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ABSTRACT

End-to-end training with back propagation is the standard method for training
deep neural networks. However, as networks become deeper and bigger, end-to-
end training becomes more challenging: highly non-convex models gets stuck eas-
ily in local optima, gradients signals are prone to vanish or explode during back-
propagation, training requires computational resources and time. In this work, we
propose to break away from the end-to-end paradigm in the context of Knowledge
Distillation. Instead of distilling a model end-to-end, we propose to split it into
smaller sub-networks - also called neighbourhoods - that are then trained indepen-
dently. We empirically show that distilling networks in a non end-to-end fashion
can be beneficial in a diverse range of use cases. First, we show that it speeds
up Knowledge Distillation by exploiting parallelism and training on smaller net-
works. Second, we show that independently distilled neighbourhoods may be effi-
ciently re-used for Neural Architecture Search. Finally, because smaller networks
model simpler functions, we show that they are easier to train with synthetic data
than their deeper counterparts.

1 INTRODUCTION

As Deep Neural Networks improve on challenging tasks, they also become deeper and bigger. Image
classification convolutional neural networks grew from 5 layers in LeNet (LeCun et al., 1998) to
more than a 100 in the latest ResNet models (He et al., 2016). However, as models grow in size,
training by back propagating gradients through the entire network becomes more challenging and
computationally expensive. Convergence in a highly non-convex space can be slow and requires the
development of sophisticated optimizers to escape local optima (Kingma & Ba, 2014). Gradients
vanish or explode as they get passed through an increasing number of layers. Very deep neural
networks that are trained end-to-end also require accelerators, and time to train to completion.

Our work seeks to overcome the limitations of training very deep networks by breaking away from
the end-to-end training paradigm. We address the procedure of distilling knowledge from a teacher
model and propose to break a deep architecture into smaller components which are distilled indepen-
dently. There are multiple benefits to working on small neighbourhoods as compared to full models:
training a neighbourhood takes significantly less compute than a larger model; during training, gra-
dients in a neighbourhood only back-propagate through a small number of layers making it unlikely
that they will suffer from vanishing or exploding gradients. By breaking a model into smaller neigh-
bourhoods, training can be done in parallel, significantly reducing wall-time for training as well as
enabling training on CPUs which are cheaper than custom accelerators but are seldom used in Deep
Learning as they are too slow for larger models.

Supervision to train the components is provided by a pre-trained teacher architecture, as is com-
monly used in Knowledge Distillation (Hinton et al., 2015), a popular model compression technique
that encourages a student architecture to reproduce the outputs of the teacher. For this reason, we
call our method Neighbourhood Distillation. In this paper, we explore the idea of Neighbourhood
Distillation on a number of different applications, demonstrate its benefits, and advocate for more
research into non end-to-end training.

Contributions
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• We provide empirical evidence of the thresholding effect, a phenomenon that highlights
deep neural networks’ resilience to local perturbations of their weights. This observation
motivates the idea of Neighbourhood Distillation.

• We show that Neighbourhood Distillation is up to 4x faster than Knowledge Distillation
while producing models of the same quality. We demonstrate this on model compression
and sparsification.

• Then, we show that neighbourhoods trained independently can be used in a search algo-
rithm that efficiently explores an exponential number of possibilities to find an optimal
student architecture.

• Finally, we show applications of Neighbourhood Distillation to zero-data settings. Shallow
neighbourhoods model less complex functions which we can distill using only Gaussian
noise as a training input.

2 RELATED WORK

Non end-to-end training Before the democratization of deep learning, machine learning methods
relied on multi-stage pipelines. For example, the face detection algorithm designed by Viola & Jones
(2001) is a multi-stage pipeline relying first on handcrafted feature extraction and then on a classifier
trained to detect faces from the features. Then came the idea of directly learning classification from
the input image, leaving the model to learn all parts of the pipeline through a series of hidden
layers (LeCun et al., 1998; Fukushima & Miyake, 1982) that could be trained with end-to-end with
gradient back-propagation (Rumelhart et al., 1986) or layerwise training (Vincent et al., 2008). End-
to -end deep learning gained traction with the success of the AlexNet model (Krizhevsky et al.,
2012) in image classification. It is now the main component of various state-of-the art approaches
in object detection (Redmon et al., 2016; Ren et al., 2015), image segmentation (He et al., 2017),
speech processing (Senior et al., 2012), machine translation (Seo et al., 2016; Vaswani et al., 2017).

However, gradient-based end-to-end learning comes with a cost. Highly non-convex losses are
harder to optimize; models of bigger sizes also require more data to fully train; they suffer from
vanishing and exploding gradients (Hochreiter, 1998; Pascanu et al., 2012).

Approaches to overcome these issues can be broken down into three categories. First, several meth-
ods have been introduced to ease the training of deep models, such as residual connections (He
et al., 2016), gated recurrent units (Cho et al., 2014), normalization layers (Ioffe & Szegedy, 2015;
Ba et al., 2016; Salimans & Kingma, 2016), and more powerful optimizers (Kingma & Ba, 2014;
Hinton et al.; Duchi et al., 2011). Second, engineering best practices have adapted to rise to the
challenges raised by deep learning: pre-trained models trained on large-datasets can be reused for
transfer learning, only requiring the fine-tuning of a portion of the model for specific tasks (Devlin
et al., 2018; Dahl et al., 2011). Distributed training (Krizhevsky et al., 2012; Dean et al., 2012) and
custom hardware accelerators (Jouppi et al., 2017) were also crucial in accelerating training.

The last category, which our work falls into, investigates non end-to-end training methods for deep
neural networks. One class of non end-to-end learning method relies on splitting a deep network into
gradient-isolated modules trained with local objectives (Löwe et al., 2019; Nøkland & Eidnes, 2019).
Layerwise training (Belilovsky et al., 2018; Huang et al., 2017) also divides the target network into
modules that are sequentially trained in a bottom-up approach. Difference Target Propagation (Lee
et al., 2015) seeks to optimize each layer to output activations close to a given target value. These
values are computed by propagating inverses from downstream layers while ours are provided by a
pre-trained teacher model. All of these approaches also differ from ours as modules still depend on
each other, while our neighbourhoods are distilled independently.

Knowledge Distillation Our work specifically draws from Knowledge Distillation (Hinton et al.,
2015), a general-purpose model compression method that has been successfully applied to vi-
sion (Crowley et al., 2018) and language problems (Hahn & Choi, 2019). Knowledge Distillation
transfers knowledge from a teacher in the form of its predicted soft logits. Various variations have
been developed to improve distillation. One direction is to transfer additional knowledge in the
form of intermediate activations (Romero et al., 2014; Aguilar et al., 2019; Zhang et al., 2017), at-
tention maps (Zagoruyko & Komodakis, 2016), weight projections (Hyun Lee et al., 2018) or layer
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interactions (Yim et al., 2017). Other methods also seek to directly address the capacity gap be-
tween a teacher and student (Cho & Hariharan, 2019) by distilling from a series of intermediate
teachers (Mirzadeh et al., 2019; Jin et al., 2019). These methods all distill the student end-to-end.

Neural Architecture Search Recent papers study how to combine Knowledge Distillation with
Neural Architecture Search methods, which automate the design process by exploring a given search
space (Liu et al., 2018; Pham et al., 2018; Liu et al., 2017; Tan & Le, 2019; Zoph et al., 2017). These
methods have successfully been applied to find better suited students for a given teacher (Kang et al.,
2019; Liu et al., 2020). Closely related to our work, Li et al. (2020) divide a supernet into blocks
and use Knowledge Distillation to train it. However, they only focus on extracting the architectural
knowledge from the teacher, ignoring the parameters learned during the search process.

3 THRESHOLDING EFFECT

Due to their size, modern neural networks are usually overparameterized. Their learned represen-
tations are redundant and recent empirical studies conducted on ResNets (Zhang et al., 2019; Veit
et al., 2016) showed that it is possible to drop or reset layers in a trained network without hurting
their performance. We hypothesize further that less drastic modifications in a network, such as re-
placing part or all of their sub-components by imperfect approximations, will not result in dramatic
error accumulation. In the following section, we provide empirical evidence of an interesting prop-
erty that supports this: sub-components of a trained model may be perturbed without damaging the
model’s accuracy, as long as individual local errors remain under a certain threshold. We call this
phenomenon the thresholding effect.

First, we introduce the notion of neighbourhood that will be used throughout the rest of the paper.
Deep neural networks are built by stacking a succession of blocks of operations such as convolutions
and non-linear layers. We express this by defining a network T as a composition of n sub-networks:

∀i ∈ {1 . . . n}, Ti : RFi −→ RFi+1

T = Tn ◦ Tn−1 ◦ · · · ◦ T1 (1)

We call neighbourhood any portion of the network that is delimited by one sub-network Ti. This
neighbourhood represents an arbitrary logical construction block in the network and may be replaced
by variants of its architecture that have the same input and output shapes. For any given netwrok,
one can define multiple ways to break it up into neighbourhoods.

The question we set out to answer is the following. Imagine we want to replace part or all the
neighbourhoods by imperfect approximations, how good do these approximations need to be to
prevent a drastic loss of performance in the modified model?

We consider different pre-trained models and estimate how their accuracy is impacted by perturba-
tions of the network’s intermediate features. To do so, we perturb each neighbourhood by artificially
introducing some gaussian noise of amplitude ε to each activation output.

Si = Ti + δ (2)

δ ∼ N (0, ε2)

The students are then composed into a full network S = Sn ◦ Sn−1 · · · ◦ S1 which we evaluate.

On CIFAR-10 (Krizhevsky et al., 2009), we train a ResNetV1-20 (He et al., 2016) model and define
a neighbourhood as one bottleneck block which consists of a two-layer convolutional network and
a skip connection. We reiterate a similar experiment on a large-scale dataset. On ImageNet (Deng
et al., 2009), we train several EfficientNet (Tan & Le, 2019) models and define a neighbourhood as
one mobile inverted bottleneck block.

Figure 1 shows how errors of different amplitudes accumulate across networks when replacing some
or all neighbourhoods by approximations. In particular, we consistently witness a thresholding effect
in all networks. When the amplitude ε of the noise is small enough, the final accuracy of the network
is not impacted by accumulated perturbations. This threshold appears to depend on the number of
neighbourhoods.
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(a) ResNetV1-20 with 91.6% accuracy on CIFAR-10.
Each line represents a different number of perturbed
blocks.

(b) EfficientNet models trained on ImageNet.
Each line represents a different EfficientNet model for
which all neighbourhoods have been perturbed.

Figure 1: We perturb the intermediate outputs at regular locations in the network using a gaussian
noise of amplitude ε and measure the effect of these perturbations on the accuracy of the model.
We show that accuracy remains stable (accuracy change close to 0) as long as ε remains under a
certain threshold. The threshold differs between network architectures and number of perturbed
neighbourhoods. Note that for all models, even when perturbing all neighborhoods, there is still a
range for which there is virtually no loss in accuracy.

(a) Computational Graphs
(b) Neighbourhoods for parameter reduc-
tion.

Figure 2: (a) Computation graphs for Neighbourhood Distillation. Top: the teacher and the student
neighbourhoods receive activations from the root of the teacher network. The student neighbour-
hood is trained to reproduce the output of the teacher. Bottom: the teacher and student outputs are
propagated to the head of the teacher network and additional activations between teacher and student
networks are compared. The look-ahead loss gives an additional training signal for the student to
reproduce the teacher. (b) Example of teacher and student neighbourhoods.

Our experiments on the thresholding effect show that it is possible to locally replace sub-components
of a model without hurting the performance of the reconstructed model. This observation is what
motivates Neighbourhood Distillation: neighbourhoods trained to approximate their teacher outputs
can be used to reconstruct student networks with no or limited accuracy drop.

In the appendix, we also present preliminary results on understanding the thresholding effect and
show how regularizing the teacher network can impact the threshold.

4 NEIGHBOURHOOD DISTILLATION

In order to train a new model in a non end-to-end fashion, we leverage the representation of a net-
work as a stack of neighbourhoods. Supervision to train each component independently is provided
by a pre-trained teacher architecture which is also divided into small neighbourhoods. Each student
neighbourhood Si is trained to match the outputs of its teacher by minimizing the mean-square error
between their produced features. The training inputs are obtained by forward-propagation of the
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Table 1: Neighbourhood Distillation results on CIFAR-10 for different values of multiplier k. Our
Neighbourhood Distillation method reaches the same accuracy as Knowledge Distillation (KD) and
performs better than retraining from scratch (CE). As k decreases, fine-tuning becomes critical in
order to recover good accuracy. Our method is 2.3× faster than Knowledge Distillation on GPU.

MULTIPLIER k # PARAMS CE KD ND + FT ND
1 269K 91.6 91.9 91.6 91.6

0.9 239K 91.3 91.7 91.7 91.3
0.8 213K 90.8 91.5 91.7 90.7

0.75 202K 90.9 91.6 91.7 87.6
0.6 160K 90.5 90.6 91.1 90.8
0.5 136K 90.2 91.0 91.0 88.2
0.4 105K 89.3 89.7 90.0 83.5

GPU TIME(H) - - 3.2 1.4 0.32
SPEED-UP - - 1× 2.3× 10×

original training images through the first part of the teacher network Ti−1 ◦ · · · ◦ T1. The compu-
tational graph for Neighbourhood Distillation is shown in Figure 2a. These activation maps can be
pre-computed and stored before training. This makes each student neighbourhood extremely fast to
train, as one does not need to compute activations through a big model in each training step.

Different student neighbourhoods can be distilled independently from each other and composed into
a final student model S = Sn ◦ · · · ◦ S1. The final student model is then fine-tuned by optimizing
the Knowledge Distillation loss from Equation 3.

LKD(x,y) = LCE(ŷTτ , ŷSτ ) + λLCE(y, ŷS1 ) (3)

ŷTτ = softmax(
T (x)
τ

)

where LCE is the standard cross-entropy loss.

While the idea of minimizing the mean-square error between output features is similar to Hint-
Training (Romero et al., 2014), our method is more general as we do not limit ourselves to distill one
prefix sub-network. Neighbourhood Distillation also provides more flexibility by enabling distilla-
tion on many sub-networks in parallel. Note also that although student neighbourhoods are distilled
independently, we ultimately use them to build a bigger student model. As we want to be able to
compose them properly, we constrain the student Neighbourhood Si to have the same input and
output dimensions as its teacher.

We demonstrate the applicability of Neighbourhood Distillation on ResNet models trained on two
benchmark classification datasets: CIFAR-10 (Krizhevsky et al., 2009), and ImageNet (Deng et al.,
2009). Two different settings are considered for Neighbourhood Distillation: parameter reduction
and sparsification.

Parameter Reduction We first explore the architecture space of ResNetV1 models by shrinking
the number of parameters with a multiplier k, as shown in Figure 2b. On CIFAR-10, we use a
ResNetV1-20 model as the teacher model where a neighbourhood is a two-layer residual block. For
ImageNet, we use a ResNetV1-50 model as the teacher where the neighbourhood is a three-layer
residual block. For both models, weights that are not affected by the multiplier (e.g: the first and
last layer of the model) are kept as-is.

After the initial distillation step, we recompose the student neighbourhoods that have the same mul-
tiplier into a final student model. The student model is then fine-tuned on the training set using
the usual Knowledge Distillation loss until convergence. Table 1 and Table 2 compare the final
accuracies obtained for different student models trained with Cross-Entropy loss, Knowledge Dis-
tillation or Neighbourhood Distillation. We observe that our Neighbourhood Distillation method
yields similar result as Knowledge Distillation, and both distillation methods improve on training
with Cross-Entropy loss.
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Table 2: Distillation results on ResNet-50 for neighbourhoods of 2 and 3 layers with different mul-
tipliers. Neighbourhood Distillation (ND) performs similarly to Knowledge Distillation (KD) and
better than retraining from scratch (CE). As the gap between the student and the teacher increases,
fine-tuning becomes necessary to recover good model accuracy. Our method is 3.6× faster.

MODEL(k-NUM LAYERS) # PARAMS CE KD ND + FT ND
RN50-1.0 23 M 76.2 - - -
RN50-0.75-2 21 M 75.4 76.0 76.3 72.8
RN50-0.75-3 18 M 75.1 75.5 76.1 64.7
RN50-0.50-2 17 M 73.6 74.9 74.9 68.8
GPU TIME (H) - - 200 56 22.75
SPEED-UP - - 1× 3.6× 8.8×

Sparsification We apply Neighbourhood Distillation with the goal of distilling a sparse student
from a fully-trained teacher network. During distillation, the student weights are sparsified by mag-
nitude pruning (Zhu & Gupta, 2017) without changing the input or output shape. This allows us to
consider one-layer neighbourhoods and to initialize the student weights using the teacher’s learned
weights. We show in Table 3 that Neighbourhood Distillation is able to reach the same performace
as Knowledge Distillation for low sparsity rates, without fine-tuning. For high sparsity rates, the
sudden drop in accuracy for models distilled with Neighbourhood Distillation is a symptom of the
thresholding effect. When the target sparsity is too high, the student doesn’t have enough capacity
to approximate its teacher well enough.

Timing The main advantage of Neighbourhood Distillation is the speed-up that can be gained
from training small blocks in parallel. We timed Neighbourhood Distillation and compare its run-
time to that of Knowledge Distillation and report the total GPU time for each, i.e. the total time that
would have been needed for one GPU P100 to run. Results are reported in Table 1, 2, and 3. Neigh-
bourhood Distillation is 3.6× faster on ImageNet and 2.3× on CIFAR-10 for parameter reduction,
and 1.7× faster for sparsification. For parameter reduction, the end-to-end fine-tuning step is the
main computational bottleneck but is faster than using Knowledge Distillation from scratch. Stu-
dent neighbourhoods learn a meaningful approximation of their respective teachers, which allows
the fine-tuning step to converge faster than Knowledge Distillation. On the sparsification task, while
we don’t fine-tune and each layer is fast to sparsify, the total number of layers (50) is what consti-
tutes to main bottleneck when computing the total GPU time of the procedure. A further break-out
of the time each phase of Neighbourhood Distillation needs is given in the appendix.

Table 3: Classification accuracies
and GPU Time comparison be-
tween Neighbourhood Distillation
and Knowledge Distillation.
Different values of target sparsities
are used for the student architec-
ture.

SPARSITY ND KD
0.1 76.00 75.63
0.2 76.03 75.94
0.3 75.82 75.69
0.4 75.63 75.45
0.5 75.26 75.20
0.6 73.78 74.60
0.7 69.52 69.61
0.8 49.83 70.33
0.9 0.60 0.10

GPU TIME (H) 144 250
SPEED-UP 1.7× 1×

Table 4: Classification accuracies for different data-free dis-
tillation methods. Different values of k are used for the stu-
dent architecture including k = 1 (self-distillation). We
compare accuracies obtained after different training meth-
ods: fully-supervised cross-entropy loss (CE), Gaussian
Noise Neighbourhood Distillation (G-ND), Gaussian Noise
Neighbourhood Distillation with Gaussian Noise Finetuning
(G-ND+FT), Gaussian Noise Knowledge Distillation (GN-
KD) and Zero-Shot Knowledge Distillation (Nayak et al.,
2019) (ZSKD). Gaussian Noise Neighbourhood Distillation
surpasses all other data-free distillation methods we com-
pared to.

k CE G-ND G-ND+FT GN-KD ZSKD
1 91.60 91.51 91.51 16.00 21.50
0.9 91.31 88.78 88.78 12.97 22.77
0.75 90.89 80.64 83.74 13.00 21.54
0.5 90.17 53.40 54.83 12.74 22.17
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5 STUDENT SEARCH

Usually, when performing Knowledge Distillation, the Student network is a variant of the Teacher
network with a smaller number of parameters (Hinton et al., 2015; Romero et al., 2014; Zhang
et al., 2017). Other candidate architectures with the same number of parameters could better capture
the teacher’s knowledge but searching for the ideal student architecture would require retraining
different models from scratch and be computationally expensive. Here, we demonstrate how inde-
pendently distilled neighbourhoods may be re-purposed for architecture search. Student Search, our
architecture search method, uses the distilled neighbourhoods to make local decisions on a model’s
architectural design.

Formally, we consider Ci the set of possible candidates for a given neighbourhood Si. This set
could contain variants of the same architecture with different parameters like the size of the inter-
mediate layers, the level of sparsity, the non-linearity used. The number of possible student model
architectures to distill and evaluate would be

∏n
i=1 |Ci|. Student Search leverages Neighbourhood

Distillation by first distilling all
∑n
i=1 |Ci| neighbourhoods completely independently. It then se-

lects a candidate for each neighbourhood by solving a constrained optimization problem that seeks
to minimize the size of the student while maximizing the quality of the selected candidates. The
selected candidate neighbourhoods are then combined together to form the Student Network, which
may then be fine-tuned. In practice, we find that solving the above optimization problem approxi-
mately with a greedy approach is enough to yield a good student architecture.

We demonstrate our method on the space of ResNet variants built with different multipliers. For
each neighbourhood, we independently distill 10 candidates, obtained by varying the bottleneck
multiplier k in {0.1, 0.2, ..0.9, 1.0}. The quality of a candidate ci(k) is measured by the accuracy of
the partial model Tn ◦ ...Ti+1 ◦ ci(k) ◦ Ti−1 ◦ T1. We solve the optimization problem greedily by
selecting for each neighbourhood the smallest candidate that leads to an accuracy drop of less than
x%.

(a) ResNetV1-20 Student Search on CIFAR-10 (b) ResNetV1-50 Student Search on ImageNet

Figure 3: Trade-off curve between number of parameters and final accuracy for ResNetV1-20 and
ResNetV1-50 models. Models found with Student Search are obtained by recombining units of
different sizes that were distilled independently with Neighbourhood Distillation. Width multipliers
refers to applying a uniform multiplier on all blocks. Bottleneck multipliers refers to applying a
uniform multiplier on the inner layers of all blocks. Student Search efficiently finds better student
architectures than naively applying uniform transformations to the teacher.

Figure 3a and 3b show how our Student Search compares to using a uniform multiplier on all lay-
ers when searching for a student architecture for Knowledge Distillation. Width multiplier refers
to applying the same multiplier to all the bottleneck layers of the model. This setting cannot be
explored with Neighbourhood Distillation as it modifies the input/output behavior of the neigh-
bourhoods. Bottleneck multiplier refers to applying the same multiplier to the inner layers of each
residual block: this setting is equivalent to applying Neighbourhood Distillation with the same mul-
tiplier k for all neighbours. Student Search efficiently finds a better student model for distillation
than uniformly applying the same transformations on the teacher model. In particular, the found stu-
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dent architecture can be directly fine-tuned using the student candidates trained by Neighbourhood
Distillation.

6 DATA-FREE KNOWLEDGE DISTILLATION

Distillation in a context where the original dataset is not accessible is of critical interest for privacy-
sensitive applications. Methods for distillation in this setting essentially rely on generating synthetic
image datasets, which are usually obtained by directly optimizing some input noise with regards to a
pre-determined loss (Lopes et al., 2017; Nayak et al., 2019; Bhardwaj et al., 2019; Yin et al., 2020).
Generating a substitute dataset using these methods is costly and have shown limited success on
very deep architectures trained on complex and large-scale datasets. Previous work (Haroush et al.,
2019) show that it is possible to successfully distill from Gaussian Noise in limited settings (fine-
tuning or calibrating quantized models) where the gap between the student and the teacher weights
is small. By switching the focus on small and shallow sub-networks, we show that Neighbourhood
Distillation can be successfully adapted to use gaussian noise inputs to distill models from scratch.

To that end, we distill a ResNet-20 with bottleneck multiplier k = {1.0, 0.9, 0.75, 0.5} using only
gaussian noise as the neighbourhood’ inputs. We compare our method with Zero-Shot Knowl-
edge Distillation (Nayak et al., 2019), a data-free method that generates a synthetic training set
by optimizing noise inputs with gradient descent. To highlight the benefits of training on shallow
sub-networks, we also attempt to use gaussian noise inputs to distill the entire student network end-
to-end. Table 4 shows that Neighbourhood Distillation outperforms both end-to-end baselines but
shows degrading performance as the compression rate decreases.

These results show that distillation in a data-free regime can benefit from looking at shallow sub-
networks in isolation. As deep neural networks model complex and high-dimensional functions, it
is not possible to distill them successfully from unstructured gaussian noise and generally requires
generating complex inputs that simulate images. On the other hand, shallow networks represent less
complex functions and we have demonstrated with Neighbourhood Distillation that it is easier to
approximate them using gaussian noise. Notably, when neighbourhoods are only two-layer deep
like in the ResNet-20 model, the function is simple enough that it can be distilled almost perfectly
using gaussian noise when k = 1.

7 DISCUSSION

In this paper, we presented an approach to distillation that breaks away from end-to-end training. We
demonstrated that distilling small neighbourhoods yields many advantages compared to traditional
end-to-end distillation: we free ourselves from the computational limitations that come with train-
ing very deep models and speed-up distillation by exploiting parallelism. Additionally, the trained
candidates can be reused to efficiently explore an exponential number of local architecture changes
with Student Search. Finally, we showed that distilling on small neighbourhoods allows us to easily
distill in a no-data context by generating synthetic inputs from gaussian inputs.

We also discovered an interesting phenomenon in deep neural networks that empirically justifies
the idea of Neighbourhood Distillation. The thresholding effect explains why replacing all neigh-
bourhoods by distilled students can yield a reconstructed student with reasonable performance. It
also enables efficient diagnosis for cases where the student is too small to properly approximate the
teacher and is not suited for Neighbourhood Distillation.

Moving forward, understanding the thresholding effect is one key to broadening the scope of Neigh-
bourhood Distillation. Studying what impacts the model tolerance threshold could better inform
how to limit failure cases and we present in the appendix preliminary results towards that direction.
More generally, our paper highlights the benefits of distilling networks in a non end-to-end man-
ner, reaping the benefits of training on shallow networks, with the potential to revive methods such
as second-order optimization methods which have been inapplicable to deep networks due to their
complexity.
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A EXPERIMENTAL DETAILS

Data preprocessing The CIFAR-10 is standardized with per-channel train statistics and aug-
mented at train time with random translations of 4 pixels.

ResNetV1-20 The teacher model is trained with standard cross-entropy loss with batch size 128
for 96k steps. We used Momentum Optimizer with a momentum of 0.9. The learning rate was
increased linearly from 0.01 to 0.1 for 400 steps then decayed exponentially by a factor of 10 every
32k steps. The model is regularized with L2 weight decay of 1e−4. The same settings were used for
distillation. For Knowledge Distillation, we set λ = 1.0, and used random search on the parameter
T ∈ [1., 20] and learning rate in [1e−6, 1.]. For Neighbourhood Distillation, we distill for 200k
iterations with a learning rate of 1e−3. Finetuning is done with learning rate 1e−2, T = 2.5.

ResNetV1-50 The teacher is trained for 200 epochs with batch size 32, l2 weight decay of 1e− 4
and Momentum optimizer. The learning rate is initialized at 0.02 and decayed exponentially with a
factor 0.2 every 30 epochs.

Sparsification We use the Tensorflow Model Optimization Toolkit to sparsify our neighbour-
hoods. For each neighbourhood, we train for 40k steps. The sparsification rate is ramped-up to
the target sparsity rate with a polynomial decay schedule for 20k steps and then maintained for
another 20k steps.

B ADDITIONAL RESULTS

B.1 THRESHOLDING EFFECT

We conducted an additional experiment to show how accuracy can be impacted by direct perturba-
tion of a network’s weights. For each convolution layer kernel, we choose to add noisy perturbation
with varying standard deviations. We then verify whether the perturbations have an additive effect
on the final accuracy by replacing weights from the original network by their perturbed version.
Figure 4 shows how errors on the CIFAR-10 test set accumulate when progressively replacing the
layers of a pre-trained ResNetV1-20 model, starting from the first layer. The figure compares that
to the hypothetical additive regime. We see that when we constrain individual layers to cause small
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Table 5: Impact of regularizing the teacher model on Neighbourhood Distillation. Accuracies are
obtained before fine-tuning. Using a regularized teacher improves the accuracy of the student before
fine-tuning.

STUDENT TEACHER NDISTILL ACCURACY CHANGE

RN50-0.75-3 RN-50 57.63 +0.%
- RN-50+N (σ = 0.1) 63.21 +5.6%
RN50-0.5-3 RN-50 25.7 +0.%
- RN-50+N (σ = 0.1) 32.9 +7.2%

drops in accuracy (< 0.1%), the errors accumulate sub-linearly. On the other hand, when individual
layers are perturbed so much that they cause a drop of 2% in accuracy each, the errors accumulate
super-linearly.

(a) Individual Drop < 0.1% (b) Individual Drop ∼ 1%

(c) Individual Drop ∼ 2%

Figure 4: Error accumulation caused by perturbing network layers. The bar plot shows the individual
accuracy drop for a network with perturbed weights for one layer. The blue line plot shows the
cumulative sum of errors caused by perturbing a given number of layers from left to right. The black
line plot shows the empirical error accumulation evaluated on the test set after perturbing a given
number of layers. (a) Individual accuracy drop of each layer is < 0.1% and the errors accumulate
sub-linearly. (b) Individual accuracy drop of each layer is ∼ 1% and errors accumulate linearly. (c)
Individual accuracy drop of each layer is high (∼ 2%) and the errors accumulate super-linearly.

We show that a simple regularization technique applied during training can increase a network’s
resilience to local perturbations. Considering a ResNetV1-50, we add gaussian noise drawn from
N (0, σ) at train time after every residual unit. Once these models are trained, we replace each
units with perturbed versions again and report the drop in accuracy. Figure 5 shows that for high
noise levels σ introduced between residual units at train time, the perturbation threshold is higher,
although regularizing too much also degrades the overall performance of the original network.

More importantly, we observe that increasing the teacher’s tolerance threshold directly impacts the
accuracy of models trained with Neighbourhood Distillation. We take a ResNetV1-50 trained with
regularization σ = 0.1 as the teacher and consider bottleneck multipliers k = 0.5 and k = 0.75 for
the student neighbourhoods.

B.2 NEIGHBOURHOOD DISTILLATION

Look-ahead losses In order to provide additional training signals to the student, we also consider
using look-ahead losses. In addition to forcing the output of Si to be close to the output of Ti,
we feed each to the next teacher Neighbourhood Ti+1 and minimize the Mean Square Error of its
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Figure 5: Drop in accuracy after perturbing different ResNetV1-50 models trained with Gaussian
NoiseN (0, σ) introduced after each unit. ε is the amplitude of perturbations introduced at test time.
Original accuracies of the models before perturbation are given in the caption. Models trained with
high gaussian noise amplitudes σ have a higher resistance threshold to test time perturbations.

Table 6: Ablation Study. Impact of fine-tuning (FT) and look-ahead (2-LA) on final test accuracy
for ResNet-20. While fine-tuned model always perform better than pre-finetuned models, the use of
look-ahead tightens the gap between pre and post finetuned accuracy.

MULTIPLIER k NDISTILL NDISTILL + FT 2-LA NDISTILL 2-LA NDISTILL + FT
0.90 91.1 92.0 91.4 92.1
0.75 89.7 91.9 90.6 91.8
0.50 85.7 91.3 87.1 91.5

output:

Li,1 =
1

Fi+2
Ea∼p(a)

[
‖Ti+1(Si(a))− Ti+1(Ti(a))‖22

]
(4)

a = Ri(x), x ∼ Dtrain

The look-ahead loss is shown in Figure 2a. These losses can be combined to form a total loss of:

Li = Li,0 +
n−i∑
j=1

αjLi,j (5)

where αj are hyper-parameters. While lookahead losses may improve the accuracy of the distilled
model by providing additional training supervision, it also leads to increased computational cost due
to needing to propagate inputs and gradients through a higher number of layers.

Ablation Study We perform an ablation study on the CIFAR-10 model to show how look-ahead
and fine-tuning impact our Neighbourhood Distillation results. We experiment with combining two
look-ahead losses, i.e ∀j ≥ 3, αj = 0 and train each neighbourhood either without look-ahead
or with two-neighbourhood lookahead. Models are evaluted before and after fine-tuning and test
accuracies are reported in Table 6. We observe that training neighbourhoods with look-ahead leads
to better accuracy before fine-tuning. Fine-tuned models always perform better than their non-fine-
tuned counterparts. While there is no significant difference between the no look-ahead and the 2-
look-ahead fine-tuned models, we also noticed that neighbourhoods distilled with look-ahead losses
converge faster during the fine-tuning step - 30k iterations instead of 50k. Look-ahead losses can
therefore be used to balance the cost of Neighbourhood distillation and the cost of fine-tuning.

B.3 STUDENT SEARCH

Motivation We observe empirically on the ResNet-20 and ResNet-50 models that there is no rea-
son to think that applying the same multiplier to all layers would yield the best compressed student
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Table 7: Comparison of training time in GPU hours for ResNet models.

(a) Timing for ResNet20

Method Training Time (h)
NDistill 1-unit 0.03

All units sequentially 0.32
Finetuning 1.07
All units + Finetuning 1.39

KD 3.2

(b) Timing for ResNet50

Method Training Time (h)
NDistill 1-unit 1.42

All unit sequentially 22.75
Finetuning 33
All unit + Finetuning 56

KD 200

(a) ResNet-20 on CIFAR 10 (b) ResNet-50 on ImageNet

Figure 6: Impact of applying a multiplier k on the distilled accuracy of different Residual Units. x-y
refers to unit y of block x of the ResNet. For each unit, accuracy remains unchanged as long as the
multiplier remains above a certain threshold. This thresholding effect can be observed for different
residual units, but each unit has a different threshold.

model. For a number of chosen residual units, we reduce the number of parameters by applying
a multiplier k < 1 on the number of filters of the first layer and report the best accuracy we can
get after training this variant with Neighbourhood Distillation. Figure 6 shows the final accuracy
against k for different units of ResNet-20 and ResNet-50. We observe another form of thresholding
effect: the accuracy drops sharply below a given value of the multiplier, showing that residual units
can be compressed up to a certain point before hurting the network’s accuracy. Most importantly,
we observe that the threshold is different for each residual unit, which suggests that a better strategy
for a student architecture is to choose a different multiplier per unit.

Figure 7: Student Search for Sparsification in ResNetV1-50. Models found with Student Search
are obtained by recombining layers with different sparsity rates that were distilled independently
with Neighbourhood Distillation. Student Search efficiently finds a better student architectures for
distillation than naively applying uniform sparsity rates.
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Trainer 1...

Teacher Network Neighborhood Distillation Student Network

...
Teacher Neighborhood 1
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Figure 8: Student Search with Neighbourhood Distillation. A Teacher Network is broken down into
several neighbourhoods. Each Neighbourhood can be used to train several student neighbourhoods
independently from the rest. Selected student neighbourhoods are then merged back into a single
Student Network. This allows us to explore a large search space without having to retrain all models.
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