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ABSTRACT

Hopfield networks mark an important milestone in the development of modern
artificial intelligence architectures. In this work, we argue that a foundational
principle for solving such associative memory problems at the neuron scale is to
promote redundancy between the input pattern and the network’s internal state in
the neurons’ activity. We demonstrate how to quantify this redundancy in clas-
sical Hebbian Hopfield networks using Partial Information Decomposition (PID),
and reveal that redundancy plays a dominant role compared to synergy or unique-
ness when operating below capacity. Beyond analysis, we show that redundancy
can be used as a learning goal for Hopfield networks by constructing associative
memory networks from neurons that directly optimize PID-based goal functions.
In experiments, we find that these “infomorphic” Hopfield networks greatly out-
perform the original Hebbian networks and achieve promising performance with
the potential for further improvement. This work offers novel insights into how
associative memory functions at an information-theoretic level of abstraction and
opens pathways to designing new learning rules for different associative memory
architectures based on redundancy maximization goals.

1 INTRODUCTION

Associative memory, a form of content-addressable memory network in which patterns are retrieved
from noisy instances through recurrent dynamics, marks an important paradigm in neural learn-
ing (Hopfield, 1982; Ramsauer et al., 2021). Originally, such Hopfield networks have been trained
using the biologically-inspired Hebbian learning rule, but more recently new learning rules have
been introduced that enhance the capacity and noise resistance (Hillar et al., 2015; Tolmachev &
Manton, 2020). Nevertheless, a key question remains: Is there an underlying principle that governs
associative memory? And, if so, can it be exploited directly to improve performance?

Hopfield networks store patterns as attractors of their recurrent neural dynamics. To create these
attractors, the weights of the network need to be trained by providing the patterns as a teaching
signal. How the information of the recurrent dynamics and the teaching signal together predict
the neuron’s firing thus becomes pivotal to the network’s performance. To describe this relation
in an abstract, implementation-independent manner, we utilize information theory. Using mutual
information, it is possible to quantify how much information about the neuron’s output is contained
either in the input from other neurons (the recurrent or lateral input) or the teaching signal (referred
to as receptive input). However, using only mutual information it is not possible to differentiate
how that information is carried in unique, redundant or synergistic ways. This differentiation can
be done by a recent extension to information theory called Partial Information Decomposition (PID,
Williams & Beer (2010)). In this work, we use PID both as a tool for analysis, revealing that classical
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Hebbian Hopfield neurons are dominated by redundancy, and for constructing local goal functions
which optimize for certain information processing goals directly.

The main contributions of this work are (i) information-theoretic analysis of a classical Hebbian
Hopfield network which reveals that redundancy between the lateral input and the receptive input
(teaching signal) dominates the neurons’ output when operating below capacity, (ii) the construction
of “infomorphic” associative memory neurons that can directly maximize a local PID goal function
building on work by Makkeh et al. (2025), and (iii) experimental results showcasing that infomor-
phic neurons that maximize redundancy significantly outperform the original learning rule.

2 BACKGROUND

To find an underlying principle of associative memory, we investigate the information processing
necessary at a single neuron. From an information-theoretic viewpoint, the neurons can be inter-
preted as channels that receive information as a weighted sum L of outputs of lateral neurons (i.e.
the outputs of all other neurons in the network) to produce a binary output signal Y . The entropy
of a neuron’s output H(Y ) can therefore be quantified by the mutual information I(Y : L) and the
residual entropy as H(Y ) = I(Y : L) +H(Y | L).
For analysis or training, the receptive input (containing a single pattern element) is available as an
additional random variable R that can help determine the task-relevance of the individual neuronal
output activity through the mutual information I(Y : R). To understand the local information pro-
cessing necessary for associative memory function, however, it is important to understand how this
information relates to the information from the lateral input I(Y : L). While the information that the
receptive input and the lateral input together hold about the output Y can be quantified by the joint
mutual information I(Y : R,L), classical information theory is unable to dissect how this informa-
tion is provided by the two sources R and L (see Figure 1B): Some parts of the neuron’s firing might
be explainable uniquely by the lateral input (denoted by Πunq,L) and thus be unrelated to the recep-
tive input, or uniquely by the receptive input, i.e., relevant but not encoded in L (Πunq,R). Other
parts of the output information may be carried redundantly (Πred) by both sources, meaning they
are both relevant and encoded in L, while yet others may be carried synergistically (Πsyn), meaning
that both information sources are necessary to uncover this piece of information. Enumerating and
quantifying these information atoms is the subject of Partial Information Decomposition (Williams
& Beer, 2010; Gutknecht et al., 2021).

The four PID atoms are related to the three classical mutual information quantities with the target
variable Y through the so-called consistency equations

I(Y : R,L) = Πred +Πunq,R +Πunq,L +Πsyn (1)
I(Y : R) = Πred +Πunq,R (2)
I(Y : L) = Πred +Πunq,L. (3)

Note that this system is underdetermined with four unknown quantities Π, but only three classical
mutual information quantities providing constraints. To resolve this underdetermination, an addi-
tional concept needs to be defined, which is usually a measure for redundancy. Throughout the
literature, a plethora of different redundancy measures have been devised, which fulfill different
requirements and have different operational interpretations (e.g. Lizier et al., 2018, and references
therein). Throughout this work, we use the Isx∩ measure introduced by Makkeh et al. (2021), due to
its differentiability, which is essential for being able to optimize it (see Appendix B).

3 REDUNDANCY IN HEBBIAN LEARNING

As a first step we analyze the information dynamics in classical Hopfield networks to examine the
role of redundant information for pattern memorization. We train Hopfield networks with one-
shot Hebbian learning (described in Algorithm 1), then initialize them in one of the memorized
patterns and conduct a single update step. We then quantify which information processing each
neuron performs by computing the PID of I(Y : R,L) between the output of each neuron Y as the
PID target, and the receptive input R (task-relevant information) and the lateral input L as the PID
sources. The analysis reveals that when the Hopfield network memorizes patterns below its capacity

2



New Frontiers in Associative Memory workshop at ICLR 2025

C

A

D

B
Пunq,L

Пunq,R Пred

Пsyn
Hres

I(Y : L)

I(Y : R)

I(Y : R, L)

H(Y)

 

Pattern

all-to-all 
(driving)

one-to-one
(for analysis)

0.10 1.00
Memory load α

0.0

0.5

1.0

In
fo

rm
a
ti

o
n

 (
b
it

s)

αh

unq,R

unq,L

red

syn

Hres

PID Atom

In
fo

rm
a
ti

o
n

 (
b
it

s)

Figure 1: Hebbian learning exhibits high redundant information of the lateral input and the
receptive input about the neurons’ output, which decreases significantly when Hebbian learn-
ing fails. A: The setup for measuring PID: in addition to the lateral input L, each neuron receives its
corresponding element of the pattern via a second source variable R. B: PID diagram for two source
variables, decomposing the mutual information I(Y : R,L) into unique, redundant, synergistic in-
formation atoms. C: PID profile for increasing memory load. The memory capacity αh ≈ 0.14 is
indicated in black. D: PID profiles for the network at a load of α = 0.1 and α = 0.2. Below the
memory capacity, redundancy is high with a small number of outlier neurons with lower redundancy.
Just above the memory capacity, the number of outliers increases and outliers with higher unique
information appear. The median PID terms do not change significantly, however.

αh ≈ 0.14 (Hopfield, 1982), redundant information constitutes most of I(Y : R,L) (see Figure 1C).
However, redundant information begins decreasing when this capacity is exceeded, while unique
lateral information gradually increases (see Figure 1C). These information dynamics suggest that
Hebbian Hopfield neurons encode information that is redundant between their receptive input and
lateral input to enable associative memory learning, and that lateral information unrelated to the
receptive input leads to memorization errors above capacity.

Moreover, beyond the memory capacity, the trend of decreasing redundancy and increasing unique
lateral information is not uniform across the neurons in the network (see Figure 1D). While most
neurons still retain high redundancy, a fraction of neurons increase their lateral unique information.
This suggests that, above (and starting even already below) the memory capacity, islands of “dys-
functional” neurons emerge, while most of the network behaves correctly. Forcing these dysfunc-
tional neurons to also encode redundancy by directly optimizing for redundancy across the whole
network thus appears as a likely path towards improving network performance.

4 INFOMORPHIC NETWORKS

Building on the empirical evidence of high redundancy in classical Hebbian Hopfield networks, we
now demonstrate that Hopfield networks can be trained by maximizing this redundancy directly. To
do so, we take a constructive approach by devising ‘infomorphic Hopfield neurons” for associative
memory that directly optimize a PID-based goal function (Makkeh et al., 2025).

During memory retrieval, an infomorphic Hopfield neuron operates identically to a classical Hop-
field neuron. The neuron integrates outputs from all other neurons in a weighted sum, which is then
fed into the binary activation function sgn(L). After initializing in a pattern of choice, the network
is run until a fixed point is reached or for up to Niter = 100 time steps.

During the training phase, each neuron is provided with a receptive input (a single element of the
pattern multiplied with a weight Wr) as well as with the lateral input L (the standard weighted sum
over the output of other neurons) by augmenting the activation function to σ(R+ L). The resulting
activation is then interpreted as a firing probability, according to which the binary output is drawn.
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Figure 2: Explicit maximization of redundant information in infomorphic networks leads to
increased capacity and noise resistance. A: The extended setup for infomorphic learning, where
the receptive input is used as a second input to the neurons. During training, a stochastic activation
function is used. B: The performance of the infomorphic rule as a function of memory load α,
measured in terms of the overlap between patterns and stable states of the system. For comparison,
the performance of the original Hebbian rule is shown. C: The PID profile for the infomorphic rule
maximizing redundancy. Above the capacity redundancy only slightly declines, but other atoms
become more prominent. D: Noise resistance for the redundancy rule as a function of memory
load. For comparison, the original Hebbian rule as well as the rule ’Descent L2’ (with λ=0.5) from
Tolmachev & Manton (2020) is included.

Given this second information source R, a general PID-based learning goal can be formulated as a
weighted sum of PID atoms as

G = γredΠred + γunq,RΠunq,R + γunq,LΠunq,L + γsynΠsyn + γHHres, (4)
where the γ are fixed coefficients and Hres = H(Y | R,L) is the residual entropy of the output
not explained by either R or L. To train, we initialize the network in each of the memory patterns,
present the elements of the same pattern in the external input R, and run the network for one time
step to obtain firing probabilities p(Y = y | R = r, L = l). In addition, we construct the empirical
probability mass function p(R = r, L = l) from the inputs R and L, binned to a (2, 60) grid. From
this, the PID terms and the loss function are computed according to Equation 4. Finally, the weights
are updated using gradient descent with a learning rate of 0.1. Pseudocode of the described training
procedure can be found in algorithm 2.

5 MAXIMIZING REDUNDANT INFORMATION IN INFOMORPHIC HOPFIELD
NETWORKS

Our experiments reveal that using the simple goal function G = Πred, infomorphic Hopfield net-
works are able to significantly increase their capacity to a memory load of αred ≈ 0.8 compared to
αh ≈ 0.14 of Hebbian learning (see Figure 2B). Furthermore, their noise resistance is promising
and on par with the associative memory learning rules presented in Tolmachev & Manton (2020)
(see Figure 2D). The increased memory capacity by maximizing redundant information shows the
sufficiency of redundancy as an underlying information processing principle in associative memory
learning.

Examining the PID profile for α ≤ 0.8, the redundant information is successfully maximized and
constituted most of I(Y : R,L) as desired (see Figure 2C). At the onset of failure of infomorphic
Hopfield networks (α > 0.8 in Figure 2), however, the redundancy is still maximized, but at the
expense of driving the unique information of L to be negative indicating that each neuron’s activity
is not fully predictable by their lateral input (for more details, see Appendix B).
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6 DISCUSSION

This work provides a step towards understanding the underlying principle that governs associative
memories at the individual neuron scale. Such an underlying principle can be revealed by studying
the information processing of the neurons in associative networks. In particular, by regarding the
neuron as an information processor, Partial Information Decomposition quantifies the information
contribution of the receptive input and the lateral input to the neuron’s output—revealing in which
way the task-relevant information is encoded by the internal state in order to store the patterns (see
section 2). We argue that for an associative memory network to store patterns, the lateral input and
the receptive input need to redundantly determine the firing of each neuron.

To check the validity of this claim, we first analyze the information processing of Hebbian Hopfield
networks (see section 3). While the information dynamics of the Hebbian Hopfield neurons are
indeed dominated by redundancy up to their memory capacity, the redundancy starts degrading and
gets replaced by unique lateral information when memory capacity is exceeded, implying that a
fraction of neurons becomes unable to encode information relevant to the patterns (see Figure 1C).

Subsequently, we show that maximizing local redundant information is sufficient for associative
memory learning (see section 4). To this end, we construct infomorphic Hopfield networks such that
every neuron strives to maximize the redundant information that receptive input and its lateral input
provide about its output (see section 5). The simulations show that infomorphic Hopfield networks
strongly outperform Hebbian Hopfield networks, their noise resistance being on par with state-of-
the-art associative memory learning rules (see Figure 2B,D). These results assert that promoting
redundancy can be regarded as an underlying principle to associative memory learning.

Related Works. Information theory has been employed to understand various properties of Hop-
field networks. In particular, Dominguez et al. (2004; 2009) found that the mutual information of
the pattern and the internal state I(R : L) was optimal for a sparsely connected network which ulti-
mately enhanced the memory capacity. Montazeri & Schmidt (2024) concluded using I(R : L) that
the robustness of Hopfield networks depends on the sparsity of the patterns. Knoblauch et al. (2010)
quantified the information storage of Hopfield networks by measuring the mutual information be-
tween the patterns and the synaptic weights. Beyond binary Hopfield networks, Bollé et al. (2000)
showed that I(R : L) during retrieval is related to the size of the basins of attraction in ternary
Hopfield networks. Dominguez & Korutcheva (2000) quantified mutual information in mean-field
ternary Hopfield networks to construct an energy function which optimized their retrieval proper-
ties. Makkeh et al. (2025) constructed infomorphic associative memories that learn by optimizing
the goal function G = 0.9Πred + 0.1I(Y : R,L), employing identical neuron properties for train-
ing and testing, but a more complex activation function. In addition to analyzing Hebbian Hopfield
networks, here we implement infomorphic Hopfield networks with a simpler activation function
A(R,L) = σ(R+ L), which gets replaced by a Heaviside activation during testing. These changes
establish a more clear-cut connection to traditional associative memories, while also leading to a
significantly higher capacity than the one reported by Makkeh et al. (2025).

Limitations and Outlook. Our simulations show that while maximizing redundancy is capable of
significantly improving the memory capacity, promoting redundancy alone proves unable to reach
the theoretically optimal memory capacity of twice the number of neurons (Cover, 1965). To achieve
higher capacity, it might be beneficial to suppress other quantities like unique lateral or synergistic
information. Future work should conduct hyperparameter optimization to determine the best goal
function parameters. Beyond classical associative memories, Krotov & Hopfield (2016); Krotov
(2023) showed that the aforementioned optimal capacity can be exponentially improved by opting
for a hierarchical architecture known as Dense Associative Memory. In addition, Schneider et al.
(2025) constructed hierarchical infomorphic network architectures with up to three layers, signifi-
cantly improving performance on supervised learning. This opens an intriguing avenue for future
research: Utilizing the framework of infomorphic networks to understand which information pro-
cessing mechanisms are sufficient to implement Dense Associative Memories.

In summary, PID and infomorphic networks constitute a powerful pair of analytic and constructive
tools, providing a novel level of interpretability that can in the future be used to understand the
strengths and shortcomings of other associative memory learning rules and help in designing novel
network architectures and learning rules.
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David Dominguez, Mario González, Eduardo Serrano, and Francisco B Rodrı́guez. Structured in-
formation in small-world neural networks. Physical Review E—Statistical, Nonlinear, and Soft
Matter Physics, 79(2):021909, 2009.

David R Carreta Dominguez and Elka Korutcheva. Three-state neural network: From mutual infor-
mation to the hamiltonian. Physical Review E, 62(2):2620, 2000.

Aaron J Gutknecht, Michael Wibral, and Abdullah Makkeh. Bits and pieces: Understanding infor-
mation decomposition from part-whole relationships and formal logic. Proceedings of the Royal
Society A, 477(2251):20210110, 2021.

Christopher Hillar, Jascha Sohl-Dickstein, and Kilian Koepsell. Efficient and optimal binary hopfield
associative memory storage using minimum probability flow, 2015. URL https://arxiv.
org/abs/1204.2916.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Andreas Knoblauch, Günther Palm, and Friedrich T Sommer. Memory capacities for synaptic and
structural plasticity. Neural Computation, 22(2):289–341, 2010.

Dmitry Krotov. A new frontier for Hopfield Networks. Nature Reviews Physics, pp. 1–2, 2023.

Dmitry Krotov and John J. Hopfield. Dense associative memory for pattern recogni-
tion. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
eaae339c4d89fc102edd9dbdb6a28915-Paper.pdf.

Joseph T Lizier, Nils Bertschinger, Jürgen Jost, and Michael Wibral. Information decomposition of
target effects from multi-source interactions: Perspectives on previous, current and future work.
Entropy, 20(4):307, 2018.

6

https://arxiv.org/abs/1204.2916
https://arxiv.org/abs/1204.2916
https://proceedings.neurips.cc/paper/2016/file/eaae339c4d89fc102edd9dbdb6a28915-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/eaae339c4d89fc102edd9dbdb6a28915-Paper.pdf


New Frontiers in Associative Memory workshop at ICLR 2025

Abdullah Makkeh, Aaron J Gutknecht, and Michael Wibral. Introducing a differentiable measure of
pointwise shared information. Physical Review E, 103(3):032149, 2021.

Abdullah Makkeh, Marcel Graetz, Andreas C. Schneider, David A. Ehrlich, Viola Priesemann,
and Michael Wibral. A general framework for interpretable neural learning based on local
information-theoretic goal functions. Proceedings of the National Academy of Sciences, 122
(10):e2408125122, 2025. doi: 10.1073/pnas.2408125122. URL https://www.pnas.org/
doi/abs/10.1073/pnas.2408125122.

Ali Montazeri and Robert Schmidt. Robustness in hopfield neural networks with biased memory
patterns. bioRxiv, pp. 2024–10, 2024.
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APPENDIX

A MODEL PARAMETERS

In Table 1, we explain the parameters of infomorphic networks and their values that were used
during training.

Table 1: The model parameters.
Parameter Definition/Meaning Value

NNeurons number of neurons 100
Wr initialization of the receptive weights diag(1)
Wl initialization of the lateral weights Kaiming Uniform

optimizer algorithm to maximize G SGD
η learning rate 0.1

epochs number of complete passes of the entire input patterns 1000
reps number of consecutive times the pattern is presented 1
nr number of receptive bins 2
nl number of lateral bins 60

sequential True if states are updated sequentially False
Niter maximum iterations during testing 100

B SXPID MEASURE

In the simulations, we used infomorphic networks that optimize PID-based goal functions. This
PID is computed using the shared-exclusion redundancy measure Isx∩ introduced by Makkeh et al.
(2021). In what follows, we first motivate and then briefly explain the definition of this measure.

The Isx∩ is built on the Bayesian intuition that the mutual information I(T : S1, S2) between a target
variable T and two source variables S1 and S2 can be interpreted as an average measure for how the
prior belief of the target event T = t is updated in light of the event of observing both source events
S1 = s1 and S2 = s2 simultaneously:

I(T : S1, S2) =
∑

t,s1,s2

p(T = t, S1 = s1, S2 = s2) log2
p(T = t | S1 = s1 ∧ S2 = s2)

p(T = t)
.

If I(T : S1, S2) > 0 then the posterior belief of event T = t is higher than the prior on average and
S1 and S2 hold information about T , otherwise the prior belief is equal to the posterior on average
and S1 and S2 hold no information about T .

Following the same logic, Makkeh et al. (2021) define redundancy as an average measure for how
the prior belief about the target event T = t is updated if instead it is only known that S1 = s1 or
S2 = s2 have occurred:

Isx∩ (T : S1, S2) =
∑

t,s1,s2

p(T = t, S1 = s1, S2 = s2) log2
p(T = t | S1 = s1 ∨ S2 = s2)

p(T = t)
.

The definition is symmetric with respect to permutation of the sources, fulfills a target chain rule and
is differentiable with respect to the underlying probability distribution (Makkeh et al., 2021), which
makes it a suitable definition for optimizing objective functions.

One counter-intuitive property of Isx∩ is that Isx∩ (T : S1, S2) can be larger than I(T : S1) or
I(T : S2). In these networks, the source variables are given by the neuron inputs R and L while
the target variable is given by the neuron output Y (thus T = Y , S1 = R and S2 = L). The
additional information in Isx∩ (Y : R,L) beyond I(Y : R) or I(Y : L) cannot be attributed to the
sources themselves and thus does not contribute to the learning of infomorphic neurons, but rather
indicates misinformative behaviour. This misinformation is reflected in obtaining Πunq,i < 0 when-
ever Isx∩ (Y : R,L) > I(Y : Xi) for Xi ∈ {R,L}, which indicates that one of the variables Xi

8
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provides misinformative unique information about Y . A case in point is that for infomorphic Hop-
field networks with loading α > αred in section 5, Isx∩ (Y : R,L) > I(Y : R) does not help the
neurons to learn their correct output. Instead the negative Πunq,L reflects that the lateral input is
misinforming the output indicating that the neurons did not learn properly. This counter-intuitive
property becomes a signature for failure in learning.

C PSEUDOCODE FOR TRAINING

Function 1: TrainHebbianHopfieldModel
Input: data
Output: trained model

1 INITIALIZE model;
2 INITIALIZE model.neuron weights← zero matrix;
3 foreach pattern in data do
4 model.neuron weights← neuron weights + outer(pattern, pattern);

5 return model

Function 2: TrainInfomorphicHopfieldModel
Input: data, num epochs, goal params
Output: trained model

1 INITIALIZE model;
2 foreach epoch in range(num epochs) do
3 INITIALIZE model outputs;
4 foreach pattern in data do
5 INITIALIZE network state← pattern;
6 network state← model.forward network(r=pattern, l=network state);
7 model outputs.append(network state);

8 foreach neuron in model do
9 TrainInfomorphicNeuron(neuron, goal params, y=output state[neuron], r=data,

l=model outputs);

10 return model

Function 3: TrainInfomorphicNeuron
Input: neuron, goal params, y, r, l
Output: None

1 BIN continuous values r in 2 and l in 60 equally sized bins;
2 COUNT occurrences of tuples (r, l);
3 COMPUTE empirical probability masses p(r, l);
4 EVALUATE conditional probabilities p(y | r, l) from the neurons;
5 CONSTRUCT full joint probability mass function p(y, r, l) = p(r, l)p(y | r, l);
6 isx redundancies← ComputeIsxRedundancies(p(y, r, l));
7 pid atoms← ComputePIDAtoms(isx redundancies);
8 goal← scalar product(goal params, pid atoms);
9 PERFORM autograd to maximize goal;

10 UPDATE neuron.weights;
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Function 4: ComputeIsxRedundancies
Input: Joint probability mass function p(y, r, l)
Output: Isx Redundancy Measure Values

1 foreach antichain β ∈
{
{{1}, {2}}, {{1}}, {{2}}, {{1, 2}}

}
do

2 COMPUTE conditional probability mass functions p(Y = y |
∨

b∈β

∧
i∈b Si = si);

3 COMPUTE marginal probability mass function p(Y = y);

4 Isx∩ (Y : Sβ)←
∑

y,r,l p(Y = y,R = r, L = l) log2
p(Y=y|

∨
b∈β

∧
i∈b Si=si)

p(Y=y) ;

5 return Isx∩ (Y : Sβ) for all antichains β

D LEARNING IN THE REGIME OF LOW NUMBER OF PATTERNS

Interestingly, infomorphic networks cannot encode a single pattern, as in this case all neurons receive
only a constant receptive input, resulting in zero bits of input entropy H(R) = 0 and redundancy
Πred = 0 for the respective neuron, such that the goal function G

G = γredΠred

becomes constant and equal to zero for any γred. Without a gradient, the neurons are not able to
adapt their weights, failing to memorize the pattern. The problem persists even when the number of
patterns m is increased but remains very small (see Figure 3A and Figure 4A). Since the patterns
are drawn from a binomial distribution with p = 0.5, a significant fraction of neurons will receive
all +1 or all −1 across all patterns. As a result, these neurons have constant receptive inputs R
with H(R) = 0 (see Figure 3A and Figure 4A with m ≤ 4). and fire arbitrarily (based on their
initial weights). They additionally negatively affect those neurons with H(R) > 0 by transmitting
an unreliable signal to other neurons, hindering overall performance. For example, when learning
m = 4 patterns, about 16% of neurons fire arbitrarily, affecting recall accuracy (see Figure 3C and
Figure 5A).

The arbitrary firing of neurons due to their constant receptive inputs can be avoided by using
G = Πred −Hres instead of G = Πred. Additionally minimizing Hres promotes neurons with
constant receptive input to optimize their lateral weights to become less stochastic and reliably align
with their receptive input (see Figure 4 and Figure 5).

In detail, this is possible due to A(R,L) = σ(R+L) through which the neuron can trivially reduce
its Hres by adjusting Wl in such a way that aligns the sign of L with that of R. This alignment
pushes |A(R,L)| to a high value resulting in p(y = ±1 | r, l) ≈ 1 (see Figure 4). For instance, if
the neuron receives +1 across all patterns and has Wr = 1, R = 1 and to minimize Hres the neuron
will adapt its weights Wl to also produce a high lateral input L > 0. This results in saturation of the
activation function, leading to p(Y = 1 | R,L) ≈ 1 and thus making the neuron fire constantly and
aligning with the pattern element +1. In the same manner, if the pattern element is a constant−1 the
neuron will output a −1 most of the time, encoding the pattern element correctly. In essence, using
G = Πred −Hres, neurons receiving R with H(R) = 0 minimize Hres by encoding their receptive
input in order to be deterministic, whereas those receiving R with H(R) > 0 will consistently
maximize Πred, learning as intended (see Figure 4 and Figure 5). Additionally minimizing residual
entropy in the goal therefore leads to an overall better associative memory learning (see Figure 4A).
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Figure 3: A fraction of neurons receive no information via their receptive inputs at very low
memory loads, leading to a failure of learning when relying on maximizing redundancy only.
A: PID profile for trained infomorphic Hopfield networks at low memory loads α. For α close to
zero the residual entropy Hres dominates over Πred. B-D: Information measures across neurons
of single networks after training with G = Πred at m = 2, 4, 6 patterns. A fraction of neurons
(background shaded in red) that by chance receive a constant receptive input across all patterns
during training have zero redundant information Πred and fail to learn. Residual entropy Hres and
total entropy H(Y ) remains high for these neurons, indicating arbitrary firing.

C D

BA

M
e
a
n
 r

e
ca

ll 
a
cc

u
ra

cy

0.00 0.05 0.10 0.15

0.0

0.5

1.0

red

- HresredG=
G=

In
fo

rm
a
ti

o
n
 (

b
it

s)

0 50 100

0.0

0.5

1.0
m=2

Hres

H(Y)

red

constant
rec. input

Neuron ID

In
fo

rm
a
ti

o
n
 (

b
it

s)

0 50 100

0.0

0.5

1.0
m=4

Neuron ID
0 50 100

0.0

0.5

1.0
m=6

Memory load Neuron ID

Figure 4: Additionally minimizing residual entropy during training leads to improved per-
formance at very low memory loads. A: Performance of networks trained using G = Πred and
G = Πred −Hres at low memory loads. B-D: Information measures across neurons of single net-
works after training with G = Πred at m = 2, 4, 6 patterns. The neurons with constant receptive
input (background shaded in red) are able to learn, resulting in low residual entropy Hres and total
entropy H(Y ).
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