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Abstract

Multi-scale representations have proven to be a powerful tool since they can take into ac-
count both the fine-grained details of objects in an image as well as the broader context.
Inspired by this, we propose a novel dual-branch transformer network that operates on two
different scales to encode global contextual dependencies while preserving local informa-
tion. To learn in a self-supervised fashion, our approach considers the semantic dependency
that exists between different scales to generate a supervisory signal for inter-scale consis-
tency and also imposes a spatial stability loss within the scale for self-supervised content
clustering. While intra-scale and inter-scale consistency losses aim to increase features sim-
ilarly within the cluster, we propose to include a cross-entropy loss function on top of the
clustering score map to effectively model each cluster distribution and increase the deci-
sion boundary between clusters. Iteratively our algorithm learns to assign each pixel to a
semantically related cluster to produce the segmentation map. Extensive experiments on
skin lesion and lung segmentation datasets show the superiority of our method compared
to the state-of-the-art (SOTA) approaches. The implementation code is publicly available
at GitHub.
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1. Introduction

Over the past few years, there has been a remarkable success of supervised deep learn-
ing methods in computer vision tasks given a large-scale annotated dataset for several
downstream tasks such as image classification (Mangalam et al., 2022; Dong et al., 2022),
semantic segmentation (You et al.; Heidari et al., 2023), object detection (Ren et al., 2015;
He and Todorovic, 2022), etc. Nonetheless, the collection and annotation of a large-scale
dataset are time-consuming, tedious, and expensive tasks, particularly for medical imaging
datasets. While obtaining adequate good-quality annotated data is challenging, the unla-
beled data is available in abundance. To alleviate the problem of annotated data scarcity,
several approaches were proposed in the literature. Transfer learning, as a gold standard
method in this direction, performs representational learning by fine-tuning the pre-trained
network on the new task. Although the knowledge transfer provides a good starting point
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for the optimization algorithm, the lack of annotated data on the downstream task limits
the convergence of the network for learning task-specific features and results in less stable
models. Moreover, concerning the predefined model architecture, this method seems to
be inefficient in a complex task such as segmentation (Zhou et al., 2017; He et al., 2019;
Araújo et al., 2022). Alternatively, unsupervised approaches reformulate the problem by
learning data-driving features from the image itself (Ahn et al., 2019, 2020; Gao et al.,
2022). However, the obtained results of these methods are not always reliable since no
label or measure is available to confirm their efficiency (Khan et al., 2019). Semi-supervised
approaches are another alternative that try to bridge between supervised and unsupervised
learning to address data scarcity. They use a small portion of labeled data in conjunction
with a large number of unlabeled data to train a predictive model (Luo et al., 2021, 2022).
Even though the semi-supervised setting guides the learning process by a small amount of
annotated data, in the case that the labeled data fails to represent the entire distribution
this approach will be inefficient. Unlike the aforementioned strategies which perform the
learning paradigm by modeling the data distribution, the self-supervised technique uses a
different perspective by defining a set of matching tasks. More precisely, this strategy cre-
ates a supervisory signal from the image itself to perform representational learning. Zhuang
et al. (Zhuang et al., 2019) proposed a 3D self-supervised learning approach for brain tumor
segmentation. They trained a 3D CNN utilizing a novel proxy task and then fine-tuned the
pre-trained weights on their specific tasks with manual labels. Zheng et al. (Zheng et al.,
2021) proposed a hierarchical self-supervised learning to learn semantic features from multi-
domain data for various medical image segmentation tasks. Bai et al. (Bai et al., 2019)
proposed a network in a self-supervised manner to learn features by predicting anatomical
positions in order to segment cardiac MR images. Tajbakhsh et al. (Tajbakhsh et al.,
2019) took a different perspective and proposed a pretext task to predict color, rotation,
and noise. They claimed that such surrogate supervision enables the network to learn
data-driven and generic features which are cardinal for lung lobe segmentation and nodule
detection tasks. Chen et al. (Chen et al., 2019) proposed a self-supervised learning network
based on context restoration to segment brain tumors in multi-modal MRIs. Another work
(Tao et al., 2020) has utilized a self-supervised learning framework for 3D medical image
segmentation, where a volume-wise transformation is used to better exploit 3D anatomical
information. Ahn et al. (Ahn et al., 2021) further extended the self-supervised technique
without relying on the annotation data for the segmentation task. In their approach, a
spatial-guided clustering method is presented to iteratively combine neighboring clusters
and predict the segmentation mask. However, to learn long-range dependencies, there is no
mechanism included in this approach. This might explain the limitation of this approach for
capturing long-range dependency and merging clusters with shared characteristics, specif-
ically in complex backgrounds. To address the above-mentioned limitations, we propose
MS-Former, which models both local semantic dependencies and global context correlation
for a semantic segmentation task. Our strategy utilized a dual-stream transformer block
equipped with several self-supervisory signals to ensure feature consistency within the clus-
ter while increasing the intra-clustering margin. In the next section, we will elaborate more
on our strategy. Our contributions are: 1) a novel pure Transformer model to impose hi-
erarchical consistency loss in a self-supervised manner. 2) Spatial and feature consistency
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Figure 1: The overview of the proposed MMCFormer. In MMCFormer two vision trans-
former models are employed in parallel to capture multi-scale representation. The
approach also utilizes inter-scale and intra-scale consistency losses to provide su-
pervisory signals for feature matching and semantic learning, thereby enhancing
the performance of the semantic segmentation task.

losses to learn a feature clustering space based on the same characteristics. 3) SOTA results
on skin lesion and lung segmentation challenges.

2. Proposed Method

A critical challenge in self-supervised semantic segmentation is how to guide the network
to consider semantic and local dependencies for clustering each pixel into a set of shared
characteristics. More specifically, we are interested in modeling the representational space in
such a way that it is possible to learn the underlying distribution of the semantic and local
dependencies among image regions and provide discriminative information for clustering
each pixel. To address this issue, we propose a multi-scale self-guided Transformer network,
MS-Former, to perform self-supervised semantic segmentation tasks without requiring any
annotation label. The structure of the MS-Former is shown in Figure 1. Our network builds
upon an efficient transformer block; hence, we first present the efficient transformer block,
and then we will elaborate on our multi-scale self-supervised strategy.

2.1. Efficient Transformer Module

The main drawback of the vision transformer model is the quadratic computational com-
plexity of the self-attention mechanism. More specifically, the standard self-attention block
calculates the attention matrix using the query (Q1×d) and key (K1×d) values and then
multiples with the value (V 1×d) vector to perform the normalization as follows:

S(Q,K,V) = Softmax

(
QKT

√
d

)
V (1)

where n shows the number of tokens and d indicates the embedding dimension. This
operation has O(n2) complexity. Shen et al. (Shen et al., 2021) argue that the context

3



representation in the self-attention module contains redundant information and suggest a
modified equation to reduce the computation burden into a linear form:

E(Q,K,V) = ρq(Q)
(
ρk(K)TV

)
(2)

In their strategy, first, the Softmax function denoted as ρ is applied to the key and query
vectors to provide normalized scores. Next, the global context is formed by calculating the
matrix multiplication between the key and value. Statistically, they show that efficient
attention produces an equivalent representation while staying computationally linear in
terms of the number of tokens O(d2n). Figure 2(a) shows the efficient self-attention block
in more details.

2.2. Network Architecture

Giving an input image XH×W×C , where H ×W shows the spatial dimension and C refers
to the number of channels, our network first applies the patch embedding module in two
different scales, namely small (Ps) and large (Pl), to generate tokenized sequences zn×d

s ,
zm×d
l , where n and m show the number of non-overlapping windows in dimension d. We
feed the generated sequences into a dual-branch transformer network which uses the same
transformer structure in each path but operates on different input sequences to capture
both coarse-grained and fine-grained features while staying computationally linear. We
then concatenate the translated sequences in channel dimension and perform an MLP
down-sampling layer as follows:

z′ =
[
f l (zl) ∥UP (fs (zs))

]
, z = MLP(z′), (3)

where, f l and fs show the large and small branch networks, respectively. Also, UP illus-
trates up-sampling, and MLP is used to demonstrate the linear operations. We reshape the
generated sequence z into a soft prediction map SH×W×K , where K indicates the number of
clusters. We then create the semantic segmentation map Y H×W×K by applying the argmax
function on each spatial location to activate the related cluster index. We train the network
by iteratively minimizing the cross-entropy loss between the soft prediction map and the
segmentation map:

Lce (S, Y ) = − 1

H ×W

H×W∑
i=1

K∑
j=1

Yi,j log (Si,j) . (4)

Although the cross-entropy loss included in our approach learns the underlying distri-
bution of the clusters by continually increasing the network confidence for mapping similar
pixels into the same cluster while increasing the inter-cluster margin, it lacks to model the
spatial relationship in a local region and renders a poor performance for merging neighbor-
ing clusters. Besides that, the supervision only applies to the output channel, which for the
segmentation task deep supervision is more critical to ensure feature consistency in each
level of the network. To address these limitations, we propose to include intra-scale and
inter-scale feature matching mechanisms to adaptively recalibrate the feature representation
in the local neighborhood while imposing feature consistency in a multi-scale manner.
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Figure 2: (a): structure of the efficient Transformer module and (b): visualization of the
intra-scale and inter-scale dependencies.

2.3. Inter-scale Consistency

The use of multi-scale representations has been demonstrated to be an effective tool, as
they allow for the incorporation of both the small details of the objects within an image
and the larger contexts. When we create representations of the same object at different
scales, the correlation of these representations should be similar because the nature of the
object remains the same regardless of the scale at which it is represented. In light of this,
we propose an inter-scale module that seeks to provide a supervisory signal to maximize
the context correlation between small and large branches, thereby approaching these two
branch distributions (Figure 2(b) illustrates the inter-scale concept). Our efficient self-
attention mechanism calculates the global context using the query and value vectors as
G = (ρk(k)

TV ) ∈ Rd×d, where it shows the correlation matrix. We geometrically represent
Gs and Gl as the global context of small and large branches, respectively. Hence, to align
the distribution of both context vectors, we aim to maximize the correlation of these two
distributions. We show in Equation 5 that maximizing the correlation between Gs and Gl

can be viewed as minimizing the angle between them:
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cos(Gs,Gl) =

〈
Gs,Gl

〉
∥Gs∥ · ∥Gl∥

=

〈
Gs,Gl

〉√
⟨Gs,Gs⟩ ·

√
⟨Gl,Gl⟩

=
Σd

i Σ
d
jG

s
ijG

l
ji√

Σd
i Σ

d
j G

s
ij
2
√
Σd

i Σ
d
j G

l
ij
2
=

Cov
(
Gs,Gl

)
σ (Gs)σ (Gl)

= ρ
(
Gs,Gl

)
(5)

Therefore, we propose to minimize the cosine dissimilarity:

Linter(G, y) = 1− cos
(
Gs,Gl

)
. (6)

Linter allows for the exchange of inter-scale information, which can improve the represen-
tation of features and align the distribution of context vectors Gs and Gl. Furthermore,
this supervisory signal allows the network to better model the clustering space by grouping
similar clusters in a multi-scale manner.

2.4. Intra-scale Consistency

The cross-entropy loss utilized in our network measures the difference between the clusters’
probability distributions and provides a mechanism to assign similar pixels to the same
distribution. However, applying the cross-entropy loss alone would not directly consider
the spatial arrangement of the pixels or regions in the image. Therefore, we provide an
intra-scale module to account for the spatial relationships and merge the clusters with
similar characteristics. To this end, we create two tokenized sequences (An×d

1 , An×d
2 ) on top

of the attention score obtained from the soft prediction map:

A = MSA(BN(z))), (7)

where A2 shows the horizontally and vertically shifted version of the A1 and MSA stands
for the multi-head self-attention. We then calculate the correlation matrix:

ρA1,A2 =
cov (A1, A2)

σA1σA2

=
E [(A1 − µA1) (A2 − µA2)]

σA1σA2

, (8)

and seek to maximize the pair-wise correlation. To do so, we learn to minimize the L1-norm
between the ρ and Unit Matrix I. L1 is demonstrated to be a robust measure and causes
fewer artifacts by being less disruptive to edges and linked regions in the image content.
Therefore, we employ the L1-norm to calculate the differences in the score map to determine
the spatial interactions between pixels and regions in the image:

Lintra (ρ, I) =

n∑
i

n∑
j

∥ρi,j − Ii,j∥1 (9)

Here, ρi,j shows the pair-wise correlation value between the ith and the jth tokens in the
score map S.

6



MS-Former: Multi-Scale Self-Guided Transformer for Medical Image Segmentation

2.5. Joint objective

The final loss function utilized in our training process consists of three loss terms as follows:

Ljoint = λ1Lce + λ2Linter + λ3Lintra (10)

where the first term indicates the cross-entropy loss between the network’s predicted scores
and the maximum index to ensure prediction confidence and provide a mechanism to learn
the distribution of each cluster. The second term shows the inter-scale loss which we
included as a supervisory component to ensure feature representation stability across the
scales and provide regions specific similarity. The final term is included to impose intra-
scale consistency in each image region. This spatial consistency aims to reduce the local
variation and provide a way to smoothly merge neighboring clusters.

3. Experiments

In our experiments, we conducted several ablation studies on two publicly available datasets
as follows:
Skin lesion segmentation: As a first task, we evaluate our method on dermoscopic images
to segment skin lesion regions. To this end, we use the PH2 dataset (Mendonça et al., 2013)
that contains 200 RGB images of melanocytic lesions. The dataset covers a large variety of
lesion types and demonstrates a real-world challenging problem. In our experiment, we use
all 200 samples to evaluate the performance.

Lung segmentation: For the second task, we consider lung segmentation in CT images.
We use the lung analysis dataset, which is publicly available by the Kaggle (see (Azad et al.,
2019)) and offers 2D and 3D CT images. In our evaluation, we follow the same strategy
presented in (Azad et al., 2019) to prepare the dataset. For the evaluation process, we
extract the 2D slices from the 3D images and then select the first 700 samples to evaluate
our method.

3.1. Experimental Set-up

Network Details: Our dual-branch structure consists of two efficient transformer blocks
in each path to capture both fine-grained and global context representation. We use the
batch-norm layer after each block to accelerate the model convergence. In our experiment,
we set the small patch (e.g., equal to 1) and use a larger patch size (e.g., 2) in the second
branch to model multi-scale representations. The intuition behind our selected patch sizes is
to preserve spatial information at the pixel level while guiding the network through the large
branch to model global dependency. This strategy ensures that the network captures the
local representation and, at the same time, benefits from the regional information derived
from the larger patch. As a result, we set patch sizes accordingly. For each image, we learn
the trainable parameters by iteratively (maximum 50 iterations) minimizing the overall loss
function using the SGD optimization with a learning rate of 0.1 and a momentum of 0.9.
All experiments were performed on a single RTX 3090 GPU with the PyTorch library.

Evaluation Protocol: To set up a fair evaluation and provide more comparative insight
into the performance of our suggested network, we use both unsupervised and self-supervised
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clustering-based techniques to compare the effectiveness of our model. In this respect, us-
ing the Dice (DSC) score, XOR metric, and the Hammoud distance (HM), we compare
our method with the unsupervised k -means clustering method and recent self-supervised
methods, DeepCluster (Caron et al., 2018), IIC (Ji et al., 2019), and spatial guided self-
supervised strategy (SGSCN) (Ahn et al., 2021). Following (Ahn et al., 2021), we only
consider the cluster which has the higher overlap with the GT map as a target class pre-
diction to evaluate our method. In our evaluation, the DSC score represents the agreement
between the predicted target region and the GT map, with higher values indicating better
results. On the contrary, HM and XOR metrics represent disagreement with the target;
thus, lower values represent better performance.

3.2. Results

In this section, the performances of the proposed method against the SOTA approaches are
presented. To begin with, we present comparative results on the skin lesion segmentation
task in Table 1. Quantitative results show that our methods outperform the SOTA ap-
proaches in all metrics, which indicates the effectiveness of our strategy for self-supervised
content clustering. Specifically, compared to SGSCN, our strategy models the spatial con-
sistency at the token level, which further imposes a spatial dependency for the segmentation
task. In addition, SGSCN minimizes the intra-cluster variation by imposing the context-
based consistency on top of the score map, while our method applies the context agreement
module to minimize the intra-cluster variation in the deeper level of the network, which
effectively recalibrates the feature representation. From a qualitative perspective, we pro-
vide the comparative segmentation results on the skin lesion dataset in Figure 3. Unlike
the DeepCluster and the k-means methods, it can be observed that our strategy produces
a smooth segmentation map for the skin lesion area with a slightly better prediction of the
lesion boundary. On top of that, SGSCN results in an under-segmentation map caused by
considering edges around the lesion as a new class, while our method manages to achieve a
slightly better segmentation map.

Moreover, the quantitative results of the suggested network on the lung region segmen-
tation task are presented in Table 1. The noisy nature of CT images and the spiky ground
truth labels usually limit the performance of even supervised methods for semantic segmen-
tation on CT images. However, our self-supervised method produces acceptable results,
which outperform the SOTA approaches in all metrics. Notably, the k -means algorithm
performs well as the local areas in the lung dataset are quite similar to each other and
have relatively simple shapes and fewer variations compared to skin lesions. Furthermore,
we provide visual segmentation results in Figure 3 to illustrate the effectiveness of our ap-
proach. It can be seen that our method provides a softer contour of segmentation maps than
other methods, which in our opinion, reflects that global long-range contextual information
helped the network to perceive the actual boundary of the target and separate it from the
background. Additionally, we analyze the effect of the suggested modules in Appendix A
and the strength and limitations of our approach in Appendix B.
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Table 1: Comparative performance of the proposed method against the SOTA approaches
on the PH2 and Lung datasets. Notably, k is set to 3 in the PH2 dataset and 2 in
the Lung dataset.

Methods
PH2 Lung Segmentation

DSC ↑ HM ↓ XOR ↓ DSC ↑ HM ↓ XOR ↓
k -means 71.3 130.8 41.3 92.7 10.6 12.6

DeepCluster (Caron et al., 2018) 79.6 35.8 31.3 87.5 16.1 18.8
IIC (Ji et al., 2019) 81.2 35.3 29.8 - - -

SGSCN(Ahn et al., 2021) 83.4 32.3 28.2 89.1 16.1 34.3

Our Method 86.0 23.1 25.9 94.6 8.1 14.8

(a) Input Image (b) Ground Truth (d) k -means (e) DeepCluster (f) SGSCN (c) Our Method

Figure 3: Visual comparison of different methods on the PH2 skin lesion segmentation and
Lung datasets. Our method generates segmentation maps with smoother bound-
aries and fewer false negative predictions compared to the DeepCluster approach.
Additionally, our method achieves slightly better performance in delineating ob-
ject boundaries compared to the SGSCN method.

4. Conclusion

In this paper, we proposed a self-supervised strategy to perform the medical image segmen-
tation task without requiring any annotation mask. Our strategy builds upon an efficient
self-attention mechanism in a dual-branch strategy to provide intra-scale and inter-scale
consistency for clustering each pixel into a shared characteristic. In an iterative fashion,
our algorithm produces semantically related segmentation maps which outperform the re-
lated SOTA approaches.
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Appendix A. Ablation Study on the Effect of Suggested Modules

In our proposed method, we included the inter-scale and intra-scale feature consistency
modules to further recalibrate the feature representation for a better clustering space. In this
section, we first investigate the hyperparameter selection for the loss function weights and
then we will elaborate on the effect of each module from both quantitative and qualitative
perspectives to provide more insight into the contribution of these modules.

The hyperparameters of our proposed method were designed and tuned based on the
empirical evaluation of the model on the small set of skin lesion segmentation images (10
samples) from ISIC 2017 (Codella et al., 2018). We used a grid search approach within a
small range from (0 - 2)to explore the hyperparameter space and find the optimal values of
λ1 = 1, λ2 = 2, λ3 = 1.2. We use the obtained hyper-parameters for both datasets. To assess
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the generalizability of the network, an additional experiment was conducted on the camera-
ready version. The aim was to identify optimal hyperparameters for the lung segmentation
dataset by utilizing ten samples from the aforementioned dataset. This resulted in the values
of λ1 = 1.2, λ2 = 1.8, and λ3 = 1.2. Subsequently, the updated hyperparameters were used
to evaluate the performance of the model, and a slightly improved outcome was observed in
comparison to the original configuration, with a Dice similarity coefficient (DSC) of 94.62.
This approach highlights the importance of optimizing hyperparameters to achieve superior
performance on a new dataset.

Moreover, in the inter-scale consistency mechanism, we included the second branch to
capture long-range contextual information and provide a supervisory signal for inter-scale
feature consistency. To scrutinize the exact contribution of the inter-scale module, we have
conducted an experiment without including the inter-scale loss function. The results are
presented in Table 2. It can be seen that, removing the inter-scale loss function resulted
in a 1.9% DSC score loss compared to our main strategy. From a qualitative standpoint
(Figure 4), we can also observe that by removing this loss function models tends to have
difficulties in accurate boundary separation. In addition, it weakens the network multi-scale
feature agreement condition and results in incorrectly merging the small cluster with the
neighborhood clusters.

Table 2: Contribution of each loss function on the model performance. All experiments
were performed on the PH2 dataset.

Lce Lintra Linter DSC ↑ HM ↓ XOR ↓
✓ ✗ ✗ 83.6 25.8 30.2
✓ ✓ ✗ 84.1 25.4 29.4
✓ ✗ ✓ 84.3 25.3 28.4
✓ ✓ ✓ 86.0 23.1 25.9

(a) Input Image (b) Ground Truth (c) Our Method (d) Lce (e) Lce + Lintra (f) Lce + Linter (g) Ljoint

Figure 4: Segmentation results of the proposed method on the skin lesion segmentation
task using the PH2 dataset. (a) original input image, (b): grand truth map, (c-e)
shows the obtained results by applying different loss combinations.

We investigated the effect of intra-scale consistency loss on the clustering process. Quan-
titative results are presented in Table 2. We can observe that our model without the intra-
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scale loss function performs weakly in almost all metrics. This fact explains the importance
of spatial consistency for the segmentation purpose. It is important to note that in our intra-
scale consistency, we use shift size 2 (in x,y directions) to better model the local consistency.
In fact, choosing a large shift step may result in a larger receptive field, which could lead
to a loss of local consistency in the feature maps. This can result in wrong predictions and
poor segmentation performance (as we observed in our experiments). Therefore, we chose a
fixed shift step of 2 for both datasets to balance between gathering sufficient contextual in-
formation and preserving local consistency in the feature maps. Moreover, the visualization
evidence (Figure 4) reveals that when the model does not impose the inter-scale (spatial)
consistency the model tends to predict non-consistency clusters and lacks to perform clus-
ter merging. Additionally, the importance of spatial consistency is more apparent when
the algorithm deals with objects’ surfaces. It is also worthwhile to mention that in our
proposed method we modeled the intra-scale consistency loss using the correlation matrix
ρ between the contextual features calculated in the self-attention mechanism. To maximize
the similarity we strived to minimize the L1-norm between the ρ and Unit Matrix I. To
visually investigate this process inside the deep model we visualized the correlation matrix
during the training process in Figure 5. It is observable that the model learns to maximize
the correlation in a I form, which indicates the convergence of our spatial consistency.

(a) Iteration 0 (b) Iteration 5 (c) Iteration 10 (d) Iteration 15 (e) Iteration 20

(f) Iteration 25 (g) Iteration 30 (h) Iteration 35 (i) Iteration 40 (j) Iteration 45

Figure 5: Convergence of the intra-scale correlation matrix through the training process.

It is worth mentioning that in our experiment, we set the λ1, λ2, and λ3, in Equation 10,
to 1, 5, and 1.2 for both datasets, respectively.

Appendix B. Strength and Limitations

As we illustrated throughout the experimental results, our method surpasses the SOTA
approaches on both datasets. Here we provide more visualization samples to investigate
where our strategy can be more effective for self-supervised segmentation and in which
cases our algorithm faces challenges. In this respect, we provided sample clustering results
in Figure 6. Our method apparently produces a good clustering decision when there is
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a sharp edge between the object boundaries. This might explain why our method usually
produces slightly over-segmentation results. In Figure 7, we have provided some cases where
our suggested method fails to predict the lesion regions. Judging from the qualitative results,
it seems that our method renders a poor performance when the object of interest has a high
overlap with background regions. More specifically, skin lesions may appear in a deformed
shape which is quite challenging for the model to predict the exact lesion location. Besides
that, the ground truth mask usually contains noisy annotation, which does not reflect the
real segmentation map.

In
p
u
t
Im

ag
e

G
ro
u
n
d
T
ru
th

O
u
r
M
et
h
o
d

Figure 6: Some sample of the segmentation results in both PH2 and Lung datasets.

(a) Input Image (b) Ground Truth (c) Binary Mask (d) Multi-class Mask

Figure 7: Sample limitation of the proposed method for skin lesion segmentation task.
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