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Abstract

Literature review requires researchers to syn-001
thesize a large amount of information and is002
increasingly challenging as the scientific liter-003
ature expands. In this work, we investigate004
the potential of LLMs for producing hierar-005
chical organizations of scientific studies to as-006
sist researchers with literature review. We de-007
fine hierarchical organizations as tree struc-008
tures where nodes refer to topical categories009
and every node is linked to the studies as-010
signed to that category. Our naive LLM-based011
pipeline for hierarchy generation from a set012
of studies produces promising yet imperfect013
hierarchies, motivating us to collect CHIME,014
an expert-curated dataset for this task focused015
on biomedicine. Given the challenging and016
time-consuming nature of building hierarchies017
from scratch, we use a human-in-the-loop pro-018
cess in which experts correct errors (both links019
between categories and study assignment) in020
LLM-generated hierarchies. CHIME contains021
2,174 LLM-generated hierarchies covering 472022
topics, and expert-corrected hierarchies for a023
subset of 100 topics. Expert corrections allow024
us to quantify LLM performance, and we find025
that while they are quite good at generating026
and organizing categories, their assignment of027
studies to categories could be improved. We028
attempt to train a corrector model with human029
feedback which improves study assignment by030
12.6 F1 points. We release our dataset and mod-031
els to encourage research on developing better032
assistive tools for literature review.033

1 Introduction034

Literature review, the process by which researchers035

synthesize many related scientific studies into a036

higher-level organization, is valuable but extremely037

time-consuming. For instance, in medicine, com-038

pleting a review from registration to publication039

takes 67 weeks on average (Borah et al., 2017)040

and given the rapid pace of scholarly publica-041

tion, reviews tend to go out-of-date quickly (Sho-042
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Figure 1: Given a set of related studies on a topic, we use
LLMs to identify top-level categories focusing on different
views of the data (such as P1 and P2), generate multiple hierar-
chical organizations, and assign studies to different categories.
However, these categories and study assignments can contain
errors. As illustrated in the figure, the categories Walking
and Weight training are not coherent with their siblings
(S1 − S3) in hierarchy 1 since they are more specific, and
the categories Metastasis and Recurrence are incorrectly
assigned to the parent category in hierarchy 2 since they are
not types of cancer.

jania et al., 2007). This has prompted develop- 043

ment of tools for efficient literature review (Alt- 044

mami and Menai, 2022). Most tools have focused 045

on automating review generation, treating it as a 046

multi-document summarization task (Mohammad 047

et al., 2009; Jha et al., 2015; Wallace et al., 2020; 048

DeYoung et al., 2021; Liu et al., 2023b), some- 049

times using intermediate structures such as hier- 050

archies/outlines to better scaffold generation (Zhu 051

et al., 2023), with limited success. However, re- 052

cent work on assessing the utility of NLP tools like 053
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LLMs for systematic review reveals that domain054

experts prefer literature review tools to be assistive055

instead of automatic (Yun et al., 2023).056

Motivated by this finding, we take a different057

approach and focus on the task of generating hierar-058

chical organizations of scientific studies to assist lit-059

erature review. As shown in Figure 1, a hierarchical060

organization is a tree structure in which nodes rep-061

resent topical categories and every node is linked to062

a list of studies assigned to that category. Inspired063

by the adoption of LLMs for information organi-064

zation uses such as clustering (Viswanathan et al.,065

2023) and topic modeling (Pham et al., 2023a), we066

investigate the potential of generating hierarchies067

with a naive LLM-based approach, and observe068

that models produce promising yet imperfect hier-069

archies out-of-the-box.070

To further assess and improve LLM performance,071

we collect CHIME (Constructing HIerarchies of072

bioMedical Evidence), an expert-curated dataset073

for hierarchy generation. Since building such hier-074

archies from scratch is very challenging and time-075

consuming, we develop a human-in-the-loop proto-076

col in which experts correct errors in preliminary077

LLM-generated hierarchies. During a three-step078

error correction process, experts assess the correct-079

ness of both links between categories as well as as-080

signment of studies to categories, as demonstrated081

in Figure 1. Our final dataset consists of two sub-082

sets: (i) a set of 472 research topics with up to083

five LLM-generated hierarchies per topic (2,174084

total hierarchies), and (ii) a subset of 100 research085

topics sampled from the previous set, with 320086

expert-corrected hierarchies.087

Expert-corrected hierarchies allow us to better088

quantify LLM performance on hierarchy genera-089

tion. We observe that LLMs are already quite good090

at generating and organizing categories, achieving091

near-perfect performance on parent-child category092

linking and a precision of 77.3% on producing co-093

herent groups of sibling categories. However, their094

performance on assigning studies to relevant cat-095

egories (61.5% F1) leaves room for improvement.096

We study the potential of using CHIME to train097

“corrector” agents which can provide feedback to098

our LLM-based pipeline to improve hierarchy qual-099

ity. Our results show that finetuning a FLAN-T5-100

based corrector and applying it to LLM-generated101

hierarchies improves study assignment by 12.6 F1102

points. We release our dataset containing both103

LLM-generated and expert-corrected hierarchies,104

as well as our LLM-based hierarchy generation and 105

correction pipelines, to encourage further research 106

on better assistive tools for literature review. 107

In summary, our key contributions include: 108

• We develop an LLM-based pipeline to organize 109

a collection of papers on a research topic into a 110

labeled, human-navigable concept hierarchy. 111

• We release CHIME, a dataset of 2174 hierarchies 112

constructed using our pipeline, including a “gold” 113

subset of 320 hierarchies checked and corrected 114

by human experts. 115

• We train corrector models using CHIME to au- 116

tomatically fix errors in LLM-generated hierar- 117

chies, improving accuracy of study categoriza- 118

tion by 12.6 F1 points. 119

2 Generating Preliminary Hierarchies 120

using LLMs 121

The first phase of our dataset creation process fo- 122

cuses on using LLMs to generate preliminary hi- 123

erarchies from a set of related studies, which can 124

then be corrected by experts. We describe our pro- 125

cess for collecting sets of related studies and our 126

LLM-based hierarchy generation pipeline. 127

2.1 Sourcing Related Studies 128

We leverage the Cochrane Database of Systematic 129

Reviews1 to obtain sets of related studies, since the 130

systematic review writing process requires experts 131

to extensively search for and curate studies relevant 132

to review topics. We obtain all systematic reviews 133

and the corresponding studies included in each re- 134

view from the Cochrane website (Wallace et al., 135

2020). We then filter this set of systematic reviews 136

to only retain those which: (i) are open-access (to 137

facilitate dataset sharing), and (ii) include at least 138

15 and no more than 50 corresponding studies. We 139

discard reviews with very few studies since a hier- 140

archical organization is unlikely to provide much 141

utility, while reviews with more than 50 studies 142

are discarded due to the inability of LLMs to effec- 143

tively handle such long inputs (Liu et al., 2023a). 144

Our filtering criteria leave us with 472 systematic 145

reviews (or sets), each including an average of 24.7 146

studies, which serve as input to our hierarchy gen- 147

eration pipeline. 148

2.2 Hierarchy Generation Pipeline 149

Prior work on using LLMs for complex tasks has 150

shown that decomposing the task into a series of 151

1https://www.cochranelibrary.com/cdsr/reviews
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Figure 2: LLM-based pipeline for preliminary hierarchy
generation given a set of related studies on a topic

steps or sub-tasks often elicits more accurate re-152

sponses (Kojima et al., 2022; Wei et al., 2022b;153

D’Arcy et al., 2024). Motivated by this, we de-154

compose hierarchy generation from a set of related155

scientific studies into three sub-tasks: (i) compress-156

ing study findings into concise claims, (ii) initiating157

hierarchy generation by generating root categories,158

and (iii) completing hierarchy generation by pro-159

ducing remaining categories and organizing claims160

under them. Our hierarchy generation pipeline con-161

sists of a pre-generation module that tackles task162

(i) and a hierarchy proposal module that handles163

tasks (ii) and (iii) (see Figure 2)). Additionally, our164

pipeline can generate multiple (up to five) poten-165

tial hierarchies per topic. We describe our pipeline166

module in further detail below and provide com-167

plete prompt details in Appendix A.168

2.2.1 Pre-Generation Module169

This module extracts relevant content from a set of170

studies to use as input for hierarchy proposal.171

Claim generation. We generate concise claim172

statements from a given scientific study to reduce173

the amount of information provided as input to sub-174

sequent LLM modules. Providing a study abstract175

as input, we prompt a LLM to generate claims de-176

scribing all findings discussed. We qualitatively177

examine the claim generation capabilities of two178

state-of-the-art LLMs: (i) GPT-3.5 (June 2023 ver-179

sion) and (ii) CLAUDE-2. Our assessment indicates180

that GPT-3.5 performs better in terms of clarity and181

conciseness; therefore we extract claim statements182

for all studies in our dataset using this model. Ad-183

ditionally, to assess whether generated claims con-184

tain hallucinated information, we run a fine-tuned185

DEBERTA-V3 NLI model (Laurer et al., 2024) on 186

abstract-claim pairs. We observe that 98.1% of 187

the generated claims are entailed by their corre- 188

sponding study abstracts, indicating that claims are 189

generally faithful to source abstracts. These sets 190

of generated claims are provided as input to the 191

hierarchy proposal module. 192

Frequent entity extraction. Based on prelimi- 193

nary exploration, we observe that simply prompt- 194

ing LLMs to generate hierarchies given a set of 195

claims often produces hierarchy categories with 196

low coverage over the claim set. Therefore, we 197

extract frequently-occurring entities to provide as 198

additional cues to bias category generation. We use 199

SCISPACY (Neumann et al., 2019) to extract enti- 200

ties from all study abstracts, then aggregate and sort 201

them by frequency. The 20 most frequent entities 202

are used as additional keywords to bias generated 203

categories towards having high coverage. 204

2.2.2 Hierarchy Proposal Module 205

The aim of this module is to generate final hierar- 206

chies in two steps within a single prompt: (i) gener- 207

ate possible categories that can form the root node 208

of a hierarchy (i.e., categories that divide claims 209

into various clusters), and then (ii) generate the 210

complete hierarchy with claim organization. For in- 211

stance, considering the example in Figure 1, step (i) 212

would produce root categories “exercise modalities” 213

and “cancer types” and step (ii) would produce all 214

sub-categories (S1− S5) and organize studies un- 215

der them (e.g., assigning studies 1, 3, 5 under S1). 216

Root category generation. With outputs from 217

the pre-generation module and a research topic 218

(systematic review title), we prompt the LLM to 219

generate up to five top-level aspects as possible 220

root categories for hierarchies. 221

Hierarchy completion. With generated root cate- 222

gories, this step aims to produce a complete hierar- 223

chy. We prompt the LLM to produce one hierarchy 224

per root category, with every non-root category 225

also containing numeric references to claims cate- 226

gorized under it. Note that in our setting, a claim 227

may be assigned to multiple categories or remain 228

uncategorized. A manual comparison of GPT-3.5 229

and CLAUDE-2 outputs shows that CLAUDE-2 gen- 230

erates root categories more relevant to the research 231

topic and is also more accurate at correctly assign- 232

ing claims, so we use this model for the hierarchy 233

proposal module. 234

Using this pipeline, we generate 2,174 prelimi- 235
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nary hierarchies (∼4.6 hierarchies per review) for236

our curated set of 472 systematic reviews (or sets237

of related studies).238

3 Correcting Hierarchies via Human239

Feedback240

The second phase of our dataset creation process241

involves correction of preliminary LLM-generated242

hierarchies via human feedback. Correcting these243

hierarchies is challenging because of two issues.244

First, the volume of information present in gener-245

ated hierarchies (links between categories, claim-246

category links, etc.) makes correction very time-247

consuming, especially in a single pass. Second,248

since categories and claims in a hierarchy are inter-249

linked, corrections can have cascading effects (e.g.,250

changing a category name can affect which claims251

should be categorized under it). These issues mo-252

tivate us to decompose hierarchy correction into253

three sub-tasks, making the feedback process less254

tedious and time-consuming. Furthermore, each255

sub-task focuses on the correction of only one cate-256

gory of links to mitigate cascading effects. These257

three sub-tasks are: (i) assessing correctness of258

parent-child category links, (ii) assessing coher-259

ence of sibling category groups, and (iii) assessing260

claim categorization.261

3.1 Assessing Parent-Child Category Links262

In this sub-task, given all parent-child category263

links from a hierarchy (e.g., P1 → S[1 − 5] in264

Figure 1), for each link, humans are prompted to265

determine whether the child is a valid sub-category266

of the parent. Annotators can label parent-child267

category links using one of the following labels:268

(i) parent and child categories have a hypernym-269

hyponym relationship (e.g., exercise modalities →270

aerobic exercise), (ii) parent and child categories271

are not related by hypernymy but the child category272

provides a useful breakdown of the parent(e.g., aer-273

obic exercise → positive effects), and (iii) parent274

and child categories are unrelated (e.g., aerobic ex-275

ercise → anaerobic exercise). Categories (i) and276

(ii) are positive labels indicating valid links, while277

category (iii) is a negative label capturing incorrect278

links in the existing hierarchy.279

3.2 Assessing Coherence of Sibling Categories280

For a hierarchical organization to be useful, in ad-281

dition to validity of parent-child category links, all282

sibling categories (i.e., categories under the same283

parent, like S1 − S5 in Figure 1) should also be 284

coherent. Therefore, in our second sub-task, given 285

a parent and all its child categories, we ask anno- 286

tators to determine whether these child categories 287

form a coherent sibling group. Annotators can as- 288

sign a positive or negative coherence label to each 289

child category in the group. For example, given the 290

parent category “type of cancer” and the set of child 291

categories “liver cancer”, “prostate cancer”, “lung 292

cancer”, and “recurrence”, the first three categories 293

are assigned positive labels, while “recurrence” is 294

assigned a negative label since it is not a type of 295

cancer. All categories assigned a negative label 296

capture incorrect groups in the existing hierarchy. 297

3.3 Assessing Claim Categorization 298

Unlike the previous sub-tasks which focus on as- 299

sessing links between categories at all levels of 300

the hierarchy, the final sub-task focuses on assess- 301

ing the assignment of claims to various categories. 302

Given a claim and all categories present in the hi- 303

erarchy, for each claim-category pair, humans are 304

prompted to assess whether the claim contains any 305

information relevant to that category. The claim- 306

category pair is assigned a positive label if relevant 307

information is present, and negative otherwise. For 308

every category, we include the path from the root to 309

provide additional context which might be needed 310

to interpret it accurately (e.g., “positive findings” 311

has a broader interpretation than “chemotherapy 312

→ positive findings”). Instead of only assessing 313

relevance of categories under which a claim has 314

currently been categorized, this sub-task evaluates 315

all claim-category pairs in order to catch recall er- 316

rors, i.e., cases in which a claim could be assigned 317

to an category but is not categorized there currently. 318

3.4 Feedback Process 319

Data Sampling: Due to the time-intensiveness 320

of the correction task, we collect annotations for 321

100 / 472 randomly-sampled topics, and further 322

filter out hierarchies which cover less than 30% of 323

the claims associated with that topic. This leaves 324

us with 320 hierarchies to collect corrections for. 325

For the parent-child link assessment sub-task, this 326

produces 1,635 links to be assessed. For sibling co- 327

herence, after removing all parent categories with 328

only one child, we obtain 574 sibling groups to 329

be assessed. Lastly, for claim categorization, the 330

most intensive task, we end up with 50,723 claim- 331

category pairs to label. 332
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Precision Recall F1

Task 1 0.999 - -
Task 2 0.773 - -
Task 3 0.716 0.539 0.615

Table 1: Performance assessment of our LLM-based
pipeline on expert-curated hierarchies for 100 topics.
Recall and F1 for tasks 1 and 2 cannot be measured
since we only get positive predictions from the pipeline.

Annotator Background: We recruit a team333

of five experts with backgrounds in biology or334

medicine to conduct annotations. Two of these335

experts are authors on this paper, and the remain-336

ing three were recruited via Upwork.2 Every an-337

notator is required to first complete a qualification338

test, which includes sample data from all three sub-339

tasks, and must achieve reasonable performance340

before they are asked to annotate data.341

Annotation Pilots: Given the complexity and342

ambiguity of our tasks, we conduct several rounds343

of pilot annotation with iterative feedback before344

commencing full-scale annotation. This ensures345

that all annotators develop a deep understanding346

of the task and can achieve high agreement. After347

each pilot, we measure inter-annotator agreement348

on each sub-task. Due to the presence of unbal-349

anced labels in tasks 1 and 2, we compute agree-350

ment using match rate; for task 3, we report Fleiss’351

kappa. At the end of all pilot rounds, we achieve352

high agreement on all sub-tasks, with match rates353

of 100% and 78% on tasks 1 and 2 respectively and354

Fleiss’ kappa of 0.66 on task 3.355

3.5 Assessment of Preliminary Hierarchies356

An additional benefit of collecting corrections for357

preliminary hierarchies (as described above) is that358

this data allows us to quantify the quality of our359

LLM-generated hierarchies and measure the per-360

formance of our hierarchy generation pipeline.361

Parent-child link accuracy. Interestingly, we ob-362

serve almost perfect performance on this sub-task,363

with only one out of 1635 parent-child links being364

labeled as incorrect where the pipeline put “Coffee365

consumption” under “Tea consumption and can-366

cer risk”. Of the remaining correct links, 75% are367

labeled as hypernym-hyponym links, and 25% as368

useful breakdowns of the parent category. This re-369

sult demonstrates that LLMs are highly accurate370

2https://www.upwork.com/

at generating good sub-categories given a parent 371

category, even when dealing with long inputs. 372

Sibling coherence performance. Next, we look 373

into LLM performance on sibling coherence and 374

observe that this is also fairly high, with 77% of 375

sibling groups being labeled as coherent where “co- 376

herent” denotes a sibling group in which expert 377

labels for all sibling categories are positive; other- 378

wise, “zero.” Among sibling groups labeled inco- 379

herent, we observe two common types of errors: (1) 380

categories at different levels of granularity being 381

grouped as siblings, and (2) one or more categories 382

having subtly different focuses. For example, Fig. 1 383

demonstrates a type 1 error, where the sub-category 384

“walking” is more specific and should be classified 385

under “aerobic” but is instead listed as a sibling. 386

An example of a type 2 error is the parent category 387

“dietary interventions” with child categories “low 388

calorie diets”, “high/low carbohydrate diets”, and 389

“prepared meal plans”. Here, though all child cate- 390

gories are dietary interventions, the first two have 391

an explicit additional focus on nutritional value 392

which “prepared meal plans” lacks, making them 393

incoherent as a sibling group. 394

Claim categorization performance. The design 395

of our claim categorization sub-task prompts anno- 396

tators to evaluate the relationship between a given 397

claim and every category in the hierarchy. Hence, 398

when assessing whether annotators agree with the 399

LLM’s categorization of a claim under a category, 400

we need to aggregate over the labels assigned to all 401

claim-category pairs from the root to the target cat- 402

egory under consideration. Formally, for a claim- 403

category pair (cli, ctj), instead of only using label 404

lij = h((cli, ctj)) from human feedback h, we 405

must aggregate over labels assigned to all ancestors 406

of ctj , i.e., L = [h((cli, ct1)), ..., h((cli, ctj))], 407

where ct1 is the root category and ctj is the target 408

category. We do this aggregation using an AND 409

operation lagg = l1 ∧ l2 ∧ ...∧ lj . After computing 410

these aggregate labels, we observe that our LLM- 411

based pipeline has reasonable precision (0.71), but 412

much lower recall (0.53) on claim categorization. 413

A low recall rate on this sub-task is problematic 414

because, while it is easy for human annotators to 415

correct precision errors (remove claims wrongly 416

assigned to various categories), it is much harder 417

to correct recall errors (identify which claims were 418

missed under a given category), which necessitates 419

a thorough examination of all studies. 420
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4 Characterizing Hierarchy Complexity421

Our dataset creation process produces 2,174 hierar-422

chies on 472 research topics, with 320 hierarchies423

(for 100 topics) corrected by domain experts. We424

briefly characterize the complexity of all generated425

hierarchies, focusing on two aspects: (i) structural426

complexity, and (ii) semantic complexity.427

4.1 Structural Complexity428

Hierarchy depth: All generated hierarchies are429

multi-level, with a mean hierarchy depth of 2.5,430

and maximum depth of 5.431

Node arity: On average, every parent has a node432

arity of 2.4 (i.e., has 2.4 child categories). However,433

node arity can grow as large as 10 for certain parent434

categories.435

Claim coverage: Another crucial property of gen-436

erated hierarchies is their coverage of claims since437

hierarchies containing fewer claims are easier to438

generate but less useful. We observe that given a439

set of claims, a typical hierarchy incorporates 12.3440

claims on average. Additionally, very few claims441

from a set remain uncategorized, i.e., not covered442

by any generated hierarchy (2.6 on average).443

These characteristics indicate that our LLM-444

generated hierarchies have interesting structural445

properties.446

4.2 Semantic Complexity447

Category diversity: Our dataset contains 4.6 hier-448

archies per research topic. We manually inspect a449

small sample of hierarchies for 10 research topics,450

and find that none of the hierarchies generated for a451

single topic contain any repeating categories. This452

signals that the multiple hierarchies we generate453

per topic represent semantically diverse ways of454

grouping/slicing the same set of claims.455

Adherence to PICO framework: Systematic re-456

views in biomedicine typically use the PICO (pop-457

ulation, intervention, comparator, outcome) frame-458

work (Richardson et al., 1995) to categorize studies.459

To understand how much our generated hierarchies460

adhere to this framework, we again inspect hier-461

archies for 10 research topics and label whether462

the root category focuses on a PICO element. We463

observe that 34 out of 46 hierarchies have a PICO-464

focused root category, making them directly useful465

for systematic review. Interestingly, the remain-466

ing hierarchies still focus on useful categories such467

as continuing patient education, study limitations,468

cost analyses etc. Thus, besides surfacing catego-469

Task 1 Task 2 Task 3

Train 838 298 23,692
Validation 285 99 8,241
Test ID 327 115 13,595
Test OOD 185 62 5,195

Total 1,635 574 5,0723

Table 2: Dataset statistics for each correction sub-task

rizations expected by the systematic review process, 470

using LLMs can help discover additional interest- 471

ing categorizations. 472

5 Automating Hierarchy Correction 473

As mentioned in §4, we hire five domain experts to 474

correct hierarchies for 100 research topics. How- 475

ever, the correction process, despite our best ef- 476

forts at task simplification and decomposition, is 477

still time-consuming and requires domain exper- 478

tise. Therefore, we investigate whether we can 479

use our corrected hierarchy data to automate some 480

correction sub-tasks. In particular, we focus on 481

automating sibling coherence and claim categoriza- 482

tion correction since Table 1 indicates that LLMs 483

already achieve near-perfect performance on pro- 484

ducing relevant child categories for a parent. 485

5.1 Experimental Setup 486

We briefly discuss the experimental setup we use 487

to evaluate whether model performance on sibling 488

coherence and claim categorization correction can 489

be improved using our collected feedback data. 490

5.1.1 Dataset Split 491

To better assess generalizability, we carefully con- 492

struct two test sets, an in-domain (ID) and an out- 493

of-domain (OOD) subset instead of randomly split- 494

ting our final dataset of 100 research topics. To 495

develop our OOD test set, we first embed all 100 496

research topics by running SPECTER2 (Singh et al., 497

2022) on the title and abstract of the Cochrane sys- 498

tematic review associated with each topic. Then, 499

we run hierarchical clustering on the embeddings 500

and choose one isolated cluster (n = 12 reviews) 501

to be our OOD test set. Our manual inspection 502

reveals that all studies in this cluster are about fer- 503

tility and pregnancy. After creating our OOD test 504

set, we then randomly sub-sample our ID test set 505

(n = 18 reviews) from remaining research topics. 506

This leaves us with 70 topics, which we split into 507

training and validation sets. Detailed statistics for 508
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our dataset splits, including number of instances for509

each correction sub-task, are provided in Table 2.510

5.1.2 Models511

We evaluate two classes of methods for correction:512

• Finetuned LMs: To assess whether correction513

abilities of smaller LMs can be improved by fine-514

tuning on our collected feedback data, we experi-515

ment with Flan-T5 (Chung et al., 2022), which516

has proven to be effective on many benchmarks.517

• Zero-Shot CoT: To explore whether using518

chain-of-thought (CoT) prompting (Wei et al.,519

2022a) improves the ability of LLMs to520

do correction zero-shot without using our521

feedback data, we test OpenAI GPT-3.5522

Turbo (gpt-3.5-turbo-0613) and GPT-4 Turbo523

(gpt-4-1106-preview).524

Additional modeling details including CoT525

prompts are provided in Appendix B.526

5.2 Correcting Sibling Coherence527

Table 3 presents the performance of all models528

on the task of identifying sibling groups that are529

incoherent. Finetuning models on this task is chal-530

lenging due to the small size of the training set531

(n = 298) and imbalanced labels. Despite up-532

sampling and model selection based on precision,533

finetuned Flan-T5 models do not perform well on534

this task (best F1-score of 33.3%). Additionally535

LLMs also do not perform well despite the use536

of chain-of-thought prompting to handle the com-537

plex reasoning required for this task. At 51.5%538

F1, LLMs outperform finetuned models; however,539

their precision (46.7% for GPT-4-Turbo) is still not540

good enough to detect incoherent sibling groups541

confidently. These results indicate that this correc-542

tion sub-task is extremely difficult to automate and543

will likely continue to require expert intervention.544

5.3 Correcting Claim Categorization545

Table 4 shows the performance of all models on546

the task of correcting assignment of claims to cate-547

gories in the hierarchy. Following the strategy de-548

scribed in §3.5, given a claim, we first use our mod-549

els to generate predictions for every claim-category550

pair (all category nodes) and then obtain the final551

label for each category by applying an AND op-552

eration over all predictions from the root category553

to that category. Our results show that this task554

is easier to automate—fine-tuning Flan-T5 on our555

collected training dataset leads to better scores on556

all metrics compared to our LLM pipeline. Cru- 557

cially, recall which is much more time-consuming 558

for humans to fix, improves by 15.9 points using 559

Flan-T5-large indicating that automating this step 560

can provide additional efficiency gains during cor- 561

rection. LLMs perform well too, with GPT-4-Turbo 562

achieving the best recall rate among all models, but 563

its lower precision score makes the predictions less 564

reliable overall. 565

Interestingly, we notice that all models perform 566

better on the OOD test for both correction tasks, 567

indicating that the OOD test set likely contains 568

instances that are less challenging than the ID set. 569

5.4 Correcting Claim Categorization for 570

Remaining Hierarchies 571

Comparing the claim categorization predictions of 572

Flan-T5-large on our test set with our LLM-based 573

hierarchy generation pipeline reveals that it flips 574

labels in 24.7% cases, of which 63.5% changes 575

are correct. This indicates that a FLAN-T5-large 576

corrector can potentially improve claim categoriza- 577

tion of LLM-generated hierarchies. Therefore, we 578

apply this corrector to the remaining 372 LLM- 579

generated hierarchies that we do not have expert 580

corrections for to improve claim assignment for 581

those. Our final curated dataset CHIME contains 582

hierarchies for 472 research topics, of which hierar- 583

chies for 100 topics have been corrected by experts 584

on both category linking and claim categorization, 585

while hierarchies for the remaining 372 have had 586

claim assignments corrected automatically. 587

6 Related Work 588

6.1 Literature Review Support 589

Prior work on developing literature review support 590

tools has largely focused on using summarization 591

techniques for end-to-end review generation or to 592

tackle specific aspects of the problem (see Altmami 593

and Menai (2022) for a detailed survey). Some 594

studies have focused on generating “citation sen- 595

tences” discussing relationships between related 596

papers, which can be included in a literature re- 597

view (Xing et al., 2020; Luu et al., 2021; Ge et al., 598

2021; Wu et al., 2021). Other work has focused 599

on the task of generating related work sections for 600

a scientific paper (Hoang and Kan, 2010; Hu and 601

Wan, 2014; Li et al., 2022; Wang et al., 2022), 602

which while similar in nature to literature review, 603

has a narrower scope and expects more concise 604

generation outputs. Finally, motivated by the ever- 605
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All In-domain Out-of-domain
Precision Recall F1 Precision Recall F1 Precision Recall F1

Fine-tuned Flan-T5 base 0.368 0.179 0.241 0.364 0.167 0.229 0.375 0.200 0.261
Flan-T5 large 0.333 0.333 0.333 0.269 0.292 0.280 0.462 0.400 0.429

Zero-shot
CoT

GPT-3.5 Turbo 0.419 0.667 0.515 0.400 0.583 0.475 0.444 0.800 0.571
GPT-4 Turbo 0.467 0.359 0.406 0.474 0.375 0.419 0.455 0.333 0.385

Table 3: Performance of all models on assessing sibling coherence.

All In-domain Out-of-domain
Precision Recall F1 Precision Recall F1 Precision Recall F1

Pipeline 0.697 0.567 0.625 0.677 0.575 0.622 0.757 0.548 0.636

Fine-tuned Flan-T5-base 0.767 0.711 0.738 0.750 0.702 0.725 0.816 0.735 0.773
Flan-T5-large 0.779 0.726 0.751 0.769 0.726 0.747 0.807 0.725 0.764

Zero-shot
CoT

GPT-3.5 Turbo 0.585 0.861 0.697 0.570 0.871 0.689 0.631 0.835 0.719
GPT-4 Turbo 0.557 0.932 0.697 0.544 0.933 0.687 0.594 0.932 0.726

Table 4: Performance of all models on correcting claim categorization.

improving capabilities of generative models, some606

prior work has attempted to automate end-to-end607

review generation treating it as multi-document608

summarization, with limited success (Mohammad609

et al., 2009; Jha et al., 2015; Wallace et al., 2020;610

DeYoung et al., 2021; Liu et al., 2023b; Zhu et al.,611

2023). Of these, Zhu et al. (2023) generates inter-612

mediate hierarchical outlines to scaffold literature613

review generation, but unlike our work, they do not614

produce multiple organizations for the same set of615

related studies. Additionally, we focus solely on616

the problem of organizing related studies for litera-617

ture review, leaving review generation and writing618

assistance to future work.619

6.2 LLMs for Organization620

Organizing document collections is an extensively-621

studied problem in NLP, with several classes of622

approaches such as clustering and topic model-623

ing (Dumais et al., 1988) addressing this goal.624

Despite their utility, conventional clustering and625

topic modeling approaches are not easily inter-626

pretable (Chang et al., 2009), requiring manual ef-627

fort which introduces subjectivity and affects their628

reliability (Baden et al., 2022). Recent work has629

started exploring whether using LLMs for cluster-630

ing (Viswanathan et al., 2023; Zhang et al., 2023;631

Wang et al., 2023) and topic modeling (Pham et al.,632

2023b) can alleviate some of these issues, with633

promising results. This motivates us to experiment634

with LLMs for generating hierarchical organiza-635

tions of scientific studies. Interestingly, TopicGPT636

(Pham et al., 2023b) also attempts to perform hier-637

archical topic modeling, but is limited to producing 638

two-level hierarchies unlike our approach which 639

generates hierarchies of arbitrary depth. 640

7 Conclusion 641

Our work explored the utility of LLMs for produc- 642

ing hierarchical organizations of scientific studies, 643

with the goal of assisting researchers in performing 644

literature review. We collected CHIME, an expert- 645

curated dataset for hierarchy generation focused on 646

biomedicine, using a human-in-the-loop process in 647

which a naive LLM-based pipeline generates pre- 648

liminary hierarchies which are corrected by experts. 649

To make hierarchy correction less tedious and time- 650

consuming, we decomposed it into a three-step 651

process in which experts assessed the correctness 652

of links between categories as well as assignment 653

of studies to categories. CHIME contains 2,174 654

LLM-generated hierarchies covering 472 topics, 655

and expert-corrected hierarchies for a subset of 100 656

topics. Quantifying LLM performance using our 657

collected data revealed that LLMs are quite good at 658

generating and linking categories, but needed fur- 659

ther improvement on study assignment. We trained 660

a corrector model with our feedback data which 661

improved study assignment further by 12.6% F1 662

points. We hope that releasing CHIME and our 663

hierarchy generation and correction models will 664

motivate further research on developing better as- 665

sistive tools for literature review. 666

8



Limitations667

Single-domain focus. Given our primary focus668

on biomedicine, it is possible that our hierarchy669

generation and correction methods do not general-670

ize well to other scientific domains. Further inves-671

tigation of generalization is out of scope for this672

work but a promising area for future research.673

Deployment difficulties. Powerful LLMs like674

CLAUDE-2 have long inference times — in some675

cases, the entire hierarchy generation process can676

take up to one minute to complete. This makes it677

extremely challenging to deploy our hierarchy con-678

struction pipeline as a real-time application. How-679

ever, it is possible to conduct controlled lab studies680

to evaluate the utility of our pipeline as a literature681

review assistant, which opens up another line of682

investigation for future work.683

Reliance on curated sets of related studies. Our684

current hierarchical organization pipeline relies on685

the assumption that all provided studies are rele-686

vant to the research topic being reviewed. However,687

in a realistic literature review setting, researchers688

often retrieve a set of studies from search engines,689

which may or may not be relevant to the topic of in-690

terest, and are interested in organizing the retrieved691

results. It is possible that our pipeline generates692

lower-quality hierarchies in this setting if it is un-693

able to distinguish relevant studies from irrelevant694

ones. Assessing the performance of our system695

in an imperfect retrieval setting presents another696

interesting future direction.697

698
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A Prompts for Hierarchy Generation905

Pipeline906

We present prompts for the hierarchy generation907

pipeline in Fig. 3 and Fig. 4.908

B Model Training Details909

Flan-T5 fintuning. We fine-tuned the910

flan-t5-base and flan-t5-large models911

using the Hugggingface library (Wolf et al., 2019)912

with NVIDIA RTX A6000 for both task 1 and task913

3. For task 1, the learning rate is set to 1e-3 and the914

batch size is 16. We train the model for up to five915

epochs. For task 3, the learning rate is 3e-4 with916

batch size 16, and the models are trained up to two917

epochs. Each epoch takes less than 15 minutes918

for both model sizes. The numbers reported for919

each Flan-T5 model come from a single model920

checkpoint.921

GPT-3.5 Turbo and GPT-4 Turbo We perform922

zero-shot CoT prompting for corrector models on923

tasks 1 and 3 with prompts in Fig. 5 and Fig. 6.924
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Title:
{title}

Abstract:
{abstract}

Task:
Conclude new findings and null findings from the abstract in one sentence in the atomic format. Do not separate
new findings and null findings. The finding must be relevant to the title. Do not include any other information.

Definition:
A scientific claim is an atomic verifiable statement expressing a finding about one aspect of a scientific entity or
process, which can be verified from a single source.

Figure 3: Claim generation prompt for GPT-3.5 Turbo.
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**Review Title**
{systematic_review_title}

Frequent entities from study abstracts:
{freq_entities}

**Study Claim List**
{claim_list}

**Instruction:**
Your task is to process a review title involving relevant clinical studies as per the following requirements:

1. **Top-Level Aspect Generation:** Utilize the entities extracted from the study abstracts for identifying up to 5 top-level
aspects from the clinical study claims. You should list these aspects in a bulleted list format without incorporating any
extraneous information. Cite the entities in that support the aspects. This will be the [Response 1] section.

2. **Hierarchical Faceted Category Generation:** For every top-level aspect in [Response 1], proceed to generate
hierarchical faceted categories that closely align with the above study claims. The granularity of these categories must be
similar to their corresponding parent categories and the siblings categories. Avoid including unrelated information. Cite the
claims that support your categories. This will make up the [Response 2] section of your output.

**Remember:**
1. Precision is vital in this process; strive to avoid vague or imprecise extractions.
2. Include only relevant data and exclude any information not pertinent to the task.
3. Strictly adhere to the output format. The claims are cited in the format "(Claim 0, 2, 3, 12)" for each category and aspect.
4. The output should be in the form of a nested list using numbers. 

Here is an example:

If given the review title "The efficacy of Remdesivir in treating COVID-19 patients: A review," your task output might look
like this:

Frequent entities from study abstracts:
Efficacy, Remdesivir, treatment, COVID-19 patients

**Output Format**
[Response 1]:
Aspect 1: Efficacy of treatment (Efficacy)
Aspect 2: Application of Remdesivir (Remdesivir)
Aspect 3: Treatment of COVID-19 patients (treatment, COVID-19 patients)

[Response 2]:
Aspect 1: Efficacy of treatment (Claim 0, 2, 3, 12)
    1: Efficiency of alternative treatments (Claim 0, 2, 3, 12)
        1.1: Efficacy of Remdesivir (Claim 0, 12)
        1.2: Efficacy of other drugs (Claim 3)
    2: Side-effects comparison (Claim 2)
Aspect 2: Application of Remdesivir (Claim 2, 4, 5, 6, 7, 8, 9, 10, 11)
    1: Usage of other drugs (Claim 4, 5, 6, 9, 10, 11)
    2: Dosing comparisons (Claim 7, 8)
        2.1: Dosing of Remdesivir (Claim 7)
Aspect 3: Treatment of COVID-19 patients (Claim 1, 13, 14, 15, 16, 17, 18, 19, 20, 21)
    1: Treatment procedures for other diseases (Claim 13, 14, 16, 17, 18, 19, 20, 21)
    2: Treatment timeframe comparisons. (Claim 1, 15)

Figure 4: Hierarchy proposal module prompt for Claude-2.
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** Instruction **
In this task, you will be annotating the relationship among a set of sibling categories.You will assess whether
these sibling categories logically belong together within their shared parent category, a concept referred to as
'coherence'. 

Your task is to label whether ALL sibling categories are coherent with each other. 
If all sibling categories fit well and logically belongs to the broader group, label it 'These sibling categories are
coherent' to signify its coherence. Make sure silbings are at the same level of granularity for coherence
assessment.
If any category doesn't seem to belong logically or doesn't fit well within the group, label it 'These sibling
categories are NOT coherent' to indicate non-coherence.

Your decisions should be based solely on the level of coherence – how well these categories fit together under
their shared parent category and not on any other factors or personal preferences.

**Remember**
1. You should start with step-by-step reasoning and generate the answer at the end in the given format.
2. You should only reply with the answer in the format of [These sibling categories are coherent] or [These
sibling categories are NOT coherent].
3. You will be given a parent category and a set of sibling categories. You should assess each sibling category
independently.

Again, follow the format below to reply:

Step-by-step reasoning:

[Your reasoning]

Answer:
[These sibling categories are coherent] or [These sibling categories are NOT coherent]

** Question **
Parent category: {parent_category}

Sibling categories: {sibling_categories}

Figure 5: Prompt for task 1 sibling coherence for both GPT-3.5 Turbo and GPT-4 Turbo.
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** Instruction **
In this task, your role as an annotator is to assess whether a specific claim belongs to a provided category.

Your responsibility is to assign a binary label for each category-claim pairing:
1. "The claim belongs to the category" -  Choose this if any part or aspect of the claim is relevant to the category,
even if the connection is broad or indirect. This includes claims that are negations or opposites of the category.
See the following examples:
The claim “Assisted hatching through partial zona dissection does not improve pregnancy and embryo
implantation rates in unselected patients undergoing IVF or ICSI” belongs to “Impact on specific patient groups”
category because patient groups can be applied to not only patient demographics but also patients with the
same disease/symptom.
The claim “Sumatriptan is effective in reducing productivity loss due to migraine, with significant improvements in
productivity loss and return to normal work performance compared to placebo.” belongs to “Headache relief”
because headache is one of the symptoms of migraine even though it is not explicitly mentioned in the claim.

2. "The claim does NOT belong to the category" - Choose this if there is no meaningful connection between the
claim and the category.

**Remember**
1. Only reply with the answer in the format of [The claim belongs to the category] or [The claim does NOT belong
to the category].
2. Do not reply with any other format.
3. Start with step-by-step reasoning and generate the answer at the end in the given format.

**Claim**
{claim}

**Category**
{category}

Again, follow the format below to reply:

Step-by-step reasoning:
[Your reasoning]

Answer:
[The claim belongs to the category] or [The claim does NOT belong to the category]

Figure 6: Prompt for task 3 claim assignment for both GPT-3.5 Turbo and GPT-4 Turbo.
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