0.101 4+ 0.008  0.165 4 0.003
0.160 # 0.003
0.160 # 0.003

0.157 4 0.008

0.129 + 0.007
0.015 £ 0.001
0.067 £ 0.007
0.057 £ 0.010

Optimal unrestricted policy
FairPol (only action fairness) 0.130 +£0.004  0.093 + 0.006
FairPol with envy-free fairness  0.130 +0.004  0.093 & 0.006
FairPol with max-min fairness ~ 0.131 +0.008  0.100 & 0.011

Reported: mean =+ standard deviation on test set over 5 random runs

eter A\. We compare the policy value from our FairPol for
different values of A € [0, 2] and choose m = DR. The
results are shown in Fig. 3 (left). As expected, the policy
value decreases and the difference between the policy val-
ues for the two sub-groups S € {0, 1} becomes smaller for
larger \. Furthermore, the results remain robust for different
choices of v (Fig. 3, right).

6.2. Experiments using real-world data

Setup: We now demonstrate the applicability of our frame-
work to real-world, medical data. We use medical data from
the Oregon health insurance experiment (Finkelstein et al.,
2012). The Oregon health insurance experiment took place
in 2008. As part of it, around 30,000 low-income, uninsured
adults in Oregon were offered free health insurance through
Medicaid. We use our framework to learn fair policies that
assign Medicaid to minimize the total costs for medical
care of an individual, while avoiding discrimination with
respect to gender. Besides gender, we include five additional
variables as possible confounders. Details are Appendix H.
FairPol is based on v = 0.5 (for action fairness) and the dou-
ble robust method m = DR. For envy-free fairness, we set
A = 0.3. Here, we do not know the ground-truth outcomes
for real-world data, and, hence, we estimate the nuisance
parameters using a TARNet (Shalit et al., 2017). We then
estimate the (conditional) policy values on the test data us-
ing the estimators from Sec. 5.2. To quantify action fairness,
we report Spearman’s rank correlation coefficient between
the sensitive attribute (gender) and the policy predictions on
the test data. For details, we refer to Appendix H.

Results for action and value fairness: The results are
shown in Table 2. Again, the optimal unrestricted policy
has the largest empirical policy value but does not satisfy
action fairness. FairPol with only action fairness is effective
at enforcing the desired fairness notion, but this comes at
the cost of a slightly worse policy value. However, this is to
be expected as enforcing action fairness can worsen value
fairness (we refer to our toy example in Appendix C for a de-
tailed discussion on the tradeoff). Furthermore, FairPol with
max-min fairness is effective in improving value fairness
compared to FairPol with only action fairness. In summary,
the results on real-world data confirm the effectiveness of
our framework.

Insights: We now examine the outputs of the respective
policies. We the averaged outputs over (i) age and (ii) the
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Figure 4. Comparison of the estimated policies averaged over 20
random runs. Visualized are the policy predictions (i.e., the outputs
of the respective policies).

number of previous emergency department visits of an indi-
vidual (Fig. 4). Both policies tend to recommend Medicaid
for the majority of individuals. Furthermore, both policy
outputs are lower for individuals with a smaller number of
emergency department visits. This is reasonable as such
individuals may be less at risk of accumulating medical debt
compared to individuals with an extensive medical history.
FairPol with max-min fairness outputs slightly lower pre-
dictions for older individuals and for individuals with no
or few emergency visits. Hence, there seem to exist some
male individuals with few emergency visits or higher age for
which free health insurance has only little positive effect.

6.3. Further experiments

m Experiments with additional representation learning base-
lines (Appendix I). Here, we compare our approach for
fair representation learning (=adversarial domain confu-
sion loss) against potential benchmarks. In principle, our
approach for fair representation learning (=adversarial do-
main confusion loss) can be replaced by any other approach
that aims at enforcing independence from the sensitive at-
tribute. Specifically, we consider two common baselines
from the literature: (i) adversarial learning using gradient
reversal (Ganin & Lempitsky, 2015); and (ii) regularization
using a Wasserstein distance (Shalit et al., 2017). In our
ablations study, we find that our choice performs best.

m Experiments with estimated nuisance parameters (Ap-
pendix J). Here, we repeat the experiments from Table 1
but with estimated nuisance parameters y;(X, S) = E[Y |
X,S,A=j],j€{0,1}andmp(X,S) =P(A=1] X, 9).
Specifically, we use a TARNet (Shalit et al., 2017) for esti-
mation and refer to Appendix H for implementation details.
The results demonstrate that our framework remains robust
concerning estimation errors in nuisance parameters.

m Experiments with varying sample sizes (Appendix K).
Here, we repeat our experiments from Table 1 with three dif-
ferent samples sizes n € {1000, 3000, 5000}. We find that
our method is robust and effective across varying sample
sizes.
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7. Discussion

Our work contributes to the literature in the following ways:
(i) We integrate fairness notions such as envy-free fair-
ness or max-min fairness (which have been used in tra-
ditional, utility-based decision models) into off-policy learn-
ing. (ii) We provide a theoretical understanding of how
these fairness notions interact in the context of off-policy
learning. (iii) We propose a practical framework to learn
fair optimal policies and provide theoretical guarantees in
the form of generalization bounds.

Future directions: For future work, it may be interesting to
consider different fairness notions and/or off-policy learn-
ing settings, e.g., when treatments are assigned over time.
Another extension may consider different value functions.
In our framework, large outcomes are considered desirable
and we could in principle obtain different value functions
by transforming the outcome variable Y. However, we do
not explicitly allow for different value or utility functions.

Further extensions: Our framework can be extended to
multiple (discrete) actions. All our fairness notions remain
readily applicable. In particular, we would need to use
adapted policy value estimators, e.g., IPW for multiple ac-
tions as in Kallus (2018). Furthermore, our framework can
be leveraged in combination with resource constraints by
specifying a particular policy class II.

Limitations: Our work is in line with most of the literature
on algorithmic fairness in that it describes an inherent trade-
off between performance (policy value) and fairness. For
action fairness, in the extreme case when the representation
from step 1 excludes all covariates X, step 2 will learn
a constant policy that maps every individual to the same
action probability (that maximizes the average policy value).
However, when the presentation only removes part of X
(e.g., because some covariates are only weakly correlated
with .5), step 2 will learn a policy that trades policy value
between the constant policy and the unconstrained policy.
In practice, one could run our framework with different
strengths of action fairness and choose a policy that both
guarantees sufficient fairness and performance.

Conclusion: In this paper, we proposed a novel framework
for fair off-policy learning from observational data. For this,
we tailored common fairness notions from decision-making
to off-policy learning, then developed a flexible instantia-
tion of our framework using machine learning (FairPol),
and finally provided theoretical guarantees in the form of
generalization bounds. Our framework is widely applicable
to algorithmic decision-making in practice where fairness
must be ensured. In Appendix M, we discuss the pros/cons
of the different fairness criteria, discuss suitable use cases,
and provide practical recommendations.

Impact Statement

Unfair decisions can have detrimental consequences for in-
dividuals because of which ethical and legal frameworks re-
quire that algorithmic decision-making must ensure fairness
(Barocas & Selbst, 2016; Kleinberg et al., 2019). Hence,
potential applications benefiting from fairness for algorith-
mic decision-making are vast and include healthcare, lend-
ing, and criminal justice, among many others (De-Arteaga
et al., 2022). For instance, in the U.S., the Equal Credit
Opportunity Act mandates that lending decisions are fair
for individuals of different gender, race, and other sensitive
groups, while the Fair Housing Act enforces similar princi-
ples for housing rentals and purchases. As such algorithmic
decision-making must avoid discrimination of individuals
and thus generate decisions that are regarded as fair.

We acknowledge that our method for fair off-policy learning
builds on mathematical assumptions, in line with prior work.
Hence, as with all research on algorithmic fairness, we
strongly recommend a cautious, responsible, and ethical use.
Sometimes, unfairness may be historically ingrained and
require changes beyond the algorithmic layer.

Finally, we emphasize that practitioners applying our frame-
work in practice should carefully check the fairness notion
of interest and be aware of potential unfairness due to finite
sample estimation.
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A. Extended related work

A.1. Algorithmic fairness for machine learning predictions

Extensive work has developed algorithmic fairness for machine learning predictions, which refers to computational
approaches that enforce certain constraints on predictions so that similarly situated individuals also receive similar predictions.
In the following, we provide a brief overview of the different concepts and fairness notions. We refer to Chouldechova
& Roth (2020) and Mitchell et al. (2021) for a detailed overview. We emphasize that the following fairness notions are
developed for predictions and not for off-policy learning.

A major literature branch deals with fairness notions that prevent systematic differences in predictions across different
groups that are defined by some sensitive attributes (e.g., gender or race) (e.g., Dwork et al., 2012; Hardt et al., 2016;
Madras et al., 2018; Corbett-Davies et al., 2023).This can be achieved, for example, by enforcing independence between the
sensitive attribute and the predictions (i.e., statistical parity) or ensuring a similar classification performance for the different
sensitive groups (e.g., similar type-I/II error rates). Approaches for group-level fairness have been extended to specific
settings, such as for data with unobserved sensitive attributes (Kallus et al., 2021) and for censored training data (Kallus &
Zhou, 2018b). Beyond group-level fairness, there are also notions at the individual level as well as notions that are based on
a causal lens (called causal fairness); see Chouldechova & Roth (2020). Note that, even though off-policy learning itself is a
causal problem, our setting later is different from the literature on causal fairness: the standard literature on causal fairness
uses causal theory (e.g., structural causal models) to define fairness notions (e.g., Kilbertus et al., 2017; Kusner et al., 2017;
Nabi & Shpitser, 2018), while we introduce fairness to a specific causal decision problem (off-policy learning).

A.2. Algorithmic fairness for utility-based decision models

A different literature stream has developed fairness notions that account for the utility of individuals who are subject to
decisions. Such fairness notions have been integrated into traditional decision problems and thus outside of machine learning.
Examples are, for instance, resource allocation (Bertsimas et al., 2011; 2013; Rea et al., 2021) and pricing (Kallus & Zhou,
2021; Cohen et al., 2022). Here, a common fairness notion is envy-free fairness, which is fulfilled if an individual receives
an allocation that has the same (or a higher) utility as the allocation of any other individual. Hence, decisions are envy-free
if all players receive a share of resources that is equally good from their perspective (Arnsperger, 1994). Another fairness
notion is max-min fairness, which is grounded in Rawlsian justice and which seeks to maximize the minimum utility that a
player can obtain (Bertsimas et al., 2011). However, to the best of our knowledge, the aforementioned notions — envy-free
fairness and max-min fairness — have only been used for traditional resource allocations and have not yet been adapted to
off-policy learning from observational data, which is one of our contributions later.

Prior literature also considered algorithmic fairness in specialized settings. Examples are ranking tasks such as from
recommender systems (e.g., Singh & Joachims, 2019) or risk-averse approaches to bound worst-case outcomes (e.g., Fang
et al., 2022). Even others consider algorithmic fairness in reinforcement learning. Here, fair policies can be obtained by
customizing the reward function (Jabbari et al., 2017; Jiang & Lu, 2019; Yu et al., 2022) or by optimizing social welfare
functions (Siddique et al., 2020; Zimmer et al., 2021). However, these works focus on Markov decision processes (MDPs),
whereas we focus on learning policies in non-sequential settings that are not restricted to MDPs.

12
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B. Proofs
B.1. Proof of Lemma 4.4

Proof. For each sensitive attribute s € S, we construct 7%(-,s) € argmax, cp, Vs(7), where Ily = {7: & —
[0,1] | m measurable}. By definition, it holds that V(7) < V,(#*) for any policy = € II and, hence, inf,cg Vi (1) <
infseg Vs (n*), which means that 7* is a policy fulfilling max-min fairness. At the same time, due to V(7)) < Vi(7*), it
holds that

V(n) = / Vs(m)P(S = s) ds < / Vs(m*)P(S = s)ds = V(n™). (12)
s s
Thus, the policy 7* is an optimal unrestricted policy. O
B.2. Proof of Lemma 4.5
Proof. We first show that Vo(7™™) = Vi (xa™™), ie., 7™™ is envy-free with @« = 0. Let us assume w.l.o.g. that

Vo(m™™) < Vi (7™™). By our assumption, we can find an € > 0 such the policy 7’ defined by

iy ™ (x) + esign{ITE(x,0)}, ifreV,
(@) = { T (1), ifre X\V, (13)
satisfies Vi (7') > Vo(7™™). By construction of 7’ and our assumption, we yield
:/ () ITE(2,0) P(z | S = 0) + pio(x, 0) Bz | S = 0) da (14)
X
> / 7 (2) ITE(x,0)P(z | S = 0) + po(z,0)P(z | S = 0) dz = Vo(n™™). (15)
X
This implies
min{Vp(7'), Vi(7')} > min{Vp(7™™), V1 (7™")}, (16)

which is a contradiction to the assumption that 7™ fulfills max-min fairness. Hence, 7™™ fulfills envy-free fairness.

Now, let 70 be an optimal policy that satisfies both action fairness and envy-free fairness. Let us further assume that 7° does
not fulfill max-min fairness. We then yield

V(7% =P(S = 0) Vo (n%) + P(S = 1) V1 (7%) < P(S = 0) Vo(n™™) + P(S = 1) Vi (a™™) = V(7™™),  (17)

which is a contradiction because 7™™ fulfills envy-free fairness and 7 is optimal. O

B.3. Proof of generalization bounds

In this section, we provide proof of our generalization bounds, namely Theorem 5.2. In our proof, we later leverage ideas
from Theorem 1 in (Kallus, 2018); however, adapting these to our setting is not straightforward, and several additional
arguments must be made. To this end, we begin with three auxiliary lemmas.

Lemma B.1. Let T™ (s, W) = SUPep |2 i, 1(5; _s)wm(ﬂ W;) — Vi(r)|. Then, T™(s,-) satisfies the bounded

p(s
difference inequality with ( )Km, where Ky, is a constant depending on m € {DM,IPW DR}

Proof. Tt holds that

|Tm(8a W) - Tm(57W/)| (18)
ey 1 1S =38) ‘ 115’—3 ,
< sup ﬁ;ww (m, W;) — i Y™ (7, W) = V() (19)
(2) ]‘ = m ! m !
gnp(s) sup ;1(52-:3)1/1 (m, W;) — 1(S] = )™ (m, W) (20)
1
= (e S (J™ (e, Wi)| + ™ (=, W))|) Q1)

13
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where (1) follows from a property of the supremum and (2) follows from the reverse triangle inequality. It remains to bound

[p™ (7, )| form € {DM,IPW,DR}. For m = DM, we get

[WP¥ (r, Wi)| < [ (X, 8)] + [mo(X, S)] < 2C.
For m = IPW, we get
Y]

IPW ,
WJ (7T7W])| < |Amp(X,9) + (1 — A)(1 — mp(X, S))|

C
<=
n
Finally, for m = DR, we get

Y — pa(X, )| n+1
- |A7rb(Xvs)+(1_A>(1_7Tb(XaS))| _20( n )

PR (m, Wy)| < [P (mr, W)

Therefore, we arrive at

TII! 87 W - Tm 87 WI S Km7
e 1) np(s)
with Kpy = 1, Kipw = 55, and Kpr = =
Lemma B.2. With probability of at least 1 — p, it holds that
20K 8log 2
(s, W) < 2| R, (1) + p
( ) p(s) D n

Proof. Lemma B.1 allows us to apply McDiarmid’s inequality, resulting in

P (15, ) = BT, W) 2 ) < exp (-5 ).

Equivalently, with probability of at least 1 — p;, it holds that

2CK,, [2log -
p(s) no

T (s, W) < E[T™(s,W)] +
By a standard symmetrization argument, we yield

E[T™(s,W)] <E L Z sup

n

2CK,,
p(s)

Here, the Rademacher complexity R,,(I1) satisfies the bounded differences with %, and we thus obtain

n62
B (R, (IT) — E[R, (I)] < —¢) < exp <—2) .

This implies that, with probability of at least 1 — po, it holds that

2log -
E[R,(I)] < R,(IT - Pz
By setting p1 = p» = & and applying the union bound, we yield
20K 8log 2
(s, W) < 2| R, (ID) + P
(5, W) < =5 [ Rl 4=

with probability of at least 1 — p.

14

E[R,(ID)] .

(22)

(23)

(24)

(25)

(26)

27)

(28)

(29)

(30)

€1y

(32)



Fair Off-Policy Learning from Observational Data

In the next step, we use Lemma B.2 to derive a bound on the absolute estimation error Vsm () — Vi(m)| that holds uniformly
over all policies and sensitive attributes. This is stated in Lemma B.3.

log S1
Lemma B.3. Let {(n,p2) =1 —v + 1/ Lz"?. Let us further assume that % < v. Then, with probability of at least
1 — p1 — po, it holds that

. 20Ky 8log 221 1 t(n, p2)
e L e e ity ) R
Proof. We yield
sup |V (r) — VS(W)’ (34)
mell
_ l = IL(S’L:‘S) m N
= sup n; . 5) ™ (70, W;) — Vi(mr) (35)
1 1 - 1~ 1(S; = s)
— — |8 1(S; = s)y™ ((m, W; sup [— »  ————— 9" (7, W) = Vs 36
< |5 7@ |2 [ 1S = W) e 2 D T W) V) @0
2CKw |pn(s) —p(s)| | m
< T (s, W). 37
’o s LW 7

The absolute difference |p,,(s) — p(s)| satisfies bounded differences with constant < because

. N . . 1(S;=s)—1(S] =s 1
15 (5) — p(3)] — 134 (5) — p()]] < [pa(s) — pi(o)] < =D AEZA L G9)
Hence, McDiamid’s inequality implies
P (|pn(s) — p(s)| — E[|pn(s) —p(s)|]] > €) < exp (—2n62) . (39)
Thus, with probability at least 1 — ps it holds that
R . log p%
1B (s) = p(s)| < Eflpn(s) —p(s)l] + 1/ — (40)
W1 5 log -
< ~ _ b2
< n\/E |(mpn(s) = np(s))*] +1/ =2 (4D

log -
1—V—|— P2

1
< —
= \/ﬁ 2 ’

(43)

where (1) follows by applying Jensen’s inequality and (2) by noting that np, (s) ~ Binomial(n, p(s)) with expectation
np(s) and standard deviation /np(s)(1 — p(s)).

The above also implies that, with probability of at least 1 — p2, we obtain

log - 1 log -

. 1
Pn(S)ZP(S)*% l-v+ 2p2 zv——=|1-vt 5

>0, (44)
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log %

5 ) < v. Putting everything together via the union bound, we obtain with probability of at

whenever ﬁ <1 —v+

least 1 — p; — po that

log -
. 20K 8log 2 | 1—v+ Z
Vsm(ﬂ)—‘/;(w)‘g R, (1) + 1/ SR L . @5)
v n nl, 4 (1_1/+ 0g2p2)

sup
mell

v

The result follows by applying the union bound over all s € S. O

In the following, we use Lemma B.3 to prove the generalization bounds. Specifically, we provide the proofs for the envy-free
generalization bound from Eq. (10), the max-min generalization bound from Eq. (11), and the unrestricted generalization
bound from Eq. (9).

Proof of Eq. (10):

Proof. 1t follows that

sup sup_[V2() = X|V22() = V()| = V(m) + M|V () = Var ()| (46)
mwell s,s’€
< sup |V™(w) — V(w)‘ + Asup sup “Vf(w) - f/s‘?l(w)| —|Vi(m) =V (7r)|‘ 47)
mell w€ll s,s'€S
< sup |V™(m) — V(w)‘ + 2 sup sup | V™ () — Vs(ﬂ')‘ . (48)
mell nell seS
Hence, with probability of at least 1 — p; — p2, we yield
sup sup ‘Vm(ﬂ') — )\‘Vsm(ﬂ') — ‘A/;,“(w)‘ —V(r)+ /\’Vs(ﬂ') -V (w)“ (49)
w€ell s,8’€S
2 8log =l 2 i
< 20K, Y | Ry () + noy (n, p2) (50)
v n @t \v— i)
using Lemma B.3. The theorem follows from
V3 () < Va(m) 4 sup sup [V () = AV () = VIP(m)| = V() + A Va(r) = Vi) |. (51)
well s,s’€
O

Proof of Eq. (11):
Proof. The triangle inequality implies that

Vi (m) < Vi(r) + sup
well

Vin(m) = Va(m)| (52)

Hence, Lemma B.3 yields with probability of at least 1 —p; — ps foralls € S, 7 € II:

2|S|
. 20K, 8log == 1 {(n,
Vilr) > V() - R 4\ (M) ) ) 53
v n vn\v— ﬁé(n, p2)
The result follows by applying the minimum over s on both sides. O

Proof of Eq. (9):
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Proof. 1t follows that

V™ (r) < V(n) 4 sup | V™ () — V(ﬂ')‘ .
mell

With the same proof as in Lemma B.3, we can show, with probability of at least 1 — p, that

N 8log 2
sup | V™ (x) — V(ﬂ)‘ < 20Ky | Ro(ID) + | —2
mell n

17

(54)

(55)



Fair Off-Policy Learning from Observational Data

C. Toy example to differentiate fairness notions

In the following, we provide a toy example based on which we discuss the differences between the above fairness notions.
For this, we consider algorithmic decision-making in credit lending where applications for student loans are evaluated. We
consider two covariates for students, namely their gender and average grade (GPA) given by Gender € {Female, Male} and
GPA € {Low, High}. We consider Gender as the sensitive attribute S. The outcome Y is the expected change in salary,
that is, whether it increases (= 1), remains the same (= 0), or decreases (= —1) as a result of the study program. For the
purpose of our toy example, we make further assumptions regarding the distribution of covariates and expected outcomes.
To this end, Table 3 reports the probability of observing an individual from each sub-population (column 3), the outcome
when a student receives the loan (u1), and the outcome when a student does not receive the loan (yo). Then, the overall
effect of the action (i.e., the student loan) is given by 1 — po. As can be seen, the action of receiving a loan benefits males
with a high GPA while it has a negative effect for all other sub-groups.

In Table 3, we report the policy value under different decision policies. (Details for calculating the policy values in our toy
example are in Appendix C). First, we report the optimal unrestricted policy (7). This policy gives student loans only to
males with high GPA but not to any other student. The reason is that the sub-population of males with high GPA is the only
one with a positive effect (i.e., 41 — po = 1). Second, we report an optimal policy under action fairness (). Tt chooses the
same action for both males and females with high (low) GPA. Hence, the action taken by 7*f does not depend on gender and
thus fulfills action fairness. Third, envy-free fairness (7®) and max-min fairness (7™™) assign loans only to males with a
high GPA. In particular, the max-min policy coincides with the optimal unrestricted policy, as implied by Lemma 4.4.

We further consider policies for envy-free fairness and max-min fairness that are combined with action fairness, so that
always both action fairness and value fairness are satisfied (columns 10 and 11). Here, the policies assign actions to males
and females with high GPA in order to fulfill action fairness. In addition, both policies assign actions only to a fraction of
the overall population. This is seen by the fact that the policy outputs are “T'H and % respectively, and thus below 1. We
further note that some of the policies can coincide as stipulated in Lemma 4.5. For o« = 0, the policy combining action
fairness and envy-free fairness is identical to the policy combing action fairness and max-min fairness. For oo = 2, the policy

combining action fairness and envy-free fairness is identical to the policy for action fairness (72F).

Table 3. Toy example comparing the different fairness notions for off-policy learning.

Data Expected outcome Policies Combined policies
(with action fairness)
Gender GPA  Probability I 1o " ot T g T i
Female Low 0.1 0 1 0 0 0 0 0 0
Male Low 0.4 0 1 0 0 0 0 0 0
Female High 0.1 -1 1 0 1 0 0 otl %
Male High 0.4 1 0 1 1 1 1 O‘Til 3

Legend: "': optimal unrestricted; 2% action fairness; envy-free fairness; 7™ : max-min fairness

Derivations: We denote the levels of gender with F (female) and M (male), and the levels of GPA with L (low) and H
(high). We first calculate the conditional policy value Vr for females

VF(TF) = W(Fv L)Ul(Fa L) + (1 - W(Fv L))NO(Fv L) + W(F7 H),Ufl (Fa H) + (1 - W(Fv H))MO(Fv H) (56)
=(1-x(F,L)) —«(F,H) + (1 — «(F,H)) (57
=2 — 7(F,L) — 2(F, H) (58)

and V) for males

%Y (77) = W(M’ L)Ml (M, L) + (1 - ﬂ-(M’ L))MO (M’ L) + W(Mv H)Ml (M7 H) + (1 - W(Mv H))MO (Ma H) (59)
=1-x(M,L)+ (M, H). (60)

The overall policy value is

V(r) = 0.2Ve(m) + 0.8V (7) (61)
— 1.2+ 0.87(M, H) — 0.87(M,L) — 0.2r(F, L) — 0.4 (F, H). (62)
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Hence, the optimal unrestricted policy is 7" (M, H) = 1, #*(M, L) = 0, 7*(F,H) = 0, and 7" (F,L) = 0.

The difference of the conditional policy value is
A(r) = |Vp(r) = Vm(m)| =1 = n(F,L) — 27(F,H) — #(M,H) + =(M, L)|. (63)

It holds that A(7") = 0 which implies that the policy 7* with a-envy-free fairness coincides with 7".

For the optimal policy 7 with action fairness, the policy value simplifies to

V(r*) = 1.2 + 0.87* (H) — 0.87% (L) — 0.27* (L) — 0.47* (H) (64)
= 1.2+ 047 (H) — 7 (L), (65)

which means that 7% (L) = 0 and 72! (H) = 1. For the policy 72+ with both action fairness and envy-free fairness, we
obtain

A(r*H) = |1 = 3n* ™ (H)| < a, (66)
which yields 71+ (L) = 0 and 7*"+*(H) = <L Finally, the policy 7™ with max-min fairness maximizes

which implies 7™™ (L) = 0 and 7™ (H) = 1/3.
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D. Discussion of the assumptions in Lemma 4.5

In this section, we provide additional details regarding the assumptions in Lemma 4.5. In essence, Lemma 4.5 holds if the
max-min solution (7™™, s*) outputs stochastic actions in an area V' of the covariate space where the policy value could be
improved by choosing a deterministic action. In the toy example from the previous section, this is the case, and, hence, the
max-min and the envy-free policy with o = 0 coincide. In the following, we study a second toy example where 7™™ does
not coincide with any envy-free policy w2+,

D.1. Toy example

The same data from Table 3 is shown in Table 4 with different ITEs. Now, the action benefits all groups, but males have
larger expected outcomes than females. Furthermore, old males receive a larger benefit from the action than all other groups.
Hence, even though the action benefits all groups, the difference in policy values for males and females will increase by
performing actions for old male patients. The max-min policy 7™™ simply recommends action to everyone, as it aims to
maximize the policy value Viemare (7™™) for females (worst-case). In contrast, the i+ restricts action on older patients in
order to decrease the disparity of conditional policy values Viemate (72 +%) and Vigae (72+) (envy-free).

Table 4. Toy example comparing the different fairness notions for off-policy learning.

Data Expected outcome Policies Combined policies
(with action fairness)
Gender GPA  Probability I ) " mef IO e i
Female Low 0.1 0 -1 1 1 1 1 1 1
Male Low 0.4 1 0 1 1 3 1 1 1
Female High 0.1 0 -1 1 1 1 1 a—2 1
Male  High 0.4 2 0 1 1 g 1 oa—2 1

Q

Legend: "': optimal unrestricted; 2% action fairness; 7w envy-free fairness; 7™ : max-min fairness

D.2. Derivation of toy example

We proceed as in the example from our main paper (see Appendix C for details) and calculate the conditional policy values

VF(W) = _(1 - W(F7L)) - (1 - ﬂ—(F7 H)) (68)
=7n(F,L)+«(F,H) -2 (69)
and
Vm(m) = (M, L) 4+ 27(M, H). (70)
The overall policy value is
V(m) = 0.2Vp(m) + 0.8V () (71)
= 1.6wm(M,H) 4+ 0.87(M, L) + 0.27(F,L) + 0.2x(F,H) — 0.4 (72)

We immediately obtain the optimal unrestricted policy is 7% = 7f = 7™™ = 1 because all policy terms are positive. To

obtain policies 72T and 7 with envy-free fairness, we write the constraints as
A(T™) = 2+ 7*(M, L) + 27%(M, H) — 7%(F,L) — 7*(F,H)| < a (73)
and
A(re) = 2 4 7T (H) < q (74)
where 72+ again denotes the policy that fulfills both action fairness and envy-free fairness. Eq. (74) implies 7!+ (H) =

a — 2 (for a > 2) and 7*fT(L) = 1. Eq. (73) yields a linear constrained optimization problem with solution 7(F,L) =
7*(F,H) = 1 and 7%(M,L) = #*(M, H) = a/3.
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E. Learning algorithm for FairPol

Algorithm 1 provides the learning algorithm for FairPol. The algorithm consists of two consecutive steps, namely the fair
representation learning step and the policy learning step. For the policy learning step, the specification of the policy loss is
needed, namely one of no value, envy-free fairness, and max-min fairness: £2*(-) € {V™(-), V*(+), and minges V; () }.

Algorithm 1 Learning algorithm for FairPol

Input: hyperparameters of representation networks (number of epochs n,., learning rate 7., action fairness parameter ), hyperparame-
ters of policy network (number of epochs n,,, learning rate 7, policy loss £ (+))
Initialize 0‘()9 ), 0;0 )7 0;0) ~ Kaiming-Uniform > Step 1. Fitting the representation networks
for k =1ton, do
Forward pass of the base representation, outcome prediction, and sensitive attribute networks with 0§,k -t
0% — 08 — Vo, [Ly (05,08 )]
05" 05" = n:-Vou [Ly (057,07 77) + Y Leonr (057,05 ")]
Forward pass of the base representation and sensitive attribute networks with 0;’“)7 G(Sk_l)
0% 05 — 0. Vo [vLs (087,08 1)]
end for
é@ < 0((1,"”
Initialize ®) ~ Kaiming-Uniform > Step 2. Fitting the policy network
for k =1ton, do
Forward pass of the policy network with gk—1
0% 00 — 1, Vg [L7 (mp0e-n) (B(X)))]
end for

)7 0<(I>Ic—1)7 egc—l)
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F. Hyperparameter tuning

We followed best practices in causal machine learning (e.g., Bica et al., 2021; Curth & van der Schaar, 2021) and performed
extensive hyperparameter tuning for FairPol. We split the data into a training set (80%) and a validation set (10%). We then
performed 30 random grid search iterations and chose the set of parameters that minimized the respective training loss on
the validation set. In particular, the tuning procedure was the same for all baselines, which ensures that the performance
differences reported in Section 6 are not due to larger flexibility but are due to the different methods themselves.

We performed hyperparameter tuning for all neural networks in FairPol, i.e., the different representation networks and
the policy network. For the real-world data, we also used TARNet (Shalit et al., 2017) in order to estimate the nuisance
parameters. We first performed hyperparameter tuning for TARNet and for the representation networks, before tuning the
policy neural networks by using the input from the tuned neural networks. The tuning ranges for the hyperparameter are

shown in Table 5 (simulated data) and Table 6 (real-world data).

Table 5. Hyperparameter tuning ranges (simulated data).

NEURAL NETWORK HYPERPARAMETER TUNING RANGE
All neural networks Dropout probability 0,0.1,0.2
Batch size 32,64, 128
Epochs 400
Representation networks  Learning rate 0.0001, 0.0005, 0.001, 0.005
Hidden layer / representation size 2, 5, 10
Weight decay 0,0.001
Policy network Learning rate 0.00005, 0.0001, 0.0005, 0.001
Hidden layer size 5,10, 15, 20
Weight decay 0
Table 6. Hyperparameter tuning ranges (real-world data).

NEURAL NETWORK HYPERPARAMETER TUNING RANGE
All neural networks Dropout probability 0,0.1,0.2,0.3
Batch size 32, 64, 128
TARNet Learning rate 0.0001, 0.0005, 0.001, 0.005
Hidden layer sizes 5, 10, 20, 30
Weight decay 0
Epochs 200
Representation networks ~ Learning rate 0.0001, 0.0005, 0.001, 0.005
Hidden layer / representation size 2, 5, 10
Epochs 400
Weight decay 0, 0.001
Policy network Learning rate 0.00005, 0.0001, 0.0005, 0.001
Hidden layer size 5,10, 15,20
Epochs 300
Weight decay 0

The tables include both the hyperparameter ranges shared across all neural networks and the network-specific hyperparame-
ters. For reproducibility purposes, we report the selected hyperparameters as .yaml files.’

5Code is available at ht tps: //github.com/DennisFrauen/FairPol.git.
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G. Details regarding simulated data

Here, we provide details regarding our synthetic data generation. We consider a decision problem from credit lending where
loans are approved based on covariates of the customers, yet where algorithmic decision-making must not discriminate by
gender. To this end, we denote the sensitive attribute by S € {0, 1} and generate data as follows. We simulate two covariates
X, € Rand X € Ryvia

S ~ Bernoulli(ps), Xy ~U[-1,1], and Xs|S=s~U[s—1,5], (75)

where U[—1, 1] is the uniform distribution over the interval [—1, 1]. Thus, X, is independent of S, while X is correlated
with S. In practice, X,, can be, e.g., a credit score (which gives the probability of repaying a loan yet which is independent
of gender), while X can be, e.g., income (which is often correlated with gender). We further generate actions (decisions on
whether a loan was approved or not) via

A| Xy =2y, Xs = 25,5 =5 ~ Bernoulli(p) with p = o(sin(2z,) + sin(2X;) + sin(2s)), (76)
where o(+) denotes the sigmoid function. Finally, we generate outcomes
Y =1{A=1} (1{X, < 0.5}sin(4X, — 2) + 1{X,, > 0.5}(0.6 S — 0.3)) +, a7

where € ~ A(0,0.1). In our example, the outcomes could correspond to the profit for the lending institution. We sample a
dataset of n = 3000 sample from the data generating process and split the data into a training set (80%) and a test set (20%).
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H. Details regarding real-world data

In our experiment with real-world data, we use data from the Oregon health insurance experiment (OHIE)® (Finkelstein et al.,
2012). The OHIE was conducted as a large-scale experiment among public health to assess the effect of health insurance on
several outcomes such as health or economic status. In 2008, a lottery draw offered low-income, uninsured adults in Oregon
participation in a Medicaid program, providing health insurance. Chosen individuals were offered free health insurance.
After a period of 12 months, a survey was conducted to evaluate several outcomes of the participants.

In our analysis, the decision to sign up for the Medicaid program is the action A, and the overall out-of-pocket cost for
medical care within the last 6 months is the outcome Y. The sensitive covariate .S we consider is gender. Furthermore, we
include the following covariates X : age, the number of people the individual signed up with, the week the individual signed
up, the number of emergency visits before the experiment, and language. We extract n = 24, 646 observations from the
OHIE data and plot the histograms of all variables in Fig. 5.

We split the data randomly into a train (0.7%), validation (0.1%), and test set (0.2%) and perform hyperparameter tuning
using the validation set. The evaluation metrics are then computed using the test set. We estimate the nuisance parameters
using a TARNet (Shalit et al., 2017), for which we perform hyperparameter tuning according to Appendix F. Then, we used
the estimators proposed in Sec. 5.2 to estimate (conditional) policy values using the estimated nuisance parameters).
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Figure 5. Histograms of marginal distributions (real-world data).

®The dataset is available here: https://www.nber.org/programs-projects/projects-and-centers/oregon-health-insurance-experiment
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I. Synthetic experiments with additional representation learning baselines

Here, we compare our approach for fair representation learning (=adversarial domain confusion loss) against potential
benchmarks. In principle, our approach for fair representation learning (=adversarial domain confusion loss) can be replaced
by any other approach that aims at enforcing independence from the sensitive attribute. In the following, we consider two
common baselines from the literature: (i) adversarial learning using gradient reversal (Ganin & Lempitsky, 2015); and
(ii) regularization using a Wasserstein distance (Shalit et al., 2017). Both are as follows:

(i) Adversarial learning using gradient reversal: Here, we consider an adversarial approach that reduces the dependence
between the representation and sensitive attribute via gradient reversal. That is, we defined the loss

L (0s,0s,0v) = Ly (0s,0y) —vLs(0s, 0s) (78)
and solve the adversarial problem
0,0y = argminﬁv(&p,és,ﬂy); Og = argmaxﬁv(é@Hs,éy); (79)
9:1)79)/ 05‘

where « is a parameter that weights the different parts in the loss function. For further details, we refer to Ganin & Lempitsky
(2015) or Bica et al. (2020).

(ii) Regularization using Wasserstein distance: Here, we consider a regularization approach similar to Shalit et al. (2017)
that solves

0,0y = arg Jgnin Ly (0a,0v) + vWp({Pos (Xi) }s=1, {Pos (Xi) }5=0), (80)
®,VY
where mathcalW,, denotes the p-Wasserstein distance between the empirical distributions {®g, (X;)}s=1 and
{®y,(X;)}s=0, and 7 is a parameter that weights the strength of the regularization.

Implementation: For both baselines, we use Step 1 of FairPol as the base architecture (see Sec. 5.1 for details) and use the
same neural network-specific hyperparameters (see Appendix F). We choose p = 2 for the Wasserstein distance.

Experiments: We then train FairPol without value fairness and only action fairness, where the action fairness is enforced
via (1) adversarial domain confusion, (2) adversarial gradient reversal, and (3) regularization using Wasserstein distance,
respectively. We repeat the training of FairPol for different values of ~y, and plot the corresponding action fairness and
achieved policy value in Fig. 6. The adversarial domain confusion loss performs consistently best over different levels of
action fairness. This is also consistent with prior literature (Melnychuk et al., 2022).

0.14 1
0.12 A * ® 58
<P

0.10 1 *Q = FairPol (adversarial domain confusion)
E FairPol (adversarial gradient reversal)
£ 0.08 A FairPol (regularization using Wasserstein distance)
>
% * Optimal unrestricted policy
a 0.06 A > * Oracle action fairness

0.04 4

[
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Figure 6. Comparing different representation learning methods in Step 1 for FairPol to enforce action fairness.
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J. Synthetic experiments with estimated nuisance parameters

In this section, we repeat the experiments from Table lin Sec. 6 but where we estimate nuisance parameters (X, S) =
EY | X,S,A=j],7 € {0,1} and m,(X,S) =P(A =1 | X, S) from the observational data. To do so, we use a TARNet
(Shalit et al., 2017) for estimation and refer to Appendix H for details. The results are shown in Table 7. In particular,
our results from Table 1 are robust with respect to estimation errors in nuisance parameters. In sum, this demonstrates the
effectiveness of our framework when nuisance parameters are estimated from data.

Table 7. Results for simulated data with estimated nuisance parameters.

Approach Policy value Action fairness
Overall S=0 S=1
OUR FAIRPOL (ONLY ACTION FAIRNESS)
FairPol with m = DM 0.88+0.16 0.34+0.34 1.11+0.36 0.17 +0.06
FairPol with m = IPW 1.024£0.01 0.00£0.05 1.4540.07 0.20 +0.04
FairPol with m = DR 1.02+0.01 0.00+£0.05 1.454+0.07 0.18 +0.04
OUR FAIRPOL WITH ENVY-FREE FAIRNESS
FairPol with m = DM 0.85+0.15 0.61+0.12 0.954+0.24 0.514+0.44
FairPol with m = IPW 0.80£0.05 0.494+0.14 0.9440.11 0.14 +0.07
FairPol with m = DR 0.83+0.05 0.434+0.12 1.00£0.11 0.22 +0.07
OUR FAIRPOL WITH MAX-MIN FAIRNESS
FairPol with m = DM 0.72+0.04 0.724+0.04 0.73+£0.04 0.13 +0.06
FairPol with m = IPW 0.73+0.03 0.734+0.03 0.73+0.03 0.14 +0.08
FairPol with m = DR 0.73+0.03 0.734+0.03 0.73+0.03 0.11 +0.04

Reported: mean + standard deviation (x 10) on test set over 5 runs.
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K. Synthetic experiments with varying sample sizes

Here we repeat the experiment from Table 1 with three different samples sizes n € {1000, 3000, 5000}. The results are
shown in Table 8.

Table 8. Results for simulated data with varying sample sizes (m = DR).

Approach Policy value Action fairness
Overall S=0 S=1
BASELINES
Optimal unrestricted policy 1.244£0.03 0.74+£0.03 1.46+0.06 2.42 4+ 0.20
Oracle action fairness 1.03£0.02 0.01 £0.07 1.46 +0.06 0.00 £ 0.00
OUR FAIRPOL (ONLY ACTION FAIRNESS)
n = 1000 0.93+0.09 0.09+0.16 1.28+0.04 0.53 +0.69
n = 3000 1.01£0.03 0.02+0.05 1.434+0.07 0.23 +0.05
n = 3000 1.01£0.03 0.00+0.05 1.4540.07 0.15 +0.05
OUR FAIRPOL WITH ENVY-FREE FAIRNESS
n = 1000 0.68+0.15 0.37+0.22 0.81+£0.19 0.42 +0.60
n = 3000 0.86 +0.06 0.34+0.17 1.09+0.15 0.26 +0.10
n = 5000 0.81 +£0.03 0.444+0.09 0.97 £ 0.05 0.18 = 0.14
OUR FAIRPOL WITH MAX-MIN FAIRNESS
n = 1000 0.73+0.03 0.73+0.03 0.73+0.03 0.13+0.10
n = 3000 0.734+0.03 0.73+0.03 0.73+0.03 0.13 £0.03
n = 5000 0.73+0.03 0.734+0.03 0.73+0.03 0.18 = 0.10

Reported: mean =+ standard deviation (x 10) on test set over 5 runs.
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L. Further Discussion

We addressed the problem of fairness in algorithmic decision-making by learning fair policies from observational data. Our
framework has three main benefits that make it appealing for use in practice: (1) Our framework is directly applicable even
in settings where observational data ingrain historical discrimination. Despite such historical discrimination, our framework
can still obtain a fair policy. This is relevant for practice as there is a growing awareness that many data sources are biased
and that it is often challenging or infeasible to remove bias in historical data (Corbett-Davies et al., 2023). (2) Our framework
comes with a scalable machine learning instantiation based on a custom neural network (FairPol). Hence, practitioners can
effectively generate fair policies from high-dimensional and non-linear observational data. (3) Our framework is flexible in
the sense that it supports different fairness notions. Practitioners can thus adapt our framework to the underlying fairness
goals as well as the legal and ethical contexts and thus choose a suitable fairness notion. Together, our framework fulfills
crucial fairness demands in many applications from practice (e.g., automated hiring, credit lending, and ad targeting).

Our work contributes to the literature in several ways. First, our work connects to off-policy learning (e.g., Kallus, 2018;
Athey & Wager, 2021). While there is a growing body of literature that uses off-policy learning for managerial decision-
making such as pricing and ad targeting (e.g., Smith et al., 2023; Yoganarasimhan et al., 2022; Yang et al., 2023), we add by
offering a new framework with fairness guarantees. In particular, our work fills an important gap in the literature in that we
are able to learn fair policies from discriminatory observational data. Second, there is extensive literature on algorithmic
fairness that focuses on machine learning predictions (e.g., Hardt et al., 2016; Kusner et al., 2017; Nabi & Shpitser, 2018),
whereas we contribute to algorithmic fairness for decision-making from observational data, specifically, off-policy learning.
Third, fairness notions such as envy-free fairness or max-min fairness have been used in traditional, utility-based decision
models such as those from resource allocation and pricing (e.g., Bertsimas et al., 2011; Kallus & Zhou, 2021; Cohen et al.,
2022). We build upon these fairness notions but integrate them into off-policy learning.

Conclusion: In this paper, we proposed a novel framework for fair off-policy learning from observational data. For this, we
introduced fairness notions tailored to off-policy learning, then developed a flexible instantiation of our framework using
machine learning (FairPol), and finally provided theoretical guarantees in form of generalization bounds. Our framework is
widely applicable to algorithmic decision-making in practice where fairness must be ensured.
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M. Practical recommendations for using our fairness criteria

We discuss the applicability of the different fairness criteria (action fairness, envy-free fairness, and max-min fairness) and
when practitioners should choose which. Table 9 lists the advantages and disadvantages of the different fairness criteria as
well as examples of real-world use cases in which practitioners may consider enforcing these.

Fairness
metric

Definition

Use cases

Advantages/ disadvantages

Action fair-
ness

A policy fulfills action fairness if
the recommended action is inde-
pendent of the sensitive attribute.
= Definition 4.1

Hiring, credit lending,
where decisions cannot
directly discriminate
against/depend on sensitive
attributes.

Focuses on the underlying mechanism for as-
signing treatments, not outcomes/utility from
treatments.

@ Ensures equal treatment across sensitive at-
tributes.

@ Consistent with many regulatory frameworks
(e.g., US Fair Lending Laws, US Fair Housing
Act, anti-discrimination laws in the EU).
QTypically suitable when non-treatment does
not lead to immediate loss or harm.

@Often suitable for selection tasks where items
out of a large pool should be chosen.

@Does not consider discrepancies in policy val-
ues between the sensitive groups.

Envy-free
fairness

A policy fulfills envy-free fairness
if the conditional policy values be-
tween sub-populations do not dif-
fer more than a predefined level.
= Definition 4.2

Resource allocation, schol-
arships, where disparities in
utility between groups are
controlled.

Focuses on outcomes/utility of an individual
relative to others.

Allows control over utility disparities.
GTypically suitable for distributive tasks where
a given pool of N items should be allocated.

@ Grounded in ethics (Rawlsian justice).
QMay require careful calibration of the fairness
level.

°May lead to policies that are not Pareto opti-
mal, i.e., the policy value of one sensitive group
may be improved without reducing the policy
value for the opposite group.

Max-min
fairness

A policy fulfills max-min fairness
if it maximizes the worst-case
policy value for the sensitive at-
tributes.

= Definition 4.3

Situations where the worst-
case outcome is to be opti-
mized, e.g., emergency ser-
vices allocation.

Focuses on the worst outcome/utility across a
group.

When combined with action fairness, can be
a special case of envy-free fairness.
@Focuses on improving the worst-off group.
@ Oftentimes helpful for decision-makers that
“do not want to harm”.
0Typically suitable for distributive tasks where
a given pool of N items should be allocated.
@ Could lead to suboptimal outcomes for non-
worst-off groups.

Table 9. Guidance for choosing our fairness metrics for policy learning in practice.
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N. Experiment repeated with more runs

In Table 10, we repeat the experiment from Table 1 with 10 runs. The results remain stable.

Table 10. Results for simulated data.

Approach Policy value Action fairness
Overall S=0 S=1
BASELINES
Optimal unrestricted policy 1.254+0.03 0.744+0.03 1.47+0.05 2.43+0.17
Oracle action fairness 1.04+0.03 0.01 £0.07 1.47+0.05 0.00 4+ 0.00
OUR FAIRPOL (ACTION FAIR)
FairPol with m = DM 1.04 £0.03 0.04 +0.08 1.46 + 0.05 0.24 +0.18
FairPol with m = IPW 1.03+0.03 0.03+0.08 1.45+0.05 0.25 +£0.15
FairPol with m = DR 1.03+0.03 0.03+0.08 1.45+0.05 0.24 £0.15
OUR FAIRPOL (ENVY-FREE FAIR)
FairPol with m = DM 0.90£0.16 0.50+£0.23 1.08+0.28 0.50 £0.73
FairPol with m = TPW 0.87£0.07 0.36£0.18 1.09=+0.17 0.26 £0.17
FairPol with m = DR 0.87£0.07 0.38+0.18 1.07+0.17 0.254+0.18
OUR FAIRPOL (MAX-MIN FAIR)
FairPol with m = DM 0.74+0.03 0.74+£0.03 0.74+0.03 0.09 +£0.07
FairPol with m = IPW 0.73£0.03 0.73+£0.03 0.73+0.03 0.14 £0.08
FairPol with m = DR 0.74£0.03 0.73+£0.03 0.74+0.03 0.13£0.08

Reported: mean =+ standard deviation (x 10) on test set over 10 runs.
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