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“A man is petting a dog on […].”

man dog beach sea ice Moon’s surface

Figure 1: Overview. Given a text prompt as well as reference images for each subject (man, dog)
and background images (beach, sea ice, moon’s surface), VideoAlchemy is able to synthesize natural
motions while preserving subject identity and background fidelity.

ABSTRACT

Video personalization methods allow us to synthesize videos with specific con-
cepts such as people, pets, and places. However, existing methods often focus
on limited domains, require time-consuming optimization per subject, or support
only a single subject. We present VideoAlchemy—a video model equipped with
built-in multi-subject, open-set personalization capabilities for both foreground
objects and backgrounds, eliminating the need for time-consuming test-time opti-
mization. Our model is built on a new Diffusion Transformer module that fuses
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each reference image conditioning and its corresponding subject-level text prompt
with cross-attention layers. Developing such a large model presents two main
challenges: dataset and evaluation. First, as paired datasets of reference images
and videos are extremely hard to collect, we opt to sample video frames as ref-
erence images and synthesize entire videos. This approach, however, introduces
data biases issue, where models can easily denoise training videos but fail to gen-
eralize to new contexts during inference. To mitigate these issues, we carefully
design a new automatic data construction pipeline with extensive image augmen-
tation and sampling techniques. Second, evaluating open-set video personaliza-
tion is a challenge in itself. To address this, we introduce a new personalization
benchmark with evaluation protocols focusing on accurate subject fidelity assess-
ment and accommodating different types of personalization conditioning. Finally,
our extensive experiments show that our method significantly outperforms exist-
ing personalization methods, regarding quantitative and qualitative evaluations.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Sohl-Dickstein et al., 2015; Song & Ermon, 2019) have enabled
us to synthesize realistic videos with natural motions given a simple text prompt (Singer et al., 2023;
Blattmann et al., 2023b; Brooks et al., 2024; Ho et al., 2022; Menapace et al., 2024). This level
of quality and realism paves the way for personalization—the ability to generate videos containing
specific objects and people rendered in the unseen context or background. Multiple video personal-
ization methods have been proposed to generate content with specific people or pets, but they remain
limited in the level of control they provide. Some focus on human faces (He et al., 2024; Ma et al.,
2024), some support only a single subject (Jiang et al., 2024; Wei et al., 2024; Zhou et al., 2024; Wu
et al., 2024), with others supporting only foreground control (Wang et al., 2024c). Moreover, some
of these works require costly and lengthy test-time optimization (Wei et al., 2024; Wu et al., 2024).

In this paper, we present VideoAlchemy, a video generation model with extensive personalization
capabilities. In contrast to existing methods, VideoAlchemy supports multiple subjects and open-
set entities, including both foreground objects and background. Importantly, our optimization-free
method does not require fine-tuning to incorporate new concepts. In Figure 1, we show videos
personalized for two subjects across three different backgrounds. Our video model is built on new
Diffusion Transformer modules tailored for personalization. Each module uses two cross-attention
layers: one to integrate the text prompt describing the entire image and another to incorporate the
embeddings of each reference image. We employ object-level fusion, blending the text description
of each object with its corresponding image embeddings to achieve multiple subject conditioning.

But how can we collect data to train our model? Ideally, it requires a dataset of images and videos
with many subjects, each captured under varying lighting, background, and pose. Unfortunately,
collecting such a dataset for open-set entities is challenging at best and impossible at worst. Al-
ternatively, we can extract the reference images and target video clips from the same video. This
approach, however, comes with a significant drawback—factors unrelated to identity still have a very
high correlation across different video frames. While this correlation helps the model denoise train-
ing videos accurately, the model often struggles to synthesize diverse videos with unseen lighting,
background, and poses. To address these biases, we carefully design a data construction pipeline to
automatically extract object segments from target videos. Additionally, we craft a personalization-
specific data augmentation and conditional subject sampling strategy during training to ensure the
model focuses on the object identity of the reference images.

Another challenge we are facing is the lack of a suitable benchmark for evaluating multi-subject
video personalization. Commonly, we evaluate video personalization results by computing a simi-
larity score between the generated video and reference images (Ruiz et al., 2023a; Ye et al., 2023;
Jiang et al., 2024; Zhou et al., 2024). Unfortunately, this metric does not apply to multiple entities, as
it cannot focus on each subject. To address these limitations, we introduce MSRVTT-Personalization,
a comprehensive and robust evaluation protocol for personalization tasks. MSRVTT-Personalization
facilitates evaluation across various conditioning modes, including face-crop conditioning, condi-
tioning on single or multiple arbitrary subjects, and conditioning on foreground and background.
Different from image-level similarity, we use object segmentation algorithm to localize each con-
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cept in the generated video frames. The experiments demonstrate that our method outperforms ex-
isting personalization methods in terms of both quantitative and qualitative assessments. The main
contributions of this paper are summarized as follows:

• We present VideoAlchemy, a new video generation model, supporting multi-subject, open-set
personalization capabilities for both foreground and background.

• We carefully curate a large-scale training dataset and introduce training techniques to prevent
the model from learning unintended data biases.

• We introduce MSRVTT-Personalization, a new benchmark for the task of personalization,
providing various conditioning modes and accurate measurement of subject fidelity.

2 RELATED WORK

Diffusions Model for Video Generation. Diffusion models (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Ho et al., 2020; Rombach et al., 2022; Ho et al., 2022) have demonstrated impres-
sive capabilities in generating realistic content in recent years. Building on the power of diffusion
models, several subsequent studies have explored their applications in text-conditioned video syn-
thesis (Saharia et al., 2022; Singer et al., 2023; Blattmann et al., 2023b; Zhou et al., 2022; Luo et al.,
2023; Guo et al., 2024; Menapace et al., 2024; Brooks et al., 2024). ImagenVideo (Saharia et al.,
2022) and Make-A-Video (Singer et al., 2023) propose a cascade of temporal and spatial upsam-
plers for video generation. VideoLDM (Blattmann et al., 2023b) adopts a latent diffusion paradigm
where a pretrained latent image generator and latent decoder are finetuned to generate temporally
coherent videos. Differently from previous models based on the U-Net (Ronneberger et al., 2015)
architecture, SnapVideo (Menapace et al., 2024) adapts the FiT (Chen & Li, 2023) and scales up to
billion-parameters size. More recently, SORA (Brooks et al., 2024) employs the Diffusion Trans-
former (DiT) (Peebles & Xie, 2023) and shows a tremendous leap in high-resolution, long video
synthesis. While these studies demonstrate significant advancements in video synthesis, the use of
text prompts alone confines the generated content to what can be described textually.

Personalized Image Generation. This task aims at adapting and customizing generative models
to a set of desired subjects using a few input images (Ruiz et al., 2023a; Gal et al., 2023a; Kumari
et al., 2023; Ye et al., 2023; Shi et al., 2024; Tewel et al., 2024; Wang et al., 2024b; Ostashev et al.,
2024). For example, DreamBooth (Ruiz et al., 2023a) optimizes the weights of the entire text-to-
image model for a reference subject. Textual Inversion (Gal et al., 2023a) learns a text embedding
of the reference subject and uses the embedding to generate novel images. Custom Diffusion (Ku-
mari et al., 2023) learn to compose multiple concepts, each represented by the text embedding and
cross-attention weights. However, these optimization-based models require finetuning pre-trained
weights or optimizing a text embedding for every new concept, which is inevitably slow and prone
to overfitting. Recently, more studies have explored encoder-based methods to reduce test-time fine-
tuning (Shi et al., 2024; Ye et al., 2023; Arar et al., 2023; Gal et al., 2023b; Wei et al., 2023b; Li et al.,
2023; Valevski et al., 2023; Ruiz et al., 2023b). IP-adapter (Ye et al., 2023) learns a lightweight de-
coupled cross-attention mechanism for image conditioning. InstanceBooth (Shi et al., 2024) trains
an image encoder to convert reference images into textual tokens and introduces adapter layers to
retain identity details. Our model also trains an image encoder for faster personalization, but we
focus on video personalization with multiple subjects.

Personalized Video Generation. Inspired by the success in image personalization, several works
have explored these techniques for videos (Zhang et al., 2024; Jiang et al., 2024; Wei et al., 2024;
Wang et al., 2024c; Long et al., 2024; Zhou et al., 2024; Wu et al., 2024; He et al., 2024; Fang
et al., 2024). Among them, DreamVideo (Wei et al., 2024) employs an optimization-based strategy,
training an image adapter to capture the subject’s appearance and a motion adapter to model dynam-
ics. StoryDiffusion (Zhou et al., 2024) instead adopts an optimization-free approach by introducing a
consistent self-attention mechanism and employing a semantic motion predictor to synthesize videos
with smooth transitions and consistent subjects. Nonetheless, most existing video personalization
methods focus on limited domains. Some models are limited to face personalization (He et al.,
2024; Ma et al., 2024) or single subjects from specific categories (Zhang et al., 2024; Jiang et al.,
2024; Wei et al., 2024; Zhou et al., 2024; Wu et al., 2024), while the other focuses solely on fore-
ground objects (Wang et al., 2024c). In contrast, our work introduces a video model with extensive
personalization capabilities, supporting the customization of multiple open-set entities across both
foreground and background. Closely related to our work, VideoDrafter (Long et al., 2024) achieves
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Figure 2: Dataset collection pipeline for video personalization. We construct our training dataset
using video and caption pairs through a three-step process. First, we identify three categories of
entity words from the captions: subject, object, and background. Next, we use the identified object
entity words to localize and segment the target subject within three selected video frames. Finally,
we extract the clean background by removing the subjects and objects from the middle frame.

open-set video personalization in two stages: image personalization and animation. In contrast, our
end-to-end method avoids the issue of poor subject consistency in long video synthesis, a notable
limitation of first-frame animation methods.

3 METHODOLOGY

Given a text prompt and a set of images conceptualizing each entity word in the prompt, our goal is
to learn a video generative model conditional on both text and image inputs. We first elaborate on
the collection of the training dataset in Section 3.1, and provide the details of the model architecture
in Section 3.2. Lastly, we discuss the issue of training data biases and our solution in Section 3.3.

3.1 DATASET COLLECTION

As shown in Figure 2, we curate the training dataset upon video and caption pairs with three steps.
In the first step, we use a large language model (Jiang et al., 2023) to retrieve entity words from the
given caption. Specifically, we define three types of entity words: subjects (e.g., human or animal),
objects (e.g., car, jacket), and backgrounds (e.g., room, beach). Each subject or object entity word is
expected to appear in the video. Next, we use the retrieved entity words to filter the training dataset
with the following criteria: (1) we remove videos containing any subject entity word in plural form
(e.g., a group of people, multiple dogs), as they introduce ambiguity in model personalization; (2)
we also remove videos without any subject entity words, as their dynamics are often dominated by
camera movements rather than significant foreground motion. Appendix A.2 details this process.

In the second step, we construct reference images that feature subjects and objects. We first select
three frames from the video’s beginning, middle, and end (at the 5%, 50%, and 95% percentiles),
which might capture the target subject or object with varying poses and different lighting conditions.
Next, we apply GroundingDINO (Liu et al., 2023a) on each frame to detect the bounding boxes.
These bounding boxes are then used by SAM (Kirillov et al., 2023) to segment the mask regions
corresponding to each entity. Additionally, for the reference images that depict humans, we apply
face detection (Wang et al., 2024a) to extract face crops.

Lastly, we create a clean background image by removing the subjects and objects. Since SAM (Kir-
illov et al., 2023) occasionally produces imprecise boundaries, we dilate the foreground mask. Next,
we use an inpainting algorithm (Rombach et al., 2022) to obtain a clean background image. We use
the background entity word as the positive prompt and “Any human or any object, complex pattern
and texture” as the negative prompt. To ensure consistency of the background, we only use the
middle frame to obtain a single background image for each video sequence.
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Figure 3: Model architecture. We use the DiT (Peebles & Xie, 2023) architecture, consisting
of a cascade of DiT blocks, as the backbone of video synthesis. In each DiT block, we perform an
additional cross-attention operation with personalization embeddings, which encompass information
from both the image and its representative entity word. Each square in the figure is a 1-D token.

3.2 VIDEO PERSONALIZATION MODEL

In Section 3.1, we annotate each video and prompt pair with a sequence of reference images and
their corresponding entity words. Next, we train VideoAlchemy by learning to denoise the training
video using the conditions of text prompt, reference images, and conditional entity words. Figure 3
illustrates the model architecture of VideoAlchemy, a deep cascade of Diffusion Transformer (DiT)
blocks (Peebles & Xie, 2023). Different from vanilla DiT designs, our module supports personal-
ization by fusing the information from both text and image conditioning. Our DiT block includes
three main operations: one multi-head self-attention (Vaswani, 2017) and two following multi-head
cross-attention respectively for text and reference image conditioning.

Binding of Image and Word Concept. In the task of multi-subject, open-set personalization, the
video model can be conditioned on different subjects, each of which can be represented by one or
a few reference images. Therefore, it is critical to provide the model binding information between
text tokens and image tokens. We provide these binding in the form of personalization embeddings
f = Concat(f1, ..., fN ), where fn encompasses the information from both the reference image and
the representative entity word and N is the number of conditional reference images. Specifically,
to produce the embeddings fn, we first encode the image as the image tokens xn ∈ Rl×c by a
shared and frozen image encoder. Next, we retrieve the word tokens wn from the text embeddings
(encoded from the text prompt), and flatten wn to a 1-D embedding. Considering the number of
tokens of an entity word varies, we zero-pad or crop the word embeddings to a consistent length.
To bind the information of both the image and word tokens, we repeat the flattened word tokens for
l times and concatenate them with the image tokens along the channel axis. Lastly, after a linear
projection module, we apply a residual connection with the image tokens xn and add a learnable
index embedding to produce the embeddings fn.

Personalization Conditioning. The personalization embeddings f are later used to compute cross
attention with video latent tokens. Note that IP-adapter (Ye et al., 2023) encodes conditional text
and image into an unified embeddings space through CLIP (Radford et al., 2021) and employs a
single decoupled cross-attention to compute both conditioning at the same time. In contrast, our
model encodes the text and image using separate models. Empirically, we find that using distinct
cross-attention for each modality can handle the tokens from different distributions more effectively.
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“A man in a blue cap leads 
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forested area.” Man
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Face Cropping
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Figure 4: Test sample in MSRVTT-Personalization benchmark. We present a comprehensive
benchmark for personalization models. By sampling different reference images as inputs, our bench-
mark supports various conditioning modes: face conditioning, single or multiple arbitrary subjects
conditioning, and both foreground and background conditioning.

3.3 UNDESIRABLE TRAINING DATA BIASES

In Section 3.2, we learn VideoAlchemy by denoising the entire video from the selected and masked
video frames. Empirically, we observe that this training strategy leads the model to learn unintended
biases presented in the reference image (ref ). We list some noticeable biases as follows:

• If ref is high-resolution, the model generates a large object close to the camera.
• If ref has been photoshopped, the model replicates the subject without introducing motion.
• If ref is occluded, the model generates random objects occluding the subject.
• If ref is cropped, the model places the subject at edge to make it cropped by the boundary.
• The model tends to generate the subject with the same pose and lighting conditions as ref.
• If multiple ref s represent the same subject with similar poses, the model generates a subject

with small motion.

During training, our model learns to exploit these biases since they are beneficial at denoising train-
ing video. Nonetheless, they are not applicable during inference. Such domain gap between training
and inference usually results to unnatural composition of the objects or undesirable video dynam-
ics. To alleviate these unfavorable biases, we apply a sampling rule to randomly select reference
images for conditioning and adopts data augmentations on the reference images. Specifically, we
add downscaling and Gaussian blurring to fix the bias on image resolution, apply color jittering and
brightness adjustment to mitigate the bias on lighting condition, and adopt random horizontal flip
and image shearing and rotation to alleviate the bias on the pose of reference subject.

The core concept is to guide the model focusing on the identity of the reference images instead
of learning the unintended information leakage from the properties or composition of the input
reference images. We detail the training augmentations and the sampling of the conditioning subjects
and images in Appendix A.3.

4 EXPERIMENTS

In Section 4.1, we introduce MSRVTT-Personalization, a comprehensive benchmark for personaliza-
tion. We provide quantitative and qualitative evaluations in Section 4.2 and Section 4.3, respectively.
Appendix A contains the details of the training dataset and Appendix B includes the details of model
architecture, training, and inference.

4.1 MSRVTT-PERSONALIZATION BENCHMARK

Existing personalization frameworks (Ruiz et al., 2023a; Ye et al., 2023; Wei et al., 2024; Zhou et al.,
2024) assess the preservation of the subject appearance by measuring the similarity (Deng et al.,
2019; Radford et al., 2021; Oquab et al., 2024) between the reference image and the entire output
image or video frames. However, these metrics are limited to single-subject conditioning and fail to
focus specifically on the target subject. To solve this issue, we present MSRVTT-Personalization, a
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framework designed to provide a more comprehensive and accurate evaluation for the tasks of per-
sonalization. It supports various conditioning scenarios: face-crop conditioning, single or multiple
arbitrary subject conditioning, and both foreground and background conditioning.

We construct the testing dataset upon MSR-VTT (Xu et al., 2016) and process the dataset with three
steps. First, we use TransNetV2 (Souček & Lokoč, 2020) to split a long video into multiple clips
based on shot boundary detection and apply the in-house captioning algorithm to generate more a
detailed caption for each clip. In the second step, we follow Section 3.1 to produce the annotations
for each video-caption pair. Lastly, to ensure the quality of the benchmark, we manually select the
samples that meet the following four criteria:

• The video sample is not an animation of an image without any object motion.
• The video sample does not include extensive texts.
• The retrieved subjects and objects cover all of the main subjects and objects in the video.
• Inpainting of the background image does not introduce any additional random objects.

To increase the data diversity, we select only one clip from each long video and collect 2, 130 clips in
total, forming the testing samples of the benchmark. Figure 4 shows a test sample with its annotation.
To perform an extensive evaluation, we compute four metrics:

• Text-Sim: the average cos-sim between the text prompt and the synthetic video frames.
• Video-Sim: the pairwise cos-sim between the target and the synthetic video frames.
• Subject-Sim: the pairwise cos-sim between the input reference images and the synthetic sub-

ject image segmented from the video frames.
• Face-Sim: the pairwise cos-sim between the input face crops and the synthetic face images

cropped from the video frames.
(cos-sim stands for cosine similarity)

With more details, we follow the default setting in Torchmetrics (2024) and use CLIP ViT-L/14 (Rad-
ford et al., 2021) embeddings for the Text-Sim and Video-Sim. For the Subject-Sim, we follow Ruiz
et al. (2023a) and Wei et al. (2024) and use DINO ViT-B/16 (Caron et al., 2021) embeddings for the
evaluation. For the Face-Sim, we use ArcFace R100 (Deng et al., 2019) embeddings to better extract
identity features than general image encoders. To detect the target subjects from the synthetic video
frames, we utilize Grounding-DINO Swin-T (Liu et al., 2023a) with the confidence score threshold
of 0.4. To detect the synthetic face crops, we employ YOLOv9-C (Wang et al., 2024a) with the
confidence score threshold of 0.2 and the IoU score threshold of 0.4. For the video frames with
missing subjects or face crops, we assign a similarity score of 0. The testing dataset and the eval-
uation protocol will be made publicly available and can serve as a comprehensive personalization
benchmark in the future.

4.2 QUANTITATIVE EVALUATION

In this section, we quantitatively evaluate VideoAlchemy and compare it with the state-of-the-art
personalization frameworks on MSRVTT-Personalization.

Experimental Setup. Given that various personalization frameworks utilize different types of con-
ditional images as inputs, we develop two modes: the subject mode and the face mode, which
respectively use the entire subject images or only the face crops as inputs. For the subject mode,
we collect 1, 736 testing videos that have exactly one subject in the video and compare them with
ELITE (Wei et al., 2023a) and VideoBooth (Jiang et al., 2024). For the face mode, we collect
1, 285 testing videos that have exactly one subject containing face crops and compare them with
IP-Adapter-FaceID+ (Ye et al., 2023) and PhotoMaker (Li et al., 2024).

For image personalization models, including ELITE (Wei et al., 2023a), IP-Adapter-FaceID+ (Ye
et al., 2023), and PhotoMaker (Li et al., 2024), we use StableVideoDiffusion (Blattmann et al.,
2023a) Img2Vid-XT-1-1 to animate the output images as videos. Since most frameworks only sup-
port single-image input, we randomly sample one subject image or face crop for conditioning. For
PhotoMaker (Li et al., 2024), as an exception, we also provide the results using all available face
crops for conditioning. Additionally, we report the results of our model with the inclusion of back-
ground conditioning.
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Table 1: Quantitative comparison on subject mode of MSRVTT-Personalization. We highlight
the top two models using single or multiple subject images as the condition respectively. †We treat
output images as single-frame videos for the image personalization model.

Method Test-time
Optimization

Cond. Images Text-Sim↑ Video-Sim↑ Subject-Sim↑
Subject Background

ELITE† (Wei et al., 2023a) ✗ single ✗ 0.2454 0.6198 0.3593
VideoBooth (Jiang et al., 2024) ✗ single ✗ 0.2216 0.6125 0.3954
DreamVideo (Wei et al., 2024) ✓ single ✗ 0.0000 0.0000 0.0000
VideoAlchemy (with CLIP) ✗ single ✗ 0.2813 0.6813 0.4991
VideoAlchemy (with DINOv2) ✗ single ✗ 0.2799 0.6902 0.5373

DreamVideo (Wei et al., 2024) ✓ multiple ✗ 0.0000 0.0000 0.0000
VideoAlchemy (with DINOv2) ✗ multiple ✗ 0.2788 0.6986 0.5502

VideoAlchemy (with DINOv2) ✗ multiple ✓ 0.2731 0.7408 0.5446

Table 2: Quantitative comparison on face mode of MSRVTT-Personalization. We highlight the
top two models using single or multiple face crops as the condition respectively. †We treat output
images as single-frame videos for the image personalization models.

Method Test-time
Optimization

Cond. Images Text-Sim↑ Video-Sim↑ Face-Sim↑
Face crop

IP-Adapter† (Ye et al., 2023) ✗ single 0.2513 0.6481 0.2689
PhotoMaker† (Li et al., 2024) ✗ single 0.2776 0.5687 0.1893
Magic-Me (Ma et al., 2024) ✓ single 0.0000 0.0000 0.0000
VideoAlchemy (with CLIP) ✗ single 0.2830 0.6441 0.2163
VideoAlchemy (with DINOv2) ✗ single 0.2819 0.6588 0.2852

PhotoMaker† (Li et al., 2024) ✗ multiple 0.2751 0.5824 0.2159
Magic-Me (Ma et al., 2024) ✓ multiple 0.0000 0.0000 0.0000
VideoAlchemy (with DINOv2) ✗ multiple 0.2825 0.6658 0.3125

Table 3: User preference on subject mode and face mode of MSRVTT-Personalization.

Method Preference Ratio↑
Quality Fidelity

ELITE (Wei et al., 2023a) 0.007 0.050
VideoBooth (Jiang et al., 2024) 0.017 0.061
DreamVideo (Wei et al., 2024) 0.000 0.000
VideoAlchemy (with CLIP) 0.540 0.368
VideoAlchemy (with DINOv2) 0.436 0.521

Method Preference Ratio↑
Quality Fidelity

IP-Adapter (Ye et al., 2023) 0.038 0.239
PhotoMaker (Li et al., 2024) 0.236 0.114
Magic-Me (Ma et al., 2024) 0.000 0.000
VideoAlchemy (with CLIP) 0.310 0.274
VideoAlchemy (with DINOv2) 0.416 0.372

We implement and evaluate our models with two different image encoders: CLIP (Radford et al.,
2021) and DINOv2 (Oquab et al., 2024). The evaluation results are presented in Table 1 and Table 2,
respectively, for the subject mode and face mode.

Comparison with the State-of-the-Arts. Our framework significantly outperforms the existing
open-set personalization models (Wei et al., 2023a; Jiang et al., 2024) regarding Video-Sim and
Subject-Sim scores. Notably, our open-set model can achieve a higher Face-Sim score compared
to the other frameworks focused on the face domain (Ye et al., 2023; Li et al., 2024). Additionally,
our model achieves higher Subject-Sim and Face-Sim with more conditioning reference images and
reaches a higher Video-Sim with additional background conditioning images, showing the advantage
of multiple-image conditioning. We also notice that our model yields a slightly lower Text-Sim
compared to PhotoMaker (Li et al., 2024). We attribute this behavior to a trade-off between fidelity
and text-video alignment. Empirically, we find that a personalization model excelling in preserving
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VideoBoothELITE Ours (with DINOv2)Ours (with CLIP)

“A blue car with the license plate TAJ 707R drives down 
a daytime street with gray roads, green lawns, and brown houses. 

The scene is filmed from a handheld camera by BBC.”

Figure 5: Qualitative comparison on subject mode of MSRVTT-Personalization.

subject details is more challenging to generate a fully text-aligned video due to the limited flexibility
in video synthesis.

Human Evaluation. To complement the evaluation, we conduct a user study to assess quality and
fidelity. We randomly select 200 testing samples from each mode. For each sample, we show the
conditioning image along with four videos generated by different models to 5 participants. The
participants are asked to select the video with the best preservation of subject details and the video
with the best visual and motion quality. We evaluate the subject mode and face mode separately
and show the numbers in Table 3. The results show that our model surpasses the state-of-the-art
framework by a huge gap in terms of both quality and fidelity. We also highlight that the fidelity score
reported by humans is positively correlated to Subject-Sim and Face-Sim scores in the proposed
MSRVTT-Personalization, showing the effectiveness of our evaluation protocol.

4.3 QUALITATIVE EVALUATION

We visualize the comparisons on the subject mode and face mode respectively in Figure 5 and
Figure 6, where Appendix C.2 includes more comparisons on different conditioning subjects. The
video samples can be found in the webpage msrvtt folder of the supplementary material.

Our method can produce more photorealistic video samples with better preservation of subject
details compared to ELITE (Wei et al., 2023a), VideoBooth (Jiang et al., 2024), and IP-Adapter-
FaceID+ (Ye et al., 2023). As shown in Figure 6, PhotoMaker (Li et al., 2024) can generate high-
quality and text-aligned images; however, the synthetic face expresses a low fidelity to the reference
face crop, which is aligned with the observation from the quantitative evaluation in Section 4.2.

4.4 EFFECTS OF IMAGE ENCODERS ON VIDEO PERSONALIZATION

Encoding the reference images by different models can significantly affect the performance of a
personalization model. In this work, we implement our model in two versions utilizing two different
image encoders: CLIP (Radford et al., 2021) and DINOv2 (Oquab et al., 2024) and analyze their
behaviors across three aspects: fidelity, text-video alignment, and visual quality.

9
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PhotoMakerIP-Adapter-FaceID+ Ours (with DINOv2)Ours (with CLIP)

“A young man with short black hair and a beard, dressed in a green polo shirt and black cap, 
walks and talks on a sunny street with a gray road, white car, white house, and green trees.”

Figure 6: Qualitative comparison on face mode of MSRVTT-Personalization.

First, using DINOv2 (Oquab et al., 2024) to encode the reference images yields significantly higher
fidelity, which is consistently demonstrated in Table 1 to 3 and Figures 5 and 6 (see the “car’s grill
and front lamp” in Figure 5 and the “cap’s buckle” in Figure 6). We hypothesize that DINOv2 learns
to minimize the self-supervised training objective (Chen et al., 2020) and capture unique features in
an image. Therefore, DINOv2 embeddings retain rich visual details, which helps maintain subject
details. Second, the model using CLIP (Radford et al., 2021) achieves better text-video alignment,
as shown in both the quantitative and qualitative evaluations (see the “BBC logo and the license
plate” in Figure 5). We assume that CLIP learns to bridge visual and textual modalities, guiding its
embeddings to focus on details typically described in the text prompt. This helps the model generate
text-aligned videos. Finally, based on the results in Table 3, the model using CLIP embeddings
provides better video quality when conditioned on an entire subject image. In contrast, the model
adopting DINOv2 embeddings results in higher video quality when conditioned on a face crop.
We speculate that CLIP embeddings may convey more high-level semantic information which can
simplify the video synthesis when conditioned on an relatively complex subject image. On the other
hand, for a face crop image that contains fewer semantics features, richer detail presented in DINOv2
embeddings can enhance the generation of photorealistic faces.

5 CONCLUSION

In this paper, we present a new video personalization model, VideoAlchemy, which demonstrates a
significant advancement in video personalization by addressing the limitations of existing methods.
Our method supports multi-subject, open-set personalization capabilities for both foreground and
background without the need for time-consuming test-time optimization. Through our approach
to dataset construction and augmentation engineering, we have largely mitigated challenges related
to data biases, enabling our model to better generalize to real-world settings. Furthermore, we in-
troduce a comprehensive personalization benchmark, which supports the measurement of subject
fidelity under various conditioning and scenarios. We hope that this benchmark could facilitate
robust evaluation for varying personalization approaches and settings. Finally, we experimentally
validate that VideoAlchemy outperforms existing methods in both quantitative and qualitative mea-
sures. We believe our findings pave the way for future research in video synthesis and open up new
possible applications in entertainment, advertisement, and education.
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Tomáš Souček and Jakub Lokoč. Transnet v2: An effective deep network architecture for fast shot
transition detection. arXiv preprint arXiv:2008.04838, 2020. 7, 16

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 2024. 18

Yoad Tewel, Omri Kaduri, Rinon Gal, Yoni Kasten, Lior Wolf, Gal Chechik, and Yuval Atzmon.
Training-free consistent text-to-image generation. ACM TOG, 2024. 3

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. NeurIPS, 2022. 16

Torchmetrics. Clip score - pytorch-metrics, 2024. URL https://lightning.ai/docs/
torchmetrics/stable/multimodal/clip_score.html. 7, 23

Dani Valevski, Danny Lumen, Yossi Matias, and Yaniv Leviathan. Face0: Instantaneously condi-
tioning a text-to-image model on a face. In SIGGRAPH Asia 2023 Conference Papers, 2023.
3

A Vaswani. Attention is all you need. NeurIPS, 2017. 5

Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you want to learn
using programmable gradient information. arXiv preprint arXiv:2402.13616, 2024a. 4, 7

Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, and Anthony Chen. Instantid: Zero-shot identity-
preserving generation in seconds. arXiv preprint arXiv:2401.07519, 2024b. 3

Zhao Wang, Aoxue Li, Enze Xie, Lingting Zhu, Yong Guo, Qi Dou, and Zhenguo Li. Customvideo:
Customizing text-to-video generation with multiple subjects. arXiv preprint arXiv:2401.09962,
2024c. 2, 3

Yujie Wei, Shiwei Zhang, Zhiwu Qing, Hangjie Yuan, Zhiheng Liu, Yu Liu, Yingya Zhang, Jingren
Zhou, and Hongming Shan. Dreamvideo: Composing your dream videos with customized subject
and motion. In CVPR, 2024. 2, 3, 6, 7, 8

Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. Elite: Encoding
visual concepts into textual embeddings for customized text-to-image generation. In ICCV, 2023a.
7, 8, 9, 23

Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. Elite: Encod-
ing visual concepts into textual embeddings for customized text-to-image generation. In ICCV,
2023b. 3

Tao Wu, Yong Zhang, Xintao Wang, Xianpan Zhou, Guangcong Zheng, Zhongang Qi, Ying Shan,
and Xi Li. Customcrafter: Customized video generation with preserving motion and concept
composition abilities. arXiv preprint arXiv:2408.13239, 2024. 2, 3

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging
video and language. In CVPR, 2016. 7

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023. 2, 3, 5, 6, 7,
8, 9
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A DETAILS OF TRAINING DATASETS AND AUGMENTATIONS

A.1 TRAINING DATASETS AND UNDESIRABLE SAMPLES FILTERING

Our personalization training dataset is built on Panda-70M (Chen et al., 2024) and other in-house
video-caption datasets. However, we observe that the quality of the video samples is noisy and the
training dataset contains several data distributions that are not ideal for generation. We classify the
undesirable training samples into four categories:

• Still foreground image: sample which is an animation of a static image.
• Slight motion: sample with tiny camera movement and static foreground object.
• Screen-in-screen: sample with an image or video overlaying on a background image or video.
• Computer screen recording: sample which computer screen recording (excluding PC game).

We find that training on this data can make our personalization model generate trivial videos by sim-
ply replicating the input reference images and pasting them onto a static background without intro-
ducing any motion, especially when there is varying illumination across the reference images. To ad-
dress this, we train a video classification model to filter out these undesirable samples. Specifically,
we randomly sample 40K videos from the training dataset and manually annotate them with class
labels to indicate whether the sample is desirable, and if not, which category of undesirability it falls
into. Using the labels, we finetune VideoMAE (Tong et al., 2022) for video classification. Moreover,
as we target generating videos that are free of shot boundaries, we apply TransNetV2 (Souček &
Lokoč, 2020) to detect videos containing shot boundaries. We only retain the desirable and shot-free
video samples for training.

A.2 RETRIEVAL OF ENTITY WORDS FROM THE PROMPT

In Section 3.1, we utilize a large-language model (Jiang et al., 2023) (LLM) to retrieve entity words
from the prompt. In more detail, we use the prompt template in Figure 7 as an instruction.

Given an image caption, please retrieve the word tags that indicate background, subject, and visually separable objects.
[Definition of background] the background spaces that appear in most of the image area.
[Definition of subject] human or animal subjects that appear in the image
[Definition of object] the entities that appear in part of the image and can be visually separated with each other.
All of the word tags need to strictly follow two rules below:
1) word tag is a noun without any quantifier.
2) word tag is an exact subset of the caption. Do not modify any characters, word and symbols.
Here are some examples, follow this format to output the results:
### Caption: A woman in a mask and coat, with long brown hair, shows a small green-capped bottle to the camera.
### Output: {'background': [''], 'subject': ['woman'], 'object': ['mask', 'coat', 'long brown hair', 'green-capped bottle’]}

(More examples)

Figure 7: Prompt template for entity word retrieval.

Given the video caption, the LLM agent is expected to return a string in the dictionary format, where
the values are the list of entity words retrieved from the text prompt. We apply the following steps
to process the output:

• Remove the sample if the output string is not in the valid dictionary format.
• Remove the sample if any entity word is not a sub-string of the text prompt.
• Reclassify the entity words according to the pre-defined rules. For example, “cloud” is not a

visually separable object that should be classified into a background entity word.
• Remove the sample with no subject entity word, as we observe that the motion of these sam-

ples is typically trivial camera movements and lacks meaningful foreground motion.
• Remove the sample with the subject entity word in the plural form, as this will introduce

ambiguity when applying the localization algorithm.

To this end, we curate a training dataset comprising 37.8M videos. To illustrate the diversity of
conditioning subjects within the dataset, we plot a word cloud of entity words from 10K randomly
sampled training videos in Figure 8.
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Figure 8: Word cloud of entity words. We randomly sample 10K videos from the training dataset
and plot the word cloud of the conditioning subject and object entity words.

Table 4: Training augmentations. We denote the height and width of the input image as h and w.

Probability Hyperparameters

Downscale 1.0 Scale [112 /max(h,w), 1.0]
Gaussian blur 1.0 Kernel size (p) max(h,w) / 50
Color jitter 1.0 Scale [−0.05, 0.05]
Brightness 1.0 Scale [0.9, 1.1]
Horizontal flip 0.5 - -
Shearing (x-axis) 1.0 Value (p) [−0.05, 0.05]× w
Shearing (y-axis) 1.0 Value (p) [−0.05, 0.05]× h
Rotation 1.0 Value (◦) [−20, 20]
Random crop 1.0 Scale [0.67, 1.0]

A.3 TRAINING AUGMENTATIONS AND CONDITIONAL IMAGES SAMPLING

In Section 3.3, we propose to prevent the model from learning the undesirable training data biases
by adding image augmentations and randomly sample the conditional subjects and reference images
for training. Table 4 lists the training augmentations and the hyperparameter setting. While augmen-
tations can fix some biases from reference images, empirically, we find that the model can also learn
the unintended biases from the composition of reference images. Specifically, if we always use all
available reference images as conditions during training, the model can generate the target subject
with some properties correlated to the number of reference images (ref ) during inference. Using the
text prompt “A dog is running” as an example:

• If having 0 ref, the model generates a tiny or heavily occluded dog.
• If having 1 ref, the model generates a dog running out of the view of the video.
• If having 3 ref s of a similar pose, the model generates a dog running in slow-motion.

To avoid the model learning the biases from the composition of reference images, we apply a special
rule to sample the conditional subjects and their reference images during training. It includes the
following five steps:

• Randomly sample the number of the conditional subjects from 1 to 3.
• Randomly sample the conditional subjects with replacement.
• For each subject, randomly sample the number of conditional reference images from 1 to 3.
• For each subject, randomly sample the conditional reference images with replacement.
• Randomly including the background conditional with a probability of 50%.
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Table 5: Architecture details of autoencoder and video generation backbone.

Autoencoder MAGVIT

Base channels 16
Channel multiplier [1, 4, 16, 32, 64]
Encoder blocks count [1, 1, 2, 8, 8]
Decoder blocks count [4, 4, 4, 4, 4]
Stride of frame [1, 2, 2, 2, 1]
Stride of h and w [2, 2, 2, 2, 1]
Padding mode replicate
Compression rate 8× 16× 16
Bottleneck channels 32
Use KL divergence ✓
Use adaptive norm ✓ (decoder only)

Backbone DiT

Input channels 32
Patch size 1× 2× 2
Patch channels 4096
Latent token channels 4096
Positional embeddings RoPE
DiT blocks count 32
Attention heads count 128
Window size 6144 (center)
Use flash attention ✓
Use fused layer norm ✓
Use self conditioning ✓
Self conditioning prob. 0.9
Conditioning channels 1024
Conditioning subjects 6 (stage 2 only)

Table 6: Architecture details of image encoders.

CLIP DINOv2 MAE

Backbone ViT-L/14 ViT-L/14 ViT-L/16
Selective block 23 24 24
Selective tokens patch patch patch
Tokens count 256 256 196
Tokens channels 1024 1024 1024

Table 7: Training hyperparameters. The right table is the setting of stage II and III training.

Stage I II III

Steps 490K 20K 50K
Warmup steps 10K - 5K
Samples seen 2.42B 21.5M 53.7M

Optimizer AdamW
Learning rate 1e−4

LR scheduler constant
Beta [0.9, 0.99]
Weight decay 0.01
Gradient clipping 0.05
Dropout 0.1

# frames Batchsize (sampling weights)

512p× 288p 1024p× 576p
17 2,048 (40%) 512 (40%)
49 832 (1.5%) 192 (2.5%)
73 512 (1.5%) 128 (2.5%)
97 448 (1.5%) 64 (2.5%)
121 384 (1.5%) 64 (2.5%)
145 256 (1.5%) - (0%)
193 192 (0.83%) - (0%)
289 128 (0.83%) - (0%)
385 64 (0.83%) - (0%)

B DETAILS OF MODEL ARCHITECTURE AND TRAINING

B.1 MODEL ARCHITECTURE

Our framework is a latent-based diffusion model, using MAGVIT (Yu et al., 2023) and DiT (Pee-
bles & Xie, 2023) as the autoencoder and the video generation backbone respectively. We detail
the hyperparameters of our model architecture in Table 5. To accelerate the model, we utilize the
positional embeddings and self-attention in RoPE (Su et al., 2024) and adopt flash attention (Dao
et al., 2022) and fused layer normalization (2018). We implement the models with three different
image encoders, including CLIP (Radford et al., 2021), DINOv2 (Oquab et al., 2024), MAE (He
et al., 2022), where the backbone and other details are listed in Table 6. We find that using the
patch tokens as the image embeddings can retain more localized properties of the reference images
and result to higher fidelity compared to the class token. Moreover, aligned with the observation
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from Liu et al. (2024), we notice that CLIP’s patch tokens from the second last transformer block
can yield better preservation of the subject details than the ones from the last block.

B.2 MODEL TRAINING

We present the training details of the model in Table 7. We train the model in three stages. In the
first stage, we fix the autoencoder and train the video generation backbone without cross-attention
for personalization conditioning for 490K steps with a 10K-step warmup. In the second stage,
we introduce the personalization conditioning modules and finetune them while keeping the video
generation backbone and image encoder fixed for 20K steps. In the final stage, we finetune both
the video generation backbone and the personalization conditioning modules, keeping the image
encoder fixed, for 50K steps with a 5K-step warmup. We use the AdamW (Loshchilov, 2017)
optimizer with a constant learning rate of 1e−4. To achieve stable training, we set β = [0.9, 0.99], a
weight decay of 0.01, gradient clipping with the value of 0.05. We randomly drop the text prompt or
subject image conditioning with a probability of 10% and set them to zero to support classifier-free
guidance (Ho & Salimans, 2022).

To enable the generation of high-resolution and long-duration videos while ensuring efficient model
training, we train our model on videos of varying resolutions and lengths. Table 7 lists the batchsizes
and sampling weights for the training videos across different resolutions and lengths. The batchsizes
are set to balance the training time for each step with different attributes. We apply the fixed fram-
erate of 24. Our model supports generating videos up to 16 seconds in length at 512p × 288p
resolution, and up to 5 seconds at 1024p× 576p resolution.

We implement our model in PyTorch (Paszke et al., 2019) and perform all experiments on Nvidia
80GB A100 GPUs.

B.3 MODEL INFERENCE

We utilize a rectified flow sampler (Liu et al., 2023b) with classifier-free guidance (Ho & Salimans,
2022) (CFG) for sampling. The choice of CFG scale can significantly impact the performance of
diffusion models. While our model performs best with a CFG scale of 8 for text conditioning, we
find that applying such a high CFG scale for subject image conditioning can cause the model to
embed reference images directly into the video, without introducing natural motion and appearance
variation. To address this, we apply CFG twice within each sampling step: once for text conditioning
with a CFG scale of 8 and once for subject image conditioning with a scale of 2.5. We use 128 de-
noising steps for quantitative evaluations and 256 steps for qualitative visualizations, with the same
CFG interval (Kynkäänniemi et al., 2024) of [0.15, 0.5]. Additionally, we apply time shifting (Esser
et al., 2024; Gao et al., 2024) to align the signal-to-noise ratio (SNR) across different resolutions.

C MORE VISUALIZATION RESULTS

C.1 ABLATION STUDY ON DIFFERENT CONDITIONING IMAGES

In this section, we conduct an ablation study on various conditioning images with the same prompt
as in Figure 1. Specifically, we ablate different “person” images in Figure 9, “dog” images in
Figure 10, and background images in Figure 11. The video samples and more thorough ablation
study are in the webpage ablation folder of the supplementary material.
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“A […] is petting a dog on sea ice.”

man

man

woman

woman

no 
image

man

Figure 9: Ablation study on the conditioning images of “person”. The bottom-most conditioning
image is synthesized by DALL·E 3 (Betker et al., 2023)
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“A man is petting a dog on sea ice.”

no 
image

Figure 10: Ablation study on the conditioning images of “dog”.

“A man is petting a dog […].”

in the desert

no image

(None)

Figure 11: Ablation study on the background conditioning images.
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C.2 MORE COMPARISONS ON DIFFERENT CONDITIONING SUBJECTS

Next, we present additional qualitative comparisons with the state-of-the-art video personalization
frameworks. Figure 5 shows the comparison using the conditioning subject of “a car”. Here we
illustrate the comparisons using “a cat” in Figure 12 and “a dog” in Figure 13. We provide the
video samples and more comparisons in the webpage msrvtt folder of the supplementary material.

“A gray cat with black stripes sits in a gray cat bed and yawns 
in a dimly lit room with a beige wall and a brown door.”

VideoBoothELITE Ours (with DINOv2)Ours (with CLIP)

Figure 12: Qualitative comparison on the conditioning subject of “a cat”.

VideoBoothELITE Ours (with DINOv2)Ours (with CLIP)

“A brown and white puppy sits and stands up in a room with beige walls 
and a brown carpet and floor, next to a brown cabinet.”

Figure 13: Qualitative comparison on the conditioning subject of “a dog”.
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D LIMITATIONS

Undesirable Training Data Bias. In Section 3.3, we address the issue of undesirable image biases
by introducing augmentations and random sampling with replacement during training. However,
some image biases, such as facial expressions and body postures, remain unresolved. As a result,
our framework may generate subjects with similar facial expressions or postures as the reference
images. Figures 12 and 13 show that existing personalization frameworks (Wei et al., 2023a; Jiang
et al., 2024) with the same reconstruction-based learning strategy also exhibit this issue, which
remains a challenge for future work.

Taking Masked Images as Inputs. Our model personalizes video synthesis using segmented ref-
erence image inputs. It requires users to provide masked images during inference and additional
efforts may be needed if the localization algorithms do not segment the correct subject. Pasting the
subject image segment to a random background image can be employed on the training dataset to
address this issue.

Oversaturation. In Appendix B.3, we adopt classifier-free guidance (Ho & Salimans, 2022) (CFG)
twice in each denoising step to achieve different CFG scales for text and personalization condi-
tionings. However, we empirically observe that our model occasionally generates highly saturated
samples, which is a persistent issue (Saharia et al., 2022; Kynkäänniemi et al., 2024) in diffusion
models when strong CFG is used for sampling. For future work, we plan to explore sampling tech-
niques like static or dynamic thresholding (Saharia et al., 2022) to address this issue.

Unnatural Composition for Multiple Subject Conditioning. When users input multiple subjects
for conditioning, the synthetic videos sporadically exhibit unrealistic compositions and scales among
the different subjects. This behavior can be interpreted as the relative minority of videos with multi-
ple subjects in the training dataset. We are considering creating a training dataset featuring a higher
frequency of video samples with multiple subjects for future work.

Unsupported Measure on Video Quality. Same as CLIP similarity score (Torchmetrics, 2024),
MSRVTT-Personalization does not assess visual quality. Users must rely on alternative evaluations,
such as user studies, to compare the visual quality.
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