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ABSTRACT

Text-to-image (T2I) diffusion models generate high-quality images but often fail to
capture the spatial relations specified in text prompts. This limitation can be traced
to two factors: lack of fine-grained spatial supervision in training data and inability
of CLIP text embeddings to encode spatial semantics. We introduce InfSplign,
a training-free inference-time method that improves spatial alignment by adjusting
the noise through a compound loss in every denoising step. Our proposed loss
leverages different levels of cross-attention maps extracted from the U-Net decoder
to enforce accurate object placement and a balanced object presence during sam-
pling. Our method is lightweight, plug-and-play, and compatible with any diffusion
backbone. Our comprehensive quantitative and qualitative evaluations demonstrate
that, on widely adopted spatial benchmarks (VISOR and T2I-CompBench), our ap-
proach establishes a new state-of-the-art (to the best of our knowledge), delivering
substantial performance gains and even surpassing fine-tuning-based baselines.

1 INTRODUCTION

Diffusion-based text-to-image (T2I) generative models have rapidly advanced, enabling the synthesis
of high-quality, detailed images from arbitrary textual descriptions (Rombach et al., 2022; Saharia
et al., 2022; Ho et al., 2022; Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021; Chang et al.,
2023; Podell et al., 2024; Balaji et al., 2022). Despite these developments, precise control over
spatial relationships described in text prompts remains challenging, manifesting as misplacement or
unintended merging of objects in generated images or even completely failing to depict all specified
objects or attributes (Gokhale et al., 2022). Diffusion models frequently fail to distinguish between
prompts such as "object A to the left of object B" and "object A to the right of object B", often producing
nearly identical outputs irrespective of spatial cues as shown in Fig. 1. This misalignment substantially
reduces reliability, hindering applications that demand accurate spatial reasoning, such as generating
scene layouts for robotic manipulation and visual grounding in augmented reality systems (Chen
et al., 2024a). Beyond misplacement, diffusion models frequently drop objects altogether, or allow
one object to dominate, erasing the other. This undermines reliability in compositional generation,
where preserving all entities is as important as placing them correctly. The deficiency in spatial
understanding is quantitatively evident; for instance, on the T2I-CompBench (Huang et al., 2023)
compositional reasoning benchmark, state-of-the-art performances on spatial understanding are
around 20%, significantly lagging behind performance on other aspects such as attribute binding
(around 50%). This performance gap underscores a critical area within T2I research, emphasizing
the importance of developing solutions that effectively address spatial misalignment.

Approaches tackling spatial accuracy or object preservation broadly fall into two categories: fine-
tuning-based and inference-time methods. Fine-tuning-based methods typically employ spatially-
aware datasets, auxiliary reward models, or explicit training mechanisms to enforce spatial accu-
racy (Feng et al., 2023; Zhang et al., 2024a), achieving relatively high spatial accuracy at the cost of
considerable computational overhead and the risk of negatively impacting the carefully optimized
diffusion backbone and its generalizability. In contrast, inference-time methods (Voynov et al., 2023;
Epstein et al., 2023) avoid expensive re-training, providing computationally efficient alternatives capa-
ble of flexible spatial adjustments during sampling. However, current inference-time methods remain
overly complex, relying on auxiliary inputs like layout maps (Sun et al., 2024), scene graphs (Farshad
et al., 2023), or external guidance from large language models (LLMs) (Phung et al., 2024; Lian
et al., 2024), thereby limiting ease of deployment and interoperability.
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Figure 1: InfSplign is a training-free inference-time light-weight method that improves spatial
understanding of text-to-image (T2I) Stable Diffusion (SD) models.

A hypothesis is that the spatial limitations arise from the CLIP text encoder (Radford et al., 2021), com-
monly used in pretrained diffusion models, that fails to adequately encode spatial semantics (Gokhale
et al., 2022). Other studies have hypothesized that classifier-free guidance (CFG) might be entangling
multiple semantic factors in the text prompt (Wu & la Torre, 2024), and that “positive” prompt might
be too weak to enforce spatial alignment (Chang et al., 2024), proposing a contrastive setting with
both positive and negative prompts. Another line of research investigates the impact of the quantity
of training data exhibiting spatial relationships on model performance; for e.g., SPRIGHT (Chatterjee
et al., 2024b) generates new spatially-focused captions for four widely used datasets and finetunes the
model on them. However, fine-tuning introduces significant challenges, particularly regarding compu-
tational efficiency, scalability to large models, and the risk of degrading or interfering with the model’s
original pre-trained capabilities (e.g., through catastrophic forgetting or reduced generalization).

Instead of introducing additional training complexity or external data inputs, we explore a computa-
tionally efficient and scalable approach leveraging information already present within the diffusion
process. We focus on directly extracting spatial information from attention maps during the early
stages of reverse diffusion (generation) to guide the sampling process, and demonstrate that at-
tention maps can serve as proxies for spatial information. Building on this insight, we introduce
InfSplign, an inference-time method that partitions the U-Net decoder cross-attention maps into
three hierarchical levels: coarse, mid-level, and fine-grained. From the coarse and mid-level attentions,
we extract object centroids and variances, which are then used to define three complementary loss
terms. Together, these losses enforce spatial alignment and promote balanced object representations
in the final denoised outputs. At each denoising step, the compound loss is applied to refine the
predicted noise for the subsequent timestep, thereby guiding the sampling trajectory toward spatially
coherent images without altering the model parameters. Through extensive ablations and benchmark
evaluations, we demonstrate that this minimal but targeted intervention results in improving spatial
alignment of T2I models. Our core contributions can be summarized as follows:

- Spatial Alignment and Object Preservation. We introduce InfSplign, a training-free inference-
time approach that leverages U-Net attention maps to enforce object spatial alignment and preser-
vation. Our compound loss is comprised of three components. In addition to an object location loss
that enforces accurate spatial grounding, we incorporate an object presence loss, which increases
the certainty of object representation, and an object balance loss, which mitigates cross-object
interference in the finer layers of the U-Net decoder.

- Experimental Results. Extensive evaluations on spatial benchmarks, including VISOR and T2I-
CompBench, demonstrate that InfSplign improves spatial alignment by up to 24.81% and
21.91% over state-of-the-art inference-time methods, and even surpasses fine-tuning approaches
by 14.33% and 9.72%. Extensive ablation studies and qualitative results further corroborate the
effectiveness of our proposed approach.

2 RELATED WORK

Text-to-Image (T2I) Generation aims to produce visually realistic images that align with natural
language prompts. While earlier work focused on GANs (Isola et al., 2017; Li et al., 2022; Park et al.,
2019) and autoregressive models (Ramesh et al., 2021; Yu et al., 2022), diffusion models (Ho et al.,
2020; Rombach et al., 2022; Saharia et al., 2022) have become the dominant approach due to their
superior image fidelity, diversity, and stability (Liu et al., 2022). The integration of vision–language
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pretraining strategies such as CLIP (Radford et al., 2021) helped further enhance semantic align-
ment (Ramesh et al., 2022), yet recent studies show that even state-of-the-art models struggle with
accurately capturing fine-grained textual details, particularly spatial relationships (Huang et al., 2023;
Wang et al., 2025). To address this, expansion of network architectures or new training objectives
have been explored (Feng et al., 2023; Li et al., 2024), but these require costly retraining.

Spatial Understanding and Object Preservation in T2I Models. Efforts aimed at improving
spatial understanding primarily fall into fine-tuning-based or layout-conditioned methods. Fine-
tuning approaches enhance spatial reasoning by training models on spatially-aware datasets or using
auxiliary objectives, such as reward-based optimization (Zhang et al., 2024c; Chen et al., 2023; Zhang
et al., 2024b). SPRIGHT (Chatterjee et al., 2024b) presents a large scale vision-language dataset for
fine-tuning diffusion model for spatial data. CoMPaSS (Zhang et al., 2024a) advances state-of-the-art
spatial accuracy on common benchmarks by explicitly incorporating spatially labeled data during
training. However, these methods involve expensive retraining processes and risk destabilizing
the pretrained diffusion backbone. Another category explicitly injects spatial layout information
(sometimes through LLMs), such as bounding boxes, depth maps, or segmentation masks, to guide
generation (Sun et al., 2024; Chen et al., 2024b; Gong et al., 2024; Phung et al., 2024; Li et al., 2023a;
Lee & Sung, 2024; Nie et al., 2024; Lian et al., 2024; Derakhshani et al., 2023). However, these
methods depend on external layout inputs which may not always be available, thus limiting usability,
and require additional pre-processing and computational overhead.

Inference-Time Guidance for Diffusion Models circumvent costly retraining by directly manipulat-
ing diffusion processes during sampling. Methods like Attend & Excite (Chefer et al., 2023) address
the issue of missing objects by optimizing attention maps at inference time, but do not explicitly
enforce spatial accuracy. Structured Diffusion Guidance (Feng et al., 2023) manipulates attention
maps for improved layout control, yet lacks explicit modeling of spatial relationships described by
textual prompts. Composable Diffusion (Liu et al., 2022) interprets diffusion models as energy-based
compositions of individual concepts, improving object presence but providing minimal spatial control.
More targeted spatial inference-time methods, such as Prompt-to-Prompt (Hertz et al., 2023) and
DIVIDE&BIND (Li et al., 2023b), demonstrate the potential of directly modifying cross-attention
maps. Recent information-theoretic insights further motivate inference-time interventions: analysis
of mutual information between text prompts and images (Wang et al., 2025; Kong et al., 2024),
initial diffusion noise predetermines object layout generation (Ban et al., 2024), and sometimes
needs to be guided to produce a valid sample (Guo et al., 2024) according to the prompt. Diffusion
Self-Guidance (Epstein et al., 2023) develops a framework for image editing by controlling the
appearance, shape, size and location of objects but limits sample diversity. REVISION (Chatterjee
et al., 2024a) generates spatially accurate synthetic images as conditional input, reducing the task to
an image-to-image (I2I) pipeline. STORM (Han et al., 2025) introduces a distribution-based loss
using Optimal Transport (OT) (Villani et al., 2008) to adjust attention maps toward target distributions
fixed at specified spatial relationships. Unlike prior approaches which rely on external targets or
synthetic images, InfSplign directly regulates object preservation during sampling, ensuring
both alignment and completeness. To our knowledge, no prior inference-time method uses attention
variance as a principled measure of object certainty.

3 INFSPLIGN : INFERENCE-TIME SPATIAL ALIGNMENT
3.1 PRELIMINARIES

Diffusion Models provide an effective framework for sampling from complex data distributions
q(x) by learning to invert a forward diffusion process. The forward process is a Markov chain that
iteratively adds Gaussian noise to a clean data point x0 ∈ X over T steps: xt =

√
ᾱt x0+

√
1− ᾱt ϵt,

where ϵt ∼ N (0, I), and {βt}Tt=1 is a variance schedule with αt = 1− βt and ᾱt =
∏t

i=1 αi (Ho
et al., 2020; Nichol & Dhariwal, 2021). The reverse process defines a generative model pθ(xt−1|xt)
that approximates the true posterior q(xt−1|xt, x0). A neural network ϵθ(xt, t), typically a U-
Net (Ronneberger et al., 2015), is trained to predict the noise added during the forward process. At
inference time, a simplified update rule can be written as xt−1 ≈ xt − st ϵθ(xt, t), where st is a
step-size factor depending on the variance schedule. A conditioning variable y (in our case, text
prompts) can be incorporated, resulting in conditional predictions ϵθ(xt, t, y) (Zhang et al., 2023a;
Mo et al., 2023). Our work is built upon a text-conditioned latent diffusion model, Stable Diffusion
(Rombach et al., 2022), which operates in latent space zt produced by a pretrained autoencoder.
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Inference-Time Guidance of Diffusion Models. Diffusion models can be adapted to a wide range
of downstream tasks at inference time (without retraining or fine-tuning) through input conditioning
(e.g. text prompts) and external reward modes (e.g. CLIP-based scores), to influence the denoising
strategy to better align with desired outcomes. Classifier guidance (Dhariwal & Nichol, 2021) steers
generation using gradients from a pretrained image classifier, whereas classifier-free guidance (Ho
et al., 2021) eliminates the need for an external classifier by training the model to denoise both with
and without conditioning, and then interpolating between the two at inference time. Diffusion models
can also be interpreted through their score-based formulation, where the model estimates the gradient
of the log probability density, ∇zt logp(zt, t). This gives us an intuition about the direction to move
in to increase the log likelihood of our data sample based on some conditional information. While
the denoising formulation, ϵθ(zt, t), gives us a prediction of the noise that was added by the forward
diffusion model at each timestep, the inference-time classifier-free guidance (CFG) approach (Ho
et al., 2021) is commonly adopted to guide a conditional reverse diffusion process toward a desired
conditioning signal (a text prompt y in our T2I setting). The score-based formulation of CFG is
comprised of two conditional and unconditional terms:

∇zt log p(zt|y, t) ≈ ∇zt log p(zt, t) + γ(∇zt log p(zt|y, t)−∇xt
log p(zt, t)), (1)

where γ is the guidance strength. The equivalent noise prediction form at step t can be given by:

ϵt = ϵθ(zt; t) + γ(ϵθ(zt; t, y)− ϵθ(zt; t)). (2)

3.2 A DEEPER DIVE INTO INFSPLIGN
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Figure 2: Overview of our approach: At each
timestep, InfSplign extracts object-token at-
tention maps from coarse and mid-level attention
layers, computes centroids c1 and c2, and applies
Lspatial on their relative positions. Coarse attention
yieldsLpresence to preserve all objects and mid-level
attention provides Lbalance to prevent object dom-
inance. The gradient of LInfSplign adjusts the
noise before the next denoising step.

Our work is focused on inference-time guid-
ance, and serves as a lightweight, plug-and-play
enhancement to diffusion models. To tackle
with data and caption limitations, we introduce
a guidance signal/loss to quantify the misalign-
ment between the generated latent attention
maps and the spatial cues in the prompt, as
well as to ensure a balanced representation of
all objects throughout the reverse diffusion pro-
cess. The idea is to actively nudge the genera-
tion process towards generating more spatially-
cognizant images. Fig. 2 gives a high-level
overview of the mechanics of InfSplign.
The input to the system is a user-specified text
prompt, e.g. "a potted plant to the right of a
clock", and the noisy latent embedding zt pro-
duced at timestep t of the reverse diffusion pro-
cess. We represent the prompt as a structured
triplet - ⟨A,R,B⟩, where A and B are the ob-
ject tokens and R ∈ R, where R is the set
of spatial relationships, e.g. A="potted plant",
B=“clock” and R=“to the right of”.

To guide the denoising process, we extract the
cross-attention maps corresponding to the object
tokens A and B at timestep t. We divide the
attention maps into three abstraction levels: (i)
coarse attention: where presence of the objects
is shaped; (ii) mid-level attention: at which we
observed objects might dominate each other in
magnitude as such impacting their representation in the final outcome; (iii) fine-grained attention:
where nuances and high-resolution subtleties of the final image appear. We focus on the first two
levels (coarse and mid), where spatial cognizance of the model is formed. As we elaborate later on,
our loss is comprised of three terms: spatial alignment loss (Lspatial), object presence loss (Lpresence),
representation balance loss (Lbalance) constituting our proposed total loss LInfSplign. Both coarse
and mid-level attention maps are used to estimate spatial alignment loss. We utilize the coarse-level
attention layers for the presence loss to minimize the variance of each object’s attention map, thus
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ensuring that all objects will be maintained through the reverse diffusion steps. We use the mid-level
attention layers in our representation balance loss to avoid any of the objects over-shadowing the
other one from the magnitude perspective. The gradient of LInfSplign with respect to (w.r.t.) the
latent zt provides a guidance signal that modifies the predicted noise such that the latent is shifted in
a direction leading to a more spatially aligned image:

ϵt ← ϵθ(zt; t) + γ(ϵθ(zt; t, y)− ϵθ(zt; t)) + η∇ztLInfSplign = ϵt +∇ztLInfSplign, (3)
where η is a weight parameter acting similar to guidance strength (γ), balancing the magnitude
of the last two terms. This updated noise prediction is used to compute the denoised latent zt−1

guiding the generation towards spatially cognizant images. Thus, the final update direction combines
both semantic (via CFG) and overall spatial alignment (imposed via LInfSplign). This procedure is
applied iteratively over all reverse diffusion timesteps.

From Attention to Centroids and Variances. It is demonstrated in (Hertz et al., 2023) that cross-
attention layers encode rich information about the spatial arrangement of objects in generated images.
Building on this insight, we extract attention maps from coarse- and mid-level decoder layers of the
U-Net, which most reliably capture object structure and spatial location. We estimate the position
of each object by computing the centroid of its attention distribution. The centroid cA of token A is
computed as a weighted average over the spatial coordinates of the latent zt, using the attention layer
l weights of token A (denoted by A(l)

t ) as coefficients and normalized by the total attention mass:

c
(l)
A = (xA, yA) =

(∑
h,wA

(l)
t [h,w] · xw∑

h,wA
(l)
t [h,w]

,

∑
h,wA

(l)
t [h,w] · yh∑

h,wA
(l)
t [h,w]

)
, (4)

where h ∈ [H] and w ∈ [W ] scan over the height and width of the corresponding attention map of
size H ×W , where the origin, (1, 1), is assumed to be on the top-left of the tensor. Note that since
the centroids are derived from U-Net cross-attention maps, which themselves depend on the latent
representation zt, the resulting loss function in Eq. 8 remains differentiable w.r.t. zt. Additionally,
we incorporate variance as a measure of uncertainty in the attention maps. Low variance indicates
high attention values close to the centroid and low attention away from it, thus encouraging distinct
object representations, while high variance suggests weak attention, risking object omission. So, we
compute the variance σ

2(l)
A of the attention layer l distribution of token A by weighting the squared

distance of each pixel from the centroid cA (in Eq. 4) by its attention value, normalized by the total
attention mass:

σ
2(l)
A =

(∑
h,wA

(l)
t [h,w] · ∥(xw, yh)− c

(l)
A ∥

2∑
h,wA

(l)
t [h,w]

)
. (5)

Spatial Alignment Loss. The spatial relationship R between two objects A and B is expressed as a
difference between their centroids, denoted as ∆, and is computed along the appropriate axis as:

∆ =

{
xB − xA for "left", xA − xB for "right",
yB − yA for "above", yA − yB for "below", ∥xA − xB∥ for "near".

(6)

This captures the directional alignment between the two objects and signals adherence to the specified
spatial relation. Building on this, we define the spatial loss function as:

Lspatial = fspatial(α(m−∆)), (7)
where fspatial can be any function from the ReLU family of losses, m is a distance margin indicating
the acceptable minimum distance between the objects’ centroids, and α is a scaling factor controlling
the steepness of the loss. Notably, α sharpens the slope around the decision boundary, determining
how strictly the model is penalized. Lspatial results in a small penalty if the objects are placed correctly
w.r.t. the target spatial relation, e.g. if S = “to the right of”, xA−xB > m,Lspatial → 0. The loss is
high when objects violate the spatial relation, or are too close to each other, or ∆ < m.

Object Presence Loss. A prerequisite of spatial alignment is to ensure both objects remain visible
in the final denoised image. We approach this problem from a variance-based perspective and
interpret the attention weights as an energy distribution over the spatial location. As illustrated in
Fig. 3, attention energy for a token gradually concentrates into a single region during the diffusion
process. This indicates that uncertainty in token localization decreases over time. We hypothesize that
insufficient certainty in an object’s attention distribution leads to its omission or weak representation
in the final image. To address this, we introduce an object presence loss, Lpresence = σ

2(l)
A + σ

2(l)
B ,

that minimizes the variance of each object’s attention map in layer l.
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Figure 3: Attention energy across U-Net decoder cross-attention
layers. Coarse layers encode global layout, so we keep attention
concentrated. Mid-level layers capture details so we balance object
energies to prevent overshadowing.

Representation Balance Loss.
Another common failure case
is the omission of an object
due to a weaker representa-
tion in the attention map, e.g.
σA ≫ σB causes object A to
dominate object B. At coarse-
level the attention layers en-
code global information, so,
this imbalance is less problem-
atic. However, the mid-level
attention layers might suppress
the weaker object. To mitigate
this, we enforce that both ob-
jects maintain comparable lev-
els of uncertainty. As shown
in Fig. 3, these coarse attention
maps often capture clusters of
fine-grained details. In such layers, simply minimizing variance would undesirably restrict the
model’s ability to explore object details. Instead, we ensure parity of uncertainty across objects
by introducing an object balance loss, Lbalance = |σ2(l)

A − σ
2(l)
B |, which encourages both objects to

have a similar degree of dispersion in their attention maps in layer l. This prevents one object from
overshadowing the other, ensuring a balanced representation.

We arrive at our proposed spatial alignment loss (coined as LInfSplign) by jointly enforcing correct
placement, object preservation and a balanced representation of objects, with hyperparameters λs, λp,
and λb controlling the relative strength of each component:

LInfSplign = λsLspatial + λpLpresence + λbLbalance. (8)

Algorithm 1: Denoising with InfSplign
Require: P = ⟨A,R,B⟩, zt, SD(.), η

1 At,Bt, ϵt ← SD(zt,P)
2 cA, cB ← Centroid(At,Bt) using Eq. 4
3 σ2

A, σ
2
B ← Variance(At,Bt, cA, cB) using Eq. 5

4 ∆← Difference(cA, cB , R) using Eq. 6
5 Lspatial ← fspatial(∆, α,m) using Eq. 7
6 Lpresence ← σ2

A + σ2
B , Lbalance ← |σ2

A − σ2
B |

7 LInfSplign = λsLspatial + λpLpresence + λbLbalance
8 ϵt ← ϵt + η · ∇ztLInfSplign using Eq. 3
9 zt−1 ← zt − st · ϵt

Return: zt−1

Unlike Attend-and-Excite (Chefer et al., 2023),
which implicitly enforces object presence by
maximizing attention energy (often at the ex-
pense of other tokens) or STORM (Han et al.,
2025), which fixes the object locations (unnec-
essary overparameterization) to achieve adher-
ence with the spatial cues in the text prompt,
our proposed preserves generation diversity by
penalizing misplaced or omitted objects through
gradients computed w.r.t the latent zt during
sampling. The pseudocode for a single reverse
diffision step under InfSplign is in Alg. 1.

4 EXPERIMENTS

We present a comprehensive evaluation showing the efficacy of our approach against state-of-the-art
baselines. Next, we conduct detailed ablation studies to assess the impact of the key (hyper)parameters.
Finally, we showcase qualitative results highlighting the superior performance of InfSplign.

Implementation Details. We apply InfSplign on top of SD v1.4 and v2.1 models (Rombach
et al., 2022) for 50 inference steps, which is standard protocol adopted by prior work (Han et al.,
2025; Chatterjee et al., 2024a). The hyperparameters α and margin are set to α = 1.5, m = 0.25
(SD v1.4), m = 0.5 (SD v2.1) respectively, and fspatial(.) to GeLU (Hendrycks & Gimpel, 2016),
CFG guidance scale γ = 7.5, and the guidance weight for our loss is set to η = 1000 to balance
magnitudes. For coarse attention and mid-level attention, we use the cross-attention layers 1−3
of the first and second blocks of the U-Net decoder, respectively. The Lpresence loss is computed
from the attention maps of the first block, while Lbalance is derived from those of the second block.
Hyperparameters are selected via grid search (see Appendix B), yielding λs=0.5, λp=1, λb=0.5 for
SD v1.4 and λs=0.5, λp=1, λb=1.0 for SD v2.1. We use the same random seeds for each benchmark
as defined in the original papers.
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Table 1: Performance comparison between different models on VISOR (%) and Object Accuracy
(OA) (%) metrics, based on Stable Diffusion 1.4, and 2.1. ♣ reported from (Han et al., 2025)

Model Venue Fine-
tuning

Extra
Input OA (%) VISOR (%)

uncond cond 1 2 3 4
Stable Diffusion 1.4
SD 1.4 (Rombach et al., 2022) ✗ ✗ 29.86 18.81 62.98 46.60 20.11 6.89 1.63
SD 1.4 + CDM (Liu et al., 2022) ECCV22 ✓ ✗ 23.27 14.99 64.41 39.44 14.56 4.84 1.12
GLIDE (Nichol et al., 2022) ICML22 ✓ ✗ 3.36 1.98 59.06 6.72 1.02 0.17 0.03
GLIDE + CDM (Liu et al., 2022) ECCV22 ✓ ✗ 10.17 6.43 63.21 20.07 4.69 0.83 0.11
Control-GPT (Zhang et al., 2023b) arXiv23 ✓ ✓ 48.33 44.17 65.97 69.80 51.20 35.67 20.48
CoMPaSS (Zhang et al., 2024a) ICCV25 ✓ ✗ 65.56 57.41 87.58 83.23 67.53 49.99 28.91
Structure Diffusion (Feng et al., 2023) ICLR23 ✗ ✗ 28.65 17.87 62.36 44.70 18.73 6.57 1.46
Attend-and-Excite (Chefer et al., 2023) SIGGRAPH23 ✗ ✗ 42.07 25.75 61.21 49.29 19.33 4.56 0.08
Divide-and-Bind♣ (Li et al., 2023b) BMVC24 ✗ ✗ 46.03 31.62 68.70 64.72 37.82 18.64 5.30
INITNO♣ (Guo et al., 2024) CVPR24 ✗ ✗ 60.40 35.18 58.24 71.20 42.71 20.09 6.72
Layout Guidance (Chen et al., 2024b) WACV24 ✗ ✓ 40.01 38.80 95.95 - - - -
CONFORM♣ (Meral et al., 2024) CVPR24 ✗ ✗ 60.73 38.48 62.33 73.01 45.82 25.57 9.52
REVISION (Chatterjee et al., 2024a) ECCV24 ✗ ✓ 53.96 52.71 97.69 77.79 61.02 44.90 27.15
STORM (Han et al., 2025) CVPR25 ✗ ✗ 61.01 57.58 94.39 85.93 69.71 49.01 25.70
InfSplign (Ours) ✗ ✗ 67.36 66.54 98.79 90.48 77.79 61.37 36.54
Improvement (Inference Time) +6.35 +8.96 +1.10 +4.55 +8.08 +12.36 +9.39
Improvement (All) +1.80 +8.96 +1.10 +4.55 +8.08 +11.38 +7.63

Stable Diffusion 2.1
SD 2.1 (Rombach et al., 2022) - ✗ 47.83 30.25 63.24 64.42 35.74 16.13 4.70
SPRIGHT (Chatterjee et al., 2024b) ECCV24 ✓ ✗ 60.68 42.23 71.24 71.78 51.88 33.09 16.15
REVISION (Chatterjee et al., 2024a) ECCV24 ✗ ✓ 48.26 47.11 97.61 76.07 55.75 37.10 19.53
STORM (Han et al., 2025) CVPR25 ✗ ✗ 62.55 59.35 94.88 88.34 71.75 52.03 25.42
CoMPaSS (Zhang et al., 2024a) ICCV25 ✓ ✗ 68.22 62.06 90.96 85.02 71.29 56.03 35.90
InfSplign (Ours) ✗ ✗ 77.28 76.26 98.68 94.65 86.66 73.48 50.23
Improvement (Inference Time) +14.73 +16.91 +1.07 +6.31 +14.91 +21.45 +24.81
Improvement (All) +9.06 +14.20 +1.07 +6.31 +14.91 +17.45 +14.33

Baselines and Benchmarks. We compare our approach with the most relevant and recent baselines,
both inference-time (Han et al., 2025; Chatterjee et al., 2024a; Chefer et al., 2023; Feng et al., 2023;
Li et al., 2023b; Guo et al., 2024; Meral et al., 2024) and fine-tuning (Chatterjee et al., 2024b; Zhang
et al., 2024a; Liu et al., 2022). As InfSplign is an inference-time method, a fair comparison would
be against inference-time approaches, yet InfSplign even outperforms fine-tuning approaches.
We evaluate our performance on the two most commonly adopted benchmarks assessing spatial
understanding of diffusion models, namely VISOR (Gokhale et al., 2022) and T2I-CompBench
(Huang et al., 2023). Notably, VISOR is focused on evaluating how well T2I models generate correct
spatial relationships described in the text prompt, whereas T2I-CompBench assesses T2I models on
broader compositional metrics such as attribute binding, numeracy, and complex compositions, with
a module dedicated to object relations pertinent to our evaluation angle.

Quantitative Evaluation: VISOR. Tab. 1 summarizes the VISOR scores of our method compared
to relevant approaches in T2I space. As can be seen, InfSplign consistently outperforms both
fine-tuning and inference-time methods across all baselines by a significant margin. On SD v1.4,
InfSplign surpasses the best of inference-time methods (such as CONFORM, INITNO, and
STORM), as well as fine-tuning-based methods (e.g., SPRIGHT and CoMPaSS). We achieve the
highest score across all metrics. Most notably on object accuracy (OA), we outperform the best of
inference-time and fine-tuning based competitors by 6.35% and 1.8%, respectively. The same holds
for the most challenging task of the benchmark, i.e. "unconditional" score, with 8.96% and 9.13%,
and VISOR-4, with 9.39% and 7.63%, respectively. This demonstrates that InfSplign can surpass
the performance of models that require additional input and/or retraining. These results indicate
that when both objects are successfully generated, our method ensures their spatial relationship is
correct. This trend continues to further improve with the stronger backbones SD v2.1 consistently.
The margin is significantly larger, where we report up to 24.81% and 14.33% score improvement
on the challenging VISOR-4 task compared to the state-of-the-art inference-time and fine-tuning
baselines, STORM and ComPaSS, respectively. This highlights the consistency of our method in
generating 4 out of 4 spatially correct images across all test prompts. One key factor behind these
substantial improvements is the higher quality of attention maps with stronger backbones, as our
method relies on attention maps to guide the denoising process.
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Table 2: Performance summary on T2I-
CompBench on SD v1.4 and SD v2.1 backbone.
FT: fine-tuning, EI: extra inputs (EI). Best results
are in bold.

Method Venue FT EI SD1.4 SD2.1
Baseline (2022) - - 0.1246 0.1342
Comp. Diff. (2022) ECCV22 ✓ ✗ - 0.0800
Struc. Diff. (2023) ICLR23 ✗ ✗ - 0.1386
Att.&Ex. (2023) SGRAPH23 ✗ ✗ - 0.1455
SPRIGHT (2024b) ECCV24 ✓ ✗ - 0.2133
Revision (2024a) ECCV24 ✗ ✓ 0.3340 -
CoMPaSS (2024a) ICCV25 ✓ ✗ 0.3400 0.3200
STORM (2025) CVPR25 ✗ ✗ 0.1613 0.1981

InfSplign (Ours) ✗ ✗ 0.3771 0.4172
Improvement (Inference Time) +4.31% +21.91%
Improvement (All) +3.71% +9.72%

Quantitative Evaluation: T2I-CompBench.
Tab. 2 summarizes our performance compared
to the state-of-the-art baselines both inference-
time and fine-tuning on SD v1.4 and v2.1. Here
again, InfSplign consistently outperforms
competitors by a margin. On SD v1.4, it im-
proves over the leading inference-time method
REVISION by +4.31%, while REVISION re-
quires additional inputs. Therefore, a more
direct comparison is with STORM, in which
InfSplign offers a significant +21.58% mar-
gin. Furthermore, our method even surpasses
the strongest fine-tuning baseline in this setting,
CoMPaSS, by +3.71%. Following the same
trend as in Tab. 1, with the stronger backbone SD
v2.1 our improvement margin increases signif-
icantly to +21.91% and +9.72% respectively.

Table 3: The impact of InfSplign’s loss terms
Lspatial (Ls), Lpresence (Lp) and Lbalance (Lb) on VI-
SOR benchmark across two backbones.

Ls Lp Lb OA (%) VISOR (%)
uncond cond 1 2 3 4

Stable Diffusion 1.4
✗ ✗ ✗ 32.74 20.38 62.25 49.14 22.07 8.30 2.01
✗ ✗ ✓ 33.47 21.10 63.03 50.34 23.26 8.79 1.99
✗ ✓ ✗ 53.54 31.78 59.36 64.93 37.75 18.35 6.09
✗ ✓ ✓ 54.35 32.46 59.73 65.93 38.72 18.84 6.37
✓ ✗ ✗ 59.33 58.78 99.07 87.05 70.83 50.60 26.65
✓ ✗ ✓ 60.09 59.55 99.09 87.54 71.83 51.69 27.13
✓ ✓ ✗ 66.44 65.63 98.78 89.69 77.18 60.01 35.62
✓ ✓ ✓ 67.36 66.54 98.79 90.48 77.79 61.37 36.54
Stable Diffusion 2.1
✗ ✗ ✗ 44.37 26.91 60.66 59.30 30.84 13.66 3.84
✗ ✗ ✓ 43.32 27.21 62.82 60.56 31.31 13.18 3.79
✗ ✓ ✗ 63.09 37.17 58.91 71.65 44.98 23.38 8.67
✗ ✓ ✓ 62.85 37.69 59.97 72.98 45.92 23.41 8.45
✓ ✗ ✗ 70.58 69.70 98.76 92.65 81.53 65.10 39.53
✓ ✗ ✓ 71.12 70.18 98.69 92.90 82.20 65.76 39.86
✓ ✓ ✗ 76.20 75.21 98.71 94.12 85.81 72.33 48.59
✓ ✓ ✓ 77.28 76.26 98.68 94.65 86.66 73.48 50.23

Ablation Studies. To better investigate the im-
pact of the main (hyper)parameters and ana-
lyze the behavior of our loss functions, we con-
duct extensive studies. For this purpose, we
use a subset of VISOR, which we refer to as
V ISOR3160, in which instead of all 4 spatial
relations R between two objects A and B, we
randomly sample a single relation. This results
in 3160 prompts that still cover all objects while
keeping the dataset size manageable for abla-
tions. Firstly, we perform a grid search over
the key hyperparameters α, m, λs, λp, and λb

for SD v1.4 and v2.1. The results of this exten-
sive study are summarized in Tab. 4 and Tab. 5,
in Appendix B. The optimal values obtained
from this study are subsequently used for the ex-
periments on the complete VISOR benchmark
reported earlier in Tab. 1 and Tab. 3, and the
T2I-CompBench results in Tab. 2.

The effect of individual LInfSplign terms. Tab. 3 investigates the effect of the three loss terms across
two backbones and demonstrates that all components contribute to improving baseline performance
on both OA and VISOR metrics. Lspatial has the strongest impact on OA, and Lpresence and Lbalance
come next in terms of impact in that order, incrementally improving the performance. As such,
each and every component of the loss contributes to the overall strong margin beyond base SD v1.4
(+34.62%). Combining Lspatial and Lpresence seems to have a stronger impact than Lbalance replacing
the latter. This is expected as Lpresence directly impacts OA, and thus the overall performance. Same
trend applies to the other VISOR metrics as well as the stronger backbone SD v2.1.

Qualitative Results. Fig. 4 and Fig. 5 shed light on the actual generation capabilities of InfSplign.
In Fig. 4 not only does the base SD fail to recognize the meaning of the spatial relationship from
the prompt, but it also fails to generate both objects in unnatural object combinations. InfSplign
significantly improves upon these limitations and synthesizes spatially-algined images even in atypical
object settings. In Fig. 5, we illustrate the generated samples by the base SD and competing inference-
time baselines INITNO, CONFORM, and STORM. The results across both prompts corroborate that
InfSplign honors spatial information the best among the competitors. Notably, the quality of
generated images and subtle nuances therein can be further improved for all baselines with a stronger
diffusion backbones such as SD v2.1 and SDXL. Additional examples can be found in Fig. C.
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Figure 4: Qualitative comparison with SD across different VISOR prompts.
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Figure 5: Comparison of spatial understanding across T2I diffusion models. InfSplign consis-
tently aligns objects according to the target relation better than SD v1.4 (Rombach et al., 2022),
INITNO (Guo et al., 2024), CONFORM (Meral et al., 2024) and STORM (Han et al., 2025).

5 CONCLUDING REMARKS
In this work, we tackle the challenge of spatial understanding in T2I diffusion models, a persistent lim-
itation that undermines accurate compositional generation. We introduce InfSplign, a lightweight
yet powerful inference-time method that improves spatial alignment and object preservation without
requiring retraining or external supervision. Our approach applies a spatial loss during sampling,
guided by attention maps to estimate object locations and variances. This not only enforces spatial
relations specified in the prompt but also preserves object fidelity by regulating attention map variance.
Crucially, InfSplign operates without modifying model weights or depending on auxiliary inputs
such as bounding boxes or segmentation masks, making it fully modular and applicable to any diffu-
sion model. Despite its simplicity, it surpasses fine-tuning-based methods and prior inference-time
strategies aimed at spatial consistency, underscoring the promise of inference-time optimization for
controllable and reliable generation.

Limitations. The base diffusion model often struggles to generate uncommon object combinations
posing a challenge to any inference-time approach. For instance, VISOR includes a wide range of
object pairs, many of which rarely co-occur in natural scenes. While this setup is valuable for testing
generalization in spatial reasoning, it also makes the task more difficult, particularly when one or both
objects fail to appear in the generated image. In such cases, InfSplign (and other inference-time
baselines) cannot always effectively correct the spatial alignment, as the prerequisite object presence
is impaired. As a result, object accuracy becomes the bottleneck in such scenarios.

Large Language Models Usage. We used ChatGPT (OpenAI) exclusively for minor sentence
polishing, grammar improvements, and occasional formatting, as well as for assistance with resolving
package dependencies.
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A BENCHMARKS AND METRICS

A.1 VISOR

VISOR (Gokhale et al., 2022) uses 80 object categories from the MS-COCO data set and defines
unordered pairs of all objects, resulting in 6320 object combinations. Each object pair is matching
with all 4 spatial relationships - "to the left of", "to the right of", "above" and "below". This gives us
a total of 25280 spatial prompts. The VISOR dataset includes 6320 more prompts for each of the
object pairs and the concept conjunction "and". Finally, it includes 80 more one-object prompts for
all 80 COCO categories. In total, this results in 31680 text prompts. The VISOR benchmark defines
the VISOR 1-4 scores, hence 4 images are generated per prompt. All VISOR images are generated
with seed 42, ensuring that the images across prompts start from the same initial noise. We followed
these guidelines in the evaluation of InfSplign.

The VISOR benchmark uses the OWL-ViT object detector to localize objects classes which are
matched to the objects from the prompt. Then using a simple set of rules it predicts the spatial
relationship and compares it with the ground truth relationship to determine if the image aligns with
the spatial information in the prompt. The benchmark defines the following set of metrics: OA
(object accuracy) indicating the number of images in which both objects were generated and detected,
VISORcond estimates the conditional probability of how many of the images adhere to the spatial
relationship given that both objects are generated correctly, VISOR (or VISORuncond) gives a ratio of
the number of images generated with a correct spatial relationship independent of the two objects
being generated correctly. The VISOR1 to VISORN scores define the percentage of images out of N
that have the correct spatial relationship between the objects present. All VISOR metrics are reported
as a percentage.

A.2 T2I-COMPBENCH

T2I-CompBench (Huang et al., 2023) is a for compositional T2I generation benchmark. It looks
at attribute binding, object relationships and complex compositions. For our research, we focus
on spatial alignment, hence focus on the 2D spatial relationships subcategory. The benchmark
offers 1000 spatial prompts, but only 300 of them are used for testing since the authors present a
fine-tuning approach and use the remaining 700 prompts for training. T2I-CompBench includes 7
spatial relationships. The first 4 relationships are directional and consistent with VISOR, while the
last 3 are relative, requiring close proximity of objects: "on the left of", "on the right of", "on the top
of", "on the bottom of", "on the side of", "next to", "near". The objects are chosen from 3 categories:
persons, animals and objects. In the benchmark the 10 images per prompt are generated with 10
different random seeds: 42...51, again ensuring that across prompts, the images start with the same
reproducible initial noise.

T2I-CompBench uses the UniDet object detector to predict the location of each generated object. The
centers of the objects are calculated from the detected bounding boxes. The metric estimates whether
the spatial relationship is respected between both objects by comparing the centroids, measuring in
which axis the objects are further apart, and the intersection-over-union (IoU), to avoid object overlap.
To address the correctness of the 3 relative spatial relationships, the metric is calculated a weighted
combination of confidence score for each of the two detected objects and the positional score.
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B EXTENDED ABLATION STUDIES

To understand the effect of the interplay of hyperparameters on the spatial alignment score, a
gridsearch for the parameters α, m, λs, λp, λb has been conducted. All experiments have been
conducted on the V ISOR3160 subset, to keep experiments computationally feasible. The selected
hyperparameters for SD v1.4 (Tab. 4) are: α = 1.5, m = 0.25, λs=0.5, λp=1, λb=0.5. Alternatively
the selected hyperparameters for SD v2.1 (Tab. 5) are: α = 1.5, m = 0.5, λs=0.5, λp=1, λb=1.0.

Table 4: Grid search results for hyperparameter optimization for SD v1.4 on V ISOR3160

α m λs λp λb OA VISORuncond VISORcond VISOR1 VISOR2 VISOR3 VISOR4

0.5 0.25 0.5 0.5 0.5 57.08 53.27 93.32 81.87 63.99 44.84 22.37
0.5 0.25 0.5 0.5 1.0 58.35 54.45 93.32 83.07 65.29 45.63 23.83
0.5 0.25 0.5 1.0 0.5 58.26 51.97 89.20 81.23 62.53 42.72 21.39
0.5 0.25 0.5 1.0 1.0 58.92 52.46 89.04 81.71 63.45 43.20 21.49
0.5 0.25 1.0 0.5 0.5 63.01 61.67 97.87 87.22 72.85 55.89 30.73
0.5 0.25 1.0 0.5 1.0 63.54 62.26 97.97 87.79 73.80 55.89 31.55
0.5 0.25 1.0 1.0 0.5 63.68 61.56 96.67 86.93 73.35 54.65 31.30
0.5 0.25 1.0 1.0 1.0 63.90 61.95 96.94 87.53 73.54 55.19 31.52
0.5 0.50 0.5 0.5 0.5 58.68 55.27 94.19 83.23 66.36 46.46 25.03
0.5 0.50 0.5 0.5 1.0 59.04 55.97 94.80 84.21 66.74 47.75 25.16
0.5 0.50 0.5 1.0 0.5 59.03 53.75 91.06 82.06 64.72 45.60 22.63
0.5 0.50 0.5 1.0 1.0 59.98 54.88 91.51 83.86 65.73 46.11 23.83
0.5 0.50 1.0 0.5 0.5 64.72 63.65 98.34 88.61 75.48 56.93 33.58
0.5 0.50 1.0 0.5 1.0 65.08 64.00 98.35 89.37 75.44 58.07 33.13
0.5 0.50 1.0 1.0 0.5 64.42 62.96 97.73 87.22 73.89 57.63 33.10
0.5 0.50 1.0 1.0 1.0 65.12 63.58 97.63 87.63 74.56 58.29 33.83
0.5 0.75 0.5 0.5 0.5 59.50 56.66 95.23 84.46 67.60 48.73 25.85
0.5 0.75 0.5 0.5 1.0 60.32 57.62 95.53 85.29 69.27 49.08 26.84
0.5 0.75 0.5 1.0 0.5 59.88 55.57 92.80 83.29 66.23 47.88 24.87
0.5 0.75 0.5 1.0 1.0 60.83 56.80 93.38 84.40 68.13 48.64 26.04
0.5 0.75 1.0 0.5 0.5 65.23 64.45 98.81 88.96 76.80 58.73 33.32
0.5 0.75 1.0 0.5 1.0 65.92 65.19 98.90 89.62 77.37 59.46 34.30
0.5 0.75 1.0 1.0 0.5 65.77 64.58 98.20 88.96 75.92 58.80 34.65
0.5 0.75 1.0 1.0 1.0 65.32 64.12 98.16 88.32 75.35 58.32 34.49
1.0 0.25 0.5 0.5 0.5 64.28 63.20 98.31 87.91 74.72 57.15 33.01
1.0 0.25 0.5 0.5 1.0 64.57 63.42 98.22 88.73 74.97 57.31 32.66
1.0 0.25 0.5 1.0 0.5 64.72 63.24 97.70 87.91 74.68 57.06 33.29
1.0 0.25 0.5 1.0 1.0 65.02 63.51 97.68 88.04 74.18 57.72 34.11
1.0 0.25 1.0 0.5 0.5 65.97 65.44 99.21 90.73 78.01 59.81 33.23
1.0 0.25 1.0 0.5 1.0 66.46 65.94 99.23 90.98 78.13 60.85 33.80
1.0 0.25 1.0 1.0 0.5 67.74 67.24 99.26 90.63 78.96 62.18 37.18
1.0 0.25 1.0 1.0 1.0 67.90 67.40 99.25 91.33 79.30 62.09 36.87
1.0 0.50 0.5 0.5 0.5 65.64 64.87 98.82 89.65 76.52 59.24 34.05
1.0 0.50 0.5 0.5 1.0 66.38 65.62 98.86 90.25 77.69 59.65 34.87
1.0 0.50 0.5 1.0 0.5 66.35 65.30 98.41 89.15 76.71 59.78 35.57
1.0 0.50 0.5 1.0 1.0 66.37 65.25 98.32 89.75 76.01 59.65 35.60
1.0 0.50 1.0 0.5 0.5 63.67 63.26 99.35 90.03 75.76 56.39 30.85
1.0 0.50 1.0 0.5 1.0 63.70 63.20 99.22 90.19 75.70 56.49 30.41
1.0 0.50 1.0 1.0 0.5 65.88 65.37 99.23 91.01 77.88 59.18 33.42
1.0 0.50 1.0 1.0 1.0 66.60 66.17 99.36 91.39 78.83 59.75 34.72
1.0 0.75 0.5 0.5 0.5 66.18 65.51 99.00 90.29 77.79 60.22 33.77
1.0 0.75 0.5 0.5 1.0 66.14 65.51 99.04 90.85 78.58 60.06 32.53
1.0 0.75 0.5 1.0 0.5 66.44 65.56 98.68 90.03 77.15 60.67 34.40
1.0 0.75 0.5 1.0 1.0 67.62 66.76 98.73 90.29 78.26 61.99 36.49
1.0 0.75 1.0 0.5 0.5 61.05 60.64 99.33 88.29 73.29 53.01 27.98
1.0 0.75 1.0 0.5 1.0 61.78 61.41 99.40 90.10 74.43 53.10 28.01
1.0 0.75 1.0 1.0 0.5 63.39 63.02 99.43 90.41 75.67 55.85 30.16
1.0 0.75 1.0 1.0 1.0 63.70 63.30 99.37 90.63 76.20 55.98 30.38
1.5 0.25 0.5 0.5 0.5 66.46 65.95 99.23 90.06 78.17 60.70 34.87
1.5 0.25 0.5 0.5 1.0 66.70 66.08 99.06 90.41 79.30 60.38 34.21
1.5 0.25 0.5 1.0 0.5 67.96 67.26 98.96 90.38 78.54 62.79 37.31
1.5 0.25 0.5 1.0 1.0 67.94 67.20 98.92 90.41 78.92 61.77 37.69
1.5 0.25 1.0 0.5 0.5 61.61 61.16 99.26 89.49 73.54 53.51 28.07
1.5 0.25 1.0 0.5 1.0 62.38 61.96 99.33 89.40 75.76 54.53 28.17
1.5 0.25 1.0 1.0 0.5 64.11 63.73 99.42 90.29 76.71 57.34 30.60
1.5 0.25 1.0 1.0 1.0 64.80 64.35 99.30 90.89 77.44 57.56 31.52
1.5 0.50 0.5 0.5 0.5 64.98 64.53 99.32 90.19 77.15 58.39 32.41
1.5 0.50 0.5 0.5 1.0 65.55 65.08 99.29 90.98 77.72 59.30 32.31
1.5 0.50 0.5 1.0 0.5 67.56 66.92 99.05 91.30 78.89 60.92 36.55
1.5 0.50 0.5 1.0 1.0 67.56 67.08 99.30 91.49 79.56 61.77 35.51
1.5 0.50 1.0 0.5 0.5 53.77 53.46 99.43 84.78 65.29 43.29 20.48
1.5 0.50 1.0 0.5 1.0 54.08 53.72 99.33 85.32 66.14 43.54 19.87
1.5 0.50 1.0 1.0 0.5 56.95 56.65 99.47 87.44 68.86 47.28 23.01
1.5 0.50 1.0 1.0 1.0 57.29 56.95 99.42 87.47 69.56 46.90 23.89
1.5 0.75 0.5 0.5 0.5 62.89 62.43 99.27 89.65 74.78 55.92 29.37
1.5 0.75 0.5 0.5 1.0 63.20 62.82 99.39 90.16 75.73 55.67 29.72
1.5 0.75 0.5 1.0 0.5 65.61 65.13 99.26 90.38 77.41 58.83 33.89
1.5 0.75 0.5 1.0 1.0 65.51 65.06 99.31 90.29 77.88 59.18 32.88
1.5 0.75 1.0 0.5 0.5 47.70 47.40 99.37 80.85 59.02 35.38 14.34
1.5 0.75 1.0 0.5 1.0 47.66 47.38 99.42 80.98 58.10 35.67 14.78
1.5 0.75 1.0 1.0 0.5 49.64 49.38 99.49 83.20 60.76 37.60 15.98
1.5 0.75 1.0 1.0 1.0 49.68 49.41 99.44 82.98 61.01 37.88 15.76
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Table 5: Grid search results for hyperparameter optimization for SDv2.1 on V ISOR3160

α m λs (Lspatial) λp (Lpresence) λb ((Lbalance)) OA VISORuncond VISORcond VISOR1 VISOR2 VISOR3 VISOR4

0.5 0.25 0.5 0.5 0.5 65.49 61.23 93.49 86.90 71.68 54.56 31.77
0.5 0.25 0.5 0.5 1.0 65.86 61.88 93.96 87.91 73.07 54.94 31.61
0.5 0.25 0.5 1.0 0.5 67.84 61.45 90.58 87.15 72.37 54.59 31.68
0.5 0.25 0.5 1.0 1.0 67.91 62.07 91.40 88.20 72.47 54.81 32.82
0.5 0.25 1.0 0.5 0.5 71.26 69.51 97.55 91.65 80.13 64.11 42.15
0.5 0.25 1.0 0.5 1.0 71.17 69.53 97.69 91.52 80.25 64.53 41.80
0.5 0.25 1.0 1.0 0.5 73.71 71.35 96.80 92.22 81.23 67.22 44.75
0.5 0.25 1.0 1.0 1.0 73.83 71.57 96.95 92.47 81.36 66.93 45.54
0.5 0.50 0.5 0.5 0.5 66.61 62.99 94.56 87.75 73.45 56.68 34.08
0.5 0.50 0.5 0.5 1.0 66.52 63.16 94.95 88.70 74.43 56.49 33.01
0.5 0.50 0.5 1.0 0.5 68.88 63.52 92.21 88.83 74.11 56.52 34.62
0.5 0.50 0.5 1.0 1.0 69.24 64.45 93.08 89.43 75.41 57.85 35.10
0.5 0.50 1.0 0.5 0.5 72.63 71.15 97.96 92.37 81.61 66.77 43.83
0.5 0.50 1.0 0.5 1.0 71.83 70.36 97.95 92.25 80.98 65.19 43.01
0.5 0.50 1.0 1.0 0.5 74.55 72.63 97.42 92.91 82.63 68.29 46.68
0.5 0.50 1.0 1.0 1.0 75.11 73.26 97.54 93.73 82.98 69.24 47.09
0.5 0.75 0.5 0.5 0.5 67.81 64.92 95.74 89.37 75.25 58.73 36.33
0.5 0.75 0.5 0.5 1.0 68.23 65.21 95.57 89.56 75.76 58.99 36.52
0.5 0.75 0.5 1.0 0.5 70.20 65.89 93.87 89.40 76.84 59.97 37.37
0.5 0.75 0.5 1.0 1.0 70.43 66.55 94.50 90.63 77.44 60.63 37.50
0.5 0.75 1.0 0.5 0.5 73.88 72.51 98.15 92.53 82.82 68.48 46.20
0.5 0.75 1.0 0.5 1.0 73.62 72.29 98.20 93.20 82.72 68.29 44.97
0.5 0.75 1.0 1.0 0.5 75.65 74.18 98.06 93.13 83.96 70.98 48.64
0.5 0.75 1.0 1.0 1.0 74.92 73.36 97.92 93.17 83.26 69.27 47.75
1.0 0.25 0.5 0.5 0.5 72.04 70.63 98.05 92.06 81.08 66.36 43.04
1.0 0.25 0.5 0.5 1.0 72.10 70.74 98.12 91.96 82.03 66.42 42.56
1.0 0.25 0.5 1.0 0.5 74.32 72.41 97.44 93.04 82.18 68.45 45.98
1.0 0.25 0.5 1.0 1.0 74.79 72.94 97.51 93.42 82.85 68.70 46.77
1.0 0.25 1.0 0.5 0.5 75.40 74.51 98.83 94.08 85.03 71.27 47.66
1.0 0.25 1.0 0.5 1.0 75.22 74.29 98.76 93.99 85.70 71.11 46.36
1.0 0.25 1.0 1.0 0.5 76.98 76.02 98.76 94.68 85.63 73.20 50.57
1.0 0.25 1.0 1.0 1.0 77.89 76.95 98.80 95.16 87.18 75.35 50.13
1.0 0.50 0.5 0.5 0.5 74.28 72.97 98.23 93.07 83.29 69.91 45.60
1.0 0.50 0.5 0.5 1.0 73.97 72.81 98.43 93.70 83.54 68.67 45.32
1.0 0.50 0.5 1.0 0.5 75.69 74.23 98.08 93.58 83.83 71.04 48.48
1.0 0.50 0.5 1.0 1.0 76.16 74.70 98.09 93.96 85.35 70.38 49.11
1.0 0.50 1.0 0.5 0.5 74.34 73.68 99.11 94.11 84.94 70.51 45.16
1.0 0.50 1.0 0.5 1.0 74.67 73.90 98.97 93.99 85.10 70.76 45.76
1.0 0.50 1.0 1.0 0.5 76.89 75.97 98.81 95.06 86.77 73.54 48.51
1.0 0.50 1.0 1.0 1.0 76.69 75.84 98.90 95.22 86.61 73.17 48.35
1.0 0.75 0.5 0.5 0.5 74.59 73.53 98.58 93.64 84.02 69.84 46.61
1.0 0.75 0.5 0.5 1.0 75.09 73.99 98.54 93.99 84.72 70.95 46.30
1.0 0.75 0.5 1.0 0.5 76.62 75.37 98.37 93.61 85.63 72.94 49.30
1.0 0.75 0.5 1.0 1.0 77.15 76.04 98.56 94.62 86.61 73.10 49.84
1.0 0.75 1.0 0.5 0.5 72.90 72.15 98.97 93.96 84.27 68.13 42.25
1.0 0.75 1.0 0.5 1.0 73.10 72.40 99.04 94.24 84.18 69.43 41.74
1.0 0.75 1.0 1.0 0.5 74.98 74.11 98.85 93.96 86.08 71.17 45.25
1.0 0.75 1.0 1.0 1.0 75.25 74.42 98.89 94.84 85.51 71.33 45.98
1.5 0.25 0.5 0.5 0.5 75.06 74.13 98.76 93.48 84.62 71.11 47.31
1.5 0.25 0.5 0.5 1.0 75.11 74.11 98.66 94.05 85.41 70.57 46.39
1.5 0.25 0.5 1.0 0.5 76.69 75.49 98.44 93.86 85.57 72.75 49.78
1.5 0.25 0.5 1.0 1.0 76.84 75.77 98.61 93.83 85.51 72.94 50.79
1.5 0.25 1.0 0.5 0.5 72.24 71.62 99.15 94.02 83.70 67.53 41.23
1.5 0.25 1.0 0.5 1.0 72.22 71.46 98.95 93.35 83.67 67.85 40.95
1.5 0.25 1.0 1.0 0.5 74.78 74.05 99.03 94.91 85.54 71.17 44.59
1.5 0.25 1.0 1.0 1.0 74.80 73.99 98.91 94.49 85.73 70.89 44.84
1.5 0.50 0.5 0.5 0.5 75.01 74.12 98.82 93.89 84.97 70.98 46.65
1.5 0.50 0.5 0.5 1.0 75.06 74.19 98.83 94.08 85.19 71.04 46.42
1.5 0.50 0.5 1.0 0.5 77.36 76.43 98.80 94.62 86.36 73.89 50.85
1.5 0.50 0.5 1.0 1.0 77.98 77.10 98.86 95.00 87.18 74.40 51.80
1.5 0.50 1.0 0.5 0.5 67.41 66.77 99.05 92.18 80.00 61.74 33.17
1.5 0.50 1.0 0.5 1.0 66.80 66.11 98.97 91.42 79.34 60.35 33.32
1.5 0.50 1.0 1.0 0.5 69.17 68.55 99.11 93.42 81.23 63.39 36.17
1.5 0.50 1.0 1.0 1.0 69.22 68.58 99.09 93.17 81.11 63.45 36.61
1.5 0.75 0.5 0.5 0.5 74.26 73.52 99.01 93.86 85.10 69.78 45.35
1.5 0.75 0.5 0.5 1.0 74.72 73.90 98.91 94.72 84.91 70.60 45.38
1.5 0.75 0.5 1.0 0.5 76.80 76.04 99.01 94.34 87.03 73.73 49.08
1.5 0.75 0.5 1.0 1.0 76.76 75.89 98.87 95.00 86.11 73.32 49.11
1.5 0.75 1.0 0.5 0.5 61.66 61.12 99.12 89.05 74.37 53.13 27.91
1.5 0.75 1.0 0.5 1.0 61.54 60.97 99.07 90.19 74.27 52.85 26.55
1.5 0.75 1.0 1.0 0.5 64.73 64.15 99.10 91.36 77.56 57.41 30.25
1.5 0.75 1.0 1.0 1.0 64.65 63.98 98.96 91.01 76.84 57.56 30.51
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C EXTRA QUALITATIVE RESULTS

Fig. 4 showcases the better generation power of InfSplign compared to the Stable Diffusion
baseline. The spatial losses successfully overcome the limitations in the baseline - incorrect spatial
placement and single object generation. The base model generated results where objects vary in
spatial location, which implies the ignorance of the base SD to the spatial relationship mentioned in
the prompt. In Fig. 4, examples with spatial relations "left of" and "right of" generate two misaligned
objects, whereas with "above" and "below" the model struggles to generate both objects in one
image. We attribute this mostly to the unnatural combination of the objects in the prompt: e.g. "a
bench above a cake" (Chefer et al., 2023). Hence, the best that SD can do is to only generate object
combinations that it has seen during training - it is more likely to produce a "cat" together with a
"motorcycle" than a "cake" and a "bench" in one image. The missing object problem can also be
explained with some of the insights discussed in A&E (Chefer et al., 2023), namely that it can be
suppressed, mixed with the other object, entangled in the representation of the other object or subtly
blended in the image.

InfSplign successfully addresses the constraints that the base SD faces by introducing well-
crafted spatial losses which produce a meaningful signal used to guide the underlying diffusion
model through the denoising process. Our method successfully interpreted the spatial information
and generated both object at locations in accordance with the spatial relationship given in the prompt.
In the rare object combination case, "a bench above a cake", InfSplign successfully disentangled
the concept of the "bench" from the attention map and cleverly figures out that the bench object
cannot realistically be placed on top of a cake, so it generates it as a cake topper above the cake.

To further exhibit the power of InfSplign to spatially align objects in the image, Fig. 6 through
Fig. 15 showcase qualitative comparisons with the relevant competitors (SD v1.4 (Rombach et al.,
2022), INITNO (Guo et al., 2024), CONFORM (Meral et al., 2024) and STORM (Han et al., 2025)).
Note that InfSplign qualitatively proves the gains showcased in the earlier mentioned quantitative
analysis in Tab. 1 and Tab. 2.

Method Above Below to the left of to the right of

SD1.4

INITNO

CONFORM

STORM

INFSPLIGN

Figure 6: An Orange {relation} a Suitcase.
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Method Above Below to the left of to the right of

SD1.4

INITNO

CONFORM

STORM

INFSPLIGN

Figure 7: A Bottle {relation} a Car.

Method Above Below to the left of to the right of

SD1.4

INITNO

CONFORM

STORM

INFSPLIGN

Figure 8: A Bench {relation} a Remote.
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Method Above Below to the left of to the right of

SD1.4

INITNO

CONFORM

STORM

INFSPLIGN

Figure 9: A Baseball Glove {relation} a Carrot.

Method Above Below to the left of to the right of

SD1.4

INITNO

CONFORM

STORM

INFSPLIGN

Figure 10: A Backpack {relation} a Sheep.
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Method Above Below to the left of to the right of

SD1.4

INITNO

CONFORM

STORM

INFSPLIGN

Figure 11: A Bicycle {relation} a Book.

Method Above Below to the left of to the right of

SD1.4

INITNO

CONFORM

STORM

INFSPLIGN

Figure 12: A Dining Table {relation} an Elephant.
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Method Above Below to the left of to the right of

SD1.4

INITNO

CONFORM

STORM

INFSPLIGN

Figure 13: A Book {relation} a Toaster.

Method Above Below to the left of to the right of

SD1.4

INITNO

CONFORM

STORM

INFSPLIGN

Figure 14: A Cup {relation} a Cell Phone.
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Method Above Below to the left of to the right of

SD1.4

INITNO

CONFORM

STORM

INFSPLIGN

Figure 15: A Wine Glass {relation} a Zebra.
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