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Figure 1. What is a subjective camera? A subjective camera transforms a person’s memory into photorealistic images. We take a small
yet crucial step toward this vision by leveraging generative models to sequentially decode textual and sketch-based readouts in their natural
order, paving the way for reconstructing moments without physical cameras.

Abstract

We introduce the concept of a subjective camera fo
reconstruct meaningful moments that physical cameras
fail to capture. We propose Subjective Camera 1.0, a
framework for reconstructing real-world scenes from read-
ily accessible subjective readouts, i.e., textual descrip-
tions and progressively drawn rough sketches. Built on
optimization-based alignment of diffusion models, our ap-
proach avoids large-scale paired training data and miti-
gates generalization issues. To address the challenge of
integrating multiple abstract concepts in real-world scenar-

“These authors contributed equally to this work.
gCorresponding authors.

ios, we design a Sequence-Aware Sketch-Guided Diffusion
framework with three loss terms for concept-wise sequen-
tial optimization, following the natural order of subjective
readouts. Experiments on two datasets demonstrate that
our method achieves state-of-the-art performance in image
quality as well as spatial and semantic alignment with tar-
get scenes. User studies with 40 participants further con-
firm that our approach is consistently preferred. Our project
page is at: subjective-camera.github.io

1. Introduction

Cameras have long been the most popular devices for pre-
serving memorable moments. However, a physical camera
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cannot always be present to capture every moment. This
raises a question of how such unrecorded experiences can
be preserved as pixels in the absence of a camera.

This paper proposes the concept of a subjective cam-
era', where humans function as “imaging devices”, aim-
ing to faithfully reconstruct real-world scenes from mem-
ory. Specifically, we define a subjective camera as a sys-
tem through which individuals encode sensory inputs into
memory based on personal salience and emotional context,
and later read out these stored representations and decode
them into pixels that reconstruct scenes they experienced.
We draw an analogy to physical cameras: just as a cam-
era records, reads out, and reconstructs the visual world
through optical, electronic, and computational processes,
the human mind selectively captures (“records”) perceptual
details, which are organized into a retrievable format (“read
out”) and later reconstructs them as pixels.

It is generally challenging for humans without profes-
sional training to directly reconstruct a dense, pixel-wise
image. Instead, the most practical approach is to read out
the mental scene through textual descriptions and/or free-
hand sketches and leverage computational tools to decode
these readouts. However, text alone often fails to fully con-
vey a mental image, particularly in terms of object layout
and fine details. Freehand sketches provide complementary
information beyond text but remain sparse and often con-
tain noise and uncertainty [11, 15]. With the advancement
of generative models [20, 23], this long-standing vision is
becoming increasingly feasible by decoding such subjective
readouts into photorealistic imagery.

Although not intended to reconstruct real-world scenes,
several works have explored generating images from com-
bined text and sketch inputs [4, 25, 30, 35-37]. These
approaches either adapt model weights using large-scale
paired data [19, 25, 28, 30, 33, 36, 37] or modify the la-
tent variables through per-scene optimization [4, 28, 35].
Training-based methods directly learn the mapping from
sketches to pixels. However, they require extensive paired
data and struggle with user-specific biases, often generaliz-
ing poorly to abstract sketches beyond the training distribu-
tion. In contrast, training-free methods avoid the heavy data
requirements, high computational costs, and generalization
challenges of training-based approaches.

However, optimization-based methods often fail to re-
construct multiple concepts from idiosyncratic sketches, as
would be required for recreating real-world scenes. This
often leads to missing concepts or misaligned spatial rela-
tionships (see Figure 2a). The main obstacle lies in simul-
taneously interpreting multi-concept sketches, which inher-
ently combine varying levels of abstraction and randomness
across different concepts. For instance, freehand sketches

'While the term “subjective camera” appears in cinematic contexts, our
usage here differs significantly in meaning.
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Figure 2. Motivation for concept-wise sequential optimization.
(a) Attempting to “snap” all concepts into a complete image at
once using generative diffusion priors often leads to suboptimal
results, such as distortions and misaligned semantics or layouts.
(b) In contrast, humans reconstruct mental scenes step by step.
This natural readout order inspires our design’, making it better
suited to leverage current generative diffusion priors.

may only roughly indicate object boundaries, omit fine de-
tails such as texture and geometry, or distort proportions in
non-standard ways. While generative priors can fill sparse
regions and mitigate randomness during the transformation
from sketches to pixels, attempting to integrate all concepts
at once often reduces the problem to a least-squares solu-
tion [1, 4], ultimately blurring their distinct characteristics.

Our key idea is simple — to apply optimizations to each
concept individually and do so sequentially. This design
considers not only the limitations of the “snapshot” genera-
tion process but also human cognition. Humans tend to de-
scribe their mental images step-by-step [13], typically start-
ing with a textual description of abstract concepts or the
overall scene structure, and then progressively refining in-
dividual elements with increasing detail (see Figure 2b).

Building upon this idea, we introduce a sequence-aware,
sketch-guided diffusion framework that sequentially opti-
mizes the latent noise of a pre-trained text-to-image (T2I)
diffusion model [23] to align individual subjective readouts.
The order of these optimizations mirrors the natural pro-
cess of reading out subjective impressions: it begins with
a text-reward optimization (Section 3.2) to align the gener-
ated image with the initial textual description, followed by
concept-wise sequential optimizations (Section 3.5) to in-
corporate progressively provided sketches that may encode
shapes, poses, and spatial arrangements. The sequential op-
timization also incorporates a loss to ensure that previously
optimized concepts are not significantly altered.

Two additional components are proposed to improve

2This design philosophy is reminiscent of the progressive decoding
used in rolling-shutter image sensors, which arises from the need to ac-
commodate the limited processing capacity of the circuits.
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the concept-wise sequential optimization. First, each in-
put sketch is individually encoded into the latent space to
provide spatial guidance. To bridge the gap between rough
sketch shapes and their corresponding real-world forms, we
introduce an optimization-based inversion strategy for re-
fining this spatial guidance (Section 3.3). Second, because
input sketches often lack appearance details, directly op-
timizing with their guidance over multiple iterations may
lead to unnatural textures and degraded visual fidelity. We
therefore leverage the latent representation obtained from
text-reward optimization to define an appearance loss (Sec-
tion 3.4), thereby preserving visual style quality.

By processing sketches individually and sequentially,
our approach naturally aligns with the human cognition
process, enabling users to incrementally construct mental
images while ensuring each addition respects and com-
plements previous elements. This sequence-aware gen-
eration strategy provides fine-grained control over com-
plex multi-concept scenes while preserving the user’s sub-
jective intent encoded in the drawing order. Evaluations
on two datasets demonstrate that our method achieves
state-of-the-art performance in recreating a real-world
scene from human memory, demonstrating the potential
of subjective cameras. Notably, our framework is entirely
training-free, eliminating the need for large-scale paired
datasets and avoiding generalization.

To sum up, our contributions are twofold:

@ We propose the concept of a subjective camera, which
functions the human as an “imaging device” and lever-
ages computational tools to transform cognitive im-
pressions into photographs.

& We propose a sequence-aware diffusion-guided gener-
ation framework that enables faithful reconstruction of
complex, multi-concept scenes. This framework aligns
with human cognition and surpasses “snapshot” gen-
eration methods, thereby establishing a new paradigm
for cognition-driven image generation.

2. Related Work

Aligning Image Synthesis Models Despite their success,
T2I generative models [20, 22, 23] often fail to reproduce
the fine-grained semantics and compositional details de-
scribed in complex prompts. Reward-based alignment has
emerged as a promising direction [6, 7, 12, 14, 26, 31, 32],
using human preference models [12, 29, 32] to guide gener-
ation. The human preference models were trained on paired
human preference data. Early works [12, 32] fine-tune dif-
fusion models with the reward models, whereas later meth-
ods [6, 14] sidestep costly fine-tuning by directly optimiz-
ing the latent noise [6, 31]. However, these techniques
largely improve global prompt adherence while neglecting
spatial control. Our model not only aligns the T2I genera-

tive models with the text prompt, but also ensures the spatial
information to respect to user-provided sketches.

Controllable Image Synthesis T2I models inherently rely
on highly compressed textual tokens, which limits their con-
trollability and often prevents them from meeting user ex-
pectations [20, 22, 23]. To overcome these limitations, a
growing body of research has explored controllable gen-
eration by incorporating fine-grained conditioning signals,
such as reference images [2], edge maps or contours or
skeletons [33], semantic layouts [1, 3, 38], and light-
ing specifications [34]. One line of work fine-tunes pre-
trained diffusion models by adding trainable modules [19,
33, 37], while others directly retrain the diffusion back-
bone by minimizing reconstruction objectives [2]. In par-
allel, training-free techniques [5, 7, 9, 26] have been devel-
oped to enhance controllability without modifying model
weights. These include attention injection or latent opti-
mization strategies, such as Prompt-to-Prompt editing [9]
and diffusion self-guidance [5]. Despite these advances, ex-
isting methods often fail in complex scenes involving multi-
ple guidance given by freehand sketches, where interactions
between elements lead to interference and degraded synthe-
sis quality. Building on these insights, our method incor-
porates attention-based guidance extraction but extends it to
better handle multi-concept freehand sketches.

Sketch-to-Image Synthesis It is the task most relevant to
our concept of the subjective camera. It aims to generate
images from freehand sketches along with textual prompts.
Several recent efforts have attempted to adapt T2I diffusion
models for sketch-to-image synthesis [4, 17, 25, 28, 35, 36].
Training-based approaches [25, 36] fine-tune the T2I mod-
els with paired data. However, this training-based method
incurs substantial computational cost and suffers from poor
generalization. In contrast, training-free approaches [4, 17,
35] avoid fine-tuning by guiding the diffusion denoising
process with sketches. However, these methods still jointly
create multiple concepts, causing interference between their
differing levels of randomness and abstraction. More criti-
cally, both training-based and training-free approaches fail
to address the subjective biases inherent in user-provided
sketches and are particularly vulnerable to highly abstract
inputs, often leading to appearance distortions and seman-
tic inconsistencies in the generated outputs. Furthermore,
unlike creative generation methods, our focus is on recon-
structing real-world scenes.

3. Sequence-Aware Sketch-Guided Diffusion

3.1. Overview

Our goal is to render photorealistic images from subjec-
tive readouts, consisting of a textual description p and a
sequence S = {s;}}¥; of N frechand sketches, where
each sketch represents a distinct concept. As illustrated

17840



A vindrill, 2 turtle,
and 3 ‘nedgehog in

2 meadow.

i Diffusion model

AEk ]

Sequential

Generation Optimization Fe

3
v

)

Text-to-lmoge] Sequential ]

Text-Reward
Opﬂmlzutlon‘q
¢

Op'imizution‘»

Sequential
Optimization (

& Appearance losses Preserving loss
B @2 @2 | | pEEEn
Spatial losses i
mE nE @

T [ —
Section 3.5

Concept-wise Sequential Optimization

Figure 3. Sequence-aware sketch-guided diffusion. (Lefr) User-provided textual description undergoes text-to-image generation and
text-reward optimization to obtain the initial latent. Then, the following generation progresses under three constraints — spatial layout
conforming to sketch topology while appearance details adhere to the initial image from text-reward optimization, with consistency main-
tained through ordered latent propagation and three loss terms, ensuring coherent integration of emerging and established scene elements.

(Right) The concept-wise sequential optimization.

in Figure 3, we design a Sequence-Aware Sketch-Guided
Diffusion framework to accomplish this challenging task.
Our method processes the subjective readouts individually
and sequentially, following the order in which users de-
scribe them. It employs a sequence-aware optimization
strategy to align a pre-trained generative diffusion model,
G. = eglea(...€9(€,p))), and ey denotes the pre-trained
U-Net, with these readouts, naturally mirroring the hu-
man cognitive process of step-by-step scene construction.
The process begins with a text-reward optimization, which
establishes an initial latent representation and appearance
prior for subsequent concept-wise optimizations. The ap-
pearance prior is extracted via style encoding, while sketch
encoding, implemented using diffusion inversion, provides
spatial guidance for individual sketches. In addition, a pre-
serving loss is introduced to maintain previously optimized
concepts throughout the sequential process. These compo-
nents collectively enable our framework to decode subjec-
tive readouts into coherent, photorealistic scenes.

3.2. Text-Reward Optimization

We randomly sample a latent noise € and feed it, together
with the textual description p, into a pre-trained T2I dif-
fusion model, which renders an image through the full re-
verse diffusion process, Gg. To ensure that the generated
image contains the concepts in the given textual informa-
tion, without concept omission or significant misalignment,
we formulate a text-reward optimization procedure as exist-
ing practice [6, 14] that iteratively refines the latent noise to
maximize a text-image alignment objective:

" = argmax Cp (Go(e,p),p) (1

where Cr represents a differentiable reward model that
measures alignment between the generated image and the

text prompt p. The optimization process iteratively refines
€ through gradient ascent:

€t+1 = €t +NVCr(Go(er,p)), 2)
where 7 is the learning rate.

3.3. Sketch Encoding

Before proceeding to the sketch-guided optimization, we
first encode the sketch to extract high-level semantic guid-
ance, rather than relying on low-level line details. Given
a list of input sketches {s;}}¥ ,, each sketch s; is encoded
into a latent representation z; € R"***4 ysing the vari-
ational autoencoder (VAE) encoder Ey of the diffusion
model: z; = Ey4(s;). Then, we can leverage arbitrary diffu-
sion inversion algorithms, such as DDIM inversion [18] or
SDEdit [16], to map the sketch into latent noise. To address
the significant domain gap between abstract planar sketches
and realistic images, we introduce an optimization proce-
dure that iteratively refines the latent representation z; by
aligning it with the rich prior knowledge embedded in the
diffusion model.

At each optimization step k, we perturb the latent sketch
representation with a Gaussian noise e, ~ N (0, I) to obtain
a noisy latent representation

z,gk) = atkzgk) + oy, €k, 3)
where oy, and oy, are time-dependent scaling factors fol-
lowing the noise schedule of the diffusion process. The

(k)

noisy latent z; " is then fed into the pre-trained U-Net ¢y,

which predicts the noise component ég (z,gk), tr.). The noise

prediction error Aej, is computed as:

(k)

Aek = €9(zt ,tk) — €k. (4)
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Figure 4. The effectiveness of sketch optimization. Without op-
timization (left), the generated image fails to accurately respect
the wheel placement and proportions indicated in the sketch. With
our optimization (right), the generated result better aligns with the
sketch structure, particularly in the wheel positions (green arrows)
and overall shape, demonstrating improved spatial coherence.

This noise gap serves as a gradient signal to iteratively re-

fine the latent sketch features. Specifically, we update the
(k)

latent representation z; ~ as

0 = (B 42D ) )

where A is a regularization term that anchors the optimiza-
tion to the initial latent zi(o), preventing semantic drift.

Through this iterative optimization in Eq. (3-5), the la-
tent z;is pushed to align with the rich prior knowledge em-
bedded in the diffusion model.®> This alignment effectively
infuses the sketch with realistic details, textures, and struc-
tural coherence, thereby establishing a robust mapping from
human hand-drawn sketches to physically grounded visual
representations (see Figure 4).

However, we observed that the optimization method is
less effective when the sketch is drawn relatively small. In
such cases, the generated result often fails to align with the
sketch and instead produces a shape-independent object in
a central position. To address this, we suggest scaling the
original sketch using linear interpolation or, alternatively,
discarding the optimization for that step.

3.4. Appearance Encoding

While the sketch provides spatial information, additional
appearance cues are required to ensure visual quality dur-
ing optimization. We first define a operator .A(-) to obtain
the appearance descriptor:

N > . sigmoid ([z],,,) o
which is a collection of weighted spatial means of diffusion
features f, and f, are from different layer and time steps.
Then, we treat the descriptor extracted from the optimized
latent 2°*, derived from €°* in Eq. (1), as our appearance
prior. We will compare the appearance descriptor of the
current latent and the appearance prior during optimization.

3To avoid ambiguity, we use Z; to denote the optimized latent for the
i-th sketch concept, distinguishing it from latent z; would be used in the
concept-wise sequential optimization.

3.5. Concept-wise Sequential Optimization

Next, we leverage this order information of subjective read-
outs to progressively construct the scene while maintaining
coherence between newly introduced and previously estab-
lished elements.

Spatial Attention-guided Control We leverage the spatial
attention mechanisms within the diffusion model’s U-Net
architecture. For each sketch concept s;, we extract cross-
attention maps that highlight regions in the latent space cor-
responding to specific semantic concepts:

M(z) = softmax (W} > T, 7

where Q(z) and K (x) are query and key matrices, d is the
dimensionality of the key vectors, and 7 is a threshold pa-
rameter. The attention maps M (2;) extracted from Z;, the
latent of the sketch s; (Section 3.3), serve as spatial indi-
cators to guide the concept’s layout. The control is given
through the spatial loss, defined as:

S oM EDuw | iluo — [z uo 3
> oM Gi)uw ’

where u, v are spatial positions indices.

®)

Lspatial(zia Zz) =

Appearance Control We define the appearance loss as:
* *\ (12
Eapp(zhzo )= ||A(Zz) - A(ZO )Hy )]

where A is the operator of exacting appearance descriptors.
Sequential Concept Integration To maintain coherence
across the progressive addition of concepts, we implement
a sequential integration process that updates the latent noise
representation while preserving previously incorporated el-
ements. For each sketch s; in the sequence, we compute:*

zi = zi—1 + Az, (10)

where z;_; is the optimized latent from the previous con-
cept, and Az; represents the incremental update required to
incorporate the current sketch concept s;. This update is
derived from our loss function:

L= O‘iﬁnew(zb Z, Zo*) + ﬂiﬁpreserve(zh Z.'O,H.,ifl% 11

where o; and [3; are balancing coefficients. L., ensures
proper integration of the current z; and is defined as:

Cnew(ziv 22', ZO*) - »Cspalial(ziv Zz) + »Capp(ziv ZO*)7 (12)
while Lpreserve Maintains the integrity of previously opti-
mized concepts, given by:

i—1
Epreserve(zi; Z.O,...,ifl) = Z ’Yi_jcspatial(ziv 73j) s (13)

j=1

“#In fact, an inner-loop optimization is omitted here for simplicity.
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Figure 5. Qualitative comparison of existing sketch-to-image generation methods, and our method on FMC and CMC datasets. Existing
training-based methods tend to overfit to sketch lines, often failing to reconstruct scenes realistically, while training-free methods frequently
misinterpret or overlook key concepts. In comparison, our approach more faithfully represents real-world physical scenes. The reading
and processing order of the sketches is indicated by colors as follows: ® ~ ®

where j means preserving established concepts, and v*~7 is
a decay factor that weights the importance of earlier con-
cepts based on their step gap from the current step.

4. Experiments and Results
4.1. Experiment Setup

Datasets To rigorously evaluate our method, we have
undertaken extensive efforts to develop two specialized
datasets: the Composed Multi-Concept (CMC) dataset and
the Freehand Multi-Concept (FMC) dataset. Both datasets
are designed to comprehensively assess the capabilities of
our framework in handling multi-concept scene understand-
ing and generation. CMC dataset comprises 142 scene
sketches, each containing 2-4 distinct concepts sampled
from the 150 semantic classes in the Sketchy dataset [24].
Each is accompanied by annotated textual prompts with
the help of multimodal large language models. The CMC
dataset does not provide real-world images captured by
physical cameras for reference. FMC dataset is constructed
from freehand sketches drawn by volunteers, based on
real-world images sourced from publicly available outdoor

scene datasets. It comprises 42 hand-drawn sketches, each
containing 2-3 distinct concepts. Additionally, each sketch
is paired with a corresponding real-world image as a refer-
ence for validation and evaluation purposes.

Evaluation Metrics To conduct a comprehensive quanti-
tative evaluation of the quality of generated images, four
widely-used evaluation metrics were employed, includ-
ing Fréchet Inception Distance (FID) [10], CLIP-T Score
(CLIP-T) [21], Human Preference Score (HPS) [29], and
CLIP-I distance (CLIP-I) [21]. FID measures the feature
distribution similarity between generated and real images.
Lower FID values indicate better distribution matching ({.).
CLIP-T quantifies the image-text alignment degree within
the CLIP-T embedding space. A higher CLIP-T score re-
flects greater semantic alignment between the generated
image and text prompt (7). HPS measures the subjective
quality of the generated images based on human evalua-
tions. Higher HPS values suggest that the generated images
are more favorable or preferred by human evaluators (7).
CLIP-I measures the alignment between two images. A
higher value suggests that the two images are more consis-
tent in terms of their semantic content (7).
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Figure 6. Ablation study on FMC and CMC datasets. Column headers are defined as follows: T2I denotes the baseline text-to-image
diffusion model; OP (Overall Perception) indicates the single-step guidance approach utilizing complete sketch as a holistic conditioning
signal; CSO refers to our proposed Concept-wise Sequential Optimization (Section 3.5); SE represents the Sketch Encoding module (Sec-
tion 3.3) that enhances structural plausibility by injecting diffusion priors into imperfect sketches. The qualitative comparison demonstrates
that CSO achieves finer layout control than OP. While SE effectively bridges the domain gap between freehand sketches and physical real-
ity through latent space regularization, ultimately elevating generation quality.

w cMC FMC
Method
FID|, CLIP-T{ HPSt FID| CLIP-TT HPSt CLIP-I1

ControlNet [33] 15.28 61.71 0.794 1445 66.80 0.802 0.622
T2I-Adapter [19] 18.13 61.61 0.745  15.37 61.61 0.745 0.689
Uni-ControlNet [37]  19.60 62.58 0.761  18.53 62.58 0.761 0.712

Multi-Sketch [4]  13.05 64.11 0.740  11.59 72.02 0.775 0.690
PNP [27] 17.01 63.27 0.840 16.26 71.24 0.852 0.593
FreeControl [17] 14.52 64.74 0.757  11.17 66.67 0.759 0.775

Ours  11.56 66.64 0.850 10.18 74.25 0.862 0.797

Table 1. Quantitative results on CMC and FMC datasets. Our
method consistently surpasses all training-free methods in distri-
bution matching, image-text alignment, subjective quality, and ap-
pearance details as measured by FID, CLIP-T, HPS, and CLIP-
I. Our method achieves superior image-text alignment compared
to training-based methods (‘}’ indicates lower values are better,
while “1” is opposite).

Implementation Details In the implementation of our pro-
posed method, we set the learning rate 7 in Eq. (2) and the
threshold parameter 7 in Eq. (7) is 5.0 and 0.3, respectively.
Meanwhile, hyperparameters «; and 3; in Eq. (11) are set
as 0.8 and 0.2, respectively. v in Eq. (13) is set as 0.9. Our
method is performed on one NVIDIA GeForce RTX 4090,
and input sketch images are 512512 in resolution.

4.2. Comparisons

We conducted a comprehensive quantitative and qualitative
evaluation of the proposed method and competing meth-
ods on the CMC and FMC datasets. Our competing meth-
ods include the training-based approaches ControlNet [33],
T2I-Adapter [19], and Uni-ControlNet [37], as well as the
training-free approaches Multi-Sketch [4], PNP [27], and
FreeControl [17]. The quantitative results are presented in
Table 1 and qualitative results are shown in Figure 5.

We observe that training-based methods [19, 33, 37] are
highly susceptible to subjective biases in sketches and of-

ten fail to adhere to text prompts, producing distorted and
unrealistic images with lower CLIP-T scores. Training-free
methods [4, 8, 17] suffer from concept omissions, conspic-
uous artifacts, and inconsistencies both among concepts
and between concepts and their backgrounds, resulting in
poor image realism. These issues stem from mutual inter-
ference during the “snapshot” generation of multiple con-
cepts. In contrast, our proposed method faithfully recon-
structs real-world scenes and achieves the best performance
across all evaluation metrics on both the CMC and FMC
datasets, demonstrating its effectiveness.

Q1 Q2 Q3 Q4

1R A

I |
WINNER @ OTHERs @ BOTH Us
Figure 7. User preference experiment. We asked participants to
answer four questions based on the reference images, subjective
readouts, and generated images, which included one produced by
our method and one by a competing method. Results show that
users significantly preferred our outputs over those of competing
methods in most cases.

4.3. Ablation Study

To validate the effectiveness of each module in our method,
we conducted ablation experiments on the FMC and CMC
datasets, with the visualization results shown in Figure 6.

It is observed that traditional T2I diffusion models (T2I)
generate images that are close to text prompts. While incor-
porating sketches as guidance further constrains the con-
sistency of concept positioning, deviations in appearance
and spatial alignment persist (T2, OP). The sequential con-
cept understanding facilitated by Concept-wise Sequential
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Figure 8. Control experiments on user preferences. We con-
trolled three factors to examine their influence: whether the rater
drew the photo, the availability timing of the reference image (oo
vs. 5s), and the types of questions asked. In general, our method is
consistently better than the competing method, FreeControl.

Optimization (CSO) in Section 3.5 enhances the alignment
of concept positioning and appearance with input sketches
(CSO). Simultaneously, the Sketch Encoding (SE) module
in Section 3.3 aligns content latent variables with real-world
objects, mitigating geometric misalignment (T2I, OP, SE).
When integrating all modules, our method faithfully re-
constructs real-world scenes and achieves optimal results
(Ours), demonstrating the effectiveness of each module and
underscoring the indispensable nature of their design.

4.4. User Preference Experiments

We invited 12 participants (group A) to provide subjective
readouts and an additional 28 participants (group B) to eval-
uate the reconstructed images. Participants in group A were
first asked to select a deeply impressive scene from their
photo gallery and then provide a textual description along
with sketches within two minutes. Our method and com-
peting approaches, including two baselines (text-reward op-
timization and text-reward optimization with sketch-guided
optimization based on all concepts) as well as an optimal
method, FreeControl [17], were used to generate images
from these readouts. Participants in both groups were then
shown the subjective readouts, the reference image, and the
generated images for the same scene. They were asked to
answer four single-choice questions in a single-blind man-
ner: Q1: Which image is closer to the original image (both
style and content)? Q2: Which image has higher visual
quality (e.g., more realistic, more natural)? Q3: Which im-
age better matches the structure of the sketch? Q4: Which
image better matches the textual description?

Figure 7 presents the statistics of the collected results.
Participants judged our reconstructions as being closer to
the corresponding real-world scenes compared to compet-
ing methods. Similar conclusions were observed for the
other three questions. However, there was an exception in
the comparison between our method and text-reward opti-
mization regarding image quality (Q2). We observed that
text-reward optimization without additional control tends to
hallucinate details that enhance perceived realism, leading
some users to prefer it for Q2. This also explains why our

advantage over text-reward optimization in Q1 was not sta-
tistically significant and why some participants expressed
hesitation in this case.

We further conducted controlled experiments to examine
the effects of three factors: whether the rater provided the
subjective readouts, the availability timing of the reference
image, and the types of questions asked. Results in Figure 8
show that our method consistently outperformed FreeCon-
trol [17], regardless of these variations. Notably: 1) Par-
ticipants who provided subjective readouts showed slightly
lower preference for our method in terms of similarity to
the reference image compared to those who did not, while
showing a higher preference in terms of alignment with the
readouts and perceived image quality. We suppose this is
mainly because of the subjectivity in reading out. 2) Re-
ducing the time participants could view the reference im-
age decreased the preference for our method; when allowed
to compare freely, participants preferred our results more
strongly.

5. Conclusions

This paper presented Subjective Camera, a paradigm for re-
constructing real-world scenes from humans’ mental im-
pressions. Our framework relies on the most accessible
readouts of mental imagery, i.e., textual descriptions and
sketches, and employs a training-free, sequence-aware op-
timization process. This approach eliminates the need
for costly fine-tuning of text-to-image diffusion models
on large-scale data while mitigating challenges such as
dependence on sketch quality and geometric misalign-
ment.  Extensive experiments on both synthetic and
real-world sketch datasets demonstrate that Subjective
Camera achieves state-of-the-art performance, outperform-
ing both training-free and training-based sketch-to-image
generation methods across all evaluation metrics. Further-
more, user preference studies confirm that participants con-
sistently favor our method.

In closing, we address a natural question: “With the
rapid advancement of generative Al, will physical cameras
ever become unnecessary” For now, the answer is no. First,
the reconstructed images still fall short of perfectly match-
ing actual scenes. This limitation largely stems from the fact
that current T2I models are trained on highly diverse data,
creating gaps between the prior and the specific scene to be
reconstructed. One promising direction to mitigate this is to
personalize the prior models using user-specific galleries.
Second, we observe that variations in the order and quality
of sketches have a significant impact on reconstruction re-
sults. To address this, we plan to enhance our framework
with computational tools that guide users in providing more
precise and suitable subjective readouts. For these reasons,
we designate this system as Subjective Camera 1.0, leaving
these improvements for future iterations.
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