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ABSTRACT

Graph Neural Networks (GNNs) have become increasingly popular for effec-
tively modeling data with graph structures. Recently, attention mechanisms have
been integrated into GNNs to improve their ability to capture complex patterns.
This paper presents the first comprehensive study revealing a critical, unexplored
consequence of this integration: the emergence of Massive Activations (MAs)
within attention layers. We introduce a novel method for detecting and analyzing
MAs, focusing on edge features in different graph transformer architectures. Our
study assesses various GNN models using benchmark datasets, including ZINC,
TOX21, and PROTEINS. Key contributions include (1) establishing the direct link
between attention mechanisms and MAs generation in GNNs, (2) developing a
robust definition and detection method for MAs based on activation ratio distribu-
tions, (3) introducing the Explicit Bias Term (EBT) as a potential countermeasure
and exploring it as an adversarial framework to assess models robustness based
on the presence or absence of MAs. Our findings highlight the prevalence and
impact of attention-induced MAs across different architectures, such as Graph-
Transformer, GraphiT, and SAN. The study reveals the complex interplay between
attention mechanisms, model architecture, dataset characteristics, and MAs emer-
gence, providing crucial insights for developing more robust and reliable graph
models.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as a powerful tool for learning representations of
graph-structured data, demonstrating remarkable success across various applications such as social
network analysis (Min et al., 2021), recommendation systems (Gao et al., 2022) and molecular
biology (Zhang et al., 2021). Central to the recent advancements in GNNs is the integration of
attention mechanisms, which enable the models to focus on the most relevant parts of the input
graph, thereby enhancing their ability to capture intricate patterns and dependencies.

Despite the substantial progress, the phenomenon of Massive Activations (MAs) within attention
layers has not been thoroughly explored in the context of GNNs. MAs, characterized by exceedingly
large activation values, can significantly impact the stability and performance of neural networks.
In particular, understanding and mitigating MAs in GNNs is crucial for ensuring robust and reliable
model behavior, especially when dealing with complex and large-scale graphs.

In this paper, we aim to bridge this gap by systematically investigating the occurrence and implica-
tions of MAs in attention-based GNNs. We focus on edge features in graph transformers, a state-of-
the-art GNN architecture, and analyze how these features contribute to the emergence of MAs. Our
study reveals that certain graph structures on edge configurations are more prone to inducing MAs,
which in turn affects the overall performance and interpretability of the models.

To address these challenges, we propose a novel methodology for detecting and analyzing MAs in
GNNs. Our approach involves a comprehensive evaluation of various GNN architectures, including
GraphTransformer (Dwivedi & Bresson, 2021), GraphiT (Mialon et al., 2021), and SAN (Kreuzer
et al., 2021), across multiple benchmark datasets, like ZINC (Irwin et al., 2012), TOX21 (Mayr
et al., 2016; Huang et al., 2016) and OGBN-PROTEINS (Hu et al., 2020), which differs from their
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downstream tasks like graph regression, multi-label graph classification, and multi-label node clas-
sification. We introduce specific criteria for identifying MAs and conduct extensive ablation studies
to elucidate the role of edge features in this context.

This study represents the first comprehensive investigation of MAs in GNNs, laying the groundwork
for future research. Our findings suggest that the scope of MAs analysis can be expanded to include
a wider range of architectures and the evaluation of state-of-the-art attack methods, ultimately en-
hancing our understanding of MAs’ influence on GNN performance and robustness. This is crucial
for developing more robust and reliable graph transformer models, especially given the increasing
popularity and widespread adoption of transformers in various applications today.

Our contributions are threefold:

• We provide the first systematic study on MAs in attention-based GNNs, highlighting their
prevalence and impact on model performance.

• We propose a robust detection methodology for MAs, accompanied by detailed experimen-
tal protocols and ablation studies.

• We introduce the Explicit Bias Term (EBT) as a potential countermeasure for MAs, and
we exploit it in an adversarial framework, called Explicit Bias Attack, to demonstrate the
effectiveness of the MAs in compromising GNNs robustness.

Through this work, we aim to shed light on a critical yet understudied aspect of attention-based
GNNs, offering valuable insights for the development of more resilient and interpretable graph-
based models.

2 RELATED WORKS

GNNs have become effective instruments for studying and extracting insights from graph-structured
data, with usages spanning fields like fraud detection (Motie & Raahemi, 2023), traffic prediction
(Wang et al., 2022) and recommendation systems (Wu et al., 2021). The evolution of GNNs has been
marked by significant advancements in their architectures and learning mechanisms, with a recent
focus on incorporating attention mechanisms to enhance their expressive power and performance.
The introduction of attention in GNNs was largely inspired by the success of transformers in natural
language processing (Vaswani et al., 2017). Graph Attention Networks (GATs) (Veličković et al.,
2017) were among the first to incorporate self-attention into GNNs, allowing nodes to attend differ-
ently to their neighbors based on learned attention weights. This innovation significantly improved
the model’s ability to capture complex relationships within graph structures.

Building upon the success of GATs, several variants and extensions have been proposed. GraphiT
(Mialon et al., 2021) introduced a generalization of transformer architectures to graph-structured
data, incorporating positional encodings and leveraging the power of multi-head attention mecha-
nisms. Similarly, the Structure-Aware Network (SAN) (Kreuzer et al., 2021) proposed a novel at-
tention mechanism that explicitly considers the structural properties of graphs, leading to improved
performance on various graph-based tasks.

Recent studies on Large Language Models (LLMs) and Vision Transformers (ViTs) have revealed
the presence of MAs within their internal states, specifically in the attention layer’s output (Xiao
et al., 2023; Sun et al., 2024). This phenomenon prompted investigations into the role of these
activations in model behavior, performance, and potential vulnerabilities. Similar observations were
made in Vision Transformers (ViTs) (Darcet et al., 2023; Dosovitskiy et al., 2020), suggesting that
the presence of MAs might be a common feature in transformer-based architectures across different
domains. These findings have led to a growing interest in understanding the implications of MAs
for model interpretability, robustness, and potential vulnerabilities to adversarial attacks.

The study of internal representations in deep learning models has been a topic of significant interest
in the machine learning community. Works such as Bau et al. (2020) have explored the interpretabil-
ity of neural networks by analyzing activation patterns and their relationships to input features and
model decisions. However, the specific phenomenon of MAs in GNNs has remained largely unex-
plored until now, representing a crucial gap in our understanding of these models.
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The intersection of adversarial attacks and GNNs is another relevant area of study that relates to the
investigation of MAs. Previous work has explored various attack strategies on graph data, including
topology attacks, feature attacks, adversarial training and hybrid approaches (Sun et al., 2022a;
Gosch et al., 2024). However, the potential vulnerabilities introduced by MAs represent a novel
direction for research in this field. Understanding how MAs might be exploited or manipulated by
adversarial inputs could lead to the development of more robust GNN architectures.

However, in the broader context of neural network analysis, techniques for probing and interpreting
model internals have been developed. Methods such as feature visualization (Olah et al., 2017) and
network dissection (Bau et al., 2017) have provided insights into the functions of individual neurons
and layers in convolutional neural networks. Adapting and extending these techniques to analyze
MAs in GNNs could provide valuable insights into their role and impact in possible future works.

Finally, the study of attention mechanisms in various neural network architectures has also yielded
insights that may be relevant to understanding MAs in GNNs. Work on attention flow (Abnar &
Zuidema, 2020) and attention head importance (Michel et al., 2019) in transformer models has
shown that not all attention heads contribute equally to model performance, and some may even be
pruned without significant loss of accuracy. These findings raise questions about whether similar
patterns might exist in graph transformer models and how they might relate to the presence of MAs.

3 TERMINOLOGY OF MASSIVE ACTIVATIONS IN GNNS

Building upon the work on MAs in LLMs (Sun et al., 2024), we extend this investigation to GNNs,
focusing specifically on graph transformer architectures. Our study encompasses various models,
including GraphTransformer (GT) (Dwivedi & Bresson, 2021), GraphiT (Mialon et al., 2021), and
Structure-Aware Network (SAN) (Kreuzer et al., 2021), applied to diverse task datasets such as
ZINC, TOX21, and OGBN-PROTEINS (see Appendix A, B, C for details on models’ configurations
and datasets’ composition). This comprehensive approach allows us to examine the generality of
MAs across different attention-based GNN architectures.

3.1 CHARACTERIZATION OF MASSIVE ACTIVATIONS

MAs in GNNs refer to specific activation values that exhibit unusually high magnitudes compared to
the typical activations within a layer. These activations are defined by the following criteria, where
an activation value is intended to be its absolute value:

Magnitude Threshold: An activation is classified as massive if its value exceeds a predetermined
threshold. This threshold is typically set to a value that is significantly higher than the average
activation value within the layer, ensuring that only the most extreme activations are considered.

Relative Threshold: In the paper by Sun et al. (2024), MAs were defined as at least 1,000 times
larger than the median activation value within the layer. This relative threshold criterion helped
differentiate MAs from regular high activations that might occur due to normal variations in the data
or model parameters.

The formal definition was represented as:

MAs = {a | a > 100 and a > 1000× median(A)}

where A represents the set of activation values in a given layer.

However, in contrast to previous studies that employed a fixed relative threshold, our approach
adopts a more rigorous method. We estimate MAs by comparing the distributions of activation
ratios between a base, untrained model with Xavier weight initializations (Glorot & Bengio, 2010),
and a fully trained model. This method ensures a more precise identification of MAs based on
empirical data rather than an arbitrary fixed threshold. In this way, the untrained model serves as a
reference for identifying unusual activations that emerge during training.

3.1.1 DETECTION METHODOLOGY

For both the base and trained models, we detected the MAs following a systematic procedure:
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Figure 1: Comparison of MAs for trained vs base models, along all the edges. Activation values
have been normalized within each layer by the layer’s edge median. Represented ratios have been
sorted increasingly for each layer independently.

Normalization: We normalized the activation values within each layer, dividing them by the edge
median on the layer, to account for variations in scale between different layers and models. This
normalization step ensures a consistent basis for comparison. The choice of dividing by the edge
median comes from the huge amount of MAs being present, since almost every edge in the layers
presenting MAs holds at least one MA, as shown from Figure 1. This is probably caused by the
fact that attention is computed between pairs of adjacent nodes only, in contrast to LLMs where it
is computed among each pair of tokens, therefore the model tends to spread MAs among almost all
the edges to make them “available” to the whole graph. Indeed, Figure 1 indicates that MAs are
a common phenomenon across different models and datasets, that they are not confined to specific
layers but are distributed throughout the model architecture, and that MAs are an inherent character-
istic of the attention-based mechanism in graph transformers and related architectures, not strictly
dependent on the choice of the dataset.

Batch Analysis: We analyzed the activations on a batch-by-batch basis, minimizing the batch size,
to have suitable isolation between the MAs and to ensure that the detection of MAs is not influenced
by outliers in specific samples. For each activation, we computed the ratio of its magnitude to the
edge median:

ratio(activation) =
abs(activation)

median(abs(edge activations))
(1)

and activations whose ratio exceeds the threshold are flagged as massive. Then, we considered the
maximum ratio of each batch to detect those containing MAs.

Layer-wise Aggregation: We performed this analysis across multiple layers of the model to identify
patterns and layers that are more prone to exhibiting MAs. This layer-wise aggregation helps in
understanding the hierarchical nature of MAs within the model.

Figure 2 reports the analysis results. The batch ratios significantly increase in the trained transform-
ers, concerning base ones, often even overcoming the threshold of 1000 defined by previous works
(Sun et al., 2024), showing the presence of MAs in graph transformers, too.
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Figure 2: Comparison of MAs on trained against base models, without the use of Explicit Bias Term.
Represented ratios have been sorted increasingly for each layer independently.

4 METHODOLOGY AND OBSERVATIONS

Focusing on edge features, first, we analyzed the ratio defined in Equation (1), taking the maximum
for every batch, across the layers of each selected model and dataset, and visually compared the out-
comes to value ranges obtained using the same model in a base state (with its parameters randomly
initialized, without training) to verify the appearance of MAs. The graphical comparison, reported
in Figure 2, shows ratios over the base range in most of the trained models, representing MAs.

To better characterize MAs, we studied their distribution employing the Kolmogorov-Smirnov statis-
tic (Chakravarti et al., 1967). We found that a gamma distribution well approximates the negative
logarithm of the activations’ magnitudes, as well as their ratios. Figure 3a shows this approximation
for a base model layer. We point out that, according to the existing definition, items on the left of
the −3 are MAs.

We then compared the distributions of the log-values between the base and trained models. Figure 3
illustrates this comparison, highlighting a significant shift in the distribution of the trained model
compared to the base model. Moreover, this shift underscores the emergence of MAs during the
training process, affirming that the threshold around − log(ratio) = −3 (e.g., a ratio of 1000 or
higher) effectively captures these significant activations, though sometimes it appears to be slightly
shifted to the right as in Figure 3c.

When MAs appear, we have found two possible phenomenons:

• A lot of massive activation values are added on the left-hand side of the distribution, pre-
venting a good approximation (Figure 3b).

• A few values appear on the left-hand side of the distribution, as spikes or humps or out-
of-distribution values, which may or may not deteriorate the approximation, as shown in
Figures 3c and 3d.

For example, histogram in Figure 3a represents the base model with untrained weights (only Xavier
initialization). The gamma approximation fits the sample histogram well, with a low Kolmogorov-
Smirnov (KS) statistic of 0.020, indicating a very nice fit.

Figure 3b shows that the distribution of the trained model exhibits a significant shift due to a big
hump appearing on the left side, representing extreme activation ratios (MAs). Indeed, the gamma

5
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Figure 3: Activation distributions for base and trained (with MAs) models. In Figure 3d we clearly
distinguish a spike on the left of the distribution, corresponding to a ratio of 1000 (-log(ratio) = −3),
which identifies the separation between the basic and massive regimes. The approximation pdf is
rescaled to match the histogram scale.

approximation does not fit well, with a higher KS statistic of 0.168, indicating a poor match caused
by the presence of MAs.

Moreover, in the histogram of Figure 3d the trained model’s distribution exhibits a clear spike on
the left side at − log(ratio) = −3, corresponding to a ratio of 1000. This separation indicates
the distinction between basic and massive activation regimes. The gamma distribution doesn’t fit
well this time, because of this spike preventing a good approximation, with a KS statistic of 0.027
highlighting the model’s shift due to training.

Figure 3c also shows the trained model’s distribution, with a noticeable hump on the left side indi-
cating MAs. The gamma approximation fits better than in Figure 3d, with a KS statistic of 0.019,
but still indicates the presence of MAs in the trained model, meaning that MAs have been added on
the left-hand side of the distribution.

4.1 INSIGHTS AND IMPLICATIONS

From Figures 1 and 2 we can highlight the following points.

1. Dataset Influence:

• The ZINC and OGBN-PROTEINS datasets consistently show higher activation values
across all models compared to TOX21, suggesting that the nature of these datasets
significantly influences the emergence of MAs. Even though many MAs are emerging
form GT on TOX21.

2. Model Architecture:

• Different GNN models exhibit varying levels of MAs. For instance, GraphTrans-
former and GraphiT tend to show more pronounced MAs than SAN, indicating that
model architecture plays a crucial role.

3. Impact of Attention Bias:

6
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Table 1: Comparison of test loss with and w/o bias for the different models and datasets. In bold the
worst performances.

Dataset Model Test loss Test loss (EBT)

ZINC GraphTransformer 0.26 0.29
GraphiT 0.13 0.31
SAN 0.18 0.27

TOX21 GraphTransformer 0.25 0.29
GraphiT 0.38 0.32
SAN 0.38 0.31

OGBN-PROTEINS GraphTransformer 0.13 0.12
GraphiT 0.14 0.16
SAN 0.13 0.13

• Previous works suspect that MAs have the function of learned bias, showing that they
disappear introducing bias at the attention layer. This holds for LLMs and ViTs, and
for our GNNs as well, as shown in Figure 2 where the presence of MAs is affected by
the introduction of the Explicit Bias Term on the attention. Figure 4 and text below
suggest that MAs are intrinsic to the models’ functioning, being anti-correlated with
the learned bias.

The consistent observation of MAs in edge features, across various GNN models and datasets, points
to a fundamental characteristic of how these models process relational information.

Inspired by recent advancements in addressing bias instability in LLMs (Sun et al., 2024), we intro-
duced an Explicit Bias Term (EBT) into our graph transformer models. This bias term is discovered
to counteract the emergence of MAs by stabilizing the activation magnitudes during the attention
computation. The EBT is computed as follows:

be = Qke′ (2)

bv = softmax(Ae)v
′, (3)

where k, e,v ∈ Rd are the key, edge, and node bias terms (one per each attention head), Ae is the
edge attention output, and d the corresponding hidden dimension. be and bv represent the edge and
node bias terms and are added to the edge and node attention outputs, respectively. By incorporating
EBT into the edge and node attention computations, and adding bias in the linear projections of the
attention inputs, we regulated the distribution of activation values, thus mitigating the occurrence of
MAs.

As shown in Figure 4, the introduction of these bias terms significantly reduces the frequency and
magnitude of MAs, bringing the activation ratios closer to those observed in the base models. The
effect of EBT is evident across all the different datasets. Whether it’s ZINC, TOX21, or OGBN-
PROTEINS, the activation ratios are brought closer to the baseline levels observed in the untrained
models. This consistency underscores the general applicability of EBT in various contexts and
downstream tasks. Moreover, Figure 4 shows that EBT mitigates MAs across different layers of
the models. This is crucial as it indicates that EBT’s effect is not limited to specific parts of the
network but is extended throughout the entire architecture. For example, GraphTransformer on
ZINC without EBT shows MAs frequently exceed 104, while when EBT has been applied these
ratios are significantly reduced, aligning more closely with the base model’s range.

Table 1 shows that EBT does not systematically influence the test loss equally across different mod-
els and datasets. We have considered the test loss metric to keep the approach general, making it
extendable to different downstream tasks. This ensures that the proposed method can be applied
broadly across various applications of graph transformers.

Although the test loss remains relatively unchanged with the introduction of EBT, its presence helps
in mitigating the occurrence of MAs, as evidenced by the reduction in extreme activation values

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

100

102

104

106

Gr
ap

h 
Tr

an
sf

or
m

er

ZINC TOX21 PROTEINS

100

102

104

106

Gr
ap

hi
T

0 500 1000
batch

100

102

104

106

SA
N

0 500
batch

0 10000 20000
batch

Edge features ratio

base model
activations ratio
(range)
trained model
activations ratio
(layers)

Figure 4: Comparison of MAs on trained against base models, with the use of Explicit Bias Term.
Represented ratios have been sorted increasingly for each layer independently.

observed in earlier figures. By analyzing these results, it becomes evident that while EBT does
not drastically alter the test performance, it plays a crucial role in controlling activation anomalies,
thereby contributing to the robustness and reliability of graph transformer models.

In the next section, we will demonstrate how attacking the model with and without MAs can directly
impact the robustness of the architectures. This will provide deeper insights into the robustness of
graph transformers in the presence of MAs, suggesting their potential pitfalls.

5 EXPLICIT BIAS ATTACK

The study of adversarial attacks on GNNs has become increasingly important as these models are
deployed in critical applications. While various attack strategies have been explored (Zügner et al.,
2018; Sun et al., 2022b), the vulnerability introduced by MAs remains largely unexplored. Un-
derstanding how MAs can be exploited by adversaries is crucial for developing more robust GNN
architectures and their downstream tasks. In this section, we propose the Explicit Bias Attack, a
gradient-based method designed to exploit MAs and assess model robustness. Our approach is in-
spired by gradient ascent attacks previously applied to image classifiers (Goodfellow et al., 2014)
and adapted for graph data (Dai et al., 2018). By analyzing the effectiveness of gradient ascent
attack with and without the presence of EBT and MAs, we aim to provide insights into the role of
these activations in model fragility.

Therefore, inspired by previous section, we exploited EBT as computed in Equations (2) and (3) to
analyze the importance of MAs for a gradient ascent attack at test time, where noise (added to the
input feature embedding) is learned to directly maximize the loss function. The effectiveness of an
attack is evaluated by comparing the average test loss before and after the attack (i.e., with random
and optimized noise, with the same standard deviations, respectively), using a gain defined as

attack gain =
optimized noise loss − random noise loss

random noise loss
(4)

thus a higher gain means a more dangerous attack. We focus on GraphTransformer (GT) with
TOX21 because the presence of MAs in each layer - as shown by Figure 2 - highlights the MAs
effect for the attack, and compare the power of this method with and without the use of the EBT,
which calls off the model’s MAs.
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Table 2: GT on TOX21 – Comparison of the noise optimization strategy with (no EBT) and without
(EBT) MAs, due to the use of the explicit attention bias. The noise is optimized to maximize the
loss function, and the results are shown for 1000 epochs of noise optimization.

Noise dev. Gain (no EBT, %) Gain (EBT, %)

0.01 1.50 1.41
0.03 1.83 1.78
0.10 4.73 2.53

Table 2 shows a stable increase of gain when dealing with MAs, using noise with standard devia-
tion values of 0.01, 0.03, and 0.1 (the input feature embedding has a standard deviation of about
0.9) optimized for 1000 epochs on the test set. Table 2 highlights that MAs can be dangerous for
the robustness of a model, and potentially exploited by attacks. These results indicate that a gradi-
ent ascent attack is effective in degrading model performance, especially in the presence of MAs.
However, the introduction of explicit bias, consistent with the reduction of MAs, can significantly
mitigate the impact of the attack, leading to more robust models. This highlights the importance
of considering bias in designing defenses against these types of adversarial attacks, to prevent them
from exploiting the presence of MAs.

In future work, to enable us to comprehensively assess the correlation between model robust-
ness/fragility and the presence of MAs, we intend to delve deeper into different graph attack con-
figurations while targeting MAs. This will offer a richer understanding of how these vulnerabilities
can be mitigated, in favor of more reliable models.

6 CONCLUSION AND FUTURE WORK

This paper presents the first comprehensive study of MAs in attention-based GNNs. We have intro-
duced a novel methodology for detecting and analyzing MAs, focusing on edge features in various
graph transformer architectures across multiple benchmark datasets. Our findings reveal that MAs
are prevalent across different models and datasets, and demonstrate that they could be effectively
leveraged by adversaries to degrade the performance of GNNs.

We showed that the introduction of Explicit Bias Terms (EBT) can effectively mitigate the occur-
rence of MAs, leading to more stable activation distributions. However, our results also showed that
this mitigation does not always translate to improved test performance, highlighting the complex
role of MAs in GNNs’ behavior.

Furthermore, we introduced the Explicit Bias Attack, a gradient-ascent adversarial framework, that
demonstrates how MAs, if not mitigated by EBT, can expose models to vulnerabilities in their tasks.
This further points out the importance of considering these activations in the context of model ro-
bustness.

Future research will expand this analysis to a wider range of architectures and advanced attack meth-
ods, further clarifying the influence of MAs on GNN performance and robustness, and potentially
leading to more interpretable and stable graph-based models. Specifically, future research could
explore:

• Customized Adversarial MAs: Developing more adversarial techniques to regulate and
attack these activations to enhance model stability and performance, like injecting fake
MAs or exploiting state-of-the-art graph attack methods.

• Downstream-driven MAs: Leveraging MAs for specific downstream task, investigating
how to harness these significant activations to improve models and their interpretability on
specific assignments such as link prediction or drug design.

• Comparative Analysis: Extending the study to additional models and datasets to general-
ize the findings further and uncover broader patterns.

9
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These insights provide a deeper understanding of the internal mechanisms of attention-based GNNs
and highlight the way for improvements in graph learning models. By addressing the challenges and
opportunities presented by MAs, we can work towards developing more robust, interpretable, and
effective GNN architectures for a wide range of applications.
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A DATASET COMPOSITION

This section provides additional details on the used datasets throughout the experiments.

The ZINC dataset (Irwin et al., 2012) is a benchmark collection for evaluating GNNs in molecular
chemistry, where molecules are represented as graphs with atoms as nodes and chemical bonds as
edges. Contents include:

• Graphs: The dataset includes over 250, 000 molecular graphs. Each molecule is repre-
sented by a graph with nodes (atoms) and edges (bonds), incorporating various bond types
(e.g., single, double, triple).

• Node Features: Atoms are described by features that capture their chemical properties,
such as atom types, hybridization states, and other atomic attributes.

• Edge Features: Bonds between atoms are characterized by features representing bond types
and additional chemical information.

• Task: The primary task is graph regression, where the goal is to predict continuous values
associated with each molecule. This often involves predicting molecular properties such as
solubility or biological activity.

ZINC is useful for evaluating GNNs’ performance in learning molecular representations and predict-
ing continuous chemical properties, providing insights into the model’s ability to generalize across
diverse chemical compounds.

The TOX21 dataset (Mayr et al., 2016; Huang et al., 2016) is designed for toxicity prediction and
focuses on classifying chemical compounds based on their potential toxicity. It is part of the Tox-
icology Data Challenge and features molecular graphs with associated toxicity labels. Contents
include:

• Graphs: The dataset consists of molecular graphs where nodes represent atoms and edges
represent chemical bonds. It includes thousands of molecules with toxicity annotations,
and it consists of 7, 831 graphs with each graph representing a molecular structure with
associated toxicity labels.

• Node Features: Atoms are encoded with features representing their types, hybridization
states, and other chemical properties.

• Edge Features: Bonds are detailed with features indicating bond types and additional chem-
ical attributes.

• Task: The main task is multi-label graph classification, where each molecule is classified
into multiple toxicity categories. This allows for the prediction of various toxicity endpoints
simultaneously.

TOX21 is valuable for assessing GNN models in predicting toxicity from molecular structures,
which is crucial for drug discovery and safety evaluation, providing a benchmark for multi-label
classification tasks.

The OGBN-PROTEINS dataset, part of the Open Graph Benchmark (OGB) (Hu et al., 2020), fo-
cuses on protein function prediction. It contains one large graph representing protein structures,
with nodes corresponding to amino acids and edges to their interactions. Contents include:

• One Large Graph: OGBN-PROTEINS contains 54, 879 nodes and 89, 724 edges. These
nodes represent amino acids in protein structures, and edges represent interactions or bonds
between these amino acids. It includes various protein structures used for functional pre-
diction.

• Node Features: Amino acids are described by features capturing biochemical properties,
such as amino acid type, secondary structure, and other relevant attributes.

• Edge Features: Edges denote interactions between amino acids and include features reflect-
ing the nature of these interactions or spatial relationships.

• Task: The task is multi-label node classification, where the goal is to predict multiple
functional categories for each amino acid node in the protein graph. This involves classify-
ing nodes into various functional classes based on their role in the protein’s functionality.
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OGBN-PROTEINS is suitable for evaluating GNNs on biological data, specifically in predicting
protein functions based on structural information. It provides insights into how well models can
handle multi-label node classification tasks in a complex biological context.

B MODEL ARCHITECTURE

This section provides additional details on the models’ architecture used throughout all the exper-
iments, namely GT (Dwivedi & Bresson, 2021), GraphiT (Mialon et al., 2021) and SAN (Kreuzer
et al., 2021). These graph-transformer architectures integrate the principles of both GNNs and trans-
formers, leveraging the strengths of attention mechanisms to capture intricate relationships within
graph-structured data. Graph transformers extend the transformer structure, typically used for se-
quence data, to graphs, operating by embedding nodes and edges into higher-dimensional spaces
and then applying multi-head self-attention mechanisms to capture dependencies between nodes.

Mathematically, let G = (V,E) be a graph where V = {v1, ..., vn} is the set of nodes and E ⊆
V × V is the set of edges. Each node vi is associated with a feature vector xi ∈ Rd, and each edge
(vi, vj) may have an edge feature eij ∈ Rk. Therefore, graph transformer models are designed as
follows.

INPUT EMBEDDING

The initial node features X = [x1, ...,xn]
T ∈ Rn×d are typically projected to a higher-dimensional

space:
H(0) = XWin + bin (5)

where Win ∈ Rd×d′
is a learnable weight matrix and bin ∈ Rd′

is a bias vector.

POSITIONAL ENCODING

To capture structural information, positional encodings P ∈ Rn×d′
are often added:

H(0) = H(0) + P (6)

MULTI-HEAD ATTENTION LAYER

The core of a graph transformer is the multi-head attention mechanism. For each attention head i
(out of h heads) there are also:

1. Query, Key, and Value Projections:

Qi = H(l)WQ
i (7)

Ki = H(l)WK
i (8)

Vi = H(l)W V
i (9)

where WQ
i ,WK

i ,W V
i ∈ Rd′×dk are learnable weight matrices, and dk = d′/h.

2. Attentions Scores (node features only):

Ai = softmax
(
QiK

T
i√

dk
+M

)
, (10)

where M ∈ Rn×n is a mask matrix to enforce the graph structure:

Mi,j =

{
0 if (vi, vj) ∈ E or i = j

−∞ otherwise.
(11)

3. Output of each head:
headi = AiVi. (12)

4. Concatenation and Projection:

H ′ = Concat(head1, ...,headh)W
O, (13)

where WO ∈ Rd′×d′
is a learnable weight matrix.

13
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FEED-FORWARD NETWORK (FFN)

Each attention layer is typically followed by a position-wise feed-forward network:
FFN(x) = max(0,xW1 + b1)W2 + b2 (14)

where W1 ∈ Rd′×dff , W2 ∈ Rdff×d′
, b1 ∈ Rdff , and b2 ∈ Rd′

are learnable parameters.

LAYER NORMALIZATION AND RESIDUAL CONNECTIONS

Each sub-layer (attention and FFN) employs a residual connection followed by layer normalization:

H(l+1) = LayerNorm(H(l) + Sublayer(H(l))) (15)
where Sublayer is either the multi-head attention or the FFN.

EDGE FEATURE INTEGRATION

GraphTransformer, GraphiT and SAN incorporate edge features:

1. In attention computation:

Ai,j = softmax
(
qT
i kj + f(eij)√

dk

)
(16)

where f is a learnable function (e.g., a small neural network) that projects edge features.
2. In value computation:

vij = Vi + g(eij) (17)
where g is another learnable function.

GLOBAL NODE

Some architectures introduce a global node vg connected to all other nodes to capture graph-level
information:

h(l+1)
g = Attention(h(l)

g ,H(l)) (18)

OUTPUT LAYER

The final layer depends on the task:

• For node classification: ynode = softmax(H(L)
nodeWout + bout)

• For graph classification: Ygraph = MLP(Pool(H(L)))

where Pool is a pooling operation (e.g., mean, sum, or attention-based pooling) to switch from single
node to graph embedding level.

TRAINING

The model is typically trained end-to-end using backpropagation to minimize a task-specific loss
function, such as cross-entropy for classification or mean squared error for regression.

C KOLMOGOROV-SMIRNOV TEST

This section provides additional details on the Kolmogorv-Smirnov (KS) test (Chakravarti et al.,
1967) used to analyze the distribution of activations. The KS test is a non-parametric test that
compares the cumulative distribution functions of two samples. It is used to compare a sample with
a reference probability distribution (one-sample KS test) or to compare two samples (two-sample
KS test) with each other.

In our study, we utilized the KS statistic to compare the distribution of activation values before
and after training (i.e. base against trained model), identifying Massive Activations (MAs). We
primarily used the one-sample KS test to assess the goodness of fit between our observed activation
distributions and a theoretical gamma distribution.
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C.1 ONE-SAMPLE KOLMOGOROV-SMIRNOV TEST

The one-sample KS test can typically be formulated as follows:

C.1.1 NULL HYPOTHESIS

The null hypothesis for the one-sample KS test is:

H0: The sample data follows the specified distribution (in our case, a gamma distribution).

C.1.2 TEST STATISTIC

The KS statistic Dn is defined as the supremum of the absolute difference between the empirical cu-
mulative distribution function (ECDF) Fn(x) of the sample and the cumulative distribution function
(CDF) F (x) of the reference distribution:

Dn = sup
x

|Fn(x)− F (x)| (19)

where supx denotes the supremum of the set of distances.

C.1.3 EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION

For a given sample x1, x2, ..., xn, the ECDF is defined as:

Fn(x) =
1

n

n∑
i=1

1xi≤x (20)

where 1xi≤x is the indicator function, equal to 1 if xi ≤ x and 0 otherwise.

C.1.4 CRITICAL VALUES AND P-VALUE

The distribution of the KS test statistic under the null hypothesis can be calculated, which allows us
to obtain critical values and p-values. The null hypothesis is rejected if the test statistic Dn is greater
than the critical value at a chosen significance level α, or equivalently if the p-value is less than α.

C.2 APPLICATION TO MAS DETECTION

In our experiments, we used the KS statistic to assess whether the distribution of activation ratios in
our GNNs follows a gamma distribution. The process is as follows:

1. We computed the activation ratios for each layer of our models, as defined in Equation (1)
of the main paper.

2. We took the negative logarithm of these ratios to transform the distribution.
3. We fit a gamma distribution to this transformed data using maximum likelihood estimation.
4. We performed a one-sample KS test to compare our sample data to the fitted gamma distri-

bution.

The KS test statistic provides a measure of the discrepancy between the observed distribution of
activation ratios and the theoretical gamma distribution. A lower KS statistic indicates a better fit,
suggesting that the activation ratios more closely follow the expected distribution.

C.3 INTERPRETATION IN THE CONTEXT OF MAS

Following the described procedure in Section C.2, we employed the KS statistic as quantita-
tive/statistical measure to detect the presence of MAs:

• For untrained (base) models, we typically observed low KS statistics, indicating that the
activation ratios closely follow a gamma distribution.
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• For trained models exhibiting MAs, we often saw higher KS statistics. This indicates a
departure from the gamma distribution, which we interpret as evidence of MAs.

• The magnitude of the KS statistic provided a quantitative measure of how significantly the
presence of MAs distorts the expected distribution of activation ratios.

Moreover, we complemented our KS statistic results with visual inspections of the distributions and
other analyses as described in the main paper.
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