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Abstract

Sperm whales (Physeter macrocephalus) communicate using patterned click se-1

quences called codas. Whether there are any systematic patterns governing the2

structure of coda sequences, or how coda production influences group behavior,3

remain open questions. To answer these questions, we train neural sequence models4

(“sperm whale language models”) on vocalization and behavior data from a popu-5

lation of sperm whales in the eastern Caribbean. By systematically manipulating6

models’ training data and measuring changes in predictive power, we find that7

vocalizations exhibit order dependence and long-range dependencies on up to eight8

previous codas in an exchange. We additionally find that this structure encodes9

information about behavior: whales’ current behavioral context and future actions10

are predictable with high accuracy from coda sequences. The methods developed11

for relating vocalization to behavior are general, and offer a flexible framework12

for using language models to investigate the structure and information content of13

unknown communication systems.14

1 Introduction15

Communication is a key characteristic of intelligenceLieberman [1984], Hauser et al. [2002], Jackend-16

off [2002]. In humans, language allows us to share knowledge, coordinate actions, and establish social17

structures. Humans are not the only animals that communicate to coordinate behavior; non-human18

organisms produce and perceive communicative signals in very different ways from humans, and19

many animal communication systems remain incompletely understood. Can neural sequence models20

aid and guide the scientific characterization of animal communication as well?21

We use neural sequence models to characterize both the structure and information content of an22

animal communication system—specifically, to model communication and behavior in sperm whales23

(Physeter macrocephalus). Sperm whales exhibit a multi-level social structure Whitehead [2004],24

Cantor et al. [2015], Gero et al. [2016], coordinated group foraging and child-rearing behavior25

Marcoux et al. [2007], Cantor and Whitehead [2015], Whitehead and Rendell [2004], and a complex,26

socially learned communication system Watkins [1977], Weilgart and Whitehead [1993], Rendell27

and Whitehead [2003]. Sperm whale vocalizations consist of sequences of stereotyped, rhythmic28

click patterns called codas. But the patterns in which codas are combined into sequences, and their29

role in coordinating group behavior, are still not understood.30

To obtain first answers to these questions, we train a collection of neural sequence models (“sperm31

whale language models”) on several years of recordings from a population of sperm whales in the32

eastern Caribbean, the EC1 clan. Models receive as input a “conversation history” (a sequence of33

vocalizations by one or more whales) and predict either the whales’ future vocalizations, present34
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behavior, or future behavior. By systematically manipulating the data these models are trained on35

(e.g. by restricting the length of the conversation history they have access to, or masking specific36

acoustic features of individual codas), and measuring the impact of these manipulations on predictive37

power, we can identify specific features that are predictive of future vocalizations or behavior.38

We first show that vocal exchanges between sperm whales in our sample have complex internal39

structure: coda production exhibits long-range statistical dependencies, and is sensitive to the identity40

and ordering of the preceding 8 codas (up to 30 seconds in the past)—including not only codas41

produced by the vocalizing whale, but also those produced by conspecifics. Next, we show that42

these exchanges contain information about behavior: sequence models can predict both whales’43

present behavioral context and future actions from their vocalizations alone. By inspecting models’44

predictions, we identify a specific, multi-coda motif that is predictive of future diving when made by45

all whales present in an exchange. These results provide the first evidence that some sperm whale46

vocalizations exhibit long-range structure above the single-coda level, and the first evidence that this47

structure encodes information about future behavior. As recently highlighted by Rutz et al. Rutz48

et al. [2023], machine learning models hold great promise for advancing scientific understanding of49

communication systems across the tree of life, and the approach to sequence-model-guided discovery50

we present here can serve as a precursor to interactive playback experiments by enabling offline51

identification of informative features and predictive relationships—offering a flexible framework for52

using the tools of artificial intelligence to study complex biological systems.53

2 Method54

In this paper, we are specifically concerned with sequence models parameterized by deep neural55

networks. We train two families of neural sequence models, one of which predicts future coda56

production, and the other of which predicts a vocalizing whale’s present or future behavior given coda57

sequences. We begin by formally defining these networks and their training objective, then describe58

how they can be used to analyze the structure and information content of sperm whale vocalizations.59

Using the Dominica Sperm Whale Project dataset (see supplementary for details), we train a neural60

sequence model to predict codas and behaviors from preceding coda sequences. We then examine the61

behavior of this model to determine what codas and behaviors are predictable and what features of62

vocalizations support these predictions.63

Model training and evaluation: Our dataset (denoted D) comprises a sequence of coda exchanges64

(each denoted ei), each of which in turn comprises a sequence of codas (cij), where cij is the jth65

coda in the ith exchange. We ‘tokenize’ call sequences by assigning every coda a discrete identifier66

that captures the four defining coda features (rhythm, tempo, rubato, and ornamentation) previously67

described by Sharma et al. [2023], as well as the time elapsed since the preceding coda in the68

exchange, and the identity of the vocalizing whale. Each exchange ei also takes place in a specific69

behavioral context (e.g. the beginning of a foraging dive or a period of socialization near the surface70

of the water; see Fig. 2). We denote by bi the behavioral context for the exchange ei. Refer to Section71

1.1 in the supplementary material for additional details on tokenization. For each prediction task, we72

construct an encoder–decoder LSTM Hochreiter and Schmidhuber [1997], a type of recurrent neural73

network, that maps from a sequence of input codas to a distribution over next codas or behavior labels.74

To produce an accurate predictor, we train the network to imitate real coda sequences.75

To do so, we first divide the dataset D into a training set Dtrain and a test set Dtest. When76

training models for coda prediction tasks, we choose parameters to maximize the log-likelihood77 ∑|Dtrain|
i=1

∑|ei|
j=1 log p(c

i
j | . . . , cij−2, c

i
j−1; θ), where p(y | x; θ) denotes the probability that the LSTM78

with parameters θ assigns to the output y given the input x. Intuitively, this choice of θ encourages79

the model to assign a high probability to sequences that appeared in the training data and a low80

probability to all other sequences. When training models for behavior prediction, we optimize81 ∑|Dtrain|
i=1

∑|ei|
j=1 log p(bi or bi+1 | . . . , cij−2, c

i
j−1), which encourages the model to assign high proba-82

bility to the true behavioral context of training vocalizations. As described below, our experiments83

vary both the size of the context window and the features used to distinguish input codas. As is84

standard when studying neural sequence models, we evaluate coda-prediction models according85

to their perplexity exp{− 1
N (

∑|Dtest|
i=1

∑|ei|
j=1 log p(c

i
j | . . . , cij−2, c

i
j−1)}, where N denotes the total86

number of codas in Dtest. Perplexity is simply the exponentiated average log-likelihood per token.87

Example predictions are shown in Fig. 1E. We evaluate behavior-prediction models according to their88
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accuracy (whether the behavior assigned the highest probability matches the ground-truth behavior in89

the dataset). Averages for both evaluation metrics are computed over the full DSWP dataset using90

k-fold cross-validation (k = 10). Each cross-validation split holds out recordings from a distinct day91

for evaluation, and trains a sequence model on the remaining days, ensuring that models are evaluated92

on their ability to extrapolate to novel interactions. Refer to Section 1.2 in the supplementary materials93

for additional training details.94

Experimental method: To understand what features of coda sequences contain information about95

future vocalizations or behavior, we repeat the training procedure described above while systematically96

varying the information available to the model. For example, to determine whether the next coda97

choice is solely influenced by the single preceding coda, we train two models, one of which conditions98

on a sequence of n > 1 input codas cj−n, . . . , cj−2, cj−1, and the other of which conditions on99

only the most recent coda cj−1. If these two models exhibit similar perplexity on a held-out set,100

we conclude that longer contexts contain no additional information that is usable for prediction;101

if the long-context model performs better, we conclude that there is usable information in codas102

beyond the most recent. Formally, this procedure may be interpreted as measuring the transfer103

entropy Schreiber [2000] or V-information O’Connor and Andreas [2021] from the context to the104

next coda. Importantly, this method for quantifying the informativeness of features is self-supervised:105

it requires only communication (or communication and behavior) data, without additional labels or106

interventions from researchers. Below, we use it to identify aspects of sperm whale vocalizations that107

carry information about future vocalizations, as well as current and future behavior.108

Results and Discussion109

Figure 1: Structure of Sperm Whale Exchanges. We build a sequence model over sperm whale calls to
identify what aspects of their call sequence encode information that is predictive of the next call. A depicts
the sequence of calls exchanged between two whales and various turn-taking and response patterns. In B, we
analyse the effect of communicative context on call production. We find that coda production is sensitive to the
ordering of previous codas (left) and sensitive to a history of up to 8 codas (right).

Vocalizations exhibit long-range dependencies and order-sensitivity: First, we investigate the110

effect of communicative context by studying how coda sequencing influences call production. In111

Fig. 1B(i), we evaluate the informativeness of call order. We hold the context window fixed at the112

past two codas as well as a longer context of eight codas and train LMs on versions of the data in113

which these input codas arrive in (1) their natural order, or (2) are replaced with a uniformly random114

permutation of the input. In both cases, models are trained to predict future calls in their natural115

order. Removing order information from inputs increases perplexity (i.e. decreases predictivity) by116

up to 22.7%, indicating that ordering information is crucial for predicting future calls (Wilcoxon117

Sign-Ranked Test, sum of ranks = 55, p = 0.001).118

In Fig. 1B(ii), we evaluate the informativeness of context length by varying the number of preceding119

codas available to the LM during training and prediction. Short contexts (containing 6 or fewer120
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preceding codas) substantially reduce the predictability of future codas (by up to 20.6%) relative121

to long contexts (Wilcoxon Sign-Ranked Test, sum of ranks = 54, p = 0.002). Together with the122

ordering information, these results indicate that the patterns governing call production depend on the123

ordering of a large number of preceding calls. The sperm whale communication system is sensitive124

to call order and exhibits statistical dependencies across calls separated by as much as 30 seconds (a125

typical duration for an 8-coda sequence).126

Current and future diving behavior are predictable from vocalizations alone: We next apply127

neural sequence models to predict not vocalizations, but behavior. When not floating on the surface128

of the water, sperm whales alternate between three high-level behavioral states: conducting deep129

foraging dives (at depths of over 600 meters), shallow dives (at depths of less than 200 meters), and130

sleep (during which whales are perpendicular to the surface of the water at depths of less than 100131

meters). These behavioral states can be distinguished using accelerometry data that is captured and is132

aligned to acoustic data captured by the tags. The question of whether vocalizalizations also carry133

information about future behaviors has remained open for decades.134

B C

Figure 2: Predicting behavior from Vocalizations. A shows depth profile of a tagged whale and the
corresponding behavioral states of the whale across the period depicted. B Confusion matrix for a neural
sequence model trained to predict the future diving behavior of the whale based on its current sequence of calls.
C Confusion matrix for model trained to predict the current state of the whale given a sequence of calls.

We first predict the current behavioral state (i.e. the state of the whale at the moment a particular135

coda was produced). Because no vocalization occurs during sleep, this involves discriminating136

between three states: the descent and ascent phases of foraging dives, along with shallow dives.137

We additionally also predict the future behavioral state of the vocalizing whale. We train a model138

to predict the tagged whale’s next action after the call sequence is produced: whether it will be a139

deep foraging dive or some other behavior (e.g. another shallow dive or sleep). Results for both140

prediction tasks are shown in Fig. 2B and C. We evaluate on balanced test test set containing equal141

portions of the three current-behavior and two future-behavior labels. It can be seen that, for both142

the present and future prediction tasks, a neural sequence model trained to predict behavior from143

vocalizations can do so non-trivially, obtaining 72.8% accuracy on the current behavior prediction144

task (Wilcoxon Sign-Ranked Test, sum of ranks = 54, p = 0.002) and 86.4% accuracy on the future145

behavior prediction task (Wilcoxon Sign-Ranked Test, sum of ranks = 55, p = 0.001), compared to146

a random baseline at 33.3% and 50% for the tasks respectively.147

Concluding Remarks: Machine learning offers promising directions for advancing our understand-148

ing the complex communication systems of sperm whales. We have shown that the neural sequence149

models can identify novel structure within vocalizations produced by sperm whales, predict likely150

future vocalizations, and in some cases link vocalization to behavior. A major challenge in studying151

an animal communication system is simply identifying, from within an enormous hypothesis space,152

which features of the system are likely to be information-carrying, and how these features relate to153

behavior. Our results show that neural sequence models for animal communication, analogous to154

language models for human languages, can play a key role in meeting these challenges.155
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A Sperm Whale Language Model209

A.1 Tokenization scheme210

In natural language processing, tokenization refers to the process of representing a text corpus in terms211

of a finite collection of atomic text units called tokens. To build a sequence model of whale exchanges,212

we apply an analogous tokenization procedure to represent call sequences in terms of a finite set213

of atomic elements. Following the phonetic alphabet features defined by Sharma et al. [2024], we214

represent each coda using rhythm, tempo, rubato, and ornamentation (see Table 1 for definitions). Past215

work identifies 18 rhythm types, 5 tempo types, 3 rubato types, a binary ornamentation feature. To216

accurately model the structure of whale exchanges, our tokenization scheme also includes information217

about turn-taking behaviors, which account for speaker changes and the timing of calls. There are218

three types of turn-taking: 1) Self-response: A whale follows up its own call after a pause. 2)219

Response by another whale: A different whale responds after a pause. 3) Overlapping call: A whale220

produces a call that overlaps with another’s. Each unique combination of rhythm, tempo, rubato,221

ornament, and turn-taking behavior is assigned a unique token. Not all possible combinations are222

realized across different data splits. Any combination not present in the training split but appearing in223

the test split is mapped to the same <unk> (unknown) token.224

A.2 Details on cross-validation225

To ensure robust performance estimates, we conduct each experiment on 10 different dataset splits. In226

each split, whale calls from a single day are held out for testing, while recordings from the remaining227

days form the training and validation set. There is no overlap in days between the training and test228

recordings in any split. The size of the train-val-test datasets is different for different splits of the229

dataset. This dataset splitting ensures we measure the model’s ability to generalize to exchanges230

from a new day. Due to variability in exchanges across days, the model’s performance varies across231

different splits.232

A.3 Architectural details233

To evaluate how expressive sequence models need to be to capture the long-range dependencies and234

structure of whale calls, we train a collection of models with different inductive biases. Each model235

is trained on the same input sequence length (sequence length of 6) and optimized for the same236

objective: predicting the next call. We outline the architectural details of the models below.237

n-gram model: An n-gram model is a probabilistic language model that predicts the probability238

of the next item in a sequence based on the previous n − 1 items. This is done by computing239

frequency-based estimates of the conditional probability of the next token given the previous n− 1240

tokens on the training set.241

The paper uses the implementation of the kenLM repository for training the n-gram models ? with its242

default settings. Like with any count-based model, one challenge with an n-gram model is modeling243

the probability of occurrence of unseen n-grams. To obtain better probability estimates for unseen and244

less frequent n-grams, Kneser-Ney smoothing is used. Kneser-Ney smoothing starts by discounting245

from the counts of observed n-grams and redistributes the probability mass to better handle rare and246

unseen n-grams. Further, the n-gram model is discounted with backoff penalties. Backoff penalties in247

n-gram models adjust probability estimates when the model has to rely on lower-order n-grams due to248

the absence of higher-order ones. These penalties help balance the model’s reliance on different levels249

of context, ensuring more accurate and realistic probability estimates across different sequences.250
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Figure 3: Sperm Whale Language Model. Sperm whales produce sequences of clicks grouped
into distinct clusters called codas. A shows an (approximately) minute-long interaction between
two whales, with the tagged whale’s calls in blue and a conspecific’s calls in orange. (ii) highlights
the corresponding exchange plot Sharma et al. [2023] of the interaction. (iii) depicts this exchange
represented as a series of discrete tokens (with codas organized into discrete types following Sharma
et al. Sharma et al. [2023]. (iv) shows the depth profile of the tagged whale over a longer time
window. B depicts a language model trained on the task of the next coda and behavior prediction.
Like language models trained on human-generated text data, this model is trained autoregressively on
sequences of vocalizations like the one depicted in (iii).

Linear model: A linear model assumes that the output can be expressed as a linear combination of251

the input features. Here we learn a linear model that outputs the probability distribution over the next252

token given the previous 6 calls. The number of parameters in this model is a product of the context253

window times the output.254

Multi-layer perceptron: A multi-layer perceptron model contains multiple linear layer layers255

arranged in a feed-forward fashion with non-linearities between the layers. For this experiment we256

train a two-layer neural network with a hidden dimension of 64 with a ReLU non-linearity in between.257
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Figure 4: Schematic of our method: Our proposed approach uses sequence models to test hypotheses
about the information content and structure of whale calls. Here, we illustrate our method with
an example of verifying if rhythm impacts the prediction of future calls. Two models, one with
information about rhythm in its input and the other without, are trained and then tested to predict
all the call features i.e., the same output. If the model without information of the rubato loses
predictive power on the test set, then we reject the null hypothesis “H0: Coda rhythm does not
contain information about future calls” in favour of the alternate hypothesis.

LSTM: An LSTM (Long Short-Term Memory) is a type of recurrent neural network (RNN)258

architecture. The LSTM cell contains a more complex unit structure with a specialized gating259

mechanism that regulates the flow of information in the network, thereby giving it a much more260

powerful inductive bias to effectively model sequential data. For our experiments, we use an encoder-261

decoder LSTM, where the encoder LSTM encodes the input sequence into a context vector and the262

decoder LSTM decodes this vector into an output sequence. We use a bi-directional encoder LSTM263

cell and a uni-directional decoder LSTM cell, both with 64-dimensional hidden state.264

LSTM with attention: An LSTM with Attention is an enhanced version of the Long Short-Term265

Memory (LSTM) architecture. It incorporates an attention mechanism to improve the model’s ability266

to focus on specific parts of the input sequence when generating each element of the output sequence.267

This architecture is especially useful for tasks when certain parts of the input sequence are more268

relevant to the output than others. We modify the architecture of the encoder-decoder LSTM to add269

to this computation.270

Implementational details: The parameters of the model were trained with stochastic gradient271

descent (SGD) using the Adam optimizer with a learning rate of 1e−4, weight decay of 1e−5 and272

batch size of 32. We early-stopped the training of the models based on their performance on a273

held-out validation set to prevent the models from over-fitting on the small training sets. This usually274

resulted in the models being trained up to 50 epochs in practice.275

A.4 Additional Ablations: Rubato and Ornamentation276

Ablating ornamentation and rubato information does not affect the model’s ability to predict the next277

call with statistical significance. This may be partly because ornaments are rare, making up only 4%278

of the dataset, and the dataset is too small to capture the precise dynamics of changing rubato.279
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B Behavior Prediction280

B.1 Details on annotating behavior phases281

The different behavioral phases—sleep, shallow dives, and foraging dives—are annotated both282

automatically and with input from expert humans. Below we outline the procedure used to identify283

each of the different behavioral phases.284

Foraging dives: The start and end points of a whale’s foraging dives are moments when the whale285

starts a sharp descent into the ocean to forage and when the whale first arrives at the ocean’s surface286

by ascending post-foraging. These are automatically detected using the accelerometer and depth data287

from the DTAG. Foraging dives typically show a steep, uninterrupted descent and ascent profile. A288

foraging dive is identified when the rate of depth change is nearly constant before and after the start289

and end points and when the whale reaches a depth of over 500m. This method correctly identifies all290

the dive start and end points from the collected DTAG data, which are thereafter verified by a human291

for accuracy.292

Figure 5: Pitch and depth data for shallow and sleep dives: Shallow and sleep dives are identified
using motion data collected using the DTAG. Sperm whale sleep dives have a characteristic change
in the depth and pitch data (indicated by the red box) where the whale goes from a position parallel
to the surface of the ocean to one where it becomes perpendicular to the ocean.

Shallow and sleep dives: Sleep and shallow dives are identified using accelerometer data and are293

then annotated and verified by expert human annotators. Examples of the depth and accelerometer294

data for these dives are shown in Fig. 5. Sleep dives exhibit a distinctive change in the accelerometer295

reading, indicating the whale’s shift from a horizontal position, parallel to the ocean’s surface, to a296

position that is vertical and perpendicular to the ocean’s surface. This is highlighted in Fig. 5. In297

contrast, no such change in the accelerometer reading is observed in other shallow dives. A dive is298

classified as shallow if the maximum depth of the whale in the course of the dive is less than 100m.299
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B.2 Predicting vocalizations requires complex models and fine-grained coda representations300

Having shown that sperm whale call production is sensitive to call history and call order, we next301

investigate which features within each individual call influence call production, and how expressive302

sequence models must be to capture this influence.303

Past work Sharma et al. [2023] previously proposed to analyze codas as a combination of four features304

termed rhythm, tempo, rubato, and ornamentation. In our first experiment, we evaluate which of these305

features are needed to predict future vocalizations. To do so, we systematically ablate information306

about these features (one at a time) from the input, while leaving the model’s output space unchanged.307

For example, to evaluate the role of the rhythm feature, we assign the same input token identifier308

to all codas that differ only in their rhythm type: for example, 4R/5 (where 4R denotes the rhythm309

category and 5 denotes the tempo category), 5R/5 and 1+1+3/5 codas are all mapped to the same310

input token ID. However, output coda IDs are kept unchanged to ensure all models make predictions311

over the same set of possible output tokens. We then compare the perplexity of this model to models312

with access to all features. If removing rhythm information from the input increases perplexity,313

we may conclude that this feature carries information about future vocalizations. Results of this314

experiment for rhythm and tempo, are shown in Fig. 6C. It can be seen that, when considering a315

communicative context of only two codas, both features are predictive. Interestingly, with longer316

contexts, ablating the rhythm feature no longer meaningfully alters predictivity, indicating that it317

may be somewhat redundant with information conveyed by changes in the other three features over318

multiple time steps. Corresponding experiments for ornamentation and rubato are provided in Section319

1.4 in the supplementary material.320

The preceding experiments have all used a specific recurrent neural sequence model for prediction.321

Our final coda prediction experiments evaluate the role that the choice of sequence model plays in322

these findings. To do so, we compare the predictive accuracy of the model in Fig. 6D with four323

other neural and non-neural sequence models: (a) a linear model in which the input sequence is324

represented by concatenating indicator features for each input coda in order, then mapped directly to325

a distribution over next codas, (b) a multi-layer perceptron which uses the same input representation326

as the linear model, but passes these inputs through a neural network with an additional hidden layer,327

(c) an n-gram model which predicts next items by counting empirical frequencies of different input328

coda sequences, and (d) a LSTM model with attention, which augments the sequence-to-sequence329

LSTM model with a single attention head, as in a pointer-generator network See et al. [2017]. See330

Section 1.3 in the supplementary materials for implementation details of all models. Results are331

shown in Fig. 6D: expressive models with explicit sequential structure predict the next call in a332

sequence more accurately. Surprisingly, n-gram models perform nearly as well as recurrent models,333

while models based on a (fixed, non-recurrent) input feature representation obtain significantly worse334

perplexities. The addition of an attention mechanism does not substantially alter predictivity. These335

results show that vocalizations can be predicted accurately by a range of learned sequence models,336

but that recurrent neural models enjoy a slight advantage over their classical counterparts.337

B.3 Behavioral-context baselines for future-behavior prediction.338

Our main experiments show that vocalizations contain information about both vocalizing whales’339

present and future behavior. However, these two prediction targets are correlated with each other: for340

example, 83% of foraging dives are followed by another foraging dive, rather than a shallow dives.341

Thus it is possible to obtain non-trivial accuracy at the future-behavior-prediction task using only342

information about a whale’s current state, and not its vocalizations.343

In this section, we present an additional analysis showing that these behavioral correlations do not344

fully explain model accuracy at the future prediction task: that is, vocalizations contain information345

about future behavior even after accounting for the information they contain about present behavior.346

In particular, we compare the difference in the performance of the future-behavior-prediction model347

with a model that predicts the most common next-turn behavior conditioned on a whale’s current348

behavioral state as predicted by the current-behavior-prediction model. Across the different cross-349

validation splits, the average difference in the performance between the future-behavior-prediction350

model and this suggested baseline model is 21.92% (test: Wilcoxon Sign-Ranked Test, sum of ranks351

= 36, p-value = 0.006). This indicates that future-behavior predictions are not fully explained by352

correlations between future and current behaviors: some vocalization features are directly predictive353

of future behavior.354
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Interestingly, the characteristic “pre-dive” calls identified in the main text are produced not only355

during the ascent phase but also at the end of social exchanges produced at the surface; however, not356

all calls produced during ascent follow this “pre-dive” pattern.357

B.4 Behavior prediction is possible from coda sequences, but not isolated codas358

As in Fig. 7B(iv) and Fig. 7C(iv), we conclude by evaluating what aspects of whales’ vocalizations359

are necessary for accurate behavior prediction. We first evaluate coda-level features by training360

predictors on rhythm features or tempo features alone. As can be seen in Fig. 7C(ii), tempo features361

alone suffice to match the accuracy of the full model at both behavior prediction tasks, while rhythm362

features alone provide reduced (but still non-trivial) predictive accuracy. This demonstrates that363

specific combinations of rhythm and tempo are uniquely produced before and during foraging dives.364

In the future behavior prediction task, these results are partially explained by a single coda type365

that individually predicts future diving behavior. In Fig. 7B(iv), it can be seen that most pre-dive366

calls, i.e. calls produced within 15 minutes before the onset of a foraging dive, contain 1+1+3/5367

codas (where 1+1+3 denotes the rhythm category and 5 denotes the tempo category), while these are368

comparatively infrequent in contexts that are not followed by a dive. In fact, considering only the369

subset of exchanges from Fig. 7B(iv) in which all calls (from both the tagged whale and conspecifics)370

are of the long 1+1+3 type, we find that 67.4% of these exchanges are followed by a dive, while only371

19.6% of other exchanges are followed by a dive (Fisher’s exact test (two-sided), odds ratio: 8.94,372

p = 8.2e−7).373

Conversely, for the task of predicting the whales’ current rather than future behavior, we find that374

single coda types are not strongly predictive of behavioral context, i.e., ascent, descent and shallow375

dives: when limiting the number of preceding codas available to the model, as in Fig. 7D (left),376

accuracy on this task is substantially degraded relative to performance with long input sequences377

(of seven or more codas). This result indicates distinctive sequences of codas discriminate different378

behavioral contexts from each other. This pattern may again be seen visually: in Fig. 7D (left), we379

embed all codas from our dataset in two dimensions using t-SNE, then draw lines connecting codas380

produced sequentially in different behavioral contexts. Each context exhibits a distinctive sequence of381

coda transitions, even though some individual coda types are produced in multiple contexts. In some382

cases, these coda sequences are reproduced identically on different days and by different individuals383

when the same behavior occurs. If codas are taken to be the atomic units of the communication384

system, this finding may be interpreted as revealing a kind of “behavior-dependent syntax” governing385

coda production (analogous to that observed in house finches Ciaburri and Williams [2019]).386
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Figure 6: Structure of Sperm Whale Exchanges. We build a sequence model over sperm whale calls to
identify what aspects of their call sequence encode information that is predictive of the next call. A depicts
the sequence of calls exchanged between two whales and various turn-taking and response patterns. In B, we
analyse the effect of communicative context on call production. We find that coda production is sensitive to the
ordering of previous codas (left) and sensitive to a history of up to 8 codas (right). In C we evaluate the effect
of specific features of the calls on the predictability of the next call in the sequence. We find a considerable
decrease in models’ predictive ability when the tempo feature is removed, indicating that the rhythm feature
also carries information about future vocalizations. For models with longer input contexts, we observe that
omitting the rhythm of the calls has little effect on model performance; however, doing so has a detrimental
effect on models with shorter communicative contexts. D evaluates the change in model performance with the
complexity of the model class. We find that more expressive neural models fit the data distribution better than
linear models or (count-based) n-gram models. This shows the existence of long-range dependencies in the
communication system that are difficult to model with surface statistics alone. E shows example vocalizations
generated from the trained model when “prompted” with the sequence of vocalizations shaded in gray. For B, C,
and D, Cousineau–Morey error bars are plotted; see manuscript for statistical tests.
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Figure 7: Predicting behavior from Vocalizations. A shows depth profile of a tagged whale and the
corresponding behavioral states of the whale across the period depicted. B (i) depicts a neural sequence model
trained to predict the future diving behavior of the whale based on its current sequence of calls. (ii) The
model predicts the future behavioral state of the whale correctly 86.4% of the time, significantly better than
random-chance baseline of 50%. The sequence of durations of the calls in the sequence is most informative of
the next state. (iii) shows the confusion matrix evaluating the model’s performance on the test set over different
classes. (iv) Examples of pre-dive codas C (i) shows model trained to predict the current state of the whale
given a sequence of calls. (ii) The model predicts the current state with an accuracy of 72.8% accuracy, again
significantly greater than a chance baseline at 33%. Here too we see that duration information is independently
informative about current behavior. (iii) Confusion matrix for the task of current state prediction. (iv) Sample
calls for different behavioral states. D (Left) Models with a larger input context predict the current behavioral
state of the whale better. (Right) By embedding codas in two dimensions using t-SNE, and connecting codas
produced during the same exchange, we observe characteristic sequences of codas associated with different
behavioral states, even when some of the constituent codas in these sequences recur across contexts. For B, C,
and D, Cousineau–Morey error bars are plotted; see manuscript for statistical tests.

B.5 Dataset387

We study coda exchanges in a manually annotated coda dataset from The Dominica Sperm Whale388

Project (DSWP). This includes recordings of the Eastern Caribbean clan (EC1) collected between389

2014 and 2018 from bio-logging tags (Dtags, Johnson and Tyack [2003]) deployed on known390

individuals off the island of Dominica. This dataset contains manually annotated coda clicks and391



Notation Description
Coda: A short burst of clicks with varying inter-click intervals generally less than

two seconds in duration.
Inter Click Interval (ICI): The time difference between two consecutive clicks within a coda.
Coda duration: The sum of a coda’s absolute ICIs.
Rhythm type: The discrete category a coda is assigned to based on its characteristic

sequence of standardized ICIs.
Tempo type: The discrete category a coda is assigned to based on its characteristic

duration.
Exchange / Chorus: Period of time where codas are made by more than a single whale (as in

Ravignani et al. [2014]).
Single-Whale Call Se-
quence:

A sequence of calls made by a given whale where every consecutive pair
of calls occur within 8 seconds (twice the average response time) of each
other.

Turn-taking: An exchange of codas involving alternating coda production. Also referred
to as ‘adjacent’ codas, these are defined as next-in-sequence codas whose
onset occurred within two seconds, but after the termination, of the initial
coda (as in Schulz et al. [2008]).

Overlapping Codas: An exchange of codas such that the next-in-sequence coda’s onset occurs
after the onset, but before the termination, of the previous coda (as in Schulz
et al. [2008]).

Ornament: “Extra click” appended to the end of a coda in a group of shorter codas. (For
further details on the identification criterion, see Ornamentation section in
the manuscript.)

Rubato: Gradual variation in duration across adjacent codas made by the same whale
within the same rhythm and tempo type.

Descent: The initial period of a foraging dive where there is a steady increase in the
depth the whale is located at. This is the period of time starting where the
whale is at the surface of the water and makes a plunge to start its foraging
dive to the point it reaches a depth at which it can start feeding.

Ascent: The terminal period of a foraging dive where there is a steady decrease in
the depth the whale is located at. This is the time period starting where
the whale is returning from feeding in deep waters to the point of time it
reaches the surface of the water.

Social (Socializing on
the surface):

The period of time when multiple whales remain at the surface or make
shallow dives (< 300 meters).

Foraging dives: Deep dives typically involve whales diving to a depth of over four hundred
meters. Deep dives almost always have buzzes which are evidence of
foraging.

Pre-dive calls: The set of codas made fifteen minutes less before the onet of a foraging
dive.

Behavioral Contexts: Groups of behaviors exhibited by whales motivated by a set of goals (diving,
socializing, pre-dive etc)

Context specific calls: The set of calls prototypically associated with a unique behavioral context.
Table 1: Glossary: Definitions of previously used and newly introduced terminology.

extracted inter-click intervals comprising 3948 codas Sharma et al. [2023]. The dataset also contains392

the accelerometer, gyroscope, and magnetometer readings from the tags. This allows us to compute393

the position of the tagged whale over time. The EC1 clan has a membership of fewer than 300394

individuals Vachon et al. [2024]. A total of 41 tags were deployed on 25 different individuals in 11395

different social units. We conservatively estimate that at least 60 distinct whales are recorded in our396

dataset. An example sequence of coda exchanges between two whales and the depth profile of the397

tagged whale is shown in Fig. 3A.398
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Notation Description
Language: Any possible set of strings over some (usually finite) alphabet of words.

Berwick et al. [2011]
Syntax: The rules for arranging items (sounds, words, word parts or phrases) into

their possible permissible combinations in a language. Berwick et al. [2011]
Likelihood: Likelihood is a statistical concept that measures how probable a particular

set of observations is, given a specific model and its parameters.
Neural network: A neural network is a computational model consisting of interconnected

nodes (neurons) organized in layers. It is designed to recognize patterns
and learn from data through training by adjusting the connections (weights)
between nodes to improve predictions or classifications.

Multi-Layer Perceptron: A multi-layer perceptron (MLP) is a type of neural network consisting of
an input layer, one or more hidden layers, and an output layer. Each layer
is made up of neurons that use activation functions to process inputs and
produce outputs.

Neural Sequence Model: A neural sequence model is a type of machine learning model designed
to handle sequential data, where the order of the data points is significant.
Sequence models, such as recurrent neural networks (RNNs) and long short-
term memory networks (LSTMs), are used to predict the next item in a
sequence or to understand dependencies within the sequence.

Sequence to sequence
models:

A sequence-to-sequence (seq2seq) model is a type of neural network archi-
tecture designed to transform one sequence into another. It consists of an
encoder that processes the input sequence and a decoder that generates the
output sequence.

Language Model: A language model is a type of sequence model typically trained on the next
token prediction object. It learns the probabilities of sequences of tokens,
enabling it to generate coherent text, autocomplete sentences, or predict the
next word in a sentence.

LSTM: A type of recurrent neural network (RNN) architecture designed to effec-
tively capture long-term dependencies in sequential data.

n-gram models: Statistical language models that predict the next item in a sequence based
on the preceding n − 1 items. They represent sequences as contiguous
sequences of n items (words or characters) and estimate the probability of
each sequence based on the observed frequencies of such sequences in the
training data.

Perplexity: Perplexity is a metric used to evaluate the performance of a language model.
It is simply the exponentiated average log-likelihood per token. It measures
how well the model predicts a sequence, with lower perplexity indicating
better performance.

Table 2: Glossary 2: Definitions of important linguistics and ML concepts
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