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ABSTRACT

The dynamics of systems of many degrees of freedom evolving on multiple
scales are often modeled in terms of stochastic differential equations. Usually
the structural form of these equations is unknown and the only manifestation of
the system’s dynamics are observations at discrete points in time. Despite their
widespread use, accurately inferring these systems from sparse-in-time observa-
tions remains challenging. Conventional inference methods either focus on the
temporal structure of observations, neglecting the geometry of the system’s invari-
ant density, or use geometric approximations of the invariant density, which are
limited to conservative driving forces. To address these limitations, here, we intro-
duce a novel approach that reconciles these two perspectives. We propose a path
augmentation scheme that employs data-driven control to account for the geome-
try of the invariant system’s density. Non-parametric inference on the augmented
paths, enables efficient identification of the underlying deterministic forces of sys-
tems observed at low sampling rates.

1 INTRODUCTION

Unraveling a system’s governing equations from time-series observations is often crucial for un-
derstanding unexplained natural phenomena. The goal is to find a mathematical representation that
aligns with observational data and provides a comprehensive phenomenological understanding of
the underlying mechanisms. This requires employing proper representations that capture key sys-
tem properties while effectively simplify extraneous degrees of freedom. Stochastic differential
equations (SDE) provide such a flexible representation (Arnold, 2014; Lande, 1976; Chandrasekhar,
1943; Nelson, 2004), by representing the dominant system forces in the deterministic part of the
equation, (drift function) f(·) : Rd → Rd, and summarising the unresolved or irrelevant degrees as
stochastic forces acting on the system (diffusion). The resulting evolution equation has the form

dXt = f(Xt)dt+ σ dWt, X0 = x0, (1)

where σ ∈ Rd×d stands for the noise amplitude, and Wt for the d-dimensional vector of indepen-
dent Wiener processes. The equation should be interpreted according to the Ito formalism. We
observe the system state at distinct points in time through Ok = ψ(Xkτ ), where Xkτ =̇Xt|t=τk,
with k = 1, 2, . . . ,K observations collected at inter-observation intervals τ , and want approxi-
mate the drift function f(·) from the observations {Ok}Kk=0. Here, we will consider ψ(x) = x, but
the method generalises for monotonic functions ψ(·).

2 IDENTIFYING STOCHASTIC SYSTEMS FROM SPARSE-IN-TIME
OBSERVATIONS

For small inter-observation intervals τ , we consider that we observe the continuous path of the sys-
tem state X0:T . High-frequency

observations
In that case, we can identify the drift function f(·) by the first order Kramers-Moyal

coefficient (Kramers, 1940; Moyal, 1949; Tabar, 2019) by empirically estimating conditional expec-
tations of state increments (Friedrich et al., 2000; Ragwitz & Kantz, 2001; Boninsegna et al., 2018;
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Figure 1: Existing path augmentation strategies match poorly the underlying transition den-
sity between consecutive observations underestimating its curvature. a.) Stochastic bridge
marginal density (grey) between two successive observations O1 and O2 (pink triangles) following
the ground truth dynamics. b.) Forward probability flow with estimated dynamics with a Gaussian
likelihood (maroon) matches poorly the correct transition density and often fails to reach the second
observation O2 (downward pink triangle). Common path augmentation strategies employ either: c.)
Brownian bridges, or d.) Ornstein Uhlenbeck (linear) bridge marginals resulting from local lineari-
sations of the estimated drift with Gaussian likelihood. Both approaches match poorly the correct
transition density, because they underestimate its curvature. e.) The proposed geometrically con-
strained path augmentation provides a better approximation of the underlying transition density by
forcing the bridge paths towards the geodesic curve that connects consecutive observations on the
manifold induced by the observations.

Siegert et al., 1998). For the Bayesian non-parametric counterpart of this approach, (Ruttor et al.,
2013; Batz et al., 2018) consider that transition probabilities between observations are Gaussian for
dt→ 0, resulting in a (Gaussian) likelihood for the drift (see Sec. A Eq. 7)

L(X0:T | f) = exp

[
−1

2

∫ T

0

∥f(Xt)∥2σ2dt+
∫ T

0

⟨f(Xt), Xt+dt −Xt⟩dt
]
. (2)

To identify the drift Ruttor et al. (2013) impose a Gaussian process prior on the function values f
(Eq. 12). In Eq. 2 we introduced the weighted inner product ⟨u, v⟩=̇u⊤ · σ−2v and weighted norm
∥u∥σ2=̇u⊤ · σ−2u.

However, as the inter-observation interval τ increases, the transition probabilities between consecu-
tive observations cannot be considered Gaussian, and thus the likelihood (Eq. 2) assumed between
two successive observations is no longer valid if Eq. 1 is non-linear. Low-frequency

observations
The likelihood for the drift

P({Ok}Kk=1|f) for such settings takes the form of a path integral

P({Ok}Kk=1 | f) =
∫

P({Ok}Kk=1, X0:T | f)D(X0:T ) =

∫
P({Ok}Kk=1 | X0:T )P(X0:T |f)D(X0:T ), (3)

where {Ok}Kk=1 denotes the set of K discrete time observations, P(X0:T |f) the prior path proba-
bility assuming the dynamics of Eq. 1, D(X0:T ) identifies the formal volume element on the path
space, while P({Ok}Kk=1|X0:T ) stands for the likelihood of observations given the latent path X0:T .

From a geometric perspective, we consider that the nonlinear system dynamics induce an invariant
density that may be approximated by a (possibly low dimensional) manifold. The sparse-in-time
observations are samples of that manifold. For low-frequency observations, Euclidean distances
employed for computing the state increments Xt+τ −Xt do not consider the geometry induced by
the nonlinear dynamics, and thereby underestimate the curvature of the transition density between
consecutive observations (Figure 4).

3 GEOMETRIC PATH AUGMENTATION

Since the likelihood of Eq. 3 is intractable, we consider the unobserved continuous path between
observations as latent random variables X0:T , and obtain a maximum a posteriori estimate for the
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Figure 2: Proposed path augmentation after two iterations already provides a good approxi-
mation of underlying drift. Estimated (red) and true (grey) force field with a.) Gaussian likelihood
b.) after one and c.) after second iteration of augmentations. (insets) Ground truth against estimated
angles for each point on the two dimensional grid. e.) Weighted root mean square error (wRMSE)
for estimated drifts after each iteration for the presented example. The weights for averaging the
error at each grid point are obtained from a kernel density estimation on the observations {Ok}Kk=1.
d.) wRMSE against inter-observation interval τ for different noise conditions σ = {0.25, 0.5} for
drift estimated with a Gaussian likelihood (gaus-circles), after first augmentation (1st-triangles), and
after second augmentation (2nd-squares) for T = 500. f.) wRMSE against noise amplitude σ in the
system for different trajectory durations T = {500, 1000} time units for inter-observation interval
τ = 240. Markers follow the same coding as in d.). Errorbars indicate one standard deviation over
5 independent realisations.

drift through Expectation Maximisation (EM) (Dempster et al., 1977). Similar parametric (Elerian
et al., 2001; Sermaidis et al., 2013) and non-parametric (Batz et al., 2018; Ruttor et al., 2013) meth-
ods have addressed the drift inference in the past, primarily in high-frequency observation settings.
Our approach is based on the non-parametric method discussed in (Batz et al., 2018; Ruttor et al.,
2013), with two significant advancements:

(i) We employ a path augmentation scheme following the estimated nonlinear dynamics
resulting from inference with the Gaussian likelihood of Eq. 2 (as opposed to local linear
approximations of these dynamics proposed in (Batz et al., 2018)).

(ii) Importantly, we further constrain the augmented paths to align with the geometry of
the invariant density between consecutive observations (Fig. 4 b.).

We follow an iterative algorithm, where at each iteration n we perform the two following steps:
(1.) An E(xpectation) step, where given a drift estimate f̂n we construct an approximate posterior
over the latent variables Q(X0:T ) ≈ P(X0:T |{O}Kk=1, f̂

n(x)).
(2.) A M(aximisation) step, where we update the drift estimation.
• Approximate posterior over paths. (E-step) We approximate the continuous path trajectory
X0:T between observations by a posterior path measure defined as the minimiser of the free energy

F [Q] =
1

2

T∫
0

∫ [
∥g(x, t)− f̂(x)∥2σ2 + UO(x, t) + UG(x, t)

]
qt(x) dx dt. (4)

The term UO(x, t)=̇−
∑

tk
lnP(Ok|x)δ(t− tk) forces the latent path to pass through the observa-

tions (or close to them depending on the observation process), while UG(x, t)=̇∥Γt − x∥2 guides the
latent path towards the geodesic curves γkt′ that connect consecutive observations on the manifold
M induced by the system’s invariant density (Sec. A.1.2). Here we denote Γt=̇{γkt′}t=(k−1)τ+t′τ ,
where γkt′ is the geodesic connecting Ok and Ok+1, and t′ ∈ [0, 1]. We identify the geodesic γkt′ for
each interval by learning the local metric of the manifold M (see Sec. A.1.2 and Arvanitidis et al.
(2019)).

Following Opper (2019), for each inter-observation interval [Ok,Ok+1] we identify the posterior
path measure (minimiser of Eq. 4) by the solution of a stochastic optimal control problem Maoutsa &
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Figure 3: Comparison of pro-
posed path augmentation with
Ornstein-Uhlenbeck augmen-
tation. Weighted root mean
square error (wRMSE) against
noise amplitude σ for different
inter-observation intervals for
noise amplitude for moderate
inter-observation intervals with
a.) σ = 0.25, and b.) σ = 0.50,
and for large inter-observation
intervals with c.) σ = 0.50, and
d.) σ = 0.75 and known direc-
tion of movement. In c., d. the
inter-observation interval results
in only one observation per os-
cillation period.

Opper (2022; 2021); Maoutsa (2022) with the objective to obtain a time-dependent drift adjustment
u(x, t) := g(x, t) − f̂(x) for the system with drift f̂(x) with initial and terminal constraints
determined by UO(x, t), and additional path constraints UG(x, t).
• Drift estimation. (M-step) To estimate the drift from a sampled latent path, we assume a Gaus-
sian process prior over function values and employ a sparse kernel approximation similar to Batz
et al. (2018) (see Sec. A.2 for details).

4 NUMERICAL EXPERIMENTS

To demonstrate the performance of the proposed method we performed systematic estimations for
a two-dimensional Van der Pol oscillator under different noise conditions σ, observed at different
inter-observation intervals τ for different lengths of trajectories T (see Sec. B). For the examined
noise amplitudes (Fig. 2 f.), the proposed path augmentation algorithm improves the naive estimation
with Gaussian assumptions within two iterations for most noise amplitudes (Fig. 2). For increasing
noise the improvement contributed by our approach decreases (Fig. 2f.), but is nevertheless not neg-
ligible. For low noise conditions, geodesics approximate the manifold structure better, however the
path integral control is limited by the control costs proportional to inverse noise covariance. Our
framework had comparable accuracy for all inter-observation lengths, but improvement was small
for small lengths since in that setting the estimation with Gaussian likelihood already provides a
good approximation of the ground truth drift. The proposed approach was compared to the aug-
mentation method proposed by Batz et al. (2018) (augmentation with Ornstein-Uhlenbeck bridges)
and delivered more accurate estimates for larger inter-observation intervals. For inter-observation
intervals with only one observation per oscillation period (Figure 3c.,d.), the proposed approach
delivered better results by considering additionally knowledge of the direction of movement in the
state space (c.f. Sec. B). The variance of estimates of the proposed method was smaller compared
to Batz et al. due to conditioning on the invariant geometry of the system.

5 CONCLUSION AND DISCUSSION

We introduced a new method for identifying stochastic systems from sparse-in-time observations of
the system’s state that reconciles approaches that rely purely on the temporal structure of the obser-
vations with those that approximate the geometry of the invariant density. Our method employs a
path augmentation strategy that uses the nonlinear dynamics of a coarse drift estimate and further
constrains the augmented paths to follow the local geometry of the system’s invariant density. We
found that the proposed approach provides efficient recovery of the underlying drift function for
periodic or quasi-periodic systems under several noise conditions. Only a limited number of infer-
ence methods have attempted to merge geometric and temporal perspectives for the identification
of stochastic systems, such as the Langevin regression (Callaham et al., 2021), TrajectoryNet (Tong
et al., 2020), and the diffusion map method of Shnitzer et al. (2020; 2016). However, our method
differs from these approaches by employing the geodesic approximation of the underlying data ge-
ometry (see also Sec. C Future directions).
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A DRIFT INFERENCE FOR HIGH AND LOW FREQUENCY OBSERVATIONS

We consider systems whose evolution is captured by the stochastic differential equation Eq. 1.

High frequency observations. When the system path X0:T is observed in continuous time, the
infinitesimal transition probabilities of the diffusion process between consecutive observations are
Gaussian, i.e.,

Pf (X0:T | f) ∝ exp

(
− 1

2dt

∑
t

∥Xt+dt −Xt − f(Xt)dt∥2σ2

)
. (5)

In turn, the transition probability of (discretised) Wiener paths PW(X0:T ) (i.e., paths from a drift-
less process) can be expressed as

PW(X0:T ) = exp

(
− 1

2dt

∑
t

∥Xt+dt −Xt∥2σ2

)
, (6)

where ∥u∥σ2=̇u⊤ · σ−2u denotes the weighted norm with D=̇σ2 indicating the noise covariance.
We can thus express the likelihood for the drift f by the Radon-Nykodym derivative between
Pf (X0:T |f) and PW(X0:T ) for paths X0:T within the time interval [0, T ] (Liptser & Shiryaev,
2013)

L(X0:T | f) = exp

[
−1

2

∑
t

∥f(Xt)∥2σ2dt+
∑
t

⟨f(Xt), Xt+dt −Xt⟩σ2

]
, (7)

where for brevity we have introduced the notation ⟨u, v⟩=̇u⊤ · σ−2v for the weighted inner product
with respect to the inverse noise covariance σ−2. This expression results from applying the Girsanov
theorem on the path measures induced by a process with drift f and a Wiener process, with same
diffusion σ, and employing an Euler-Maruyama discretisation on the continuous path X0:T .

The likelihood given a continuously observed path of the SDE (Eq. 7) has a quadratic form in terms
of the drift function. Therefore a Gaussian measure over function values (Gaussian process) is a
natural conjugate prior for this likelihood. To identify the drift in a non-parametric form, we assume
a Gaussian process prior for the function values f ∼ P0(f) = GP(mf , kf ), where mf and kf
denote the mean and covariance function of the Gaussian process (Ruttor et al., 2013). The prior
measure can be written as

P0(f) = exp

[
−1

2

∫ ∫
f(x)

(
kf (x, x′)

)−1
f(x′)dxdx′

]
, (8)

if we consider a zero mean Gaussian process mf = 0.

9
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Bayesian inference for the drift function f requires the computation of a probability distribution in
the function space, the posterior probability distribution Pf (f | X0:T ). From the Bayes’ rule the
posterior can be expressed as

Pf (f | X0:T ) =
P0(f)L(X0:T | f)

Z
∝ P0(f)L(X0:T | f), (9)

where Z denotes a normalising factor defined as a path integral

Z =

∫
P0(f)L(X0:T | f)Df, (10)

where Df denotes integration over the Hilbert space f : H0[f ] < ∞ . Here we have expressed
the prior probability over functions as P0(f) = e−H0[f ]. In (Ruttor et al., 2013) the authors show
that in the continuous time limit, nonparametric estimation of drift functions becomes equivalent to
Gaussian process regression, with the objective to identify the mapping from the system state Xt to
state increments dXt (Rasmussen, 2003). More precisely, we considerN observations of the system
state Xt as the regressor, with associated response variables

Yt =
Xt+dt −Xt

dt
, (11)

and denote the kernel function of the Gaussian process by k(x, x′).

If we denote with X = {Xt}T−dt
t=0 and Y = {Yt}T−dt

t=0 the set of state observations and observation
increments, the mean of the posterior process over drift functions f can be expressed as

f̄(x) = kf (x,X )⊤
(
K +

σ2

dt
IN

)−1

Y, (12)

where we abused the notation and denoted with kf (x,X ) the vector resulting from evaluating the
kernel kf at points x and {Ot}K−1

k=1 . Similarly K = kf (X ,X ) stands for the (K − 1) × (K − 1)
matrix resulting from evaluation of the kernel on all observation pairs. In a similar vein, the posterior
variance can be written as

Σ2(x) = kf (x, x)− kf (x,X )⊤
(
K +

σ2

dt

)−1

kf (x,X ), (13)

where the term σ2/dt plays the role of observation noise.

Low frequency observations. When the inter-observation interval becomes large (low frequency
observations), the Gaussian likelihood of Eq. 7 becomes invalid, since for large inter-observation
intervals the transition density is no longer Gaussian. Thus, drift estimation with Gaussian assump-
tions (Friedrich & Peinke, 1997; Ruttor et al., 2013) becomes inaccurate. To mitigate this issue
Lade (Lade, 2009) introduced a method to compute finite time corrections for the drift estimates,
which has been applied (to the best of our knowledge) mostly to one dimensional problems (Honisch
& Friedrich, 2011). On the other hand, the statistics community has proposed path augmentation
schemes that augment the observed trajectory to a nearly continuous-time trajectory by sampling a
simplified system’s dynamics between observations (Golightly & Wilkinson, 2008; Papaspiliopou-
los et al., 2012; Sermaidis et al., 2013; Beskos et al., 2006; Chib et al., 2006). However for large
inter-observation intervals and for nonlinear systems the simplified dynamics employed for path
augmentation match poorly the underlying path statistics, and these methods show poor conver-
gence rates or fail to identify the correct dynamics (Figure 1 c. and d.). We point out here, that path
augmentation with Ornstein Uhlenbeck bridges using as drift the local linearisation of the correct
dynamics, provides a good approximation of the underlying transition density. However, during
inference, the true underlying dynamics are unknown, and the proposed local linearisations on inac-
curate drift estimates (Batz et al., 2018) perform poorly for low frequency observations.

Notice that as the inter-observation interval τ increases, the Gaussian likelihood assumed between
two successive observations is no longer valid if the system is non-linear or when the noise is state
dependent. The likelihood for the drift for such settings can be expressed in terms of a path integral

P(O1:K | f) =
∫

P(O1:K | X0:T )P(X0:T | f)D(X0:T ), (14)

10
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where O1:K=̇{Ok}Kk=1 denotes the set of K discrete time observations, P(X0:T | f) the prior path
probability resulting from a diffusion process with drift f(x), D(X0:T ) identifies the formal volume
element on the path space, and P(O1:K | X0:T ) stands for the likelihood of observations given the
latent path X0:T .

However, the path integral of Eq. 14 is intractable for nonlinear systems, thus we need to simul-
taneously estimate the drift and latent state of the diffusion process, i.e., to approximate the joint
posterior measure of latent paths and drift functions P(X0:T , f | O1:K). Therefore we consider
the unobserved continuous path X0:T as latent random variables and employ an Expectation Max-
imisation (EM) algorithm to identify a maximum a posteriori estimate for the drift function. More
precisely, we follow an iterative algorithm, where at each iteration n we alternate between the two
following steps:

An Expectation step, where given a drift
estimate f̂n(x) we construct an approx-
imate posterior over the latent variables
Q(X0:T ) ≈ P(X0:T | O1:K , f̂

n(x)), and
compute the expected log-likelihood of the
augmented path

L
(
f̂n(x), Q

)
= EQ

[
lnL

(
X0:T | f̂n(x)

)]
.

(15)

A Maximisation step, where we update the drift
estimation by maximising the expected log like-
lihood

fn+1(x) = argmax
f

[
L
(
fn(x), Q

)
−lnP0

(
fn(x)

)]
.

(16)

In Eq. 16 P0 denotes the Gaussian process prior over function values.

A.1 APPROXIMATE POSTERIOR OVER PATHS.

Here we first formulate the approximate posterior over paths (conditional distribution for the path
given the observations) by considering only individual observations as constraints (Section A.1.1).
However, this approach results computationally taxing calculations during path augmentation, since
the observations are atypical states of the initially estimated drift. To overcome this issue, we subse-
quently extend the formalism (Section A.1.2) to incorporate constraints that consider also the local
geometry of the observations.

A.1.1 APPROXIMATE POSTERIOR OVER PATHS WITHOUT GEOMETRIC CONSTRAINTS.

Given a drift function (or a drift estimate) f̂(x) we can apply variational techniques to approximate
the posterior measure over the latent path conditioned on the observations {Ok}Kk=1. We consider
that the prior process (the process without considering the observations {Ok}Kk=1) is described by
the equation

P(X0:T | f̂) : dXt = f̂(Xt)dt+ σdWt. (17)

We will define an approximating (posterior) process that is conditioned on the observations. The
conditioned process is also a diffusion process with the same diffusion as Eq. 17 but with a mod-
ified, time-dependent drift g(x, t) that accounts for the observations (Chetrite & Touchette, 2015;
Majumdar & Orland, 2015). We identify the approximate posterior measure Q with the posterior
measure induced by an approximating process that is conditioned by the observations O1:K (Opper,
2019), with governing equation

Q(X0:T ) : dXt = g(Xt, t)dt+ σdWt =
(
f̂(Xt) + σ2u(Xt, t)

)
dt+ σdWt. (18)

The effective drift g(Xt, t) of Eq. 18 may be obtained from the solution of the variational problem
of minimising the free energy

F [Q] = KL
(
Q(X0:T )||P(X0:T | f̂)

)
−

K∑
k=1

EQ[lnP(Ok | Xtk)]. (19)

11
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By applying the Cameron-Girsanov-Martin theorem we can express the Kullback-Leibler divergence
between the two path measures induced by the diffusions with drift f̂(x) and g(x, t) as

KL
(
Q(X0:T )||P(X0:T |f̂)

)
= EQ

ln

 dQ(X0:T )

dP
(
X0:T |f̂

)
 (20)

= EQ

[(
−1

2

∫ T

0

∥f̂(Xt)− g(Xt, t)∥2σ2dt+
∫ T

0

f̂(Xt)− g(Xt, t)

σ2
dWt

)]
(21)

= EQ

[(
−1

2

∫ T

0

∥f̂(Xt)− g(Xt, t)∥2σ2dt+ VT

)]
(22)

=
1

2

T∫
0

∫
∥g(x, t)− f̂(x)∥2σ2 qt(x) dx dt+ C, (23)

where qt(x) stands for the marginal density for Xt of the approximate process. In the third line
we have introduced the random variable VT =

∫ T

0
f̂(Xt)−g(Xt,t)

σ2 dWt. Under the assumption that
the function ℓ(Xt) = f̂(Xt)− g(Xt, t) is bounded, piece-wise continuous, and in L2[0,∞) , VT
follows the distribution N

(
VT | 0,

∫ T

0
ℓ2(s)ds

)
, which for a given T will result into a constant C.

Thus the second term in Eq. 23 is not relevant for the minimisation of the free energy and will be
omitted.

We can thus express the free energy of Eq. 19 as (Opper, 2019)

F [Q] =
1

2

T∫
0

∫ [
∥g(x, t)− f̂(x)∥2σ2 + U(x, t)

]
qt(x) dx dt, (24)

where the term U(x, t) accounts for the observations U(x, t) = −
∑
tk

lnP(Ok | x)δ(t− tk).

The minimisation of the functional of the free energy can be construed as a stochastic control
problem (Opper, 2019) with the objective to identify a time-dependent drift adjustment u(x, t) :=

g(x, t) − f̂(x) for the system with drift f̂(x) so that the controlled dynamics fulfil the constraints
imposed by the observations.

For the case of exact observations, i.e., for an observation process ψ(x) = x, we can compute the
drift adjustment for each of theK−1 inter-observation intervals independently. Thus for each inter-
val between consecutive observations, we identify the optimal control u(x, t) required to construct
a stochastic bridge following the dynamics of Eq. 17 with initial and terminal states the respective
observations Ok and Ok+1.

The optimal drift adjustment for such a stochastic control problem for the inter-observation interval
between Ok and Ok+1 can be obtained from the solution of the backward equation (see (Maoutsa
& Opper, 2022; 2021))

∂ϕt(x)

∂t
= −L†

f̂
ϕt(x) + U(x, t)ϕt(x), (25)

with terminal condition ϕT (x) = χ(x) = δ(x − Ok+1) and with L†
f̂

denoting the adjoint Fokker-
Planck operator for the process of Eq. 17. As shown in Maoutsa et al. (Maoutsa & Opper, 2022;
2021) the optimal drift adjustment u(x, t) can be expressed in terms of the difference of the loga-
rithmic gradients of two probability flows

u∗(x, t) = D
(
∇ ln qT−t(x)−∇ ln ρt(x)

)
, (26)

where ρt fulfils the forward (filtering) partial differential equation (PDE)

∂ρt(x)

∂t
= Lf̂ρt(x)− U(x, t)ρt(x), (27)

12
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while qt is the solution of a time-reversed PDE that depends on the logarithmic gradient of ρt(x)

∂qt(x)

∂t
= −∇ ·

[(
σ2∇ ln ρT−t(x)− f(x, T − t)

)
qt(x)

]
+
σ2

2
∇2qt(x), (28)

with initial condition q0(x) ∝ ρT (x)χ(x) .

A.1.2 APPROXIMATE POSTERIOR OVER PATHS WITH GEOMETRIC CONSTRAINTS.

The previously described construction of the approximate measure in terms of stochastic bridges is
relevant when the observations have non vanishing probability under the law of the prior diffusion
process of Eq. 17. However, when the prior process (with the estimated drift f̂ ) differs consider-
ably from the process that generated the observations, such a construction might either provide a
bad approximation of the underlying path measure, or show slow numerical convergence in the con-
struction of the diffusion bridges. To overcome this issue, we consider here additional constraints
for the posterior process that force the paths of the posterior measure to respect the local geometry
of the observations. In the following we provide a brief introduction on the basics of Riemannian
geometry and consequently continue with the geometric considerations of the proposed method.

Riemannian geometry. A d-dimensional Riemannian manifold (Do Carmo & Flaherty Francis,
1992; Lee, 2018) (M, h) embedded in a D-dimensional ambient space X = RD is a smooth
curved d-dimensional surface endowed with a smoothly varying inner product (Riemannian) metric
h : x → ⟨·|·⟩x on TxM. A tangent space TxM is defined at each point x ∈ M. The Riemannian
metric h defines a canonical volume measure on the manifold M. Intuitively this characterises how
to compute inner products locally between points on the tangent space of the manifold M, and
therefore determines also how to compute norms and thus distances between points on M.

A coordinate chart (G,ϕ) provides the mapping from an open set G on M to an open set V in
the Euclidean space. The dimensionality of the manifold is d if for each point x ∈ M there exists
a local neighborhood G ⊂ Rd. We can represent the metric h on the local chart (G,ϕ) by the
positive definite matrix (metric tensor) H(x) = (hi,j)x,0≤i,j,≤d =

(
⟨ ∂
∂xi

| ∂
∂xj

⟩x
)
0≤i,j,≤d

at each

point x ∈ G.

For v, w ∈ TxM and x ∈ G, their inner product can be expressed in terms of the matrix represen-
tation of the metric h on the tangent space TxM as ⟨v|w⟩x = v⊤H(x)w, where H(x) ∈ Rd×d

.

The length of a curve γ : [0, 1] → M on the manifold is defined as the integral of the norm of the
tangent vector

ℓ(γt′) =

∫ 1

0

∥γ̇t′∥hdt′ =
∫ 1

0

√
γ̇⊤t′H(γt′)γ̇t′dt′, (29)

where the dotted letter indicates the velocity of the curve γ̇t′ = ∂t′γt′ . A geodesic curve is a locally
length minimising smooth curve that connects two given points on the manifold.

Riemannian geometry of the observations. For approximating the posterior over paths we take
into account the geometry of the invariant density as it is represented by the observations. To that
end, we consider systems whose dynamics induce invariant (inertial) manifolds that contain the
global attractor of the system and on which system trajectories concentrate (Wiggins, 1994; Mo-
hammed & Scheutzow, 1999; Girya & Chueshov, 1995; Fenichel & Moser, 1971; Arnold, 1990;
Carverhill, 1985). We assume thus that the continuous-time trajectories X0:T ∈ Rd of the under-
lying system concentrates on an invariant manifold M ∈ Rm≤d of dimensionality m (possibly)
smaller than d. The discrete-time observations Ok are thus samples of the manifold M. The central
premise of our approach is that unobserved paths between successive observations will be lying
either on or in the vicinity of the manifold M. In particular, we postulate that unobserved paths
should lie in the vicinity of geodesics that connect consecutive observations on M. To that end
we propose a path augmentation framework that constraints the augmented paths to lie in the vicinity
of identified geodesics between consecutive observations.

However, while this view of a lower dimensional manifold embedded in a higher dimensional am-
bient space helps to build our intuition for the proposed method, for computational purposes we

13
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adopt a complementary view inspired by the discussion in (Fröhlich et al., 2021). According to
this view, we consider the entire observation space Rd as a smooth Riemannian manifold, M=̇Rd,
characterised by a Riemannian metric h. The effect of the nonlinear geometry of the observations is
then captured by the metric h. Thus to approximate the geometric structure of the system’s invari-
ant density, we learn the Riemannian metric tensor H : Rd → Rd×d and compute the geodesics
between consecutive observations according to the learned metric. Intuitively according to this view
the observations {Ok}Kk=1 introduce distortions in the way we compute distances on the state space.

In effect this approach does not reduce the dimensionality of the space we operate, but changes
the way we compute inner products and thus distances, lengths, and geodesic curves on M. The
alternative perspective of working on a lower dimensional manifold would strongly depend on the
correct assessment of the dimensionality of said manifold. For example, one could use a Variational
Autoencoder to approximate the observation manifold and subsequently obtain the Riemannian met-
ric from the embedding of the manifold mediated by the decoder. However, our preliminary results
of such an approach revealed that such a method requires considerable fine tuning to adapt to the
characteristics of each dynamical system and is sensitive to the estimation of the dimensionality of
the approximated manifold.

To learn the Riemannian metric and compute the geodesics we follow the framework proposed
by Arvanitidis et al. (2019). In particular, we approximate the local metric induced by the observa-
tions at location x of the state space, in a non-parametric form by the inverse of the weighted local
diagonal covariance computed on the observations as (Arvanitidis et al., 2019)

Hdd(x) =

(
K∑
i=1

wi(x)
(
x
(d)
i − x(d)

)2
+ ϵ

)−1

, (30)

with weights wi(x) = exp
(
−∥xi−x∥2

2

2σ2
M

)
, and x(d) denoting the d-th dimensional component of the

vector x. The parameter ϵ > 0 ensures non-zero diagonals of the weighted covariance matrix, while
σM characterises the curvature of the manifold.

Between consecutive observations for each interval [Ok,Ok+1], we identify the geodesic γkt′ as
the energy minimising curve, i.e., as the minimiser of the kinetic energy functional E(γkt′) =∫ 1

0
LM(γkt′ , γ̇

k
t′)dt

′

γk∗t′ = argmin
γk
t′ ,γ

k
0=Ok,γk

1=Ok+1

∫ 1

0

LM(γkt′ , γ̇
k
t′)dt

′,

with
∫ 1

0

LM(γkt′ , γ̇
k
t′)dt

′ =
1

2

∫ 1

0

∥γ̇kt′∥2h, (31)

where LM(γkt′ , γ̇
k
t′) denotes the Lagrangian. The minimising curve of this functional is the same

as the minimiser of the curve length functional ℓ(γt′) (Eq. 29), i.e., the geodesic (Do Carmo &
Flaherty Francis, 1992).

By applying calculus of variations, the minimising curve of the functional E(γkt′) can be obtained
from the Euler-Lagrange equations, resulting in the following system of second order differential
equations (Arvanitidis et al., 2017; Do Carmo & Flaherty Francis, 1992)

γ̈t
k = −1

2
H(γkt )

−1

(
2
(
I ⊗ (γ̇t

k)⊤
) ∂vec[H(γkt )]

∂γkt
γ̇t

k − ∂vec[H(γkt )]
⊤

∂γkt

(
γ̇t

k ⊗ γ̇t
k
))

, (32)

with boundary conditions γk0 = Ok and γk1 = Ok+1, where ⊗ stands for the Kroenecker product,
and vec[A] denotes the vectorisation operation of matrixA through stacking the columns ofA into a
vector. Arvanitidis et al. (2019) obtain the geodesics by approximating the solution of the boundary
value problem of Eq. 32 with a probabilistic differential equation solver.

Extended free energy functional. We denote the collection of individual geodesics by
Γt=̇{γkt′}t=(k−1)τ+t′τ , where γkt′ is the geodesic connecting Ok and Ok+1, and t′ ∈ [0, 1] denotes
a rescaled time variable. Additional to the constraints imposed in the previously explained setting
(Sec A.1.1), here we add an extra term in the free energy UG(x, t)=̇∥Γt − x∥2 that accounts for the
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local geometry of the invariant density, and guides the latent path towards the geodesic curves γkt′
that connect consecutive observations

F [Q] =
1

2

T∫
0

∫ [
∥g(x, t)− f̂(x)∥2σ2 + UO(x, t) + βUG(x, t)

]
qt(x) dx dt. (33)

Here we denote the observation term by UO(x, t)=̇−
∑

tk
lnP(Ok|x)δ(t− tk), while β stands for a

weighting constant that determines the relative weight of the geometric term in the control objective.

Following Opper (2019), for each inter-observation interval [Ok,Ok+1] we identify the posterior
path measure (minimiser of Eq. 33) by the solution of a stochastic optimal control problem (Maoutsa
& Opper, 2022; 2021) with the objective to obtain a time-dependent drift adjustment u(x, t) :=

g(x, t)−f̂(x) for the system with drift f̂(x) with initial and terminal constraints defined byUO(x, t),
and additional path constraints UG(x, t).

A.2 APPROXIMATE POSTERIOR OVER DRIFT FUNCTIONS.

For a fixed path measure Q, the optimal measure for the drift Qf is a Gaussian process given by

Qf ∝ Pf exp

(
−1

2

∫
∥f(x)∥2σ2A(x)− 2⟨f(x), B(x)⟩σ2dx

)
, (34)

with

A(x)=̇

∫ T

0

pt(x)dt,

and

B(x)=̇

∫ T

0

pt(x)g(x, t)dt,

where pt(x) denotes the marginal constrained density of the state Xt. The function g(x, t) denotes
the effective drift.

We assume a Gaussian process prior for the unknown function f , i.e., f ∼ P0(f) = GP(mf , kf )
wheremf and kf denote the mean and covariance function of the Gaussian process. Following Rut-
tor et al. (Ruttor et al., 2013), we employ a sparse kernel approximation for the drift f by optimising
the function values over a sparse set of S inducing points {Zi}Si=1. We obtain the resulting drift
from

f̂S(x) = kf (x,Z) (I + ΛKS)
−1

d, (35)

where we have defined introduced the notation KS=̇k
f (Z,Z)

Λ =
1

σ2
K−1

S

(∫
kf (Z, x)A(x)kf (x,Z)dx

)
K−1

S . (36)

d =
1

σ2
K−1

S

(∫
kf (Z, x)B(x)dx

)
K−1

S , (37)

We employ a sample based approximation of the densities in Eq. 34 resulting from the particle
sampling of the path measure Q. Thus by representing the densities by samples, we can rewrite the
density pt(x) in terms of a sum of Dirac delta functions centered around the particles positions

pt(x) ≈
1

N

N∑
j=1

δ(x−Xj(t)),

and replace the Riemannian integrals with summation over particles. Here Xj(t) represents the
position of the j-th particle at time point t.
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B DETAILS ON NUMERICAL EXPERIMENTS

We simulated a two dimensional Van der Pol oscillator with drift function

f1(x, y) = µ(x− 1

3
x3 − y) (38)

f2(x, y) =
1

µ
x, (39)

starting from initial condition x0 = [1.81,−1.41] and under noise amplitudes σ =
{0.25, 0.50, 0.75, 1.00} for total duration of T = {500, 1000} time units. The employed inter-
observation intervals τ ∈ [80, 320]× dt. The last inter-observation interval exceeds the half period
of the oscillator and thus samples only a single state per period. This resulted in erroneous estimates.
In this setting this indicates the upper limit of τ for which we can provide estimates. However for
any inference method, if the observation process samples only one observation per period, identify-
ing the underlying force field without additional assumptions is not possible with temporal methods.
The discretisation time-step used for simulation of the ground truth dynamics, and path augmenta-
tion δt = 0.01. For sampling the controlled bridges we employed N = 100 particles evolving the
associated ordinary differential equation as described in Maoutsa & Opper (2022; 2021); Maoutsa
et al. (2020). The logarithmic gradient estimator usedM = 40 inducing points. The sparse Gaussian
process for estimating the drift was based on a sparse kernel approximation of S = 300 points. In
the presented simulation we have employed a weighting parameter β = 0.5 (Eq. 33). This provides
a moderate pull towards the invariant density. The example in Figure 1 was constructed with β = 1
and provides a better approximation of the transition density, than β = 0.5.

For identifying geodesic curves in settings where only one observation is collected per oscillation
period, we have to bias the method that computes the geodesics to identify the geodesic towards
the correct direction of movement, that in this case is not always the shortest curve on the manifold
between two consecutive observations. To that end we assigned to each observation a phase-like
variable and considered for the computation of the geodesics only the observations that had properly
valued phases given the direction of movement and the phases of the two end-point observations. For
example, for a counter-clockwise rotation and for phases at the end points of the bridge ϕk = ϕ(Ok)
and ϕk+1 = ϕ(Ok+1), we construct the geodesics only on the observations that have phases within
thin [ϕk, ϕk+1] if ϕk < ϕk+1, or within [ϕk, 1] ∪ [0, ϕk+1] if ϕk > ϕk+1. With this approach we
consider essentially only the relevant part of the manifold that aligns with the direction of movement.
With the function ϕ(·) : RD → [0, 1] we denote the function that assigns a phase variable to

each observation. Here for the Van der Pol oscillator we considered ϕ(x) =
arctan2( x(2)

x(1)
)+π

2π . An
alternative option for assigning phase to each observation is measuring the angle between the Hilbert
transform of x(i) and x(i) itself, and rescaling the values to the [0, 1] interval. Here x(i) denotes one
dimensional component of the observations.

C FUTURE DIRECTIONS

The study of topological and geometric properties of invariant densities induced by stochastic
dynamical systems is a relatively unexplored area with limited research available. Cong and
Huang (Cong et al., 1997) approached the study of topological properties of systems perturbed
by noise through the lens of random dynamical systems, which, under certain conditions and as-
sumptions, can be translated to the language of stochastic dynamical systems. This direction has
great potential for future investigation, especially in conjunction with delay embedding approaches
devised for random dynamical systems (Stark et al., 2003) for estimation of the dimensionality of
the invariant manifold.

One potential direction for future research is to directly employ Riemannian Langevin dynam-
ics (Wang et al., 2020) to construct the augmented paths on the approximated metric. Alternatively,
future directions for inference at the low sampling rate limit may tackle the problem through an
operation learning perspective. Neglecting geometric considerations, constructing augmented paths
for each inter-observation interval essentially solves the same control problem multiple times, only
with different initial and terminal constraints. Thus neural network operator learning approaches
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like the neural operator used in Li et al. (2020a;b) that can provide generalizations for different
initial and possibly terminal conditions may be relevant for tackling the inference problem through
path augmentation in a more computationally efficient way.

Further promising future directions may consider path augmentation in terms of Schrödinger bridges
that would account for noisy observations (here we implicitly assume no noise in the observations
or small Gaussian noise). Tamir et al. (2023) propose an efficient algorithm for introducing path
constraints in the Schrödinger bridge problem that may be employed in our framework to account
for geometric inductive biases for inference of stochastic dynamics.

D ADDITIONAL FIGURES

Figure 4: Considered state increments for low frequency observations under Gaussian likeli-
hood assumptions. Euclidean distance (yellow line) - used to compute the state increments between
successive observations - does not account for the curvature of the invariant density. The geodesic
curve (purple line) provides a better approximation of the unobserved state of the system between
successive observations (light green line).
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