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ABSTRACT

Reinforcement learning (RL) has shown remarkable success in training agents to
achieve high-performing policies, particularly in domains like Game AI where
simulation environments enable efficient interactions. However, despite their suc-
cess in maximizing these returns, such online-trained policies often fail to align
with human preferences concerning actions, styles, and values. The challenge lies
in efficiently adapting these online-trained policies to align with human prefer-
ences, given the scarcity and high cost of collecting human behavior data. In this
work, we formalize the problem as online-to-offline RL and propose ALIGNment
of Game AI to Preferences (ALIGN-GAP), an innovative approach for alignment
of well-trained game agents to human preferences. Our method features a care-
fully designed reward model that encodes human preferences from limited offline
data and incorporates curriculum-based preference learning to align RL agents
with targeted human values. Experiments across diverse environments and pref-
erence types demonstrate the performance of ALIGN-GAP, achieving effective
alignment with human preferences.

1 INTRODUCTION

Modern reinforcement learning (RL) has achieved significant successes in optimizing strategies
across diverse environments, driven by innovative algorithmic designs and the integration of deep
learning techniques (Li, 2017; Wang et al., 2022). Despite the high sample complexity typically
associated with RL training, practical applications can mitigate online training costs and develop
effective policies through approaches such as reward shaping and pre-training on substantial offline
datasets (Levine et al., 2020; Prudencio et al., 2023; McInroe et al., 2023). In the realm of Game AI,
the availability of cost-effective game engines facilitates efficient interactions, enabling RL agents to
achieve high returns under carefully designed reward functions (Shao et al., 2018; Fan et al., 2020).
However, integrating these agents into real-world applications often uncovers a misalignment be-
tween the agents’ behaviors, styles, and values and those of human, particularly given the varied
value orientations of different individuals. As an example illustrated in Figure 1, an online-trained
agent learns a behavioral policy based on a given reward function. However, diverse values can exist
for human game players (e.g., a cautious beginner, a speed-runner focused on completion time, or
an achievement hunter aiming for in-game accomplishments). This diversity in values leads to a
variety of play styles and behaviors among different player groups. This discrepancy can make the
agents appear unnatural from a human perspective, necessitating alignment of agents with specific
human preferences.

To align agents with human preferences in aspects such as human-like behaviors and action styles,
it is essential to encode human values and preferences from behavior data, which may be signifi-
cantly off-policy for the online-trained agents (Ziegler et al., 2019). The high cost and scarcity of
collecting human behavior data complicate direct fine-tuning efforts. Furthermore, the variety of be-
havioral preferences, styles, and values among humans necessitates alignment with specific groups
or even individual players, intensifying the challenges associated with data collection (Gabriel,
2020). The inherent sample complexity of RL algorithms, coupled with the potential subopti-
mality of human-preferred behaviors under the agents’ value estimations, further complicates the
fine-tuning process (Nguyen-Tang et al., 2021). Additionally, the shift between the state-action dis-
tributions of human-preferred styles and those of RL agents can lead to “unlearning” phenomena
during fine-tuning, whereby agents lose their previously acquired understanding of environmental
dynamics (Kumar et al., 2020; Kostrikov et al., 2021; Nakamoto et al., 2024).
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Game BeginnerOnline-Trained Agent
with reward shaping:

=10, =5, =0, =-10

Achievement HunterSpeedrunner

Slippery run: Navigate a slippery surface from starting flag to reach the finish line  without falling into pits . 
Inexperienced players may sometimes slide unpredictably. Collect stars and open boxes  (which have a 50/50 
chance of containing a star) for bonus achievements. Reaching the finish line or falling into a pit ends the game.

Figure 1: An example for agent behavior (left) and diverse human behaviors (right) in a grid-based
game. A beginner prioritizes avoiding pitfalls; a speed-runner optimizes for quick completion; an
achievement hunter seeks to collect stars and open boxes for possible collectable items.

To address these challenges, we conceptualize the issue as an online-to-offline RL problem. Here,
“online” refers to the process of achieving optimal or near-optimal policies through extensive online
RL training or imitation of high-return trajectories, as evaluated by reinforcement learning rewards
from the environment. The “offline” component involves aligning these well-trained policies with
human preferences using offline behavior data, which can often be scarce. This framework contrasts
with offline-to-online RL, where key distinctions arise from varying assumptions about offline data
and optimization objectives (Lee et al., 2022; Nakamoto et al., 2024; Ball et al., 2023). While
offline-to-online RL typically deals with abundant but suboptimal offline data that provides extensive
coverage of environmental dynamics (Kumar et al., 2020; Kostrikov et al., 2021), online-to-offline
RL focuses on offline preference data that reflects specific human behaviors or values but may be
insufficient for fine-tuning RL policy due to high collection costs. Furthermore, while offline-to-
online RL aims to mitigate sample complexity in online RL through offline pre-training (Zhang
et al., 2023; Hansen-Estruch et al., 2023; McInroe et al., 2023), online-to-offline RL seeks to align
online-trained agents with human preferences encoded in offline behavior data.

In this work, we introduce ALIGNment of Game AI to Preferences (ALIGN-GAP), aimed at align-
ing RL agents with human styles and values within the Game AI context. Our method comprises
two stages: first, inspired by techniques from large language model alignment, we extract human
preferences from offline human data by training a transformer-structured reward model. This model
is trained with pair-wise sampling of state-action (sub-)trajectories from both online-trained agents
and human data. Subsequently, to bridge the gap between the objectives of online learning and
aligning with human preferences, we introduce a calibrated preference curriculum learning strategy.
This approach begins by calibrating the reward model scores to identify behaviors that align with
human preferences but are not yet learned by the agent. It then gradually shifts the agent’s objec-
tives, moving from maximizing environmental returns to prioritizing human preferences as encoded
by the reward model. We demonstrate the effectiveness of our method through experiments across
various tasks and human styles, showcasing its performance in achieving agent-human alignment.

2 RELATED WORK

Online RL with offline data. Prior works have explored various strategies to utilize previously
collected offline datasets to accelerate the training of online RL algorithms. These approaches can
generally be divided into two main categories: offline-to-online RL and online RL with offline data.
Offline-to-online RL involves pre-training a policy and a value function using offline data (Ku-
mar et al., 2020; Kostrikov et al., 2021; Agarwal et al., 2020; Nakamoto et al., 2024; Zhang et al.,
2023), which allows for effective utilization of abundant yet sub-optimal offline datasets to establish
well-initialized policies. This reduces the need for extensive online exploration, thereby improving
sample complexity and overall efficiency (Prudencio et al., 2023; Levine et al., 2020; McInroe et al.,
2023; Zhong et al., 2021; Andres et al., 2023). To address the distributional shift between the offline
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dataset and online interactions, several techniques such as balanced sampling (Lee et al., 2022; Guo
et al., 2023), adaptive conservatism (Kostrikov et al., 2021; Nakamoto et al., 2024), and actor-critic
alignment (Yu & Zhang, 2023; Wang et al., 2024b) have been proposed to enhance stability and
performance. In contrast, online RL with offline data involves training an agent from scratch on top
of a replay buffer filled with online data and offline data (Song et al., 2022), mixed with approaches
such as symmetric sampling (Ball et al., 2023). In our work, we seek to extend beyond improving
agent performance by addressing how to align well-trained agents with human preferences using a
limited amount of human offline data. Here, the challenge shifts from maximizing environmental
returns to aligning agents with specific human preferences, where offline data may be of high quality
but insufficient for extensive RL fine-tuning.

Learning from human preferences. With the evolution of large language models, aligning AI
capabilities with human values has become a focal point of research. In the domain of RL, mod-
ern algorithms enable agents to learn effective strategies through extensive interaction with complex
environments (Arulkumaran et al., 2017; Schulman et al., 2017; Haarnoja et al., 2018). A primary
step for aligning these capable agents with human values involves representing and encoding hu-
man preferences, especially from pre-collected human data. Inverse reinforcement learning has
been used to infer reward functions that could explain the behavioral patterns hidden within the
data (Eysenbach et al., 2020; Xue et al., 2021), although this often requires a significant amount of
demonstration data (Arora & Doshi, 2021; Adams et al., 2022). A promising alternative is the devel-
opment of reward models that encode human preferences with transformer-based architectures (Faal
et al., 2023; Kim et al., 2023), which can help capture long contextual relationships and dependen-
cies effectively through pair-wise sampling and training (Ouyang et al., 2022; Wang et al., 2023).
These preference signals, finely representing human preferences, have found successful applications
in AI model alignment, particularly in LLM and vision language model (VLM) alignment (Liu et al.,
2023; Wang et al., 2024b).

Aligning agents with humans. Popular methods for aligning fundamentally capable base models
with human preferences include using reward models and PPO algorithms in reinforcement learn-
ing from human feedback (RLHF) framework (Achiam et al., 2023; Wang et al., 2024c;a). By
formalizing the alignment challenge as a bandit problem, initiatives like InstructGPT improved its
alignment capability on issues such as hallucination and toxicity (Ouyang et al., 2022). This RLHF
approach has been adopted in various subsequent LLMs (Zheng et al., 2023; Wang et al., 2024a;
Yang et al., 2024). Moreover, directly using offline human data through approaches like direct pol-
icy optimization (DPO) allows for supervised fine-tuning that aligns base models more closely with
human expectations of being helpful and harmless (Rafailov et al., 2024; Xu et al., 2024). Further
explorations have relaxed the form of offline data (Ethayarajh et al., 2024) and integrated reward
signals to improve alignment (Zhong et al., 2024). In the field of reinforcement learning, there
has been exploration of aligning agents with humans in domains such as autonomous driving and
gaming (Wurman et al., 2022; Dong et al., 2023). However, existing approaches often require hand-
engineering attributes for specific environments and struggles to provide a unified formulation across
different domains. In this work, we aim to identify the challenges and bottlenecks in aligning RL
agents with humans through an online-to-offline RL framework, and propose an effective alignment
approach within this setting to establish a general strategy for agent-human alignment.

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING

Reinforcement learning (RL) involves training an agent to make decisions by interacting with an
environment in a way that maximizes cumulative rewards over time. This is formalized within
the framework of a Markov Decision Process (MDP) (Puterman, 1990), represented as M =
(S,A, P, r, ρ, γ), where S,A denote the state and action spaces, P (s′|s, a) is the state transition
probability, r(s, a) represents the reward function, ρ(s) is the initial state distribution, and γ ∈ (0, 1)
is the discount factor which prioritizes immediate rewards over future ones.

The objective in RL is to learn a policy π : S 7→ ∆(A) that maps states to a probability distribution
over actions in order to maximize the cumulative discounted reward starting from any initial state s.
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This objective can be expressed through the value function:

V π(s) = Eat∼π(st)

[
T∑

t=0

γtr (st, at) | s0 = s

]
. (1)

The action-value function, or Q-function, further refines this by evaluating the expected return fol-
lowing a specific action a in state s, under policy π:

Qπ(s, a) = Eat∼π(st)

[
T∑

t=0

γtr (st, at) | s0 = s, a0 = a

]
, (2)

and deep RL algorithms often use function approximators, such as neural networks, to estimate
the Q-function and conduct policy learning. We denote the parameterized policy as πθ, where θ
represents the parameters of the network.

Despite the effectiveness of RL algorithms such as proximal policy optimization (PPO) (Schulman
et al., 2017) and soft actor-critic (SAC) (Haarnoja et al., 2018), these methods often suffer from high
sample complexity (Wang et al., 2022), necessitating numerous interactions with the environment
for convergence. In real-world applications, this requirement can be mitigated through engineering
optimizations that reduce the cost of environmental interactions, allowing the training of competent
agents at lower overall costs (Liang et al., 2018). This is particularly viable in Game AI contexts,
where interactions with the environment are mediated by a game engine that enables rapid, large-
scale parallel sampling (Vinyals et al., 2017; Guss et al., 2019). Such a setup facilitates the develop-
ment of well-trained online policies at reduced costs, achieving high returns under specified reward
functions and enhancing practical applications in real-world gaming environments (Jayaramireddy
et al., 2022).

3.2 REPRESENTING AND LEARNING FROM HUMAN PREFERENCES

In the alignment of artificial intelligence agents with human users, accurately and efficiently identi-
fying and representing human preferences is crucial for effective integration. A traditional approach
to understanding these preferences involves using inverse reinforcement learning (IRL) to infer re-
ward functions that explain observed human behaviors (Ab Azar et al., 2020). However, IRL faces
challenges such as high sample complexity, often requiring extensive demonstration data to accu-
rately infer reward functions (Adams et al., 2022; Liu et al., 2024). Additionally, IRL can suffer
from ambiguity, as multiple reward functions can explain the same observed behavior, limiting its
ability to reflect human preferences accurately (Arora & Doshi, 2021).

Recent advancements in large language model alignment offer a promising alternative for recogniz-
ing human preferences. By employing a transformer-structured reward model, preferences can be
learned directly from data through pairwise comparisons of human choices (Ouyang et al., 2022;
Wang et al., 2023). The objective function for training such a reward model can be formulated as:

Lϕ = −E(x,yw,yl)∼D [log(σ(rϕ(x, yw)− rϕ(x, yl)))] (3)

where rϕ represents the reward model parameterized by ϕ and (x, yw, yl) denotes a sample triplet
consisting of an input prompt x, a preferred (winning) completion yw, and a less preferred (los-
ing) completion yl. The dataset D comprises such comparisons. This training objective leverages
a contrastive learning format, demonstrating effectiveness in encoding human preferences. The
transformer-based architecture of the reward model further enhances its ability to scale, efficiently
handling long sequences and complex structures (Zhong et al., 2024; Wang et al., 2024a).

4 ONLINE-TO-OFFLINE RL FOR AGENT ALIGNMENT

In this section, we describe our approach to aligning online-trained reinforcement learning agents
with human preferences using offline human data. The proposed approach utilizes two primary
strategies: First, we extract human preferences embedded in offline data by employing a transformer-
based reward model (Section 4.1). Following the development of the reward model, we identify
several challenges associated with aligning agents to these extracted preferences. To address these
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Figure 2: The framework of ALIGN-GAP for aligning RL game agent with human preferences.
The gray section represents the training of the reward model, while the orange section represents the
calibrated curriculum preference learning component.

challenges, we introduce a calibrated preference curriculum learning approach. This strategy focuses
on identifying behaviors that align with human preferences but are not yet adopted by the agent
and transitions the agent’s focus from maximizing environmental rewards to aligning with human
preferences (Section 4.2). The framework and process of our method are illustrated in Figure 2.

4.1 PREFERENCE EXTRACTION FROM ONLINE AGENT AND OFFLINE HUMAN DATA

Extracting preferences with reward model. To align the behaviors and styles of an online-
trained agent with human preferences, the initial step involves extracting these preferences from
offline human data, particularly in comparison to the behaviors and styles of the online agent. In the
realm of large language model (LLM) alignment, preference extraction can be achieved by training
a reward model, typically structured as a transformer with a linear head for predicting reward val-
ues (Achiam et al., 2023). This architecture effectively captures contextual information and provides
robust preference predictions (Ouyang et al., 2022; Wang et al., 2024a). In reinforcement learning,
human behavioral preferences can be represented through sequential decision-making across various
states. Similarly, a transformer structure can help capture contextual information within trajectories.
As discussed previously, the reward model in LLM alignment is trained using triplet data (x, yw, yl),
where x represents a prompt, and yw and yl denote the winning and losing responses, respectively.
However, the scenario differs in reinforcement learning environments: instead of generating tokens
based on a given prompt, the dynamics involve continuous updates of states and actions as the agent
interacts with the environment (Li et al., 2023). To adapt this methodology, we train the reward
model Rϕ for agent alignment using a similar loss function while constructing the input to con-
sist of state-action sequences from offline human data and trajectories sampled from online agent
interactions. Specifically, the loss function for training the reward model is defined as:

Lϕ = −E(τhuman,τonline)∼D [log(σ(Rϕ(τhuman)−Rϕ(τonline))] (4)

where τhuman = {(shuman, ahuman)}T1 represents a state-action sub-trajectory sampled from offline
human data, and τonline = {(sonline, aonline)}T1 is the sub-trajectory of behaviors from the agent, which
interacts with the environment using an epsilon-greedy strategy. Notably, unlike the environment
reward function, the learned model Rϕ does not take the state-action pair as input but instead uses
behavior sub-trajectories. This adjustment enables the model to learn more effectively from style
features and preferences inherent in the trajectories. This training approach is commonly referred to
as preference-based reinforcement learning (PbRL) (Guan et al., 2022; Dong et al., 2023), building
upon prior models but differing in dataset construction strategies and initial network configurations.
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4.2 CURRICULUM PREFERENCE LEARNING WITH CALIBRATED RM SCORE

Figure 3: Example of trajectories
from the online-trained agent and
human achievement hunter.

After obtaining the reward model, a straightforward approach
might be to use it as the new reward function for fine-tuning
the existing online well-trained agent. However, we find exper-
imentally that this direct application often leads to sub-optimal
performance, resulting in ineffective alignment with the prefer-
ences encoded in the reward model and undesirable unlearning
of previously acquired behaviors (Nakamoto et al., 2024). This
means the agent fails to align with the human preferences en-
coded in the reward model while also losing the skills learned
during online training. We believe this outcome is likely due to
the significant shift in objectives for the agent, from maximiz-
ing environmental returns to aligning with human preferences.
This motivates us to develop a method for smoother alignment
of online-trained agents with human preferences. From our
experiments, we identify two main challenges:

1) Identification of what to learn: The reward model provides scores that reflect human prefer-
ences, but a crucial aspect is determining “what is preferred by humans but not yet learned by the
agent.” Given that the agent has undergone extensive online training, it already has an understanding
of environmental dynamics. Our goal is to guide the agent towards decisions that align more closely
with human preferences. For instance, in Figure 3, while the reward model may assign high rewards
to human-preferred behaviors (indicated by the gray and blue trajectories), we aim for the preference
signal used for alignment to prioritize actions that the agent has not yet learned to adopt (shown by
the blue trajectory) over those it has already mastered (the gray trajectory).

2) Mitigating sharp reward switching: Directly applying the trained reward model as a new re-
ward function for reinforcement learning fine-tuning often leads to a significant initial drop in per-
formance, indicative of agent unlearning (Nakamoto et al., 2024). This can occur due to the sharp
transition from a reward function that maximizes environmental returns to one that aligns with hu-
man preferences, creating a substantial gap between the agent’s learned Q-function and the optimal
Q-function for preference alignment (Gleave et al., 2020).

RM score calibration with initial behavior baseline. To address the first issue, we calibrate the
reward signals used for preference learning to focus on aspects preferred by humans but not yet
aligned by the agent. The reward for alignment should adapt to both human behavior and the style
of the online-trained agent. We begin by evaluating the behavior of the online-trained policy using
the reward model and using this assessment as a baseline for calibrating the preference signal:

Rcalibrated(τ) = Rϕ(τ)−Rϕ(τ
′), (5)

where τ ∼ {(st, πθ(st))}Tt=1 represents the state-action trajectory sampled from the current policy
πθ, and τ ′ is derived by replacing the actions in τ with those taken under the same states by the
initial policy π0 during the alignment phase. This calibrated reward tends to assign higher rewards
to human-preferred behaviors that the agent has not yet learned, while the rewards for behaviors
already aligned with human preferences approach zero. Since the alignment phase’s policy initially
matches π0, under calibrated rewards, positive rewards imply that the agent’s alignment is at least
not worse than that of the online-trained policy.

Reward curriculum for smoothed preference learning. Even with calibrated rewards, the dis-
tribution of the reward function during the agent’s online training can differ significantly, potentially
leading to agent unlearning. In reinforcement learning, transitioning between different reward func-
tions often involves transfer learning strategies to ensure smooth adaptation. It is important to note
that transfer reinforcement learning typically addresses similar reward functions, such as perturba-
tions of a single reward function (Zhu et al., 2023), and requires careful design to prevent unlearning
when faced with significantly different reward functions (Gleave et al., 2020).

Considering that the agent is already well-trained to maximize environmental returns, preference
learning presents a novel and potentially more challenging task. Therefore, we can design reward
curriculum that gradually transitions the task represented by the reward function from maximizing
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environmental returns to learning preferences:

Rcurriculum = (1− α(t)) · renv + α(t) ·Rcalibrated, (6)

where renv is the immediate reward feedback from the environment, Rcalibrated is the calibrated re-
ward defined above, and α(t) : t 7→ [0, 1] balances the ratio of environmental rewards and calibrated
RM rewards, which can usually grow from 0 to 1. For instance, a linear transition can be defined
as α(t) = current step

total step . This reward curriculum facilitates a gradual transition from the familiar task
of environmental reward maximization to the novel task of human preference alignment, offering a
general solution for the learning process.We provide an analysis from theoretical perspective in Ap-
pendix A.2 for the effect of linear preference curriculum. In Section 5.4, we explore the effectiveness
of different strategies of adjusting α(t) for reward curriculum design.

5 EXPERIMENTS

In this section, we aim to address the following key questions through experiments: (i) How effec-
tively can our proposed method align online agents with human preferences represented with oracle
rewards (Section 5.2)? (ii) How effectively can our proposed method align with human preferences
from unsuperivised classified human data (Section 5.3)? (iii) How do various components of our
method, such as reward model calibration and preference curriculum, impact the overall alignment
performance (Section 5.4)?

5.1 EXPERIMENTAL SETUP

Environments and human preferences. In our experiments, we evaluate various environments
and constructions of human preferences. Specifically, we conduct experiments on the D4RL loco-
motion tasks, including HalfCheetah, Walker2D, and Hopper environments (Fu et al., 2020). These
environments are control-oriented and resemble action-based gaming scenarios. For each environ-
ment, we train online agents using the reward functions provided by the respective environments.

To construct different human preferences, we design reward weights based on the environment re-
wards in the locomotion tasks. The default preference weights are set to [1, 1, 1], reflecting three
dimensions: maintaining health, moving forward, and controlling costs (Fu et al., 2020). We ex-
plore four combinations of preference weights: A: [1, 0, 1], B:[1, 1, 0], C: [1, 10, 1], and D:[1, 1, 10].
These combinations yield distinct reward oracles that are solely used to train human proxies and
evaluate the aligned agents. After training the human proxies, we collect a small amount of human
data (only 10 episodes) using the proxies for subsequent agent alignment. In Appendix A.1, we
provide a visual analysis of the different styles exhibited by various proxies across environments.

Additionally, we extend our experiments to Atari Pac-Man and Space Invaders games (Brockman,
2016). To assess the performance of our proposed methods against various constructions of human
preferences, we utilize Google’s Atari Replay Datasets (Agarwal et al., 2020) and conduct unsuper-
vised classification on the dataset using UMAP (McInnes et al., 2018). In each environment, we
obtain three distinct preferences of human data, retaining only 10 episodes for each preference. The
online-trained agent is then aligned with the preferences encoded in the human data.

Comparisons, baselines, and evaluation protocol. For the D4RL locomotion tasks, we employ
Soft Actor-Critic (SAC) (Haarnoja et al., 2018) to train our online well-trained agents. In the Atari
games, we utilize Deep Q-Networks (DQN) (Roderick et al., 2017) for online agent training. We
compare our approach against a fine-tuning strategy with SAC (termed Finetune w/ SAC) or DQN
(termed Finetune w/ DQN) that leverages offline data alongside the online training process. Specifi-
cally, we adopt symmetric sampling, where we sample 50% from the replay buffer containing offline
data and 50% from online data. This method has been shown to yield better results compared to us-
ing only offline data (Ball et al., 2023).

Additionally, we evaluate a baseline that trains the agent using both online environments and offline
human data, mimicking DDPGfD (Vecerik et al., 2017) but employing SAC (termed SACfD) or
DQN (termed DQNfD) instead of DDPG. Further details and hyperparameter settings can be found
in Appendix A.4. We also assess the effectiveness of Behavior Cloning (BC) (Torabi et al., 2018)
as a baseline, evaluating how directly applying cloning on limited human data aligns with human
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Table 1: Returns for online trained agent and human performance, and differences in return to
human for different alignment approaches. Results are averaged over 5 random seeds.

Task-Preference Online Trained Human
Performance

Finetune
w/ SAC

Finetune
w/ BC SACfD BC Finetune

w/ RM ALIGN-GAP

Halfcheetah-A

103.05±0.67

2.2±0.01 101.77±1.2 20.61±24.04 52.08±0.57 -4.07±0.87 -2.51±0.03 -0.86±0.33
Halfcheetah-B 125.32±0.76 -2.68±1.78 -31.25±9.81 -113.9±13.14 -125.99±0.65 -14.59±36.82 -0.44±1.97
Halfcheetah-C 105.27±3.3 3.0±0.44 -8.7±12.33 -100.23±3.12 -105.72±1.42 -105.39±0.03 -0.91±0.86
Halfcheetah-D 114.74±0.45 -39.62±8.56 -13.5±5.94 -109.95±2.58 -116.81±0.37 -115.26±0.25 -7.3±0.29
Walker2d-A

112.23±0.69

20.72±2.06 89.65±1.0 -2.95±5.57 67.91±0.5 -19.45±1.41 2.65±0.03 2.22±3.1
Walker2d-B 122.11±0.42 -1.54±1.38 -50.88±44.76 -9.59±0.48 -119.78±2.72 -100.4±0.03 -2.87±26.06
Walker2d-C 116.53±0.74 1.57±0.71 -81.21±44.32 -18.94±1.46 -114.69±1.54 -74.54±11.61 -1.43±1.78
Walker2d-D 97.35±26.53 16.1±0.58 -16.42±39.58 12.55±0.65 -86.08±5.49 -75.56±0.19 -3.04±27.97
Hopper-A

88.15±38.98

30.74±0.01 63.82±30.29 0.01±0.01 79.25±0.19 -23.3±3.49 -30.09±0.01 6.46±1.56
Hopper-B 93.88±28.17 6.7±34.8 -5.13±22.83 -33.33±22.63 -75.74±19.89 -93.15±0.0 -3.33±0.02
Hopper-C 31.15±4.44 0.61±4.99 -0.05±1.47 1.24±2.7 -7.71±11.42 -23.27±0.63 0.57±2.64
Hopper-D 110.07±0.35 -18.57±29.14 -9.22±21.58 -44.88±30.56 -105.18±5.57 -78.14±0.02 -8.77±0.49

Table 2: Ranking the alignment degree of different alignment approaches by their similarity to
human under oracle rewards (preferences). Results are averaged over 5 random seeds.

Task-Preference Online Trained Finetune
w/ SAC

Finetune
w/ BC SACfD BC Finetune

w/ RM ALIGN-GAP ALIGN-GAP
w/o Calibration

ALIGN-GAP
w/o Curriculum

Halfcheetah-A Rank 9 Rank 8 Rank 4 Rank 5 Rank 3 Rank 2 Rank 1 Rank 6 Rank 7
Halfcheetah-B Rank 9 Rank 3 Rank 8 Rank 7 Rank 6 Rank 4 Rank 1 Rank 2 Rank 5
Halfcheetah-C Rank 9 Rank 3 Rank 7 Rank 5 Rank 6 Rank 8 Rank 1 Rank 2 Rank 4
Halfcheetah-D Rank 9 Rank 3 Rank 5 Rank 6 Rank 8 Rank 7 Rank 1 Rank 2 Rank 4
Walker2d-A Rank 9 Rank 8 Rank 5 Rank 6 Rank 7 Rank 4 Rank 2 Rank 1 Rank 3
Walker2d-B Rank 9 Rank 4 Rank 6 Rank 3 Rank 7 Rank 8 Rank 1 Rank 2 Rank 5
Walker2d-C Rank 9 Rank 3 Rank 8 Rank 2 Rank 6 Rank 5 Rank 1 Rank 4 Rank 7
Walker2d-D Rank 9 Rank 4 Rank 2 Rank 3 Rank 5 Rank 6 Rank 1 Rank 8 Rank 7
Hopper-A Rank 9 Rank 7 Rank 5 Rank 8 Rank 2 Rank 6 Rank 3 Rank 1 Rank 4
Hopper-B Rank 9 Rank 2 Rank 5 Rank 4 Rank 6 Rank 8 Rank 1 Rank 3 Rank 7
Hopper-C Rank 9 Rank 3 Rank 5 Rank 4 Rank 6 Rank 7 Rank 1 Rank 2 Rank 8
Hopper-D Rank 9 Rank 3 Rank 6 Rank 5 Rank 7 Rank 8 Rank 1 Rank 2 Rank 4

preferences (termed Finetune w/ BC for behavior cloning with policy initialized from online agent,
and BC for behavior cloning from scratch). Moreover, we investigate the performance of agents
aligned by directly using the trained RM as the reward function (termed Finetune w/ RM), comparing
with our proposed approach that incorporates reward calibration and reward curriculum.

During evaluation, we first assess the effectiveness of agent alignment by examining the perfor-
mance of both the online-trained agents and human proxies within the context of environmental
rewards. Specifically, we evaluate how well these agents perform in the environment by comparing
their returns against those achieved by human players. For each alignment method, we quantify its
success by measuring the performance discrepancy between the agents aligned using that method
and the human proxies that serve as benchmarks for human-like behavior. This allows us to deter-
mine how closely each aligned agent’s performance matches that of human preferences based on the
differences in their environmental rewards.

Given that human preferences are inherently subjective and relative, we utilize the reward oracles
from training the human proxies as representatives of human preferences for locomotion tasks. We
assess the relative performance of various alignment approaches by ranking their similarity to the
human proxy under the oracle rewards. Additionally, we visualize the trajectory styles exhibited by
different methods in both locomotion and Atari tasks for subjective evaluation and comparison.

5.2 ALIGNING AGENTS WITH PREFERENCE DATA FROM HUMAN PROXY

To assess the alignment effectiveness of the online well-trained agents with human preferences,
we first focus on the performance gaps between the agents and human proxies within locomotion
tasks. In Table 1, we present the returns of both the online-trained agents (labeled “Online Trained”)
and the human proxies (labeled “Human Performance”). Additionally, for the baseline alignment
approaches and ALIGN-GAP, the table displays the differences in returns against human under
environmental rewards. Smaller differences in this metric indicates that the agents perform in a
manner that can be more consistent with human behavior in the game environment. Our proposed
method demonstrates smaller gaps across various environments and preference types compared to
the baselines, highlighting its alignment capability.
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To evaluate the effectiveness of our alignment from the human perspective, we use the reward oracle
that trained the human proxy to assess various agents. Table 2 presents the rankings based on the dif-
ferences in performance between the methods and the human proxy under oracle rewards. A higher
ranking indicates that an agent’s behavior aligns more closely with the human preferences implied by
the oracle rewards. ALIGN-GAP significantly outperforms other methods, achieving top rankings
across various environments and preference settings. Furthermore, to validate the reliability of these
rankings, we visually compare the trajectories of agents aligned through different approaches with
those of the human proxy. The Spearman’s rank correlation coefficient (Sedgwick, 2014) between
the rankings derived from oracle rewards and those based on human evaluations is 0.87, affirming
the confidence in the alignment results shown in Table 2. An example of different human proxy
preferences and the styles learned by ALIGN-GAP is shown in Figure 9 of Appendix A.1.

5.3 ALIGNING AGENTS WITH UNSUPERVISED CLASSIFIED HUMAN DATA

In the Atari tasks, we focus on aligning the online well-trained agents with unsupervised classified
human data, processed through UMAP to represent the diverse preferences inherent within this
dataset. Evaluations based on performance gaps in environmental rewards similar to those outlined
in Table 1, are listed in Appendix A.3.

To further assess the manifestation of human preferences in clustered data and the alignment ef-
ficacy of ALIGN-GAP, Figure 4a presents the UMAP clustered results for Space Invaders. We
conduct qualitative evaluations by visualizing both the categorized human preferences and the be-
haviors learned by ALIGN-GAP within the Atari tasks, with Space Invaders serving as a represen-
tative example (as depicted in Figure 5). Observations reveal that while the online-trained agent
typically adopts a strategy focused on eliminating the majority of invaders, human players exhibit
varied approaches. For example, some may focus on attacking specific columns or strategic areas of
the screen. Style 1 players might prioritize attacking the second and fourth columns of invaders, in-
dicative of a patterned approach to game-play, whereas Style 2 players may target invaders predom-
inantly on the left side, perhaps reflecting a preference for handling imminent threats or a specific
game-play strategy. By aligning the agents with ALIGN-GAP, the agents’ performance styles ex-
hibit behaviors that closely match those demonstrated by human players across various preferences.

5.4 ANALYSIS ON THE COMPONENTS OF ALIGN-GAP

Ablation Study Table 2 shows the performance of our proposed method without RM score cal-
ibration or preference curriculum. The results clearly indicate that the alignment effectiveness is
significantly diminished in the absence of the curriculum, demonstrating a substantial impact on
performance. Furthermore, when omitting the calibration, the alignment becomes notably unstable,
with poor alignment results observed under certain preferences. This highlights the critical role of
both the calibrated preference curriculum and RM score calibration in ensuring robust and effective
alignment of agents with human preferences.

Table 3: Comparing different α(t) for pref-
erence curriculum learning on HalfChee-
tah environment.

Preference Linear Exponential
A -0.86±0.33 -0.95±0.48
B -0.44±1.97 -0.93±0.76
C -0.91±0.86 -0.80±1.13
D -7.3±0.29 -7.9±0.14

Additionally, regarding the design of α(t) in the pref-
erence curriculum, we explore alternative adjustment
methods beyond the linear approach. Specifically,
we evaluate an exponential form of α(t) = 1 −
e−λ· current step

total step , where λ = 5 is a positive constant to en-
sure that α(t) follows the trend of increasing from 0
to approaching 1. The results for the HalfCheetah en-
vironment presented in Table 3. The findings indicate
that both linear and exponential adjustments yield sim-
ilar performance, demonstrating the robustness of the
preference curriculum method.

What is learned from the reward model? After
training the reward model, evaluating its effectiveness in reflecting human preferences embedded
in the data is essential. To do this, we assess how well the reward model’s predictions align with
human preferences using trajectories from an unseen test set. Specifically, we analyze whether the
model accurately assigns preferences to these trajectories consistent with ground truth expectations.
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(a) UMAP visualization of col-
lected offline data for Space In-
vaders.
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(c) The reward distribution
learned by the reward model.

Figure 4: Analysis of reward distribution for RM and offline human data distribution.

(a) Online Trained (b) Style 1 (c) Align w/ Style 1 (d) Style 2 (e) Align w/ Style 2

Figure 5: State of remaining invaders at the end of a Space Invaders game for an online-trained
agent, two styles of offline behavior data, and the corresponding ALIGN-GAP aligned agents. All
episodes used the same random seed to initialise the episode and game engine.

The results, illustrated in Figure 4b, demonstrate that the model successfully prefers human trajec-
tories over those of the online-trained agent, indicating that it effectively captures the nuances of
human-like behavior.

Moreover, to visually explore the stylistic differences between human data and online-trained agent
trajectories, we utilize Principal Component Analysis (PCA) (Maćkiewicz & Ratajczak, 1993) for
dimension reduction on both datasets. We then create a heat map of the reward model’s scores by
querying the model with data points reconstructed using the inverse mapping from PCA. Presented
in Figure 4c, this visualization displays the reward model’s distribution of scores across the reduced
dimensional space. The PCA highlights clear distinctions between the human data (depicted in
blue points) and the online-trained agent data (shown in red points). Notably, areas of proximity in
this space mainly reflect similarities between agent and human behaviors during the initial stages
of episodes. The heat map further reveals that the reward model assigns higher rewards to points
closely resembling human trajectory data and lower rewards to those more aligned with the behav-
iors exhibited by the online-trained agent. This pattern emphasizes the reward model’s ability to
effectively discriminate and prioritize human-like behaviors, confirming its capacity to guide agents
towards more human-aligned actions and decision-making styles.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we formulate the problem of online-to-offline RL for agent alignment and intro-
duce ALIGN-GAP to align agents with human preferences in game environments. We employ a
transformer-structured reward model to capture diverse human values and preferences, followed by
a calibrated preference curriculum to guide agent alignment. While ALIGN-GAP demonstrates
strong alignment capabilities, we believe that achieving more fine-grained alignment is possible by
carefully designing the calibration for specific environments. Our experiments primarily focus on
gaming scenarios due to the low-cost acquisition of online well-trained agents and human prefer-
ence data, as well as the clear manifestation of human preferences in these contexts. Future work
may extend the online-to-offline RL framework to more general agent alignment scenarios, such as
autonomous driving, healthcare, and multi-agent systems involving direct human interaction, where
aligning AI systems with human values is equally critical.
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A APPENDIX

A.1 STYLES OF HUMAN PREFERENCES IN HALFCHEETAH, WALKER2D AND HOPPER

(a) HalfCheetah - Style A

(b) HalfCheetah - Style B

(c) HalfCheetah - Style C

(d) HalfCheetah - Style D

Figure 6: HalfCheetah Styles.

(a) walker2d - Style A

(b) walker2d - Style B

(c) walker2d - Style C

(d) walker2d - Style D

Figure 7: Walker2d Styles.

In Figure 6, 7, and 8, we showcase examples of different styles exhibited by human proxies trained
under various reward oracles. In different environments, human styles may manifest in movement
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(a) hopper - Style A

(b) hopper - Style B

(c) hopper - Style C

(d) hopper - Style D

Figure 8: Hopper Styles.

speed, special postures during movement, evasive action styles in special situations, and so on.
Using Walker2D and Hopper environment as an example, we demonstrate the distinctions between
different human styles in terms of specific stylistic features, as well as ALIGN-GAP’s learning
effectiveness for these styles, and an example is shown in Figure 9.

In Figure 9, we showcase the varied styles of human preferences in the Walker2D and Hopper envi-
ronments and what is learned with offline data of those preferences by ALIGN-GAP. The Walker2D
examples illustrate distinct running styles: one proxy exhibits a long-stride running pattern, char-
acterized by extended leg movements to cover more ground per stride, while another demonstrates
a forward-leaning running style, emphasizing speed and forward momentum with an aggressive
stance. In the Hopper environment, contrasting jumping styles are evident; one style is marked
by large-amplitude jumps that prioritize vertical movement and height, whereas the other features
small-step jumping, focusing on stability and control with shorter, more frequent leaps. We also
conduct visualizations on the styles learned by the agent with ALIGN-GAP, showing similar styles
to that of human. It can be seen that by using ALIGN-GAP for agent alignment, the agent could
recognize the preference of human and learn from human styles in offline data to improve its behav-
iors.

A.2 THEORETICAL JUSTIFICATION FOR REWARD CURRICULUM OF ALIGN-GAP

In this section, we provide an analysis from theoretical perspective on the effect of linear α(t) for
preference curriculum, focusing on its effect for bridging two reward functions, the reward function
Renv from the environment and the reward function Rhuman for measuring the alignment degree of
the agent. The analysis is first motivated from the reward function measure EPIC (Gleave et al.,
2020), where we can measure the “distance” between two reward functions.
Definition A.1 (Canonically Shaped Reward). Let R : S×A×S → R be a reward function. Given
distributions DS ∈ ∆(S) and DA ∈ ∆(A) over states and actions, let S and S′ be random variables
independently sampled from DS and A sampled from DA. Define the canonically shaped R to be:

CDS ,DA(R) (s, a, s′) = R (s, a, s′) + E [γR (s′, A, S′)−R (s,A, S′)− γR (S,A, S′)] . (7)

Based on the canonically shaped reward, we can define the EPIC pseudometric that measures the
distance between two reward functions (Gleave et al., 2020).
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Human Data Style Aligned Agent

Walker2D
Long-stride running

Walker2D
Forward-leaning 

running

Hopper
Large-amplitude 

jumping

Hopper
Small-step jumping

ALIGN-GAP

Figure 9: Different human styles in Walker2d and Hopper environment and the aligned agent by
ALIGN-GAP. All episodes used the same random seed to initialise the episode and game engine.

Definition A.2 (Equivalent-Policy Invariant Comparison (EPIC) pseudometric). Let D be some
coverage distribution over transitions s

a−→ s′. Let S,A, S′ be random variables jointly sampled
from D. Let DS and DA be some distributions over states S and A respectively. The Equivalent-
Policy Invariant Comparison (EPIC) distance between reward functions RA and RB is:

DEPIC (RA, RB) = Dρ (CDS ,DA (RA) (S,A, S′) , CDS ,DA (RB) (S,A, S′)) . (8)

Previous work shows that the Equivalent-Policy Invariant Comparison distance is a pseudometric,
and that let RA, RB : S × A × S → R be reward functions, then 0 ≤ DEPIC (RA, RB) ≤ 1.
Now we will prove the main result for showing the reduction in distance between the environment
rewards and the alignment target, by introducing a linear reward curriculum between them.
Theorem A.3. Denote the reward function for the online game environment as Renv and the re-
ward function implied and learned from the reward model and calibrated in ALIGN-GAP as Rhuman.
Assuming the reward functions are of unit variance (which can be realized in practice by normal-
ization), then the EPIC distance for the constructed curriculum reward Ralign satisfies

E
[
DEPIC (Renv, Ralign)

DEPIC (Renv, Rhuman)

]
≤ 2

3
. (9)

Proof. Considering the curriculum reward learning with parameter α as

Ralign = αRenv + (1− α)Rhuman, (10)

where α ∈ [0, 1] is the curriculum hyper-parameter. Denoting the canonically shaped reward for
environment rewards and human rewards as Cenv and Chuman, respectively, since the definition of
canonically shaped reward maintains linearity, we have the canonically shaped reward for Ralign
(denoted as Calign) as also a linear combination of Cenv and Chuman. By definition we have

Dρ (Cenv, Chuman) =

√
1− ρ(Cenv, Chuman)√

2
, Dρ (Cenv, Calign) =

√
1− ρ(Cenv, Calign)√

2
. (11)
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Now we will first analyze the relations between ρ(Cenv, Chuman) and ρ(Cenv, Calign):

ρ (Cenv, Calign) = ρ (Cenv, αCenv + (1− α)Chuman)

=
cov (Cenv, αCenv + (1− α)Chuman)

σCenvσαCenv+(1−α)Chuman

=
ασ2

Cenv
+ (1− α) cov (Cenv, Chuman)

σCenv

√
α2σ2

Cenv
+ (1− α)2σ2

Chuman
+ 2α(1− α) cov (Cenv, Chuman)

=
ασ2

Cenv
+ (1− α)ρ (Cenv, Chuman)σCenvσChuman

σCenv

√
α2σ2

Cenv
+ (1− α)2σ2

Chuman
+ 2α(1− α)ρ (Cenv, Chuman)σCenvσChuman

=
α+ (1− α)ρ (Cenv, Chuman)√

α2 + (1− α)2 + 2α(1− α)ρ (Cenv, Chuman)

≥ α+ (1− α)ρ (Cenv, Chuman) .
(12)

Since α, ρ (Cenv, Chuman) ∈ [0, 1], firstly we have ρ (Cenv, Calign) ≥ ρ (Cenv, Chuman).

Furthermore, by the definition of the Pearson distance, it can be seen that

Dρ (Cenv, Calign)

Dρ (Cenv, Chuman)
=

√
1− ρ (Cenv, Calign)

1− ρ (Cenv, Chuman)

≤

√
1− α− (1− α)ρ (Cenv, Chuman)

1− ρ (Cenv, Chuman)

=
√
1− α.

(13)

Therefore, by the non-negativity of the Pearson distance, we have

E
[
Dρ (Cenv, Calign)

Dρ (Cenv, Chuman)

]
≤ E

[√
1− α

]
=

∫ 1

0

√
1− α dα =

2

3
. (14)

Remark A.4. This result indicates that by introducing a linear reward curriculum, we can reduce the
EPIC distance between different reward functions, thereby simplifying the learning difficulty of the
agent’s alignment process. For other forms of curricula, such as the exponential curriculum we also
experimented with, similar proof processes can be employed to evaluate their potential advantages.

Moreover, given that there is typically a significant gap between the reward objectives for alignment
with humans and the inherent reward objectives of the environment, we can derive the following
inference under the assumption that these two are uncorrelated.

Corollary A.5. If Renv and Rhuman are uncorrelated (i.e., cov (Renv, Rhuman) = 0), then the curricu-
lum reward learning in ALIGN-GAP mitigates the EPIC distance by nearly 50%.

Proof. When the environment rewards and human preference rewards learned by the reward model
are uncorrelated, we have

DEPIC (Renv, Rhuman) =

√
1− ρ(Cenv, Chuman)√

2
=

√
2

2
, (15)

which is the largest EPIC we could have for two different reward functions. In this case, from the
deviation in Eq. (12), the relation between the aligned reward in ALIGN-GAP and the environment
reward are now simpler:

ρ (Cenv, Calign) =
α√

α2 + (1− α)2
, for α ∈ [0, 1]. (16)
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Therefore, now we have

E [DEPIC (Cenv, Calign)] =
1√
2

∫ 1

0

√
1− α√

(1− α)2 + α2
dα ≈ 0.371 (17)

and ratio of the expected EPIC distance is

E
[
DEPIC (Renv, Ralign)

DEPIC (Renv, Rhuman)

]
=

E [DEPIC (Renv, Ralign)]

DEPIC (Renv, Rhuman)
≈ 52.5%. (18)

A.3 ATARI RESULTS

In this section, we evaluate the effectiveness of different alignment methods in Atari domain (Pac-
man, Space-invaders and Alien), and the result is shown in Table 4. Specifically, we analyze the
performance of the online-trained agents and the performance of offline human data under various
preferences. It is noteworthy that the offline data sampled within this dataset generally shows lower
performance compared to the agents trained online, reflecting a gap between the two. For different
alignment methods, we assess and record the difference in performance between the aligned agents
and the human performance captured in the offline data. A smaller difference suggests that the
aligned agent’s behavior is more similar to human performance from a performance perspective.
However, it is important to note that similarity in performance does not necessarily imply that the
agent’s style aligns with human preferences. In Section 5.2, we visually compare the styles of
humans and the aligned agents to determine if the agents are well-aligned with human preferences.

Table 4: Returns for online trained agent and offline data performance, and differences in return to
offline data for different alignment approaches. Results are averaged over 5 random seeds.

Task-Preference Online Trained Offline
Trejectory

Finetune
w/ DQN DQNfD BC Finetune

w/ RM ALIGN-GAP

Pac-Man-A
2252±320

148±12 1390±875 518±87 368±231 510±236 134±19
Pac-Man-B 207±30 1636±808 546±246 144±56 462±197 132±25
Pac-Man-C 522±45 1398±826 90±20 -190±22 116±37 54±18

Spece-Invaders-A
656±108

228±14 289±46 192±32 174±38 197±40 52±21
Spece-Invaders-B 431±38 188±85 152±68 180±62 60±38 96±27
Spece-Invaders-C 556±37 163±52 -41±42 -91±47 -73±26 36±14

Alien-A
3069±284

460±32 1731±92 468±61 328±76 178±28 56±19
Alien-B 740±24 1890±74 565±87 236±20 147±50 37±30
Alien-C 982±76 1295±84 480±46 241±29 136±24 42±28

A.4 HYPER-PARAMETERS

The hyper-parameters and values are summarized in Table 5.

Table 5: Hyper-parameters for agent alignment with ALIGN-GAP and baselines.

Hyper-Parameters Values
Online Pre-train Steps 5e6

Offline Alignment Steps 1e6
SAC Actor Learning Rate 3e-4
SAC Critic Learning Rate 3e-4

SAC Batch Size 256
Offline Trajectory Number 10

DQN Learning Rate 5e-5
DQN Target Update Interval 10000

DQN Batch Size 32
Reward Model Sequence Length 64

Reward Model Latent Dim 256
Reward Model Training Batch Size 64

Reward Model Learning Rate 1e-4
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A.5 COMPARATIVE STUDY WITH RLPD-LIKE RE-TRAINING APPROACHES

To provide a comprehensive evaluation of ALIGN-GAP, we conducted a comparative study against
RLPD-like approaches that align agents without leveraging pre-trained models (Ball et al., 2023).
In this approach, the agent is trained from scratch using a mix of offline human preference data
and environmental interactions, and the rewards come from the trained reward model to encode
human preferences. This comparison is particularly relevant in understanding the trade-offs between
training a new agent versus fine-tuning an existing well-trained agent for human alignment.

In the RLPD framework, offline data and online data are mixed according to a specified ratio dur-
ing training. Following the recommendations in RLPD, we employed symmetric sampling, where
offline and online data are sampled equally (50% each). To ensure a fair comparison, we evaluated
RLPD under two settings:

1. 1e6 alignment steps: Equivalent to the number of steps used in ALIGN-GAP for post-
training alignment.

2. (5e6 + 1e6) total steps: Adding the steps to get the pretrained agent (5e6) and alignment
steps for ALIGN-GAP (1e6 steps) to account for the total steps in ALIGN-GAP.

Experimental results shown in Table 6 reveal that at 1e6 steps, RLPD has not fully converged to
achieve effective alignment, as it must simultaneously learn basic environmental behaviors and align
with human preferences. ALIGN-GAP, by contrast, achieves alignment more efficiently by lever-
aging the pre-trained agent’s understanding of the environment, allowing it to focus exclusively on
preference alignment. Furthermore, even when RLPD is trained for 6e6 steps, including pretraining
and alignment, ALIGN-GAP still demonstrates superior alignment performance. This underscores
ALIGN-GAP’s efficiency and effectiveness in aligning with human preferences on the foundation of
a well-trained agent. These results highlight ALIGN-GAP’s practical advantages in scenarios where
pre-trained agents are available, such as Game AI applications. In practical applications, retraining
an agent from scratch can be prohibitively costly; therefore, ALIGN-GAP’s approach of achieving
alignment through post-training may hold greater practical value.

Table 6: Returns for online trained agent and human performance, and differences in return to
human for RLPD and ALIGN-GAP. Results are averaged over 5 random seeds.

Task-Preference Human
Performance

RLPD
(1e6 steps)

RLPD
(5e6+1e6 steps)

ALIGN-GAP
(1e6 steps)

Halfcheetah-A 2.2±0.01 -1.93±0.41 -1.35±0.38 -0.86±0.33
Halfcheetah-B 125.32±0.76 -39.22±10.80 -10.04±3.17 -0.44±1.97
Halfcheetah-C 105.27±3.30 -25.71±2.46 4.89±0.15 -0.91±0.86
Halfcheetah-D 114.74±0.45 -13.06±3.25 -6±1.27 -7.3±0.29
Walker2d-A 20.72±2.06 -5.00±1.79 -1.84±0.96 2.22±3.1
Walker2d-B 122.11±0.42 -39.53±9.01 -14.4±2.03 -2.87±26.06
Walker2d-C 116.53±0.74 -47.01±5.20 -18.26±5.78 -1.43±1.78
Walker2d-D 97.35±26.53 -32.19±8.62 7.74±0.62 -3.04±27.97
Hopper-A 30.74±0.01 -14.8±3.20 -9.77±0.15 6.46±1.56
Hopper-B 93.88±28.17 -13.74±6.89 -12.56±2.30 -3.33±0.02
Hopper-C 31.15±4.44 -18.70±2.71 -13.06±1.91 0.57±2.64
Hopper-D 110.07±0.35 -25.01±7.20 -14.47±3.85 -8.77±0.49

A.6 COMPUTATIONAL EFFICIENCY ANALYSIS

To evaluate the computational efficiency of ALIGN-GAP, we measured the training speed in itera-
tions per second under different configurations, as shown in Table 7. These results demonstrate that
both reward calibration and reward curriculum introduce minimal computational overhead, affirming
ALIGN-GAP’s suitability for practical applications. The addition of reward calibration introduces
a minor computational cost, as it requires an additional forward pass through the reward model for
each trajectory to compute calibrated scores. Despite this, the reduction in training speed compared
to configurations without calibration is only about 4.4%, highlighting the lightweight nature of this
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operation. Similarly, the reward curriculum dynamically adjusts the weighting between environmen-
tal rewards and preference-aligned rewards, but this computation is exceedingly efficient, involving
only a simple arithmetic operation at each training step. Consequently, the observed reduction in
speed with the inclusion of curriculum is only about 0.5%, further demonstrating its computational
feasibility.

The results show that ALIGN-GAP’s computational cost is nearly identical to configurations omit-
ting one or more of its components. Given the significant alignment improvements observed in
our experiments, this slight reduction in training speed represents a reasonable trade-off. Reward
calibration and reward curriculum are crucial components for guiding the agent towards human-
preferred behaviors while maintaining stability in previously learned skills. Their lightweight design
ensures ALIGN-GAP remains efficient even for large-scale training tasks. These findings empha-
size the practicality of ALIGN-GAP in scenarios with computational constraints, such as real-world
Game AI applications. Furthermore, in settings with severe resource limitations, additional opti-
mization techniques like model quantization, pruning, or parallelized computations can be employed
to further reduce computational costs while preserving alignment quality. By prioritizing both align-
ment performance and efficiency, ALIGN-GAP balances practical applicability with its innovative
design.

Table 7: Iteration per second.

Configuration Iteration Per Second
ALIGN-GAP 42.61±0.12

ALIGN-GAP w/o Reward Calibration 44.59±0.09
ALIGN-GAP w/o Reward Curriculum 42.83±0.11
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