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ABSTRACT

Large language models excel at many tasks but still struggle with consistent, ro-
bust reasoning. We introduce Cohort-based Consistency Learning (CC-LEARN),
a reinforcement learning framework that trains on cohorts of similar questions
instantiated from symbolic programmatic abstractions and executes a program-
matic solution unchanged across each cohort. Our composite objective mixes
execution-based signals with critique-based signals. The execution-based signals
include cohort-level accuracy, retrieval usage, and penalties for invalid lookups.
The critique-based signals come from a frozen judge that checks whether the
program’s sub-questions cover the key factors and whether its reasoning logic
moves closer to a higher-quality self-improvement. Optimized via reinforcement
learning, this objective steers the policy toward uniform, generalizable proce-
dures rather than instance-specific shortcuts. Across five in-domain benchmarks
(ARC-Easy/Challenge, CSQA, StrategyQA, HotpotQA) and three out-of-domain
benchmarks (OpenBookQA, PubMedQA, MMLU), at two model scales (3B/7B),
CC-LEARN delivers roughly 10–20 absolute-point gains over strong baselines
under both lenient and strict criteria, improving accuracy and stabilizing reason-
ing. These results show that cohort-level RL with execution signals and external
feedback effectively enforces cross-variant consistency in LLMs.

1 INTRODUCTION1

Large language models (LLMs) have made remarkable progress in complex reasoning tasks through
strategies like prompting and step-by-step solution traces. Techniques such as chain-of-thought
prompting (Wei et al., 2022) enable models to decompose problems into intermediate steps, sig-
nificantly improving performance on arithmetic, commonsense, and various reasoning challenges.
Similarly, decoding strategies like self-consistency (Wang et al., 2023) enhance accuracy by sampling
multiple reasoning paths and selecting the most consistent answer across benchmarks. Despite these
advances, LLMs frequently exhibit inconsistency: a model may correctly answer a question in one
formulation but fail on a paraphrase or logically equivalent variant (Yu et al., 2024; Zhou et al., 2024;
Li et al., 2024b). Moreover, even with the same answer, the underlying chain of reasoning can differ
across variants. This behavior suggests brittle reasoning processes and undermines reliability in
practical applications (McCoy et al., 2019; Geirhos et al., 2020).

Figure 1 illustrates this phenomenon with an example from StrategyQA. The original question asks:

“Can you order an Alfa Romeo at Starbucks?”

A model may answer No by invoking a product-availability path (coffee shops do not sell cars / not
on the menu). For a similar question,

“Can you order a Tesla at Dunkin’ Donuts?”

the same model may again answer No but justify it via a different partnership path (no business
relationship ⇒ not available). Although both answers are correct, the model arrives at them via
disjoint, partial reasoning paths and neither covering all possible factors. To solve cohorts of similar
questions reliably and achieve genuine generalization, the model should enumerate the plausible
conditions and integrate them into one single, reusable reasoning path, so correctness does not hinge

1Code and data will be released with the camera-ready version.
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Original Question: Can you order an Alfa Romeo at 
Starbucks?

Similar Question：Can you order a Tesla at Dunkin' 
Donuts?

Abstraction
Masked Question:  Can you order a ProductX at RestaurantY?
Parameters: ProductX: …; RestaurantY: …

Original Question
… Starbucks primarily sells 
beverages, food, and some 
merchandise related to their 
brand.\n   - They do not sell 
vehicles … is no.

Similar Question
… There is no direct business 

relationship or overlap 
between Tesla and Dunkin\' 

Donuts. They operate in 
completely different industries. 

…is no.

def answer(ProductX: str, RestaurantY: str) -> int:
    # Check if ProductX is typically sold at RestaurantY.
    product_sold = retrieve(
        f"Is {ProductX} commonly sold at {RestaurantY}?", bool)
    # Check if ProductX can be ordered at RestaurantY.
    product_ordered = retrieve(
        f"Can {ProductX} be ordered at {RestaurantY}?", bool) 
    # If both conditions are met, return 'Yes'
    if product_sold and product_ordered:
        return 1 # Yes, ProductX can be order in the RestaurantY
    else:
        return 0 # No, ProductX cannot be order in the RestaurantY

     Program  Chain of Thought

Figure 1: An illustrative example of cohort-based consistency learning(See Appendix A.3). (Top)
The original question and a surface-variant question sharing the same reasoning path. (Middle) The
masked abstraction template with its parameter dictionary, used to generate a cohort of factual variants.
(Bottom) The executable program synthesized by the model, which issues simple retrieve calls
for each substep and computes the answer, enforcing consistent reasoning across all cohort members.

on whichever partial test happens to fire (Ahn et al., 2025; McCoy et al., 2019; Geirhos et al., 2020).
Such divergence across similar questions thus exemplifies reasoning inconsistency and underscores
the need for training methods that explicitly enforce consistency across similar questions (Sinha et al.,
2021; Zhao et al., 2021). Our goal, therefore, is to learn a unified, generalizable reasoning procedure
rather than simply memorizing instance-level answers. Free-form chains of thought keep control flow
implicit and tend to drift across variants, making it difficult to align and thus reward same reasoning
steps across cohorts of similar questions. We therefore take inspiration from computer programs:
they make control flow explicit, decompose reasoning into modular, reusable steps, and can execute
the same reasoning steps across a cohort of similar questions (Gao et al., 2022; Chen et al., 2023;
Yao et al., 2023). By granting reward only when the same procedure succeeds on most variants,
consistency becomes the primary learning signal and shortcut solutions are disincentivized (Geirhos
et al., 2020; McCoy et al., 2019).

Following such intuitions, we propose CC-LEARN, which trains LLMs on cohorts of similar questions
expressed as executable programs, and optimizes a cohort-level reward via reinforcement learning.
First, each question is transformed into a masked abstraction exposing its core reasoning structure
(e.g., “Can you order a ProductX at RestaurantY?”). From this abstraction we automatically
generate a cohort of factual variants: by requiring a single program to succeed on most or all variants
during RL training, we eliminate cases where an incorrect reasoning path nonetheless produces
the right answer by accident, directly enforcing true consistency. We then prompt the model to
emit a compact program that issues only simple, atomic retrieve calls for each substep and
uses a rejection filter to block any multi-step or invalid queries. This design uses the same simple
retrieve calls for all cohort members, so the program runs unchanged on each variant; any change
in output comes only from different facts, not from different reasoning steps. Finally, we apply
Group Relative Policy Optimization (GRPO) (Shao et al., 2024) to maximize a composite signal
that mixes execution-based signal with evaluator feedback from a frozen judge. The frozen judge
rewards factorized coverage, discourages shortcuts, and steers learning to an improved program that
works across the cohort and generalizes. This pipeline compels the model to learn uniform, verifiable
reasoning procedures rather than exploiting shortcuts on individual instances.

Across five benchmarks—ARC-Easy, ARC-Challenge (Clark et al., 2018), StrategyQA (Geva et al.,
2021), HotpotQA (Yang et al., 2018), and CommonsenseQA (Talmor et al., 2019)—CC-LEARN
consistently outperforms SFT and RL baselines under both lenient and strict evaluation. On the 7B
model, CC-LEARN improves over the strongest SFT baseline by roughly 20–35 absolute points on
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ARC-Easy, CSQA, StrategyQA, and ARC-Challenge under both lenient and strict criteria. On the
3B model, CC-LEARN improves by roughly 20–31 points on ARC-Easy, ARC-Challenge, CSQA,
and StrategyQA for both criteria. We further probe out-of-domain accuracy on three benchmarks-
OpenBookQA (Mihaylov et al., 2018), PubMedQA (Jin et al., 2019), and MMLU (Hendrycks
et al., 2021a;b)-CC-LEARN outperforms SFT and RL baselines by roughly 10-20 points. These
trends, together with ablations on cohort-gated accuracy and disciplined retrieval and a small human
preference study, indicate that training a single executable program across cohorts with judge critique
yields more stable and consistent reasoning.

2 RELATED WORK

Reasoning Consistency LLMs often exhibit inconsistent reasoning when faced with paraphrased
inputs. For example, prompts with similar surface familiarity but different underlying complexity
yield divergent performance (Li et al., 2024a), and models may exploit spurious semantic cues rather
than following intended chains of reasoning (Li et al., 2024b). To mitigate inconsistency, researchers
have added training regularizers or auxiliary losses for paraphrase-invariance (Elazar et al., 2021;
Zhou et al., 2022), leveraged knowledge graphs to generate paired questions for fine-tuning (Rajan
et al., 2024), and applied self-consistency decoding to vote out illogical paths (Wang et al., 2023; Wei
et al., 2022). Recent directions construct paraphrase/symmetry cohorts either at inference time (Chen
et al., 2024)or for fine-tuning (Yao et al., 2025) to enforce that semantically equivalent inputs yield
consistent outputs (Raj et al., 2025). Our work enforces consistent, programmatic reasoning across
cohorts of similar questions that share the same reasoning path.

Programmatic Abstractions for Reasoning Programmatic or symbolic abstractions introduce a
formal structure that can be executed and verified, improving transparency and reliability (Chen et al.,
2024). Prior work translates questions into executable programs for verifiable stepwise reasoning (Gao
et al., 2022; Chen et al., 2023), and ReAct interleaves reasoning with tool use to ground intermediate
steps (Yao et al., 2023). Zhou et al. (2024; 2025) pursue conceptual/symbolic formulations, while
Hong et al. (2024) requires an Abstraction-of-Thought plan before refining a concrete solution. Our
approach similarly emits compact executable programs but differs by executing a single program
unchanged across a cohort of similar questions.

Reinforcement Learning for Enhanced Reasoning. Reinforcement learning objectives can sub-
stantially boost an LLM’s ability to solve multi-step problems by optimizing the reasoning path
(Shen et al., 2025b; Xu et al., 2025b). Verifiable intermediate rewards catch and correct logical
mistakes, leading to more stable reasoning (Xu et al., 2025a). Composite reward functions that blend
answer accuracy, factuality, and faithfulness yield more dependable outputs (Wang et al., 2024), and
potential-based shaping adds domain priors as soft constraints, speeding up training while keeping
policies optimal (Nguyen et al., 2020). External verifiers and frozen judges have improved reliability
by critiquing or selecting among candidate solutions (Cobbe et al., 2021), and recent RL systems
explicitly train models to internalize search-like, stepwise procedures (Shen et al., 2025a). Together,
these advances in RL-driven reasoning path optimization, verifiable reward design, and structured
shaping inspire our cohort-level consistency framework.

3 METHOD

As shown in Figure 2, we first convert each question into a masked abstraction and instantiate a
cohort of similar questions that share the same reasoning path (see Sec. 3.1 and Sec. 3.2). The policy
is trained to emit one executable program that runs unchanged across the entire cohort; the program’s
only external operation is an atomic retrieve(q, type) call, which forces the reasoning path
into code and keeps the set of retrieve calls invariant across variants. To prevent degenerate
shortcuts, the retriever is fronted by a rejection prompt—ill-formed or non-atomic queries yield “idk”
and incur a penalty. We optimize with GRPO on a composite signal mixing execution reward and
critique reward using a simple three-role setup (policy, retriever, judge) (See Sec. 3.3). At test time,
each synthesized program is executed over its cohort and scored under lenient (≥ 4/6) and strict
(≥ 5/6) criteria (Sec. 3.4). Finally, Sec. 3.5 provides a simple analysis explaining why cohort-level
rewards align with the consistency objective.
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def answer(ProductX: 
str, RestaurantY: str): 

product_sold = 
retrieve(f"Is {ProductX} 
commonly sold at 
{RestaurantY}?", bool)

…

def answer(ProductX: 
str, RestaurantY: str): 

product_sold = 
retrieve(f"Does 
{RestaurantY} operate 
and deliver to that 
area?", bool)

…

…

….

Ferrari 
McDonald's

Tesla 
Dunkin'Don

uts

Alfa Romeo 
Starbucks

Execute on cohorts
Acc Reward=0.8

Retrieve-Function 
Usage Reward =0.6

Rejection Penalty=0

# of correct > 3

Masked Question:  
Can you order a 
ProductX at 
RestaurantY?
Parameters: 
ProductX, RestaurantY
Options: [“No”, “Yes”]
Function Header: 
def answer(ProductX: 
str, RestaurantY: str) 
-> int:

Policy

Judge

Factor Analysis

Decomposition 
Reward=0.36

Structural 
Alignment=0.4

Execution rewards

Critic rewardsDoes the 
program 
consider 
collaborations? 
❌
Does ….

Figure 2: Overview of the CC-Learn training. For each masked abstraction, the policy emits a single
program p that uses only atomic retrieve(q, type) and is executed unchanged across a cohort
of questions. Execution over the cohort yields the Accuracy Reward, the Retrieve-Function Usage
Reward and Rejection Penalty. A judge supplies critique signals: the Factor-Complete Decomposition
Reward and the Structural Alignment Reward. These combine into the composite RL objective.

3.1 PROGRAM GENERATION

We encode each reasoning path as a small Python function
def answer(param1: Type1, ..., paramK: TypeK)->int whose body may
use only atomic retrieve(question: str, type) calls and control flow. The model is
given (i) a masked abstraction preserving logical structure, (ii) parameter names, (iii) the answer
options, and (iv) the exact function header. The fixed header specifies parameter names and types as
well as the return type, which (i) tells the model the concrete type of each input, guiding clearer
program generation; and (ii) ensures unambiguous execution at evaluation time (we can call the
same function signature on all variants). Four few-shot exemplars—boolean checks, numeric
comparisons, list loops, and dependent lookups—specify the output format across cohort abstractions
(Appendix A.1.5). At generation time the policy fills in the function body; at execution time each
retrieve is issued to the retriever with rejection filtering.

3.2 DATA GENERATION AND PREPROCESSING

To foster generalizable reasoning and provide a strong foundation for our models, we employ a
high-quality data preparation pipeline.

Similar Questions Generation Central to our approach is the construction of cohorts of similar
questions that share same reasoning paths but differ in factual content. This process begins with a
corpus of 5,000 original questions randomly sampled from each domain’s training split (1,000 per
domain). As Figure 1 shows, for each original question, we generate an abstraction by creating an
abstraction that preserves its core reasoning structure while parameterizing entities, allowing for
the substitution of different facts (see Appendix A.1.2). Using LLaMA-3.3-70B-Instruct (Team,
2024a), we then instantiate 5 similar questions for each abstraction(see Appendix A.1.3). These
variants are solvable through the same reasoning path dictated by the abstraction but feature different
specific entities and details. To ensure the fidelity of our training data, answers to all generated
similar questions are cross-validated using three state-of-the-art models: LLaMA-3.3-70B-Instruct,
DeepSeek-R1-Distill-Llama-70B(DeepSeek-AI, 2025), and Qwen-2.5-72B-Instruct(Yang et al., 2024;
Team, 2024b). This process is supplemented by human verification of both the validity of similar
questions and the correctness of their labels, as detailed in 4.5.

Program Corpus for Supervised Fine-Tuning (SFT). We construct two corpora corresponding to
the SFT variants. For SFTHQ-500, we synthesize 500 programs (100 per domain) with LLaMA-3.3-
70B-Instruct and rigorously verify each to achieve 0% rejection and 100% execution accuracy on
its question. For SFTDM-5k, we reuse the 5,000 RL-training instances and generate programs with
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the same 70B model and prompts; to keep computational cost tractable at this scale, we retain basic
validity checks but do not perform the exhaustive curation needed to guarantee 0% rejection.

3.3 COHORT-BASED REINFORCEMENT LEARNING

We optimize the policy with Group Relative Policy Optimization (GRPO) on cohorts of six (1
original + 5 similar). For each abstraction, the policy emits a single executable program p that is
executed unchanged across all variants. A retriever answers atomic retrieve calls, and a rejection
filter blocks multi-hop or invalid queries. The policy then receives a composite reward R. We
group the rewards into two families: (i) execution-based rewards (Accuracy Reward, the Retrieve-
Function Usage Reward and Rejection Penalty), which are verifiable from program execution and the
retriever/rejection outcomes; and (ii) critique-based rewards (the Factor-Complete Decomposition
Reward and the Structural Alignment Reward), which are produced by a frozen judge model. Together,
these rewards guide the policy toward accurate, disciplined decomposition and convergence to factor-
complete reasoning procedures across the cohort.

Model Architecture We evaluate both 3B and 7B model sizes throughout. Our framework employs
three complementary language models: (a) Policy Model: Qwen-2.5-Coder-Instruct (3B/7B) (Yang
et al., 2024; Team, 2024b; Hui et al., 2024) generates structured, executable programs for abstracted
questions, specifying the reasoning path. (b) Retriever Model: Qwen-2.5-Instruct (3B/7B) serves as
our retriever model; it executes the simple retrieval calls generated within the programs by the policy
model. (c) Judge Model: the same Qwen-2.5-Instruct (3B/7B) checkpoint as the retriever, used as
an evaluator to score whether sub-questions cover key factors and to propose a concise improved
program p+ for logic-level alignment checking. This architectural separation is identical across scales
and ensures that the policy must formulate its reasoning strategy without direct access to factual
information during program generation.

Rejection Prompts in Retrieval To encourage the policy model to learn robust, generalizable
reasoning and prevent the policy model from circumventing the intended reasoning process by issuing
trivial or multi-step queries—behavior akin to the “deceptive shortcuts” observed in prior work (Li
et al., 2024b)—we equip the retriever model with a rejection-prompt filter. With a few-shot prompt
(see Appendix A.1.1), the retriever only accepts straightforward, single-step factual questions (e.g.,
Is {ProductX} sold at {RestaurantY}?) and replies with “idk” to any multi-step or invalid queries.
Any rejected call will incur the penalty Rrej, thereby incentivizing the policy model to offload only
elementary lookups and to internalize the full reasoning chain within the generated program.

Interactive Training Pipeline. The GRPO training loop proceeds interactively. First, the policy
model proposes a program in response to an abstracted question. Second, this program is executed
on both the original question and its five similar variants. Any information retrieval calls embedded
in the program are handled by the retriever model. Finally, based on the execution outcomes across
the entire question family, a scalar reward is computed. This reward considers accuracy, retrieval
efficiency, and the rejection ratios.

Reward Components. Our composite reward function R is designed to guide the model toward
effective and generalizable reasoning. It is defined as R = Racc + Rret + Rrej + Rfc + Rsa. and
comprises two families: execution-based signals

(
Racc, Rret, Rrej

)
that are directly verifiable from

program execution, and critique-based signals
(
Rfc, Rsa

)
that come from a frozen judge model.

• Accuracy Reward (Racc): This reward is calculated as Racc = 0.2 · ncorrect, where ncorrect ∈
{0, 1, . . . , 6} is the number of correctly answered questions within the cohort of similar
questions (1 original + 5 similar). This yields Racc ∈ [0, 1.2]. We scale this term to 0.2 per
correct so that gaining a few additional correct variants outweighs any single term, thereby
aligning training with the cohort-consistency objective rather than stylistic surrogates.

• Retrieve-Function Usage Reward (Rret): This component encourages appropriate problem
decomposition and is assigned based on the number of retrieval calls (ncalls) made by the
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program:

Rret =


−0.6 if ncalls = 0

0 if ncalls = 1

+0.6 if ncalls > 1

This results in Rret ∈ {−0.6, 0, 0.6}. The retrieve-function usage reward encourages
problem decomposition and discourages trivial solutions with no retrieval calls.

• Rejection Penalty (Rrej): This penalty discourages ineffective retrieval calls and is given
by Rrej = −0.1 · nrejected, where nrejected ∈ {0, 1, . . . , 6} is the number of questions in the
group whose retrieve call is rejected by the retrieve model. This leads to Rrej ∈ [−0.6, 0].
The Rejection Penalty penalizes attempts to re-ask the original question or formulate overly
similar questions, forcing multi-step, valid reasoning.

• Factor-Complete Decomposition Reward(Rfc): Given the program, the full set of similar
questions, and failure patterns, a judging model scores whether the program’s retrieve
sub-questions cover the key factors needed to solve the original abstraction. Let sfc ∈ [1, 10]
be this judged coverage score; we map it to Rfc = 0.06 · sfc, which yields Rfc ∈ [0.06, 0.6].
This term rewards factor-complete decompositions even when some variants remain wrong.

• Structural Alignment Reward(Rsa): Given the full context (cohort, original program p,
failure patterns), a judge model proposes an improved program p+. We then compare p and
p+ at the logic level: after stripping comments and formatting, we compute an AST-level
structural similarity slogic∈ [0, 1]. We set Rsa = 0.6 · slogic ∈ [0, 0.6].

By construction, higher Rsa indicates that, after reflection, the logic of the original program p
is becoming closer to that of its improved counterpart p+—i.e., alignment in logiv increases
over training—rather than merely matching on superficial patterns.

RL Variants To isolate how the accuracy signal shapes learning, we consider two training-time
variants that differ only in how Racc is computed (all other terms unchanged; to avoid confusion,
lenient/strict refer only to evaluation criteria): (a) Cohort Accuracy: Accuracy-based rewards (Racc)
are granted only if the generated program successfully answers at least 4 out of the 6 questions in one
group. This enforces a higher standard of generalizability. (b) Normal Accuracy: Accuracy rewards
(Racc) are granted for every successful program execution on a question within the group, regardless
of performance on other questions in that group. This provides a more granular learning signal.

3.4 COHORT EXECUTION TEST

We evaluate each program on a cohort of six questions (original + five variants). We report two
criteria: Strict Accuracy—the program is correct iff it answers ≥ 5 of 6; Lenient Accuracy—correct
iff it answers ≥ 4 of 6. In addition, we apply a lightweight rejection check at evaluation to prevent
degenerate behavior that simply re-asks the original question or violates the simple-fact constraint;
any instance with a rejected retrieve call is counted as incorrect under both criteria.

3.5 WHY COHORTS HELP: A SIMPLE THEORETICAL ANALYSIS

Setup. Fix a cohort of N variants {xi}Ni=1 from an abstraction. A program p is executed unchanged
on all variants. Let Zi(p)∈{0, 1} indicate correctness on xi (with the retriever and rejection filter).
Define S(p) =

∑N
i=1 Zi(p) and the evaluation metric

JK(p) := Pr
[
S(p) ≥ K

]
,

where K=4 (lenient) or 5 (strict) in our experiments.

We compare two training surrogates: 1) Normal accuracy: Rnormal(p) = E
[
1
N

∑N
i=1 Zi(p)

]
; 2)

Cohort accuracy: Rcohort(p) = E
[
1{S(p) ≥ K}

]
.

Proposition 1 (Exact alignment). Rcohort(p) = JK(p) for every p. Hence maximizing the cohort
reward exactly maximizes the K-of-N consistency objective used at evaluation.

Proof. Immediate from the definition. □
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Proposition 2 (Normal accuracy is an inconsistent surrogate for K-of-N ). There exist programs
p, q such that Rnormal(q) > Rnormal(p) but JK(q) < JK(p).

Intuition. Raising the mean per-variant success by trading one “hard” variant for several “easier”
ones can lower the chance that enough variants succeed simultaneously. A concrete counterexample
and numbers are in App. A.4.

4 EXPERIMENTS

In this section, we provide detailed experimental settings and results that highlight the effectiveness of
our RL framework in training LLMs to perform transparent reasoning through structured, executable
programs. The full set of hyperparameters is listed in Appendix A.2.

Baselines. We compare our cohort-based RL models against two configurations: (a) Vanilla Model:
the off-the-shelf Qwen-2.5-Coder-Instruct checkpoint, used without any additional supervised fine-
tuning or RL. (b) Supervised Fine-Tuning (SFT): we consider two SFT variants on the same
backbone. SFTHQ-500 (“High Quality SFT”) fine-tunes on a curated set of 500 exemplar programs
(100 per domain) until held-out loss stabilizes (typically ∼1.1 epochs; see Sec. 3.2). SFTDM-5k (“Data-
Matched SFT”) fine-tunes on the same 5,000 instances used for RL, using programs synthesized by
LLaMA-3.3-70B-Instruct with the same prompting but without exhaustive curation, isolating the
effect of RL’s cohort-level credit assignment from simply scaling SFT on the RL data distribution.

4.1 EXPERIMENTAL SETUP

Datasets and Test Set We evaluate on five publicly available benchmarks: ARC-Easy, ARC-
Challenge, CSQA, StrategyQA, and HotpotQA. Our test set comprises random 2,500 questions in
total (500 per dataset, randomly sampled from dev/test split), each paired with five similar questions
generated by our abstraction pipeline.

Evaluation Protocol For each of the 2,500 test questions, we draw 11 samples from the policy, exe-
cute each sampled program on its six-question cohort, and aggregate predictions via self-consistency:
the final answer is the majority vote over the 11 runs. We then compute strict and lenient accuracy as
defined in Sec. 3.4. This protocol enables us to report not only standard accuracy but also the critical
generalization-across-variants metrics.

4.2 MAIN RESULTS

On 7B, RLCohort (Exec+Crit) improves over the strongest SFT baseline (SFTDM-5k) by +33.2 on
ARC-Easy (74.8 vs. 41.6), +37.4 on CSQA (73.4 vs. 36.0), and +28.2 on StrategyQA (45.8 vs. 17.6)
under the lenient metric; Under the strict metric, gains remain large: +36.8 (ARC-Easy: 68.0 vs.
31.2), +35.2 (CSQA: 62.4 vs. 27.2), +22.4 (StrategyQA: 31.0 vs. 8.6), and +36.2 (ARC-Challenge:
56.6 vs. 20.4). HotpotQA and ARC-Challenge are exceptions: under the lenient metric, RLCohort
(Exec+Crit) is slightly below the strongest RL variant. Under the strict metric, HotpotQA still trails
(−5.2: 54.2 vs. 59.4 with execution-only), while ARC-Challenge is effectively tied (56.6 vs. 56.2).

On 3B, RLCohort (Exec+Crit) improves over SFTDM-5k by +20.2 (ARC-Easy: 40.8 vs. 20.6), +28.6
(ARC-Challenge: 41.8 vs. 13.2), and +15.0 (CSQA: 42.6 vs. 27.6)under the lenient metric; strict
gains are +23.0 (ARC-Easy), +26.6 (ARC-Challenge), +17.4 (CSQA), and +31.0 (StrategyQA).
HotpotQA shows little change at 3B (−3.2 lenient; +0.8 strict). Taken together (Tables 1 and 2), these
gains are consistent across criteria and model sizes, indicating that enforcing a single executable
program with critique yields more stable, consistent reasoning on complex, multi-step questions.

4.3 SANITY CHECK EXPERIMENTS

Reject Prompts Analysis We validate the retriever’s rejection prompts by measuring rejection
ratios on 5k training questions and on SimpleQA (Wei et al., 2024) to check over-rejection. As shown
in Table 3, multi-step questions are rejected far more often than SimpleQA, indicating the mechanism
efficiently distinguishes question types and curbs rephrasing-based retrieval shortcuts.
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Model Methods ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

Qwen2.5-
Coder-
7B-
Instruct

Vanilla 19.0± 3.1 30.0± 4.0 29.8± 4.0 12.6± 2.9 45.0± 4.3
SFTHQ-500 19.8± 3.5 33.4± 4.1 32.0± 4.1 12.0± 2.9 46.8± 4.4
SFTDM-5k 28.8± 4.0 41.6± 4.3 36.0± 4.2 17.6± 3.3 77.6± 3.7
RLNormal (Acc) 30.2± 4.0 43.4± 4.3 36.0± 4.2 15.8± 3.2 73.2± 3.8
RLCohort (Exec) 51.0± 4.4 60.8± 4.3 59.6± 4.3 38.2± 4.2 81.4± 3.4
RLNormal (Exec+Crit) 66.2± 4.1 72.6± 3.9 68.0± 4.1 43.6± 4.3 81.0± 3.4
RLCohort (Exec+Crit) 65.8± 4.1 74.8± 3.8 73.4± 3.9 45.8± 4.4 79.4± 3.5

Qwen2.5-
Coder-
3B-
Instruct

Vanilla 12.2± 2.9 14.4± 3.1 12.0± 2.9 5.4± 2.0 17.0± 3.3
SFTDM-5k 13.2± 3.0 20.6± 3.5 27.6± 3.9 3.6± 1.7 18.2± 3.4
RLCohort (Exec) 31.6± 4.1 30.4± 4.0 38.0± 4.2 1.8± 1.2 0.4± 0.7
RLCohort (Exec+Crit) 41.8± 4.3 40.8± 4.3 42.6± 4.3 44.2± 4.3 15.0± 3.1

Table 1: Lenient Accuracy (%) across datasets. Vanilla: off-the-shelf Qwen-2.5-Coder-Instruct.
SFTHQ-500/SFTDM-5k: curated 500 exemplars vs. data-matched 5k set. RLNormal (Acc): RL with
accuracy-only reward (Racc; baseline). RLCohort (Exec): RL with execution-based rewards only
(Racc, Rret, Rrej). RLNormal/RLCohort(Exec+Crit): RL using both execution- and critique-based rewards
(Rfc, Rsa), with per-instance vs. cohort-gated accuracy. Here ± denotes the half-width of the 95%
Wilson confidence interval. Bold = best, underline = second best.

Model Methods ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

Qwen2.5-
Coder-
7B-
Instruct

Vanilla 13.6± 2.9 22.6± 3.7 20.6± 3.5 6.8± 2.2 27.2± 3.9
SFTHQ-500 14.4± 3.1 24.2± 3.7 25.0± 3.8 6.2± 2.1 27.8± 3.9
SFTDM-5k 20.4± 3.5 31.2± 4.1 27.2± 3.9 8.6± 2.5 53.2± 4.3
RLNormal (Acc) 22.4± 3.7 35.4± 4.2 27.6± 3.9 8.4± 2.4 49.8± 4.4
RLCohort (Exec) 40.6± 4.3 51.2± 4.4 48.4± 4.4 22.2± 3.7 59.4± 4.3
RLNormal (Exec+Crit) 56.2± 4.3 64.4± 4.2 59.8± 4.3 27.2± 3.9 56.2± 4.3
RLCohort (Exec+Crit) 56.6± 4.3 68.0± 4.1 62.4± 4.2 31.0± 4.0 54.2± 4.4

Qwen2.5-
Coder-
3B-
Instruct

Vanilla 7.6± 2.3 9.8± 2.6 8.2± 2.4 1.2± 1.0 6.0± 2.1
SFTDM-5k 8.8± 2.5 14.0± 3.0 18.8± 3.4 1.6± 1.2 6.8± 2.2
RLCohort (Exec) 26.4± 3.9 26.6± 3.9 32.4± 4.1 1.4± 1.1 0.2± 0.3
RLCohort (Exec+Crit) 35.4± 4.2 37.0± 4.2 36.2± 4.2 32.6± 4.1 7.6± 2.3

Table 2: Strict Accuracy (%) across datasets. Naming and notes follow Table 1. Bold = best,
underline = second best.

Upper Bound Analysis To assess the theoretical feasibility of our evaluation protocol, we estimate
a theoretical upper-bound performance by running pass@128 on a random subset of 50 questions
per domain and then manually correcting any incorrect programs. As shown in Table 3, after this
minor intervention the model reaches near-perfect accuracy. Crucially, this demonstrates that the
evaluation itself is not an insurmountable “mission impossible”; rather, the large gap between these
upper-bound scores and our current best results underscores that existing LLMs still fall well short of
their potential and require significant advances in reasoning consistency and generalization.

4.4 ABLATION STUDIES

Training on Original Questions Only. To further evaluate the effectiveness of the similar question
during training, we conducted an ablation study where RL training was performed solely on the
original questions without considering the similar variants. Table 4 and Table 5 compare the perfor-
mance of this approach with our Cohort RL variant. The results demonstrate consistent performance
degradation when training solely on original questions, particularly for complex reasoning tasks like
ARC-Challenge and CSQA. This confirms that the similar questions play a crucial role in compelling
the model to learn generalizable reasoning strategies rather than question-specific shortcuts.

High-Quality Retriever & Judge To further probe how retriever/judge strength affects training,
we run a controlled study where all models are trained at 3B. Concretely: 3B-3B trains with a
3B retriever+judge and evaluates with a 3B retriever; 3B-7B trains with a 3B retriever+judge but
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evaluates with a 7B retriever; 7B-7B trains with a 7B retriever+judge and evaluates with a 7B retriever.
As shown in Table 6 and Table 7, across different datasets under lenient/strict metrics, 7B-7B yields
the strongest scores on most datasets, while 3B-7B is consistently second-best and improves over
3B-3B. An exception is StrategyQA, where lighter judges (3B-3B / 3B-7B) edge out 7B-7B. Overall,
stronger retrieval/judging generally boosts reasoning, but dataset dynamics can favor smaller judges.

Out Of Domain data Accuracy To assess generalization beyond our training domains, we eval-
uated on three out of domain benchmarks—OpenBookQA, PubMedQA, and MMLU (Table 8).
Because constructing reliable similar-question cohorts is nontrivial for these datasets, we report
single-question accuracy only, using the same self-consistency strategy as in our in-domain evalua-
tion. RLCohort (Exec+Crit) attains the best accuracy on PubMedQA and MMLU and is on par with
RLNormal (Exec+Crit) on OpenBookQA; both RL variants substantially outperform SFTDM-5k and
Vanilla across all three datasets. These results indicate that CC-LEARN not only stabilizes in-domain
reasoning but also transfers effectively to new tasks without cohort construction.

4.5 HUMAN STUDY

Similar Question Quality Assessment To verify that our automated pipeline produces high-quality
question variants, we assigned five annotators to assess a random sample of 150 generated questions
(30 per domain) along two criteria: whether the answer label matches the ground truth, and whether
the question follows its abstraction. The detailed results are summarized in Table 9. As shown in
Table 9, our generated similar questions have high label and abstraction accuracy(≥ 90%).

Comparison of Reasoning Path We also conducted a comparison of programmatic reasoning
paths from our RL-trained model versus a supervised fine-tuning (SFT) baseline. Two annotators
evaluated 100 instances (20 per domain), choosing which program showed superior logical coherence,
clarity, and decomposition. Results are included in Table 9. As shown in Table 9, the Cohort RL’s
reasoning paths are preferred 47% of the time over the left 2 models.

Failure Case Analysis We analyze 50 shared failure questions(10 per domain) where both SFT
and RL answered incorrectly, and label each with one of three mutually exclusive types: Ambigu-
ity/Annotation: the question or the label is ambiguity; Control-Flow/Syntax: the program’s explicit
logic is wrong (e.g., AND/OR aggregation, quantifier handling, branching/looping) or syntax mishaps
lead to an incorrect branch; Retrieve: misuse of the retrieve call (non-atomic or multi-hop
queries, re-asking the original question, or queries that trigger rejection). Results are included in
Table 10. Two annotators independently labeled all items. As shown in the Table 10, RL reduces
retrieve failures, consistent with execution signals and rejection penalties discouraging non-atomic
or shortcut queries. Residual RL errors shift toward Control-Flow/Syntax. This supports our claim
that cohort-gated RL suppresses retrieval shortcuts and enforces more disciplined, programmatic
reasoning.

5 CONCLUSION

We present a training framework that improves the consistency and reliability of LLM reasoning by
forming cohorts of similar questions and training a single executable program to run unchanged across
each cohort, optimized with a composite RL objective that combines execution feedback and judge
critique. This directly addresses inconsistent answers across similar inputs by rewarding uniform,
factor-complete procedures instead of instance-specific shortcuts. Ablation analyses indicate that
cohort-gated accuracy better aligns training with the K-of-N objective than instance-wise rewards,
and the rejection-filtered retriever curbs shortcut queries, yielding more disciplined decompositions.
Across five in-domain benchmarks and three out-of-domain benchmarks, the method outperforms
vanilla, supervised fine-tuning and RL baselines under both lenient and strict evaluations, with clear
gains on complex multi-step tasks; human evaluation further prefers our reasoning paths. Together,
these results indicate that cohort-gated, program-based RL effectively instills generalizable, stable
reasoning.
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A APPENDIX

You may include other additional sections here.

A.1 PROMPTS

A.1.1 REJECTION PROMPT

Prompt for Fact-Lookup Assistant

System: You are a fact-lookup assistant. For each user query, first decide if it’s a simple, single-step fact lookup without solving it
and then return a JSON object with exactly one key, ”answer”, wrapped in “‘json ...“‘. Match the type specified in parentheses (int,
str, list, bool). If a query requires more than a straightforward fact check or true/false lookup—for example, multi-step reasoning or
subjective judgment—reply with ”idk”.

User: Who finished immediately after the winner at the 1992 Olympic 100m final? (str)
Assistant: [Explanation] You must identify the winner, then determine who came second—this isn’t single-step. “‘json ”answer”:
”idk” “‘

User: How many planets are in the solar system? (int)
Assistant: [Explanation] Simple fact check. “‘json ”answer”: 8 “‘

User: What is the profession of Michael Jackson? (str)
Assistant: [Explanation] Single well-known profession of a public figure. “‘json ”answer”: ”singer” “‘

User: Who has more than one Nobel Prize? (list)
Assistant: [Explanation] Factual list of individuals with multiple Nobel Prizes. “‘json ”answer”: [”John Bardeen”, ”Frederick
Sanger”, ”Linus Pauling”, ”Marie Curie”] “‘

User: Is the CEO of Tesla older than the current President of France? (bool)
Assistant: [Explanation] Requires fetching and comparing two birthdates—multi-step. “‘json ”answer”: ”idk” “‘

User: Is the Eiffel Tower located in Paris, France? (bool)
Assistant: [Explanation] Single-step landmark location. “‘json ”answer”: true “‘

User: Did England win any Olympic gold medals in 1800? (bool)
Assistant: [Explanation] Must check when the modern Olympics began and then medal records—multi-step. “‘json ”answer”: ”idk”
“‘

User: What is the population of the largest country entirely south of the equator? (int)
Assistant: [Explanation] Identify the country then lookup its population—multi-step. “‘json ”answer”: ”idk” “‘

User: List the U.S. states admitted to the Union between the first and the last of the original 13 colonies. (list)
Assistant: [Explanation] Order states by admission date and filter—multi-step. “‘json ”answer”: ”idk” “‘

User: Can food be cooked in the cosmic microwave background? (bool)
Assistant: [Explanation] Must compare CMB temperature ( 2.7 K) to cooking physics—multi-step. “‘json ”answer”: ”idk” “‘

User: Are Waris Hussein and Mathieu Kassovitz both actors? (bool)
Assistant: [Explanation] Fetch each person’s profession and compare—multi-step. “‘json ”answer”: ”idk” “‘

User: {prompt} ({return type})
Assistant:
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A.1.2 ABSTRACTION GENERATION PROMPT

Prompt for Masked Question Generation

System: Generate a masked question and corresponding parameters for the given question. These generations will be used to create
similar questions that share the same reasoning path and options. The similar questions can only replace the values in the parameters.
Therefore, be careful with the parameters. Do not include options or answers in the parameters. Present the output in JSON format.

User: The Sugarcubes and SCH, are related to music? Options: A. No B. Yes. Answer: B
Assistant:

{
"masked_question": "Are Entity1 and Entity2 both related to DomainX?",
"parameters": {

"Entity1": "The Sugarcubes",
"Entity2": "SCH",
"DomainX": "music"

}
}

User: Are Ken Kwapis and Jan Švankmajer both filmmakers? Options: A. No B. Yes. Answer: B
Assistant:

{
"masked_question": "Are Person1 and Person2 both ProfessionX?",
"parameters": {

"Person1": "Ken Kwapis",
"Person2": "Jan Švankmajer",
"ProfessionX": "filmmakers"

}
}

User: Which of these is one similarity of the elements in the first group of the periodic table? Options: A. The elements in the group
are very unreactive metals. B. The elements in the group react with oxygen in similar ways. Answer: B
Assistant:

{
"masked_question": "Which of these is one similarity of the elements in the Group1 of the periodic table?",
"parameters": {

"Group1": "first group"
}

}

User: Which celestial object listed below has the greatest density? Options: A. a planet B. a neutron star. Answer: B
Assistant:

{
"masked_question": "Which celestial object listed below has the Superlative Property?",
"parameters": {

"Superlative": "greatest",
"Property": "density"

}
}

User: On what would you serve an egg to someone? Options: A. plate B. chicken coop. Answer: A
Assistant:

{
"masked_question": "On what would you serve a FoodItem to someone?",
"parameters": {

"FoodItem": "egg"
}

}

User: Fighting inflation means being aware of many things, such as what with loans? Options: A. rising interest rates B. loss of
money. Answer: A
Assistant:

{
"masked_question": "Fighting EconomicIssue means being aware of many things, such as what with FinancialAspect?",
"parameters": {

"EconomicIssue": "inflation",
"FinancialAspect": "loans"

}
}

User: Question: {question} Options: {options}. Answer: {answer}
Assistant:
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A.1.3 SIMILAR QUESTION PROMPT

Prompt for Similar Question Generation

System: Generate five new questions that follow the same underlying reasoning process based on the masked questions, parameters,
and the original question. Ensure that the choices and masked question remain the same as the original. You may only change the
values within the parameters dictionary. Present the output in JSON format.

User: The Sugarcubes and SCH, are related to music? Options: A. No B. Yes. Answer: B. Masked Question: Are Entity1 and
Entity2 both related to DomainX? Parameters: ’Entity1’: ’The Sugarcubes’, ’Entity2’: ’SCH’, ’DomainX’: ’music’.
Assistant:

{
"similar_questions": [

{
"question": "Are The Beatles and ABBA both related to music?",
"answer": "B",
"parameters": {

"Entity1": "The Beatles",
"Entity2": "ABBA",
"DomainX": "music"

}
},
{
"question": "Are Marvel and DC both related to comics?",
"answer": "B",
"parameters": {

"Entity1": "Marvel",
"Entity2": "DC",
"DomainX": "comics"

}
},
{
"question": "Are NASA and SpaceX both related to space exploration?",
"answer": "B",
"parameters": {

"Entity1": "NASA",
"Entity2": "SpaceX",
"DomainX": "space exploration"

}
},
{
"question": "Are Pepsi and Coca-Cola both related to beverages?",
"answer": "B",
"parameters": {

"Entity1": "Pepsi",
"Entity2": "Coca-Cola",
"DomainX": "beverages"

}
},
{
"question": "Are Microsoft and Apple both related to technology?",
"answer": "B",
"parameters": {

"Entity1": "Microsoft",
"Entity2": "Apple",
"DomainX": "technology"

}
}

]
}

User: Are Ken Kwapis and Jan Švankmajer both filmmakers? Options: A. No B. Yes. Answer: B. Masked Question: Are
Person1 and Person2 both ProfessionX? Parameters: ’Person1’: ’Christopher Nolan’, ’Person2’: ’Quentin Tarantino’, ’ProfessionX’:
’filmmakers’.
Assistant:

{
"similar_questions": [

{
"question": "Are Christopher Nolan and Quentin Tarantino both filmmakers?",
"answer": "B",
"parameters": {

"Person1": "Christopher Nolan",
"Person2": "Quentin Tarantino",
"ProfessionX": "filmmakers"

}
},
{
"question": "Are J.K. Rowling and Stephen King both authors?",
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"answer": "B",
"parameters": {

"Person1": "J.K. Rowling",
"Person2": "Stephen King",
"ProfessionX": "authors"

}
},
{
"question": "Are Beyoncé and Elon Musk both singers?",
"answer": "A",
"parameters": {

"Person1": "Beyoncé",
"Person2": "Elon Musk",
"ProfessionX": "singers"

}
},
{
"question": "Are Henry Ford and Albert Einstein both automobile entrepreneurs?",
"answer": "A",
"parameters": {

"Person1": "Henry Ford",
"Person2": "Albert Einstein",
"ProfessionX": "automobile entrepreneurs"

}
},
{
"question": "Are Tony Hawk and Bob Burnquist both professional skateboarders?",
"answer": "B",
"parameters": {

"Person1": "Tony Hawk",
"Person2": "Bob Burnquist",
"ProfessionX": "professional skateboarders"

}
}

]
}

User: Which of these is one similarity of the elements in the first group of the periodic table? Options: A. They all react similarly
with water B. They have similar electron configurations. Answer: A. Masked Question: Which of these is one similarity of the
elements in Group1 of the periodic table? Parameters: ’Group1’: ’first group’.
Assistant:

{
"similar_questions": [

{
"question": "Which of these is one similarity of the elements in the 18th group of the periodic table?",
"answer": "B",
"parameters": {

"Group1": "18th group"
}

},
{
"question": "Which of these is one similarity of the elements in the alkali metals of the periodic table?",
"answer": "B",
"parameters": {

"Group1": "alkali metals"
}

},
{
"question": "Which of these is one similarity of the elements in the noble gases of the periodic table?",
"answer": "B",
"parameters": {

"Group1": "noble gases"
}

},
{
"question": "Which of these is one similarity of the elements in the halogens of the periodic table?",
"answer": "A",
"parameters": {

"Group1": "halogens"
}

},
{
"question": "Which of these is one similarity of the elements in the transition metals of the periodic table?",
"answer": "B",
"parameters": {

"Group1": "transition metals"
}

}
]
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}

User: Which celestial object listed below has the greatest density? Options: A. a planet B. a neutron star. Answer: B. Masked
Question: Which celestial object listed below has the Superlative Property? Parameters: ’Superlative’: ’greatest’, ’Property’:
’density’.
Assistant:

{
"similar_questions": [

{
"question": "Which celestial object listed below has the greatest density?",
"answer": "A",
"parameters": {

"Superlative": "greatest",
"Property": "density"

}
},
{
"question": "Which celestial object listed below has the highest temperature?",
"answer": "A",
"parameters": {

"Superlative": "highest",
"Property": "temperature"

}
},
{
"question": "Which celestial object listed below has the largest mass?",
"answer": "B",
"parameters": {

"Superlative": "largest",
"Property": "mass"

}
},
{
"question": "Which celestial object listed below has the brightest luminosity?",
"answer": "B",

"parameters": {
"Superlative": "brightest",
"Property": "luminosity"

}
},
{
"question": "Which celestial object listed below has the longest lifespan?",
"answer": "B",
"parameters": {

"Superlative": "longest",
"Property": "lifespan"

}
}

]
}

User: On what would you serve an egg to someone? Options: A. plate B. chicken coop. Answer: A. Masked Question: On what
would you serve a FoodItem to someone? Parameters: ’FoodItem’: ’egg’.
Assistant:

{
"similar_questions": [

{
"question": "On what would you serve an egg to someone?",
"answer": "A",
"parameters": {

"FoodItem": "egg"
}

},
{
"question": "On what would you serve a soup to someone?",
"answer": "B",
"parameters": {

"FoodItem": "soup"
}

},
{
"question": "On what would you serve a salad to someone?",
"answer": "B",
"parameters": {

"FoodItem": "salad"
}

},
{
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"question": "On what would you serve a sandwich to someone?",
"answer": "A",
"parameters": {

"FoodItem": "sandwich"
}

},
{
"question": "On what would you serve a steak to someone?",
"answer": "B",
"parameters": {

"FoodItem": "steak"
}

}
]

}

User: Fighting inflation means being aware of many things, such as what with loans? Options: A. rising interest rates B. loss of money.
Answer: A. Masked Question: Fighting EconomicIssue means being aware of many things, such as what with FinancialAspect?
Parameters: ’EconomicIssue’: ’inflation’, ’FinancialAspect’: ’loans’.
Assistant:

{
"similar_questions": [

{
"question": "Fighting inflation means being aware of many things, such as what with loans?",
"answer": "A",
"parameters": {

"EconomicIssue": "inflation",
"FinancialAspect": "loans"

}
},
{
"question": "Fighting recession means being aware of many things, such as what with unemployment?",
"answer": "B",
"parameters": {

"EconomicIssue": "recession",
"FinancialAspect": "unemployment"

}
},
{
"question": "Fighting deflation means being aware of many things, such as what with prices?",
"answer": "B",
"parameters": {

"EconomicIssue": "deflation",
"FinancialAspect": "prices"

}
},
{
"question": "Fighting an economic crisis means being aware of many things, such as what with market volatility?",
"answer": "A",
"parameters": {

"EconomicIssue": "economic crisis",
"FinancialAspect": "market volatility"

}
},
{
"question": "Fighting a budget deficit means being aware of many things, such as what with government spending?",
"answer": "B",
"parameters": {

"EconomicIssue": "budget deficit",
"FinancialAspect": "government spending"

}
}

]
}

User: NOTE: Make sure the choices and masked question remain the same. Question: {question} Options: {options}. Answer:
{answer}. Masked Question: {masked question}. Parameters: {entities}.
Assistant:
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A.1.4 PROGRAM GENERATION PROMPT FOR SFT

Prompt for Answer Function Implementation

System: Implement the provided answer(...) function exactly as specified by the signature in Python. Return an inte-
ger corresponding to the index of the correct option in Options. Use the helper function retrieve(question: str,
answer type: Type) -> Any only for simple fact-checking. Allowed answer type values: int, float, list, str,
or bool. Do not embed reasoning logic inside retrieve calls—just simple fact-check questions. If a single retrieve question
requires multi-step reasoning, decompose it into multiple simpler retrieve calls. Assume retrieve is implemented; do not
define it. Include every input parameter in your answer function. Produce only the answer function—no extra code, comments,
or imports beyond what’s necessary.

User: Masked Question: Are Entity1 and Entity2 both related to DomainX? Parameters: dict keys([’Entity1’,
’Entity2’, ’DomainX’]). Options: [’No’, ’Yes’]. Function header: def answer(Entity1: str,
Entity2: str, DomainX: str) -> int.
Assistant:

from typing import Any

def answer(Entity1: str, Entity2: str, DomainX: str) -> int:
# First check Entity1’s relationship
entity1_related = retrieve(

f"Is {Entity1} related to {DomainX}?", bool
)
# Then check Entity2’s relationship
entity2_related = retrieve(

f"Is {Entity2} related to {DomainX}?", bool
)
# Both must be related for "Yes"
if entity1_related and entity2_related:

return 1
else:

return 0

User: Masked Question: Are both founders of CompanyX still involved in the company? Parameters:
dict keys([’CompanyX’]). Options: [’No’, ’Yes’]. Function header: def answer(CompanyX: str) -> int.
Assistant:

from typing import Any, List

def answer(CompanyX: str) -> int:
founders = retrieve(

f"Who are the founders of {CompanyX}?", list
)
still_involved = []
for founder in founders:

involved = retrieve(
f"Is {founder} still involved with {CompanyX}?", bool

)
still_involved.append(involved)

if all(still_involved):
return 1

else:
return 0

User: Masked Question: Which of these is one similarity of the elements in Group1 of the periodic table? Parameters:
dict keys([’Group1’]). Options: [’They all react similarly with water’, ’They have similar
electron configurations.’]. Function header: def answer(Group1: str) -> int.
Assistant:

from typing import Any, List

def answer(Group1: str) -> int:
elements = retrieve(

f"List the elements in {Group1} of the periodic table", list
)
valence_counts = []
for el in elements:

count = retrieve(
f"How many valence electrons does {el} have?", int

)
valence_counts.append(count)

if len(set(valence_counts)) == 1:
return 1

water_reactivities = []
for el in elements:

reactive = retrieve(
f"Is {el} reactive with water?", bool

)
water_reactivities.append(reactive)

if len(set(water_reactivities)) == 1:
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return 0
return 0

User: Masked Question: Which celestial object listed below has the Superlative Property? Parameters:
dict keys([’Superlative’, ’Property’]). Options: [’a planet’, ’a neutron star’]. Function
header: def answer(Superlative: str, Property: str) -> int.
Assistant:

from typing import Any, List

def answer(Superlative: str, Property: str) -> int:
planet_list = retrieve(

f"Which known planet has the {Superlative} {Property}?", list
)
planet_name = planet_list[0]
planet_value = retrieve(

f"What is the {Property} of {planet_name} in standard units?", float
)
neutron_list = retrieve(

f"Which known neutron star has the {Superlative} {Property}?", list
)
neutron_name = neutron_list[0]
neutron_value = retrieve(

f"What is the {Property} of {neutron_name} in the same units?", float
)
is_max = retrieve(

f"Does ’{Superlative}’ mean selecting the highest {Property}?", bool
)
if is_max:

return 0 if planet_value > neutron_value else 1
is_min = retrieve(

f"Does ’{Superlative}’ mean selecting the lowest {Property}?", bool
)
if is_min:

return 0 if planet_value < neutron_value else 1
return 0

User: Masked Question: On what would you serve a FoodItem to someone? Parameters: dict keys([’FoodItem’]). Options:
[’plate’, ’bowl’]. Function header: def answer(FoodItem: str) -> int.
Assistant:

from typing import Any

def answer(FoodItem: str) -> int:
served_on_plate = retrieve(

f"Is a plate a common item to serve {FoodItem}?", bool
)
served_on_bowl = retrieve(

f"Is a bowl a common item to serve {FoodItem}?", bool
)
if served_on_plate:

return 0
else:

return 1

User: Masked Question: Did HistoricalFigure have ethnicity closer to NativeGroup than ForeignGroup? Parame-
ters: dict keys([’HistoricalFigure’, ’NativeGroup’, ’ForeignGroup’]). Options: [’No’, ’Yes’].
Function header: def answer(HistoricalFigure: str, NativeGroup: str, ForeignGroup: str)
-> int.
Assistant:

from typing import Any

def answer(HistoricalFigure: str, NativeGroup: str, ForeignGroup: str) -> int:
has_native = retrieve(

f"Did {HistoricalFigure} have ancestry from {NativeGroup}?", bool
)
has_foreign = retrieve(

f"Did {HistoricalFigure} have ancestry from {ForeignGroup}?", bool
)
if has_native and not has_foreign:

return 1
if has_foreign and not has_native:

return 0
more_native = retrieve(

f"Did {HistoricalFigure} have a greater proportion of {NativeGroup} ancestry than {ForeignGroup}?", bool
)
if more_native:

return 1
else:

return 0
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User: Masked Question: Which reaction did Person have after TimePeriod in a ColdEnvironment? Parame-
ters: dict keys([’Person’,’TimePeriod’,’ColdEnvironment’,’PhysicalReaction’]). Op-
tions: [’chills’,’calm down’]. Function header: def answer(Person: str, TimePeriod: str,
ColdEnvironment: str, PhysicalReaction: str) -> int.
Assistant:

from typing import Any

def answer(Person: str, TimePeriod: str, ColdEnvironment: str, PhysicalReaction: str) -> int:
had_chills = retrieve(

f"Did {Person} have chills after {TimePeriod} in a {ColdEnvironment}?", bool
)
if had_chills:

return 0
had_calm = retrieve(

f"Did {Person} calm down after {TimePeriod} in a {ColdEnvironment}?", bool
)
if had_calm:

return 1
return 0

User: Masked Question: Which is a way that Earth loses energy from the EnergySource? Parameters:
dict keys([’EnergySource’]). Options: [’reflection’,’absorption’]. Function header: def
answer(EnergySource: str) -> int.
Assistant:

from typing import Any

def answer(EnergySource: str) -> int:
source_desc = retrieve(

f"How does Earth lose energy from {EnergySource}?", str
)
is_reflection = retrieve(

f"Does ’{source_desc}’ indicate reflection?", bool
)
if is_reflection:

return 0
is_absorption = retrieve(

f"Does ’{source_desc}’ indicate absorption?", bool
)
if is_absorption:

return 1
return 0

User: NOTE: You must use all input parameters, decompose complex queries into multiple retrieve calls, and ensure at least two
retrieve calls per function. {input}
Assistant:

A.1.5 PROGRAM GENERATION PROMPT FOR RL

Prompt for Answer Function Implementation

System: Implement the provided answer(...) function exactly as specified by the signature in Python. Return an inte-
ger corresponding to the index of the correct option in Options. Use the helper function retrieve(question: str,
answer type: Type) -> Any only for simple fact-checking. Allowed answer type values: int, float, list, str,
or bool. Do not embed reasoning logic inside retrieve calls—just simple fact-check questions. If a single retrieve question
requires multi-step reasoning, decompose it into multiple simpler retrieve calls. Assume retrieve is implemented; do not
define it. Include every input parameter in your answer function. Produce only the answer function—no extra code, comments,
or imports beyond what’s necessary.

User: Masked Question: Are both founders of CompanyX still involved in the company? Parameters:
dict keys([’CompanyX’]). Options: [’No’, ’Yes’]. Function header: def answer(CompanyX: str) -> int.
Assistant:

from typing import Any, List

def answer(CompanyX: str) -> int:
founders = retrieve(

f"Who are the founders of {CompanyX}?", list
)
still_involved = []
for founder in founders:

involved = retrieve(
f"Is {founder} still involved with {CompanyX}?", bool

)
still_involved.append(involved)

if all(still_involved):
return 1

else:
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return 0

User: Masked Question: Which celestial object listed below has the Superlative Property? Parameters:
dict keys([’Superlative’, ’Property’]). Options: [’a planet’, ’a neutron star’]. Function
header: def answer(Superlative: str, Property: str) -> int.
Assistant:
from typing import Any, List

def answer(Superlative: str, Property: str) -> int:
planet_list = retrieve(

f"Which known planet has the {Superlative} {Property}?", list
)
planet_name = planet_list[0]
planet_value = retrieve(

f"What is the {Property} of {planet_name} in standard units?", float
)
neutron_list = retrieve(

f"Which known neutron star has the {Superlative} {Property}?", list
)
neutron_name = neutron_list[0]
neutron_value = retrieve(

f"What is the {Property} of {neutron_name} in the same units?", float
)
is_max = retrieve(

f"Does ’{Superlative}’ mean selecting the highest {Property}?", bool
)
if is_max:

return 0 if planet_value > neutron_value else 1
is_min = retrieve(

f"Does ’{Superlative}’ mean selecting the lowest {Property}?", bool
)
if is_min:

return 0 if planet_value < neutron_value else 1
return 0

User: Masked Question: On what would you serve a FoodItem to someone? Parameters: dict keys([’FoodItem’]). Options:
[’plate’, ’bowl’]. Function header: def answer(FoodItem: str) -> int.
Assistant:
from typing import Any

def answer(FoodItem: str) -> int:
served_on_plate = retrieve(

f"Is a plate a common item to serve {FoodItem}?", bool
)
served_on_bowl = retrieve(

f"Is a bowl a common item to serve {FoodItem}?", bool
)
if served_on_plate:

return 0
else:

return 1

User: Masked Question: Did HistoricalFigure have ethnicity closer to NativeGroup than ForeignGroup? Parame-
ters: dict keys([’HistoricalFigure’, ’NativeGroup’, ’ForeignGroup’]). Options: [’No’, ’Yes’].
Function header: def answer(HistoricalFigure: str, NativeGroup: str, ForeignGroup: str)
-> int.
Assistant:
from typing import Any

def answer(HistoricalFigure: str, NativeGroup: str, ForeignGroup: str) -> int:
has_native = retrieve(

f"Did {HistoricalFigure} have ancestry from {NativeGroup}?", bool
)
has_foreign = retrieve(

f"Did {HistoricalFigure} have ancestry from {ForeignGroup}?", bool
)
if has_native and not has_foreign:

return 1
if has_foreign and not has_native:

return 0
more_native = retrieve(

f"Did {HistoricalFigure} have a greater proportion of {NativeGroup} ancestry than {ForeignGroup}?", bool
)
if more_native:

return 1
else:

return 0

User: NOTE: You must use all input parameters, decompose complex queries into multiple retrieve calls, and ensure at least two
retrieve calls per function. {input}
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A.1.6 PROGRAM JUDGE & REGENERATION PROMPT (RL)

Prompt for Program Evaluation and Improvement

System: You are given a group of questions derived from the same masked template. Your job is (1) to evaluate the PREVIOUS
program and assign a single integer score, and (2) to REGENERATE one improved Python function that solves all questions
in the group. Think step-by-step. Then output a valid JSON with exactly two keys: {"score": <int>, "program":
"<code>"}.

Tasks (output JSON with ”score” and ”program”):
A) Evaluate the PREVIOUS program and produce ONE integer ”score” (1–10) based on three dimensions:

1. Factor alignment: covers important reasoning factors from the Reasoning Path (e.g., alternatives, typical requirements,
cultural variability, conservative defaults).

2. No shortcuts: no hard-coded mappings/dictionaries; no direct string checks for specific entities; no pattern-matching
the literal question text; no label leakage.

3. Proper decomposition: breaks the task into simple, orthogonal subquestions via retrieve() or equivalent evidence
checks that generalize to unseen items (not relying on concrete examples).

Scoring rubric (guidance):

• 9–10: strong factor coverage, no shortcuts, clear multi-step decomposition with robust fallbacks.

• 7–8: good factor coverage, minor gaps, mostly clean decomposition.

• 5–6: partial factor coverage and/or weak decomposition.

• 3–4: major gaps; some shortcut-like behavior or brittle logic.

• 1–2: fails most dimensions; relies on prohibited shortcuts or ignores factors.

B) Generate a NEW program as a single Python function:

• Signature: def answer(..) -> int. Return 0 or 1.

• Must use decomposition into general, masked sub-queries (e.g., via retrieve()) that do not include concrete items
or terms from the questions. Only use placeholders from inputs (e.g., FoodItem, Utensil) and generic concepts.

• Must not define or rely on any hard-coded mapping/dictionary/list of specific entities; must not read or reference the
literal question text.

• Should reflect the Premise and the Inference. Keep the logic self-contained except for a black-box
retrieve(prompt: str, type hint: type) -> Any.

• Code should be concise, readable, and deterministic given retrieve’s returns; include brief comments.

OUTPUT FORMAT:

{
"score": <integer 1-10>,
"program": "<the improved Python code as a single string>"

}

User: Masked template

- Masked question: "<masked_question>"
- Choices: <choices>
- Options: ["A", "B"]

Questions and results of the previous program

- Q0: "<question_0>" | Gold: <gold_0> | Program: <pred_0>
- Q1: "<question_1>" | Gold: <gold_1> | Program: <pred_1>
...

Reasoning Path (reference facts you should respect)
<reasoning_path_text>

Previous candidate program (to be evaluated and then improved)
<previous_program_code_block>

A.2 RL TRAINING

We train our RL models on two H200 GPUs using the VERL framework (Sheng et al., 2025). The
retriever runs with temperature 0.7. To characterize memory footprint, we co-locate an Instruct
serving endpoint and training on the same two H200s: during backpropagation GPU memory
saturates, whereas at inference it uses about half of the capacity. Unless stated otherwise, we use a
learning rate of 1× 10−5, a KL-divergence coefficient of 0.001, five rollouts per update, a training
batch size of 128, and rollout temperature = 1.
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A.3 EXAMPLE

Prompt messages = [ ”role”: ”system”, ”content”: ”Let’s solve the following question step by
step”, ”role”: ”user”, ”content”: f”{question}”, ]

Result Question: Can you order a Tesla at Dunkin’ Donuts?
Answer: Certainly, letś break this down step by step: 1. **Understanding the Context**: - An Alfa
Romeo is a brand of luxury sports cars and sedans. - Starbucks is a global coffee chain known for its
beverages, food items, and retail products.2. **Analyzing the Question**: - The question asks if one
can ”order” an Alfa Romeo at Starbucks. - This implies that the person wants to purchase or acquire
an Alfa Romeo from Starbucks.3. **Evaluating Possibilities**: - Starbucks primarily sells beverages,
food, and some merchandise related to their brand. - They do not sell vehicles, including cars like
Alfa Romeos.4. **Conclusion**: - It is not possible to order an Alfa Romeo at Starbucks because
they do not sell automobiles. Therefore, the answer to the question ”Can you order an Alfa Romeo at
Starbucks?” is no.

Question: Can you order an Alfa Romeo at Starbucks?
Answer: Certainly! Letś break this down step by step:1. **Identify the Companies**: - Tesla is
an electric vehicle manufacturer. - DunkinD́onuts is a coffee and donut chain.2. **Understand
Their Business Models**: - Tesla sells vehicles, primarily electric cars, through its own dealerships
and online. - DunkinD́onuts sells food and beverages in physical stores and through various
digital platforms.3. **Check for Overlap**: - There is no direct business relationship or overlap
between Tesla and DunkinD́onuts. They operate in completely different industries.4. **Consider
the Question**: - The question asks if you can ”order” a Tesla at DunkinD́onuts. This implies
purchasing or ordering a product from one company at the location of another.5. **Conclusion**: -
You cannot order a Tesla at DunkinD́onuts because Tesla is not a product sold by DunkinD́onuts, and
there is no mechanism for ordering a Tesla through a DunkinD́onuts location. Therefore, the answer
to the question ”Can you order a Tesla at DunkinD́onuts?” is no.
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A.4 THEORY PROOF

Example ( N=6, K=5). Assume conditional independence across variants with per-variant success
probabilities

p = (0.99, 0.99, 0.99, 0.99, 0.99, 0.20), q = (0.70, 0.70, 0.99, 0.99, 0.99, 0.90).

Then
Rnormal(p) =

1
6

∑
pi ≈ 0.858, Rnormal(q) ≈ 0.878 (>0.858),

but the tail probabilities for S≥5 satisfy

J5(p) ≈ 0.961 versus J5(q) ≈ 0.855 (<0.961).

Thus improving per-instance mean accuracy can reduce K-of-N consistency, while optimizing Rcoh

directly targets JK . □

Remark (Monotone lower bound in the mean). Let p̄ = 1
N

∑
i Pr[Zi(p)=1]. By classical

extremal properties of Poisson–binomial sums, Pr[S ≥ K] ≥ Pr[Binomial(N, p̄) ≥ K]. Hence
increasing Rnorm increases a lower bound on JK , but—as Proposition 2 shows—does not guarantee
improving JK itself, especially when K is large and success must occur simultaneously across many
variants.
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Domain Rejection Upper-bound Acc

ARC-Challenge 72.8 96.0
ARC-Easy 79.7 96.0
CSQA 70.1 88.0
StrategyQA 65.7 92.0
HotpotQA 71.8 100.0

SimpleQA 46.0 —

Table 3: Unified sanity checks: Rejection rates(%) during RL training and estimated Upper-bound
accuracies(%) after pass@128 sampling with manual program correction.

A.5 SANITY CHECK EXPERIMENT
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A.6 ABLATION STUDY

A.6.1 TRAINING ON ORIGINAL QUESTIONS ONLY

Model ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

RLOrg 46.6± 4.4 55.4± 4.3 47.6± 4.4 36.8± 4.2 75.4± 3.8
RLCohort 65.8± 4.1 74.8± 3.8 73.4± 3.9 45.8± 4.4 79.4± 3.5

Table 4: Lenient accuracy (%) comparison between original (Org) and Cohort RL variant(Cohort).
Bold = best

Model ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

RLOrg 34.0± 4.1 42.2± 4.3 37.6± 4.2 20.8± 3.6 52.8± 4.4
RLCohort 56.6± 4.3 68.0± 4.1 62.4± 4.2 31.0± 4.0 54.2± 4.4

Table 5: Strict accuracy (%) comparison between original (Org) and Cohort RL variant(Cohort). Bold
= best.

A.6.2 HIGH-QUALITY RETRIEVER & JUDGE

Model ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

3B-3B 41.8± 4.3 40.8± 4.3 42.6± 4.3 44.2± 4.3 15.0± 3.1
3B-7B 42.0± 4.3 41.0± 4.3 42.2± 4.3 44.0± 4.3 18.6± 3.4
7B-7B 56.8± 4.3 65.6± 4.1 65.6± 4.1 39.2± 4.3 23.6± 4.2

Table 6: Lenient accuracy (%) across reasoning datasets with Qwen2.5-7B-Instruct serving as both
retriever and judge for the 3B model. “3B-3B” refers to models trained and evaluated with the 3B
retriever and judge; “3B-7B” refers to models trained with the 3B retriever/judge and evaluated with
the 7B retriever; “7B-7B” refers to models trained and evaluated with the 7B retriever. Bold = best,
underline = second best.

Model ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

3B-3B 35.4± 4.2 37.0± 4.2 36.2± 4.2 32.6± 4.1 7.6± 2.3
3B-7B 35.4± 4.2 37.4± 4.2 35.8± 4.2 32.6± 4.1 11.4± 2.8
7B-7B 47.8± 4.4 56.4± 4.3 56.8± 4.3 25.8± 3.8 17.4± 4.3

Table 7: Strict accuracy (%) across reasoning datasets with Qwen2.5-7B-Instruct serving as both the
retriever and judge for the 3B model. Naming and notes follow Table 6. Bold = best, underline =
second best.

A.6.3 OUT OF DOMAIN DATA ACCURACY
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Model OpenBookQA PubMedQA MMLU

Vanilla 19.0± 3.1 30.0± 4.0 29.8± 4.0
SFTDM-5k 57.6± 4.3 10.8± 2.7 40.0± 4.3
RLNormal (Exec+Crit) 79.6± 3.5 41.2± 4.3 62.2± 4.2
RLCohort (Exec+Crit) 79.4± 3.6 50.0± 4.4 62.4± 4.2

Table 8: Out-of-distribution (OOD) single-question accuracy (%) on OpenBookQA, PubMedQA,
and MMLU. Bold = best, underline = second best.

A.7 HUMAN ANALYSIS

Accuracy (%) Win Rate (%)

Answer Label Abstraction Match SFT RLNormal RLCohort
92.0 96.7 23.0 30.0 47.0

Table 9: Human evaluation of generated questions and reasoning paths, reporting both accuracy
metrics and win rates for different models.

Method Ambiguity / Annotation Control-Flow / Syntax Retrieve

RLCohort 38 54 8
SFTDM-5k 38 20 42

Table 10: Failure type distribution(%) on failure questions. RL reduces Retrieve errors while shifting
residual errors to Control-Flow/Syntax.

A.8 LLM USAGE

During manuscript preparation, we used a general–purpose large language model (OpenAI ChatGPT)
only for language polishing and structural editing. Concretely, we asked the model to: improve
fluency and clarity at the sentence/paragraph level (grammar, wording, concision), suggest local
reordering for better flow (e.g., merging redundant sentences, moving a definition earlier) and help
finding related works. All edits were treated as suggestions and were reviewed, accepted, or rewritten
by the authors.
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