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Abstract

The introduction of immensely large causal001
language models (CLMs) has rejuvenated the002
interest in open-ended text generation. How-003
ever, controlling the generative process for004
these Transformer-based models is at large005
an unsolved problem. Earlier work has ex-006
plored either plug-and-play decoding strate-007
gies or more powerful but blunt approaches008
such as prompting. There hence currently ex-009
ists a trade-off between fine-grained control010
and the capability for more expressive high-011
level instructions. To alleviate this trade-off,012
we propose an encoder-decoder architecture013
that enables intermediate text prompts at ar-014
bitrary time steps. We propose a resource-015
efficient method for converting a pre-trained016
CLM into this architecture and demonstrate its017
potential in various experiments, including the018
novel task of contextualized word inclusion.019
Our method provides strong results in multi-020
ple experimental settings, proving itself to be021
both expressive and versatile.022

1 Introduction023

A causal language model (CLM) is a language024

model trained using a simple next-token predic-025

tion objective. Current CLMs are typically based026

on the Transformer architecture (Vaswani et al.,027

2017), which has resulted in unprecedented text028

generation capabilities (Radford et al., 2018a,029

2019; Brown et al., 2020). Even so, the genera-030

tion process of a CLM is difficult to control, as one031

is forced to gradually decode the next-step predic-032

tion one token at a time. This inhibits the applica-033

bility of CLMs when one intends for the generated034

text to fulfill certain criteria, and not only be a lin-035

guistically sound continuation to a given context.036

Being able to control the text generation process037

is crucial for many real-world applications. As a038

straightforward example, we may want to control039

the generated text to counter the many biases that040

modern CLMs have been shown to posses (Bordia041

and Bowman, 2019). However, most applications 042

require a greater degree of control, as one often 043

wishes to steer the text generation towards a spe- 044

cific direction, such as generating a story to a given 045

plot (Li et al., 2013; Yao et al., 2018; Riedl, 2021), 046

or sticking to a certain topic (Keskar et al., 2019). 047

Some areas require stringent and fine-grained con- 048

trol, as the many data-to-text tasks (Gardent et al., 049

2017; Leppänen et al., 2017; Koncel-Kedziorski 050

et al., 2019), which necessitates that the generated 051

text mediates very specific information and facts. 052

Due to this apparent need for controllable text 053

generation, recent work (see Section 2.1) has ex- 054

plored different methods to steer and constrain the 055

generation process of CLMs. They mainly fall 056

into two lines of approaches. The more traditional 057

line of approach focuses on fine-grained control 058

and how to steer the generation process at arbitrary 059

points, while still adhering to the current context. 060

This is often achieved by independently modify- 061

ing the predicted vocabulary distribution at each 062

decoding step. However, this decouples the CLM 063

from the control method, prohibiting the CLM’s 064

ability to plan accordingly and thus severely limits 065

the type of control that can be formulated. 066

The second line of approaches has instead opted 067

for more expressive and high-level control, hav- 068

ing the CLM itself interpret and incorporate the 069

instruction into the text generation. This is often 070

done via either a fine-tuning objective, or as is cur- 071

rently common, by formulating the instruction as 072

a textual context (referred to as prompting). Al- 073

though expressive, these approaches are less effec- 074

tive than the previous one in controlling generation 075

at specific points. For example, it is hard to use 076

a prompt to generate a non-adjacent piece of text 077

especially when the generation point is far away 078

from the prompt. This is because the distance from 079

the prompt and the next predicted token correlates 080

negatively with the prompt’s influence (Zou et al., 081

2021). 082
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In an attempt to bridge the gap between fine-083

grained control and the expressiveness of prompts,084

we propose an architecture that allows for long-085

distance and independent prompting throughout086

the generation process. This architecture has an087

encoder-decoder setup, where the encoder influ-088

ences the decoder via a novel non-residual atten-089

tion schema. Along with theoretical arguments090

for the benefits of this architecture, we provide a091

resource-efficient self-supervised method for con-092

verting a pre-trained CLM into this setup.093

In addition to evaluating on the original Com-094

monGen dataset (Lin et al., 2020), we propose095

a new contextualized version of CommonGen,096

called Contextualised CommonGen (C2GEN) and097

evaluate relevant methods on it. This new dataset098

extends the task to generating a sentence which in-099

cludes a given set of words, while simultaneously100

adhering to a given context. We find no previous101

solution capable of this task, either barely includ-102

ing 50% of the target words, or not generating text103

of a satisfactory quality.104

Our Contributions: (1) An encoder-decoder ar-105

chitecture based on a novel attention module106

which enables prompting at arbitrary time steps.107

(2) A resource-efficient method that requires no108

labeled data, for converting a pre-trained CLM109

into this architecture. (3) The introduction of the110

contextualized word inclusion task, through the111

C2GEN dataset. (4) Extensive testing of related112

baselines and our proposed method, via both auto-113

matic and human evaluation.114

2 Related Work115

2.1 Controllable Text Generation116

This section briefly introduces the related work for117

constrained text generation. A detailed description118

of each method, their strengths and weaknesses,119

and how they are configured to form our baselines120

is available in Appendix D.121

Decoding strategies operate directly on the122

CLM’s predicted vocabulary distribution at each123

time step, and are hence often model-agnostic.124

Dathathri et al. (2020) propose Plug-and-Play-125

Language-Models (PPLM) which adjusts the dis-126

tribution in accordance with the gradients of an ex-127

ternal discriminator model. Pascual et al. (2021)128

introduce Key2Text which steers the CLM to in-129

clude target words by directly increasing their130

sampling probability, along with their GloVe (Pen-131

nington et al., 2014) neighbours.132

Training objectives can also be setup to grant 133

generative control, such as CTRL (Keskar et al., 134

2019) which incorporates control codes for tex- 135

tual genre. KG-BART (Liu et al., 2020) explic- 136

itly utilizes a common sense knowledge graph and 137

fine-tunes towards word inclusion. GDC (Khal- 138

ifa et al., 2021) fine-tunes towards arbitrary dis- 139

criminator signal using Reinforcement Learning. 140

POINTER (Zhang et al., 2020) tackles word in- 141

clusion constraints with a non-autoregressive ap- 142

proach, injecting words around the target words 143

until a complete sentence is formed. 144

Prompting acts within the framework of the 145

CLM’s pre-training task, as constraints are ex- 146

pressed through natural language. This approach 147

was popularized by the GPT models (Radford 148

et al., 2018b; Brown et al., 2020) and has been 149

shown to work for many different types of con- 150

straints (Reif et al., 2021; Clive et al., 2021). 151

2.2 Evaluation of Generated Text 152

There is no standardized evaluation methodology 153

for open-ended text generation (Howcroft et al., 154

2020). The large number of possible good texts, 155

hinders the usage of automatic text-overlap met- 156

rics (Papineni et al., 2002; Banerjee and Lavie, 157

2005; Lin, 2004). Human evaluation has also been 158

reported to be problematic, as the vagueness of 159

many surveys renders them irreproducible (Belz 160

et al., 2020). 161

To remedy this, Van Der Lee et al. (2019) pro- 162

pose guidelines for human studies, and Gehrmann 163

et al. (2021) strongly argue that textual quality 164

cannot be described through a single metric. In 165

order to conform to this discourse we investigate 166

the properties of relevant methods in various sit- 167

uations with multiple metrics, without necessarily 168

claiming one to be superior in all aspects. 169

3 Model Architecture 170

We propose to steer a CLM’s generative direction 171

by introducing a separate “encoder” for prompt in- 172

structions, which we refer to as the prompt model. 173

The prompt model interprets textual prompts and 174

produces positional invariant key-values, which 175

the CLM can optionally attend to via a novel atten- 176

tion schema called non-residual attention (Section 177

3.1). The positional invariance ensures that the in- 178

struction is equally applicable at any time step, and 179

is achieved by an additional shift of its key-values 180

(Section 3.2). 181
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Figure 1: Illustration of the non-residual attention during multiple time steps. The textual hidden states are shown
in green, the non-residual in yellow, and the prompt model’s in red. During the first time step both CLM streams
self-attend to the input word I, but the non-residual stream also attends to the prompt model’s hidden states for the
instruction Very Happy. At the second time step, Love is inputted and both streams attend to the previous textual
hidden states, and the non-residual stream again also attends to the prompt models instruction.

3.1 Non-Residual Attention182

In order to allow for independent prompts at dif-183

ferent time steps, we compute two independent184

streams of information for the CLM. These are re-185

ferred to as the textual and non-residual streams.186

The textual stream ignores the prompt model187

completely, and is identical to the normal self-188

attentive forward pass of the CLM. The non-189

residual stream is responsible for the prediction190

at each time step, and is allowed to attend to both191

the previous steps of the textual stream, and po-192

tential key-values from the prompt model. This is193

depicted in Figure 1 and formalized in Equation 1.194

Concretely, at time-step n the textual stream195

self-attends to the current time step and the196

previous textual key-values KV i<n
T . The non-197

residual stream self-attends to the current time198

step, the previous textual key-values KV i<n
T , and199

the prompt model’s key-values KVP . Finally, the200

next step prediction P (wn+1) is computed from201

the non-residual stream.202

Applying the prompt SP to every time step in203

the text SCLM = {w1, w2, ..., wn} thus results in:204

KVP = PromptModel(SP )

KV n
T = CLM(wn | KV i<n

T )

P (wn+1) = CLM(wn | KVp, KV i<n
T )

(1)205

Non-residual key-values are hence never at-206

tended to by either streams from subsequent time207

steps. A prompt instruction at time step n can208

therefore only influence future decoding steps via209

the sampled token at time step n, and not through210

its key-values. This non-residual property of each211

prompt assures that the hidden state of the CLM212

does not deteriorate over time.213

Intuitively, this assures that the residual key- 214

values are only affected by textual input, allowing 215

the CLM to operate within the limits of its pre- 216

training objective. Furthermore, this means that 217

one can apply different prompts at different time 218

steps, without them disrupting each other through 219

the CLM’s internal state.1 Further intuition of this 220

architecture is available in Appendix C. 221

3.2 Position Invariant Transformation 222

Ideally, prompt instructions should be equally ap- 223

plicable at any time step in the generation process. 224

However, the positional encoding system of Trans- 225

formers makes this difficult, particularly absolute 226

positional encodings (Vaswani et al., 2017). Over- 227

coming this requires a significant amount of train- 228

ing of the prompt model (See Appendix C.2). 229

To alleviate the computational burden, we pro- 230

pose an architectural add-on where positional 231

invariance is achieved by an additional set of 232

weights, trained after the prompt model is trained 233

on single sentence data. This reduces the overall 234

training time, and allows one to easily fine-tune 235

the prompt model on tasks lacking context, and 236

apply the positional invariant transformation after- 237

wards. This is depicted as step 3 an 4 in Figure 2. 238

The prompt model, being a CLM, uses causal 239

self-attention to process text and generate L sets 240

of key-values per time step, where L refers to the 241

number of layers in the model. We refer to the L 242

key-values at a time step i as kvi. Hence, when 243

the prompt model computes a prompt of length 244

n, it yields the sequence of key-values KV ∗
P = 245

{kv1, kv2, ..., kvn}. 246

1Ultimately, different prompts can be applied at each de-
coding step, but we imagine most use-cases will apply in-
structions on the sentence or paragraph level.
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Figure 2: Overview of the resource-efficient training procedure for creating a non-residual prompt model from a
pre-trained CLM. Dashed lines indicate frozen weights. Hence, the weights of the CLM are frozen throughout all
training steps and the prompt model’s weights are frozen in step 3. During inference, the transformation learned in
step 3 is inserted again.

The positional invariant transformation, re-247

ferred to as C, consists of one parameter for each248

of the CLMs key-value parameters2. The same249

transformation C is then applied by point-wise250

addition to the prompt models output at at all251

time steps. Thus yielding the shifted key-values252

KVP = {kv1 + C, kv2 + C, ..., kvn + C}.253

4 Training Procedure254

Given a pre-trained CLM, we propose to train255

an accompanying prompt model via four distinct256

phases,3 as demonstrated in Figure 2. This in-257

cludes an initialization phase, two pre-training258

phases, and one optional fine-tuning phase. The259

weights of the CLM are never updated in any of260

the training phases.261

As popularized by Raffel et al. (2019), all train-262

ing, independent of task, is formulated within the263

framework of teacher forced causal language mod-264

eling (Williams and Zipser, 1989). The goal is265

thus to maximize the likelihood of generating text266

S given prompt P , in accordance to Equation 1.267

4.1 Initialization268

Prior to any training, the prompt model is cre-269

ated by cloning the pre-trained CLM into a sep-270

arate new model. The CLM and prompt model271

hence start with an identical set of weights. This272

results in an efficient starting point, since the273

CLM is trained to communicate with itself via274

self-attention, and thus also the CLM and prompt275

model.276

2The size of C hence depends on the model’s number of
layers, number of heads and its hidden size.

3This does not include the pre-training of the original
CLM model.

4.2 Pre-training 277

Pre-training is divided up into two distinct phases, 278

both relying on the text generation task of word 279

inclusion with a target sentence length. In the first 280

phase, the prompt model is trained to influence the 281

CLM using only single sentence data, without any 282

position invariant transformation. In the second 283

phase only the position invariant transformation 284

is learnt, by training on data with longer context. 285

This is illustrated in Figure 3. 286

For both phases, training data is generated by 287

sampling [A,B] unique target words for each sen- 288

tence S = {w1, w2, ..., wn}, and incorporating 289

them and the sentence length n into prompt P . 290

The second phase utilizes sequences of multiple 291

sentences, where each sentence is given its own 292

prompt. During this phase, each prompt is com- 293

puted independently, and the CLM attends only to 294

the relevant prompt for each sentence. 295

Details regarding corpus and sampling schema 296

used in our experiments is available in Appendix 297

A, and details regarding our randomized prompt 298

template is available in Appendix A.3. 299

4.3 Fine-tuning 300

Finally, one can optionally fine-tune the prompt 301

model towards another task or dataset. This is 302

done by temporarily removing the positional in- 303

variant transformation, and tuning only the prompt 304

model. The positional invariant transformation is 305

then re-inserted afterwards, shifting the now fine- 306

tuned prompt model’s key-values. 307

This fine-tuning schema circumvents the prob- 308

lem that many NLP tasks and labeled datasets 309

are formulated without any accompanying con- 310

text. And one can therefore utilize single sentence 311

datasets, and still apply the prompt model at arbi- 312

trary time steps. 313
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Figure 3: Detailed illustration of the two pre-training phases (Step 2 & 3 in Figure 2). Color indicates what prompt
each generation step is affected by.

5 Contextualized CommonGen Dataset314

(C2GEN)315

CommonGen (Lin et al., 2020) is a dataset for the316

constrained text generation task of word inclusion.317

The objective of the task is to generate text that318

includes a given set of target words and adhering319

to common sense. Each sample includes 3-5 target320

words, taken from various image-caption datasets.321

The samples in CommonGen are however all322

formulated without any accompanying context.323

We argue that this task formulation is too nar-324

row, and that it needlessly incentivizes researchers325

to focus on methods that do not support context.326

Which is orthogonal to our belief that many ap-327

plication areas necessitates the consideration of328

surrounding context. Therefore, to complement329

CommonGen, we provide an extended test set330

where an additional context is provided for each331

set of target words. The task is therefore reformu-332

lated to both generate commonsensical text which333

include the given words, and also have the gener-334

ated text adhere to the given context.335

Each context is formulated as three sentences,336

created by human annotators from Mechanical337

Turk (www.mturk.com), as exemplified in Ta-338

ble 1. The annotators were tasked to create three339

sentences, so that a subsequent sentence would be340

likely to include the target words. Details regard-341

ing the creation process of C2GEN, and its statis-342

tical properties are available in Appendix F.343

Jane was excited when the teacher announced
it was career week. Jane signed her dad up
to visit the classroom. On the appointed day,
Jane’s dad showed up dressed in his work gear.

Table 1: Example context from C2GEN, where the tar-
get words for the subsequent sentence are: duty, fire-
man, firetruck, front and talk.

6 Word Inclusion Experiments 344

We separate word inclusion into two different set- 345

tings. In the first, the model is tasked to generate 346

exactly 32 tokens. Requiring the model to both 347

satisfy the word inclusion objective, and continue 348

generating text according to the context. This al- 349

lows methods that do not intuitively grant sen- 350

tence level control to participate, such as PPLM 351

and K2T. 352

In the second setting, the model is only tasked 353

to create a single sentence, elevating the require- 354

ment of continued text generation. This setting is 355

suitable for methods specifically trained towards 356

creating a single common sense sentence, such as 357

KG-BART and POINTER. 358

For both of these settings, we run experiments 359

on both CommonGen and C2GEN. Since, exper- 360

iments on the contextualized C2GEN, require the 361

model to adhere to a context regardless if the ob- 362

jective is to generate a single sentence or a free 363

text, KG-BART and POINTER are excluded from 364

these experiments all together. 365

6.1 Model Configurations 366

Using our proposed method we train a non- 367

residual prompt model to accompany a pre-trained 368

GPT-2 Large model. This setup is referred to 369

as NRP during experiments, and training details 370

can be found in Appendix A. In order to demon- 371

strate how more sophisticated decoding strategies 372

can be incorporated, we also combine NRP with a 373

slightly modified version of Key2Text. Details for 374

this incorporation can be found in Appendix B.3. 375

The inference utilizes a beam size of 4, and 376

any additional parameters were set according to 377

a hold-out validation set (See Appendix B). All 378

baseline implementations are taken from their re- 379

spective code repositories, and if possible the offi- 380

cial pre-trained model (See Appendix D). 381
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Free Text (32 Tokens) Single Sentence

Cov ↑ Ppl ↓ Self-Bleu ↓ Sense ↑ Cov ↑ Ppl ↓ Self-Bleu ↓ Sense ↑ Len

GPT-2 Large + Prompt 72.2 15.7 56.5 68.5 70.9 47.8 48.3 68.1 13.6

PPLM 13.3 17.2 21.6 77.9
Key2Text 84.5 32.9 13.9 49.0

POINTER 98.0 51.9 27.7 48.6 27.2
KG-BART 97.2 37.0 33.0 82.4 15.3

Our Contributions

NRP 98.4 14.1 36.1 69.3 93.0 24.0 28.4 72.3 20.3
NRP + Key2Text 99.5 14.0 40.4 68.2 95.1 24.0 29.0 71.8 20.5

Table 2: Results for the Word Inclusion experiments on CommonGen.

Free Text (32 Tokens) Single Sentence

Cov ↑ Ppl ↓ Self-Bleu ↓ Sense ↑ Ctx ↑ Cov ↑ Ppl ↓ Self-Bleu ↓ Sense ↑ Ctx ↑ Len

GPT-2 Large + Prompt 57.0 12.5 31.7 81.2 76 56.6 24.9 31.7 88.0 74.3 13.6
PPLM 19.1 12.5 15.2 70.8 75.9
Key2Text 93.9 18.0 15.4 56.5 76.4

Our Contributions

NRP 96.9 10.0 31.3 69.3 75.8 81.0 12.3 22.5 81.1 81.2 15.5
NRP + Key2Text 98.6 9.5 32.1 71.0 76.8 82.1 12.5 22.9 80.1 82.7 15.5

Table 3: Results for the Word Inclusion experiments on the C2GEN dataset.

6.2 Evaluation Metrics382

In accordance to the guidelines described in Sec-383

tion 2.2, we provide both quantitative and quali-384

tative evaluation. The qualitative examples in Ta-385

ble 4 are intended to convey the overall style for386

each algorithm, and more qualitative examples are387

available in Appendix G.388

Quantitative metrics are easily comparable, but389

may be less suited to convey the overall style. Our390

quantitative metrics are described in detail in Ap-391

pendix E, and briefly below:392

Word Inclusion Coverage (Cov): The percent-393

age of target words that are included in the gener-394

ated text.395

Perplexity (Ppl): The mean perplexity of the396

generated text according to language model, in397

this case GPT-2 XL. A lower perplexity indicates398

better language fluency. In presence of contexts,399

as is the case with C2GEN, the perplexity is con-400

ditioned on the context.401

Common Sense (Sense): The average score on402

how well the generated text adheres to common403

sense, according to human evaluators.404

Self-BLEU-5 (Self-Bleu): Average BLEU-5405

overlap between all generated texts. A lower score406

is desired as this indicates syntactic diversity.407

Contextual Relevancy (Ctx): The average408

score on how well the generated text fits the given409

context, according to human evaluators.410

6.3 Quantitative Results 411

We wish to highlight that NRP, Key2Text, and 412

the prompted GPT-2 all control the same under- 413

lying CLM model. Differences between these ap- 414

proaches are hence a result of the method, not the 415

model. Unfortunately, all quantitative metrics (in- 416

cluding human metrics) are intrinsically correlated 417

with sentence length, making comparisons of sin- 418

gle sentences non-trivial (See Appendix E). 419

First, we note that only the NRP approaches, 420

and arguably GPT-2, supports all four exper- 421

iments. In general we find that incorporat- 422

ing Key2Text with NRP increases the coverage 423

slightly, but at the cost of a slightly higher self- 424

Bleu. Hence, we refer to both of them as NRP 425

throughout the remainder of this section. 426

In the CommonGen Free Text setting (Table 427

2), NRP achieves the best coverage rate by a 428

large margin, and also the best perplexity. No- 429

ticeably, NRP outperform GPT-2 in all metrics, 430

besides common sense where they are virtually 431

equal. Interestingly, GPT-2’s coverage is virtu- 432

ally the same as its free text counterpart, indi- 433

cating that it quickly forgets the intended instruc- 434

tion. Key2Text generates the lowest self-Bleu, but 435

has both the worst perplexity and common sense 436

score. PPLM performs the best on common sense 437

but instead fails the task completely, as demon- 438

strated by its poor coverage. 439
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NRP

The scooter riders wear a T-shirt that says ”I Ride” on the back.

The player presses a button on the scanner to place the card in his or her inventory.

KG-BART

A man is riding a scooter and wearing a shirt.

A woman presses a button on a scanner and places a card on the scanner.

POINTER

you can ride: the scooter, a t t shirt, and then you have to wear a jacket.

by pressing a button, or pressing a card, the reader will place a button, and then press of the card into a scanner screen.

Table 4: Two independently generated sentences for NRP, KG-BART, and POINTER. The target words for the
first sentence are ride, scooter, shirt, wear, and the target words for the second sentence are press, card, place,
button, scanner.

In the CommonGen Single Sentence setting440

(Table 2), NRP fall slightly behind the special-441

ized sentence methods in terms of coverage, but442

has a noticeably higher coverage than GPT-2.443

POINTER has the best coverage and self-Bleu,444

but also the worst common sense and dramatically445

worst perplexity. KG-BART has as expected the446

best common sense score, while staying fairly bal-447

anced on all other metrics. Again, NRP and GPT-2448

show similar common sense scores.449

In the C2GEN Free Text setting (Table 3), NRP450

performs the best on coverage and perplexity. All451

methods perform nearly identical on the context452

score. Both PPLM and Key2Text perform better453

than they did on CommonGen, but Key2Text still454

has the worst perplexity and common sense, and455

PPLM still performs the worst on coverage. As456

expected, GPT-2 has a hard time focusing on word457

inclusion with the added context, resulting in its458

low coverage rate. This entails that GPT-2 acts459

more as a regular CLM ignoring its prompt, which460

results in the noticeably best common sense score.461

Finally, NRP performs significantly better on462

coverage, perplexity, self-Bleu and context with463

Single Sentences on C2GEN (Table 3). GPT-2 per-464

forms better on common sense, which is likely due465

to it focusing less on the word inclusion objective.466

Again, GPT-2 achieves a similar coverage as its467

Free Text counterpart.468

6.4 Qualitative Results469

As demonstrated in Table 4, NRP and GPT-2470

tend to generate more linguistically complicated471

sentences, with more flow, compared to that of472

KG-BART. While stylistic complexity is arguably473

something desirable, it has the drawback that it in- 474

creases the chance of generating text that breaks 475

common sense. Our inspection also confirms that 476

POINTER generates long sentences with weird 477

formulations, that often break common sense. 478

Examples of generated texts from the Free Text 479

methods are available in Appendix G. Key2Text 480

often inserts multiple line breaks, and sometimes 481

gets stuck repeating a word. The difference be- 482

tween NRP, PPLM and GPT-2 is more subtle. The 483

major distinction being that PPLM comes off as 484

slightly more fluid in its formulations. 485

7 Sentence Length Experiments 486

The inclusion of sentence length in the pre- 487

training objective (Section 4.2), gives an addi- 488

tional level of generative control over the linguistic 489

style. As demonstrated in Table 5, the model in- 490

corporates and plans using the prompted sentence 491

length, changing its wording accordingly. 492

We note that the model tends to prioritize tex- 493

tual quality over strictly sticking to the exact 494

number of words. To measure this discrepancy, 495

we generate sentences for all CommonGen val- 496

idation samples for different prompted sentence 497

lengths. Figure 4 shows the results from this ex- 498

periment, displaying the expected offset for differ- 499

ent prompted sentence lengths. 500

The mean offset is always above 0 and below 501

1, it is thus expected to generate a slightly longer 502

sentence than intended. The standard deviation in- 503

creases both as the prompted length approaches 504

long, and short sentences. This matches the sen- 505

tence distribution of the pre-training dataset, as 506

demonstrated in Table 6 found in Appendix A. 507
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LP LG Target Words Generated Sentence

6 6 drink, sit, table, wine The wine-drinkers sit on the table.

12 11 drink, sit, table, wine The guests sit at a table and drink wine or beer.

18 16 drink, sit, table, wine The guests sit at a table and drink wine, while the hostess sits on the floor.

6 7 soviet, china, invasion,
people, news

The Soviet invasion of People’s China news.

12 14 soviet, china, invasion,
people, new

The news of the Soviet invasion was greeted with joy by people in China.

18 17 soviet, china, invasion,
people, new

The news of the Soviet invasion in China was met with shock and dismay
by many people.

Table 5: Examples of generated sentences for different prompted sentence lengths, using the pre-trained word
inclusion model. Lp is the prompted length and LG shows the resulting generation length.

8 Discussion & Future Work508

We opted to demonstrate our architecture’s ca-509

pabilities on the task of word inclusion, since510

quantitative comparisons on this task is relatively511

straight-forward, compared to most other open-512

ended text generation tasks. Although, experimen-513

tal results indicate the versatility of our approach,514

we cannot stress enough how our method concep-515

tually generalizes to significantly more tasks.516

Our non-residual architecture enables the use517

of prompt instructions at arbitrary time steps, and518

also hypothetically different types of prompts. We519

hence encourage future work to pursue the incor-520

poration of multi-task prompt learning. As be-521

ing able to apply flexible prompts with precision522

would be a huge step forward in the many areas523

striving to utilize CLMs, such as generative story524

telling. Indeed, the ability to control the text gen-525

eration process while considering context is key526

for any author tool intended for human editors.527

Admittedly, the training method for realizing528

our encoder-decoder architecture has largely been529

dictated by a lack of resources. We conceptually530

prefer the more straight-forward training approach531

of training the prompt model directly on long con-532

text data. Something future work could investigate533

by increasing the computational budget, and inves-534

tigation different positional encoding schemes.535

Finally, we stress that nothing in our approach536

has focused explicitly on common sense. It is537

hence expected that methods that do, like KG-538

BART perform better on this metric. Future work539

could thus investigate the use of a prompt model to540

control a CLM fine-tuned towards common sense,541

or fine-tune a prompt model using common sense542

data. Results on CommonGen and C2GEN dataset543

still have ample room for improvements.544

9 Conclusion 545

This paper has introduced the concept of non- 546

residual attention and demonstrated how it can be 547

used to steer a generative text model. Addition- 548

ally, our work pinpoints the lack of open-ended 549

controllable text generation tasks that require the 550

model to also account for a given context. We set 551

out to remedy this by introducing the humanly cre- 552

ated C2GEN dataset, introducing the task of con- 553

textualized word inclusion. 554

Experimental results on C2GEN and Com- 555

monGen, clearly demonstrates that using a non- 556

residual prompt model increases generative con- 557

trol over a CLM. Compared to other methods, our 558

approach stands out as the most versatile, con- 559

sistently performing well across all tested situa- 560

tions. These results demonstrates the potential of 561

our proposed architecture. 562

Figure 4: The generated sentence length offset from the
prompted sentence length, on the CommonGen valida-
tion set. The curve illustrates the mean offset and the
filled area shows the standard deviation.
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Figure 5: Overview of the random prompt generation template. The left section illustrates the template formula for
a single example. The right section demonstrates a full prompt with the target sentence length ”16”, and the target
words: Helmet, Motorcycle, Ride and Road. In this case the inclusion phrase was selected to be ”words and text
should include”, the separator sign ”:”, the delimiter ”,”, and the end sign ”.”

.
A Training Details760

A.1 Training Data761

Both pre-training phases (step 2 3 in Figure 2) are762

based upon texts from Wikipedia. For the first pre-763

training phase, we only consider sentences where764

the number of tokens fulfills: 5 ≤ Ntokens ≤ 32.765

The length of the sentences remaining after this fil-766

tering are depicted in Figure 6. In the second pre-767

training phase, subsequent sentences are packed768

up until the combined token length reaches 128 to-769

kens. The prompt model is then trained to instruct770

the CLM for each of the packed sentences made771

up of 5 ≤ Ntokens ≤ 32 tokens. In both phases772

the number of tokens are given via the GPT-2 To-773

kenizer (Radford et al., 2018b).774

Throughout both pre-training phases we sam-775

ple [A = 3, B = 6] unique words for each valid776

sentence, removing the probability of sampling777

stop words. If a sentence lacks 3 unique non-778

stop words it is removed from the first pre-training779

phase, and ignored during the second.780

The reason for limiting the training corpus to781

sentences to a maximum of 32 tokens is to keep the782

computational burden low, in particular the maxi-783

mum memory consumption. This is less of a prob-784

lem in the second pre-training phase, where only785

the positional invariant transformation is trained,786

hence removing the need to store an optimizer787

state for the prompt model’s parameters.788

A.2 Training Settings789

Both pre-training phases use the same set of hy-790

perparameters. The batch size is set to 1280 sam-791

ples. The maximum learning rate is set to 10−4,792

following a linear warm up schedule for the first793

500 update steps.794

The training is performed with early stopping in795

regards to coverage, on a hold-out validation set.796

For the first pre-training phase, where the prompt797

model is trained towards single sentence data, this 798

is done with the CommonGen validation set. In 799

the second phase, a custom validation set created 800

by sequences of Wikipedia sentences is used. 801

A.3 Randomized Prompt Template 802

In accordance to the popularized prompt paradigm 803

of (Brown et al., 2020) we start each prompt 804

with a couple of examples, followed by the ac- 805

tual instruction. To increase generalization during 806

the pre-training we procedurally generate prompts 807

where both the included examples and the overall 808

formatting is randomized. 809

Each prompt include three examples which are 810

uniformly sampled from a set of 50,000 sentences, 811

that have been randomly selected and set aside 812

from the pre-training dataset. The format is gen- 813

erated by joining the examples, target words and 814

target sentence length, with a set of randomly se- 815

lected combination tokens. These tokens are ran- 816

domly selected from a fixed list of candidates. Ex- 817

ample of a randomly generated prompt is available 818

in Figure 5. 819

Figure 6: Distribution of sentence length in number of
words for the filtered Wikipedia training data.
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B Inference Details820

B.1 Experiment Configurations821

All Non-residual prompt models utilize a repeti-822

tion penalty of 1.25 and beam size of 4. For tasks823

without context they all start with the word ”The”.824

The prompted sentence length for each model is825

set via hyperparameter search on a held-out vali-826

dation set. For CommonGen we use the provided827

validation set, and for the C2GEN dataset we use a828

portion of the pre-training dataset (Appendix A.1).829

The selected sentence lengths for each model and830

setting are available in Table 6.831

B.2 Prompting Schema832

All word inclusion experiments utilize the same833

simple inference schema. For each sample a sin-834

gle prompt instruction is generated, including all835

of the target words and sentence length. The CLM836

is then allowed to attend to this instruction using837

Non-residual attention, until all target words have838

been generated. After this the CLM continues en-839

tirety using the textual stream, and is thereafter840

identical to the original CLM. In the free text set-841

ting, this means that if the CLM ends a sentence842

without having included all target words, that the843

prompt instruction is still enabled. An example of844

this is illustrated in Figure 7.845

We recognize that one could investigate a more846

fine-grained and active approach. For example,847

one could easily alter the prompt instruction to848

only cover words that are yet to be included, or849

extend the target sentence length if not all words850

are included towards the end. Although, we heav-851

ily encourage future work to investigate such ap-852

proaches, The reason for our more simple ap-853

proach is to lend more focus to the overall archi-854

tectural contribution. This also demonstrates how855

one can easily steer the generation through high856

level instructions.857

Model Name Free Text Sentence

NRP 10 15
NRP + Key2Text 10 15

Table 6: The prompted sentence lengths for both non-
residual prompt models, for both the Free Text and Sin-
gle Sentence setting.

Figure 7: Inference Prompting.

B.3 Key2Text Incorporation 858

To test the intuition of aiding the prompt model’s 859

high-level planning with direct decoding strate- 860

gies we supply a slightly modified version of 861

Key2Text(Pascual et al., 2021), that we find to 862

work better. This modified version is heavily in- 863

spired by the Max Only and No Guarantee version 864

of Key2Text, as we only increase the probability of 865

the target words and by not forcing them to appear. 866

The major difference is that we not only increase 867

the sampling probability for the target words, but 868

also their different lemmas. Word lemmas are ex- 869

tracted from the target words via the use of Spacy 870

(Honnibal and Montani, 2017). 871

The sampling probability modifier is applied 872

in the same fashion as the repetition penalty of 873

(Keskar et al., 2019), where a multiplier is ap- 874

plied on the logits values of the CLM. Target word 875

that has been included have all of its lemmas ef- 876

fectively assigned a sampling probability of zero. 877

Identical to the prompting schema described in 878

Appendix B.2, this additional decoding strategy is 879

deactivated once all the target words are included. 880

The sampling probability modifier for a non- 881

included target word is given by Equation 2, where 882

α depicts the maximum increase, and λ the in- 883

clusion factor dictating the shape of exponentially 884

increasing modifier curve. T depicts the fraction 885

of completion for the generative process, in re- 886

gards to the maximum number of generation steps. 887

Hence, T is always within the range [0, 1]. 888

1 + α
eλT

eλ
(2) 889

All experiments in this paper utilize the same 890

set of parameters, where α = 0.5 and λ = 5.5. 891

We note that increasing α has the expected effect 892

of increasing overall coverage, but we found this 893

to be at a non acceptable loss of textual quality. 894
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Figure 8: Illustration of the residual prompt effect that can happen in a Casual Language Model. The curved arrow
indicates where the CLM should attend to the second instruction, but is also affected by the first instruction.

C Architectural Motivation895

C.1 Residual vs Non-Residual Prompts896

As explained in Section 3.1, the non-residual at-897

tention hinders an instruction at time step n to in-898

fluence future time steps vi its key-values. If one899

instead applies prompts directly to the CLM’s tex-900

tual stream, it allows the prompt to have a linger-901

ing effect on future decoding steps, where it might902

not be desired. This is demonstrated in Figure 8,903

where the second instruction is the exact opposite904

of the first.905

To what extent this effect actually occurs in906

large CLM’s is left for future work.907

C.2 Positional Invariant Transformation908

The positional invariant transformation allows us909

to both reduce the maximum memory consump-910

tion during pre-training and cope with the abso-911

lute positional encoding system of GPT-2. Since912

we only train the positional invariant transforma-913

tion during the second pre-training phase, the need914

to store an optimizer state for the prompt model’s915

parameters is alleviated. In turn allowing us to in-916

crease the target sequence length without having917

to increase the computational memory load.918

If one is not limited by computational resources,919

an intuitive alternative approach to tackling po-920

sitional invariance is to actively change the po-921

sitional encoding of the prompt model, to match922

the current generation step for the CLM. Unfor-923

tunately, we find that shifting the prompt model’s924

absolute encodings is problematic in its own way, 925

since this detrimentally impacts the pre-trained 926

CLM’s textual abilities. As demonstrated in Ta- 927

ble 7, simply shifting the positional input encod- 928

ing with a single step completely ruins the CLM’s 929

generative process. 930

We hypothesize that this positional frailty is due 931

to the GPT-2’s pre-training objective, which posi- 932

tionally encodes each input sequence from 0 and 933

onward. These results leads us to speculate that 934

directly converting a CLM with an absolute en- 935

coding system into a positional invariant prompt 936

model, forces one to discard a significant portion 937

of the information achieved during the CLM’s pre- 938

training. Hence, severely reducing the benefits of 939

bootstrapping from a pre-trained CLM. Thus we 940

estimate that such an approach entails both higher 941

maximum memory consumption and also longer 942

training time. 943

C.3 Cross-Attention vs Non-Residual 944

Attention 945

In a traditional encoder-decoder architecture the 946

encoder fully processes the input data, before any 947

information is passed to the decoder. Admittedly, 948

this makes intuitive sense, but it also entails that 949

the decoder cannot do any computations before 950

the encoder is completely finished. However, us- 951

ing a non-residual attention (or just regular self- 952

attention) encoder, allows the encoder and decoder 953

to executed in parallel. Effectively, increasing the 954

theoretical inference speed by a factor of 2. 955

Positional Encoding Generated Text Continuation

[0, 1, 2, 3, 4, 5, 6, 7, 8] ”and she was walking along the path when she saw. . .”
[1, 2, 3, 4, 5, 6, 7, 8, 9] ”was was was was was was was was was was. . .”
[8, 9, 10, 11, 12, 13, 14, 15, 16] ”, , , , , , , , , . . .”

Table 7: Generated text sequences continuing from the text ”Emily was out walking in the park,” encoded with
different absolute positional encoding sequences. The model used is GPT-2 Large with a beam size of 1.
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D Extended Related Work956

D.1 Decoding Strategies957

PPLM incorporates an attribute model (bag of958

words) in order to steer their CLM. The gradients959

from the attribute model pushes the activations960

within the CLM, increasing the probability of gen-961

erating the target words. In CommonGen, the con-962

cept sets include only a few target words, while963

PPLM typically have been used with larger bags964

of words. This could potentially explain its poor965

coverage in our experiments. Furthermore, PPLM966

uses a GPT-2 Medium language model while NRP967

and K2T are based on the GPT-2 Large. We relied968

on the example BoW settings provided on the offi-969

cial GitHub page4, and the target generation length970

was modified to 32 tokens.971

PPLM incorporate a target generation length,972

but has no explicit sentence level control. Is thus973

omitted from all sentence-level experiments.974

Key2Text directly increases the sampling prob-975

ability of words semantically similar to the target976

words. It also provides a guarantee for word inclu-977

sion, enabling hard-constrained text generation.978

However, Key2Text is based on word stemming,979

while the coverage metric relies on lemmatization.980

This is likely the reason why Key2Text does not981

achieve 100% coverage in our experiments. We982

used the example ROC Story settings provided on983

the official GitHub page5, and changed the gener-984

ation length to 32 tokens.985

Key2Text incorporate a target generation986

length, but yields no explicit sentence level987

control. Is thus omitted from all sentence-level988

experiments.989

D.2 Training Strategies990

CTRL incorporates genre-specific control codes991

in its CLM pre-training objective. This way, the992

model learns to adapt its generation to fit the tar-993

get domain and genre. There is not any straight-994

forward way of incorporating the word inclusion995

objective in this pre-training framework. Hence,996

we did not deem CTRL as a suitable baseline for997

our experiments.998

KG-BART augments a sequence to sequence999

model (BART) with knowledge graphs to enhance1000

its common sense reasoning abilities. It specifi-1001

cally fine-tunes BART on the CommonGen train-1002

ing data, which is consists solely on single sen-1003

4https://github.com/uber-research/PPLM
5https://github.com/dapascual/K2T

tences. This results in the model generating short 1004

and succinct sentences, but not being capable con- 1005

tinued text generation. Hence, KG-BART is omit- 1006

ted from the Free Text generation tasks. More- 1007

over, KG-BART is designed to take a concept 1008

set as input, and not any additional context. It 1009

was hence removed from all experiments on the 1010

C2GEN dataset. 1011

We relied on the official scripts for fine-tuning 1012

and inference6. During inference KG-BART uti- 1013

lizes a beam search with beam size of 5, along with 1014

a ngram-based repetition constraint. 1015

GDC propose controlling the text generation 1016

of pre-trained CLM by fine-tuning towards point- 1017

wise and distributional constraints with policy gra- 1018

dient. Additionally, GDC incorporates a KL- 1019

Divergence loss, to keep the fine-tuned model sim- 1020

ilar to the initial CLM, . However, this fine- 1021

tuning process is extraordinarily expensive requir- 1022

ing roughly 72 hours to tune a GPT-2 small model 1023

towards a single word. Furthermore, it lacks a 1024

setting for general word inclusion and is thus ex- 1025

cluded from our experiments. 1026

POINTER solves the word inclusion task in 1027

a non-autoregressive manner, iteratively injecting 1028

words around the target words. The target words 1029

are thus all included prior to the generation pro- 1030

cess. POINTER can therefore only fail on the 1031

coverage task if it combines a target word with 1032

another word. It is designed to generate on sin- 1033

gle sentences, and cannot handle contexts without 1034

significant modifications. We used the standard 1035

decoding script provided on the official GitHub 1036

page7 and changed the separator to ”, ”. 1037

D.3 GPT Prompting 1038

The currently most popular approach to steering 1039

CLM’s is via what is called prompting. In this 1040

approach the desired instruction is formulated as 1041

a textual context, from which the CLM contin- 1042

ues. Following the popular paradigm of few-shot 1043

prompting, each prompt starts with a number of 1044

examples of the word inclusion task. We found 1045

that careful tinkering of the prompt layout and the 1046

included examples had significant impact on the 1047

performance. The final prompt used for the vari- 1048

ous experiments are available in Appendix A.3. A 1049

beam size of 4 was used during inference for all 1050

experiments. 1051

6https://github.com/yeliu918/KG-BART
7https://github.com/dreasysnail/POINTER
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E Evaluation Metrics1052

E.1 String Matching As Evaluation Metrics1053

The current default way of evaluating Common-1054

Gen results includes the comparison of the gener-1055

ated sentences with a few target sentences using1056

string matching metrics commonly seen in Ma-1057

chine Translation and Image Captioning. These1058

include BLEU (Papineni et al., 2002), METEOR1059

(Banerjee and Lavie, 2005), CIDER (Vedantam1060

et al., 2015), and (Anderson et al., 2016). We ar-1061

gue that the tasks of Machine Translation and Im-1062

age Captioning impose harder constraints on the1063

generated texts and could, therefore, more easily1064

be compared to target sentences. However, in the1065

case of controllable text generation with a few tar-1066

get words, there are vastly more room for creativ-1067

ity and thus difficult to compare to just a few target1068

sentences. This means that a model with a partic-1069

ular writing style could fail to align with the target1070

style, and achieve unjustified poor results. For this1071

reason, we evaluate the generated texts differently,1072

combining automatic metrics with human evalua-1073

tion.1074

E.2 Automatic Metrics1075

Word Inclusion Coverage is, like in (Lin et al.,1076

2020), calculated using lemmatization of the1077

generated texts. However, due to the obvious1078

flaws of comparing lemmatized output with non-1079

lemmatized input, we also lemmatize the input1080

words. Furthermore, we attempt to find all lem-1081

mas for each word and if no lemma is found for1082

a given word, the word itself is instead used for1083

comparison. The correlation between coverage1084

and sequence length varies for models, but longer1085

sequences often provide more space to include the1086

target words.1087

Perplexity: We are calculating perplex-1088

ity of the generated token sequence X =1089

(xc, xc+1, ..., xc+n), where c is the context length,1090

which is 0 for the original CommonGen. The1091

formula below is used with the pre-trained GPT-1092

2 XL. This means, that for the C2GEN dataset,1093

the perplexity is conditioned on the context. The1094

perplexity is typically strongly correlated with se-1095

quence length.1096

exp

{
− 1

n

c+n∑
i=c+1

log pθ (xi | x<i)

}
Self-BLEU-5 (Zhu et al., 2018) evaluates the1097

syntactic diversity of a given set of texts. It is 1098

defined as the average BLEU-5 (Papineni et al., 1099

2002) of each text, where each BLEU score is cal- 1100

culated by treating the current text as the hypothe- 1101

sis and the others as candidates. Longer sequences 1102

often yield lower BLEU scores. 1103

E.3 Human Evaluation Metrics 1104

In the experiment we take 100 random samples for 1105

each algorithm, where each sample is evaluated 1106

by 5 different people. We use Mturk to execute 1107

the experiments, where we request only native En- 1108

glish speakers. In the experiment, we evaluate the 1109

generated text based on two specific criteria: Com- 1110

mon Sense and Contextual Relevancy. 1111

Figure 9 gives an example of the task. As we 1112

use Mturk we are unable to give a more thorough 1113

overview of the demographics and to control the 1114

order between the samples shown. But Mturk 1115

does use different annotators and divide the task 1116

into smaller tasks, automatically resulting in a 1117

varying demographic and random ordering of 1118

samples. On behalf of the inter-annotator agree- 1119

ment (IAA) we have a percent agreement of 0.51 1120

and a Fleiss’ κ of 0.115 (Celikyilmaz et al., 2020). 1121

In Table 8 we added the values for each of the 1122

experiments separately. In many cases we have a 1123

low Fleiss’ κ and a mediocre percent agreement. 1124

The low Fleiss’ κ can be explained by the fact that 1125

in all the received results ’Yes’ is chosen in 70% 1126

of the samples. Fleiss’ κ takes this distribution 1127

into account, that the agreement of two annotators 1128

is random. Secondly we see in Table 8 that IAA 1129

is lower for Free Texts experiments compaired 1130

with Sentence experiments. For transparency we 1131

will upload all the results of the human evaluation 1132

with the source code. 1133

1134

Common Sense: In the experiments the evalua- 1135

tors can answer No, Partly and Yes on the question 1136

whether the sentence makes sense. To construct 1137

the score presented in Tables 2 and 3 we map No 1138

to 0, Partly to 0.5 and Yes to 1. This allows us to 1139

create an average score of common sense where 1 1140

is the upper bound and 0 is the lower bound. 1141

Contextual Relevancy (CTX): Similar as 1142

above are the possible answers on the question 1143

whether the sentence is a logical continuation of 1144

the context: No, Partly and Yes. The No is mapped 1145

to 0, Partly to 0.5 and Yes to 1 resulting again in 1146

the scores depicted in the tables 2 and 3. 1147
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Figure 9: An example of a human intelligent task on Mturk. The evaluator is instructed to classify the level of
common sense of a generated sentence.

CommonGen Free Text (32 Tokens) Single Sentence

Sense Ctx Sense Ctx

GPT-2 Large + Prompt 0.001/0.411 - 0.356/0.653 -

PPLM -0.024/0.493 - - -
Key2Text 0.021/0.358 - - -

POINTER - - 0.230/0.50 -
KG-BART - - 0.237/0.698 -

NRP 0.076/0.422 - 0.142/0.575 -
NRP + Key2Text 0.087/0.452 - 0.102/0.548 -

C2GEN

GPT-2 Large + Prompt -0.003/0.552 -0.007/0.465 0.312/0.802 0.257/0.445
PPLM 0.023/0.493 0.018/0.477 - -
Key2Text -0.025/0.442 -0.021/0.463 - -

NRP 0.049/0.438 -0.033/0.449 0.2073/0.693 -0.040.537
NRP + Key2Text 0.039/0.445 -0.029/0.462 0.219/0.688 -0.033/0.566

Table 8: The IAA of the human evaluation experiments. Each cell contains respectively the Fleiss’ κ and percent
agreement.
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Cov ↑ Ppl ↓ Self-Bleu ↓

GPT-2 Large Free Text (32 Tokens) 4.6 7.3 43.2
GPT-2 Large Single Sentence 3.8 7.5 37.9

Table 9: The results on the C2GEN dataset with the GPT-2 Large model prompted with the context only, i.e. no
prompted instruction on the target words. This provides a simple baseline on how likely the target words are to
appear naturally, when the model only focuses on generating a natural continuation of the context.

F Dataset C2GEN1148

The C2GEN dataset is mainly constructed in ac-1149

cordance to the data in the CommonGen test set.1150

However, minor modifications were made to the1151

distribution of the number of word targets per sam-1152

ple. The CommonGen test set only consists of1153

samples with 4 or 5 target words, whilst the train-1154

ing and validation data includes samples with only1155

3 target words. After careful reading we found no1156

argument for this, and speculate it is purposefully1157

intended to make the task more difficult. Since we1158

disagree with artificially increasing task difficulty1159

by skewing the test set away from the intended1160

training data, we set attempted to remedy this in1161

C2GEN.1162

This was achieved by removing certain words1163

from the CommonGen test set, resulting in that1164

all set sizes are equally represented. Which in1165

turn results in a more similar and fair distribution1166

between C2GEN, and the CommonGen train and1167

dev split. Since, this filtering of words from1168

the CommonGen test set results in duplicates,1169

which weere removed, C2GEN set is slightly1170

smaller. However, as can be seen in Table 10, this1171

discrepancy is insignificant.1172

1173

Each remaining concept set manually received1174

a textual context, in accordance to the explana-1175

tion in Section 5. To assure the quality of the1176

data generation, only native English speakers with1177

a recorded high acceptance were allowed to partic-1178

ipate. Finally, all contexts were manually verified,1179

and fixed in terms of typos and poor.1180

The context lengths of the collected dataset is1181

visualized in Figure 10. The perplexity and the1182

Self-Blue metrics of the texts are available in Table1183

10. To evaluate the probability of the target words1184

appearing naturally in a textual continuation, we1185

use GPT-2 to generate text without the given target1186

words and report on the coverage in Table 9.1187

Statistic CommonGen C2GEN

# Concept-Sets 1,497 1,483
- Size = 3 - 494
- Size = 4 747 496
- Size = 5 750 493

# Unique Concepts 1,248 1,122
# Unique Concept-Pairs 8,777 6,835
# Unique Concept-Triples 9,920 6,959

% Unseen Concepts 8.97% 7.75%
% Unseen Concept-Pairs 100.00% 100.00%
% Unseen Concept-Triples 100.00% 100.00%

C2GEN

Average context-sentence length 43.92 ± 10.32
Perplexity (GPT-2 XL) 21.93
Self-Bleu 16.63

Table 10: A statistical comparison between the original
CommonGen test dataset and the C2GEN dataset.

Figure 10: Distribution over number of words in the
context of the C2GEN.
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G Qualitative Examples1188
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NRA

1 The players sit in front of a microphone, with the guitar and drums on one side of them.

2 The most common use of the tool is to remove a piece of metal or plastic from an object, such as a door knob.

3 The dog walks on a leash, and the owner can walk their pet on the sidewalk or in front of their home.

GPT2-Large

1 The guitar was on the front of the sofa.

2 The piece of metal was used in the tool.

3 The dog was walking on the sidewalk.

POINTER

1 he is shown sitting in front of a stage, playing his guitar, and standing behind a microphone on the one where he had
to sit in the back.

2 , also known as a metal plate or, is a piece of metal, a sharp tool, that can be removed with the use of other tools.

3 this allows a dog that has been on a leash to be lowered onto the sidewalk, or to walk along the sidewalk.

KG-BART

1 A man with a guitar sits in front of a microphone and plays his guitar.

2 A man uses a tool to remove a piece of metal from a metal piece of wood.

3 A dog walks on a leash on a sidewalk.

PPLM

1 The new year is just around the corner, and with it comes a plethora of new releases and albums, but this year’s lineup is
the most impressive we’ve

2 The United States is one of only a few industrialized democracies which allow its citizens to buy and use drugs on behalf
of their patients, and to provide them with a

3 The ”Boomer” and ”Boomer-Bom” are two words that mean very different things. When you say something to a person
that

Key2Text

1 Right front corner of the guitar.\n\n\nSituation: You are holding a microphone in one hand while playing a gui-
tar.\n\n\nReason for selecting the

2 Metal Gear Solid V: The Phantom Pain use a tool called Metal Gear Solid V Tools to piece together the main storyline.
Metal Gear Solid V: The Phantom Pain

3 Ad leash for dogs\n\n\nDog walkers and dog walkers with sidewalk dog kennels\n\n\nThose of you that own or
rent commercial dog

Table 11: Generated texts for 3 samples of the CommonGen Test set for the different methods. The inclusion
words for the samples are the following; 1: [front, guitar, microphone, sit], 2: [metal, piece, tool, use], 3: [dog,
leash, sidewalk, walk], highlighted in blue, brown, and green respectively. For models that are evaluated on both
Free Text and Single Sentence, the sentence variant is shown.
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H GPT Prompt Templates1189
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Figure 11: Prompt template used for GPT2-Large and GPT-J for sentence-level CommonGen text generations.

Figure 12: Prompt template used for GPT2-Large and GPT-J for 32 Token CommonGen text generations.

Figure 13: Prompt template used for GPT2-Large and GPT-J for C2Gen text generations.
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