Under review as a conference paper at ICLR 2026

CC-LEARN: COHORT-BASED CONSISTENCY LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models excel at many tasks but still struggle with consistent, ro-
bust reasoning. We introduce Cohort-based Consistency Learning (CC-LEARN),
a reinforcement learning framework that trains on cohorts of similar questions
instantiated from symbolic programmatic abstractions and executes a program-
matic solution unchanged across each cohort. Our composite objective mixes
execution-based signals with critique-based signals. The execution-based signals
include cohort-level accuracy, retrieval usage, and penalties for invalid lookups.
The critique-based signals come from a frozen judge that checks whether the
program’s sub-questions cover the key factors and whether its reasoning logic
moves closer to a higher-quality self-improvement. Optimized via reinforcement
learning, this objective steers the policy toward uniform, generalizable proce-
dures rather than instance-specific shortcuts. Across five in-domain benchmarks
(ARC-Easy/Challenge, CSQA, StrategyQA, HotpotQA) and three out-of-domain
benchmarks (OpenBookQA, PubMedQA, MMLU), at two model scales (3B/7B),
CC-LEARN delivers roughly 10-20 absolute-point gains over strong baselines
under both lenient and strict criteria, improving accuracy and stabilizing reason-
ing. These results show that cohort-level RL with execution signals and external
feedback effectively enforces cross-variant consistency in LLMs.

1 INTRODUCTION]

Large language models (LLMs) have made remarkable progress in complex reasoning tasks through
strategies like prompting and step-by-step solution traces. Techniques such as chain-of-thought
prompting (Wei et al.l |2022) enable models to decompose problems into intermediate steps, sig-
nificantly improving performance on arithmetic, commonsense, and various reasoning challenges.
Similarly, decoding strategies like self-consistency (Wang et al.,[2023) enhance accuracy by sampling
multiple reasoning paths and selecting the most consistent answer across benchmarks. Despite these
advances, LLMs frequently exhibit inconsistency: a model may correctly answer a question in one
formulation but fail on a paraphrase or logically equivalent variant (Yu et al.,[2024} [Zhou et al.| [2024;
Li et al.| 2024b)). Moreover, even with the same answer, the underlying chain of reasoning can differ
across variants. This behavior suggests brittle reasoning processes and undermines reliability in
practical applications (McCoy et al.,|2019; |Geirhos et al., [2020).

Figure [T]illustrates this phenomenon with an example from StrategyQA. The original question asks:
“Can you order an Alfa Romeo at Starbucks?”

A model may answer No by invoking a product-availability path (coffee shops do not sell cars / not
on the menu). For a similar question,

“Can you order a Tesla at Dunkin’ Donuts?”

the same model may again answer No but justify it via a different partnership path (no business
relationship = not available). Although both answers are correct, the model arrives at them via
disjoint, partial reasoning paths and neither covering all possible factors. To solve cohorts of similar
questions reliably and achieve genuine generalization, the model should enumerate the plausible
conditions and integrate them into one single, reusable reasoning path, so correctness does not hinge

!Code and data will be released with the camera-ready version.

Under review as a conference paper at ICLR 2026

Original Question: Can you order an Alfa Romeo at Similar Question: Can you order a Tesla at Dunkin'
Starbucks? Donuts?

Abstraction
Masked Question: Can you order a ProductX at RestaurantY?
Parameters: ProductX: ...; RestaurantY: ...

Chain of Thought an Program) N
Original Question [def answer(ProductX: str, RestaurantY: str) -> int:

... Starbucks primarily sells
beverages, food, and some
merchandise related to their

Check if ProductX is typically sold at Restauranty.
product_sold = retrieve(

f'Is {ProductX} commonly sold at {RestaurantY}?", bool)
brand.\n - They do not sell # Check if ProductX can be ordered at RestaurantY.
vehicles ... is no. product_ordered = retrieve(

f"Can {ProductX} be ordered at {RestaurantY}?", bool)
If both conditions are met, return 'Yes'
if product_sold and product_ordered:

Similar Question
... There is no direct business
relationship or overlap

between Tesla and Dunkin\' return 1 # Yes, ProductX can be order in the RestaurantY
Donuts. They operate in else:
completely different industries. “\ return 0 # No, ProductX cannot be order in the RestaurantY /“
...is no. AN o/

Figure 1: An illustrative example of cohort-based consistency learning(See Appendix [A.3). (Top)
The original question and a surface-variant question sharing the same reasoning path. (Middle) The
masked abstraction template with its parameter dictionary, used to generate a cohort of factual variants.
(Bottom) The executable program synthesized by the model, which issues simple ret rieve calls
for each substep and computes the answer, enforcing consistent reasoning across all cohort members.

on whichever partial test happens to fire (Ahn et al., 2025} McCoy et al.,[2019; |Geirhos et al., 2020).
Such divergence across similar questions thus exemplifies reasoning inconsistency and underscores
the need for training methods that explicitly enforce consistency across similar questions (Sinha et al.|
2021}, /Zhao et al., 2021)). Our goal, therefore, is to learn a unified, generalizable reasoning procedure
rather than simply memorizing instance-level answers. Free-form chains of thought keep control flow
implicit and tend to drift across variants, making it difficult to align and thus reward same reasoning
steps across cohorts of similar questions. We therefore take inspiration from computer programs:
they make control flow explicit, decompose reasoning into modular, reusable steps, and can execute
the same reasoning steps across a cohort of similar questions (Gao et al.} 2022} (Chen et al., 2023}
Yao et al.| 2023). By granting reward only when the same procedure succeeds on most variants,
consistency becomes the primary learning signal and shortcut solutions are disincentivized (Geirhos
et al., [2020; McCoy et al., 2019).

Following such intuitions, we propose CC-LEARN, which trains LLMs on cohorts of similar questions
expressed as executable programs, and optimizes a cohort-level reward via reinforcement learning.
First, each question is transformed into a masked abstraction exposing its core reasoning structure
(e.g., “Can you order a ProductX at RestaurantY?”). From this abstraction we automatically
generate a cohort of factual variants: by requiring a single program to succeed on most or all variants
during RL training, we eliminate cases where an incorrect reasoning path nonetheless produces
the right answer by accident, directly enforcing true consistency. We then prompt the model to
emit a compact program that issues only simple, atomic retrieve calls for each substep and
uses a rejection filter to block any multi-step or invalid queries. This design uses the same simple
retrieve calls for all cohort members, so the program runs unchanged on each variant; any change
in output comes only from different facts, not from different reasoning steps. Finally, we apply
Group Relative Policy Optimization (GRPO) (Shao et al., [2024)) to maximize a composite signal
that mixes execution-based signal with evaluator feedback from a frozen judge. The frozen judge
rewards factorized coverage, discourages shortcuts, and steers learning to an improved program that
works across the cohort and generalizes. This pipeline compels the model to learn uniform, verifiable
reasoning procedures rather than exploiting shortcuts on individual instances.

Across five benchmarks—ARC-Easy, ARC-Challenge (Clark et al., 2018), StrategyQA (Geva et al.,
2021), HotpotQA (Yang et al.| 2018), and CommonsenseQA (Talmor et al., 2019)—CC-LEARN
consistently outperforms SFT and RL baselines under both lenient and strict evaluation. On the 7B
model, CC-LEARN improves over the strongest SFT baseline by roughly 20-35 absolute points on

Under review as a conference paper at ICLR 2026

ARC-Easy, CSQA, StrategyQA, and ARC-Challenge under both lenient and strict criteria. On the
3B model, CC-LEARN improves by roughly 20-31 points on ARC-Easy, ARC-Challenge, CSQA,
and StrategyQA for both criteria. We further probe out-of-domain accuracy on three benchmarks-
OpenBookQA (Mihaylov et al.| 2018), PubMedQA (Jin et al.| 2019), and MMLU (Hendrycks
et al., 2021ajb)-CC-LEARN outperforms SFT and RL baselines by roughly 10-20 points. These
trends, together with ablations on cohort-gated accuracy and disciplined retrieval and a small human
preference study, indicate that training a single executable program across cohorts with judge critique
yields more stable and consistent reasoning.

2 RELATED WORK

Reasoning Consistency LLMs often exhibit inconsistent reasoning when faced with paraphrased
inputs. For example, prompts with similar surface familiarity but different underlying complexity
yield divergent performance (L1 et al., 2024a), and models may exploit spurious semantic cues rather
than following intended chains of reasoning (Li et al.,[2024b). To mitigate inconsistency, researchers
have added training regularizers or auxiliary losses for paraphrase-invariance (Elazar et al., 2021}
Zhou et al., 2022), leveraged knowledge graphs to generate paired questions for fine-tuning (Rajan
et al.,2024)), and applied self-consistency decoding to vote out illogical paths (Wang et al., 2023} Wei
et al.} 2022)). Recent directions construct paraphrase/symmetry cohorts either at inference time (Chen
et al., |2024)or for fine-tuning (Yao et al.,2025)) to enforce that semantically equivalent inputs yield
consistent outputs (Raj et al.,[2025). Our work enforces consistent, programmatic reasoning across
cohorts of similar questions that share the same reasoning path.

Programmatic Abstractions for Reasoning Programmatic or symbolic abstractions introduce a
formal structure that can be executed and verified, improving transparency and reliability (Chen et al.|
2024])). Prior work translates questions into executable programs for verifiable stepwise reasoning (Gao
et al., [2022} |Chen et al.| 2023), and ReAct interleaves reasoning with tool use to ground intermediate
steps (Yao et al., 2023)). [Zhou et al.| (2024} |2025) pursue conceptual/symbolic formulations, while
Hong et al.| (2024) requires an Abstraction-of-Thought plan before refining a concrete solution. Our
approach similarly emits compact executable programs but differs by executing a single program
unchanged across a cohort of similar questions.

Reinforcement Learning for Enhanced Reasoning. Reinforcement learning objectives can sub-
stantially boost an LLM’s ability to solve multi-step problems by optimizing the reasoning path
(Shen et al.l [2025b; [Xu et al.| |2025b). Verifiable intermediate rewards catch and correct logical
mistakes, leading to more stable reasoning (Xu et al.|[2025a)). Composite reward functions that blend
answer accuracy, factuality, and faithfulness yield more dependable outputs (Wang et al., 2024), and
potential-based shaping adds domain priors as soft constraints, speeding up training while keeping
policies optimal (Nguyen et al.l 2020). External verifiers and frozen judges have improved reliability
by critiquing or selecting among candidate solutions (Cobbe et al., 2021)), and recent RL systems
explicitly train models to internalize search-like, stepwise procedures (Shen et al.|[2025a). Together,
these advances in RL-driven reasoning path optimization, verifiable reward design, and structured
shaping inspire our cohort-level consistency framework.

3 METHOD

As shown in Figure 2] we first convert each question into a masked abstraction and instantiate a
cohort of similar questions that share the same reasoning path (see Sec. and Sec.[3.2). The policy
is trained to emit one executable program that runs unchanged across the entire cohort; the program’s
only external operation is an atomic retrieve (q, type) call, which forces the reasoning path
into code and keeps the set of retrieve calls invariant across variants. To prevent degenerate
shortcuts, the retriever is fronted by a rejection prompt—ill-formed or non-atomic queries yield “idk”
and incur a penalty. We optimize with GRPO on a composite signal mixing execution reward and
critique reward using a simple three-role setup (policy, retriever, judge) (See Sec.[3.3). At test time,
each synthesized program is executed over its cohort and scored under lenient (> 4/6) and strict
(> 5/6) criteria (Sec. . Finally, Sec. provides a simple analysis explaining why cohort-level
rewards align with the consistency objective.

Under review as a conference paper at ICLR 2026

Execution rewards
def answer(ProductX: Execute on cohorts #OfCOACf; R 0.8
. . CC Rewara=u.
st ReSIaudraniY' Sltg)._ Ferrari Dur-:—lfisrl'gon AlfaRomeo =>
. pr? uct_sold = McDonald's Starbucks . A
retrieve(f'ls {ProductX} uts Retrieve-Function
_ commonly sold at > Usage Reward =0.6
Masked Question: {RestaurantY}?", bool)
Can you order a . . -
ProductX at D / Rejection Penalty=0
RestaurantY? def answer(ProductX: ;
Parameters: str, RestaurantY: str): Factor Analysis B
ProductX, RestaurantY product_sold = Does the Critic rewards
Options: ['No", “Yes'] retrieve(f'Does 0 program Decomposition
Function Header: {RestaurantY} operate consider _
def answer(ProductX: and deliver to that > 'ml => collaborations? = Reward=0.36
str, RestaurantY: str) area?’, bool)
> int: Judge Does .. Structural
Alignment=0.4

Figure 2: Overview of the CC-Learn training. For each masked abstraction, the policy emits a single
program p that uses only atomic retrieve (q, type) and isexecuted unchanged across a cohort
of questions. Execution over the cohort yields the Accuracy Reward, the Retrieve-Function Usage
Reward and Rejection Penalty. A judge supplies critique signals: the Factor-Complete Decomposition
Reward and the Structural Alignment Reward. These combine into the composite RL objective.

3.1 PROGRAM GENERATION

We encode each reasoning path as a small Python function
def answer (paraml: Typel, ..., paramK: TypeK)->int whose body may
use only atomic retrieve (question: str, type) calls and control flow. The model is
given (i) a masked abstraction preserving logical structure, (ii) parameter names, (iii) the answer
options, and (iv) the exact function header. The fixed header specifies parameter names and types as
well as the return type, which (i) tells the model the concrete type of each input, guiding clearer
program generation; and (ii) ensures unambiguous execution at evaluation time (we can call the
same function signature on all variants). Four few-shot exemplars—boolean checks, numeric
comparisons, list loops, and dependent lookups—specify the output format across cohort abstractions
(Appendix [A.T.5). At generation time the policy fills in the function body; at execution time each
retrieve is issued to the retriever with rejection filtering.

3.2 DATA GENERATION AND PREPROCESSING

To foster generalizable reasoning and provide a strong foundation for our models, we employ a
high-quality data preparation pipeline.

Similar Questions Generation Central to our approach is the construction of cohorts of similar
questions that share same reasoning paths but differ in factual content. This process begins with a
corpus of 5,000 original questions randomly sampled from each domain’s training split (1,000 per
domain). As shows, for each original question, we generate an abstraction by creating an
abstraction that preserves its core reasoning structure while parameterizing entities, allowing for
the substitution of different facts (see Appendix [A.1.2). Using LLaMA-3.3-70B-Instruct (Team),
20244), we then instantiate 5 similar questions for each abstraction(see Appendix [A.1.3). These
variants are solvable through the same reasoning path dictated by the abstraction but feature different
specific entities and details. To ensure the fidelity of our training data, answers to all generated
similar questions are cross-validated using three state-of-the-art models: LLaMA-3.3-70B-Instruct,
DeepSeek-R1-Distill-Llama-70B (DeepSeek-AlL [2025)), and Qwen-2.5-72B-Instruct(Yang et al.,[2024;
Team) 2024b)). This process is supplemented by human verification of both the validity of similar
questions and the correctness of their labels, as detailed in @

Program Corpus for Supervised Fine-Tuning (SFT). We construct two corpora corresponding to
the SFT variants. For SFTxq.500, we synthesize 500 programs (100 per domain) with LLaMA-3.3-
70B-Instruct and rigorously verify each to achieve 0% rejection and 100% execution accuracy on
its question. For SFTpys¢, we reuse the 5,000 RL-training instances and generate programs with

Under review as a conference paper at ICLR 2026

the same 70B model and prompts; to keep computational cost tractable at this scale, we retain basic
validity checks but do not perform the exhaustive curation needed to guarantee 0% rejection.

3.3 COHORT-BASED REINFORCEMENT LEARNING

We optimize the policy with Group Relative Policy Optimization (GRPO) on cohorts of six (1
original + 5 similar). For each abstraction, the policy emits a single executable program p that is
executed unchanged across all variants. A retriever answers atomic retrieve calls, and a rejection
filter blocks multi-hop or invalid queries. The policy then receives a composite reward R. We
group the rewards into two families: (i) execution-based rewards (Accuracy Reward, the Retrieve-
Function Usage Reward and Rejection Penalty), which are verifiable from program execution and the
retriever/rejection outcomes; and (ii) critique-based rewards (the Factor-Complete Decomposition
Reward and the Structural Alignment Reward), which are produced by a frozen judge model. Together,
these rewards guide the policy toward accurate, disciplined decomposition and convergence to factor-
complete reasoning procedures across the cohort.

Model Architecture We evaluate both 3B and 7B model sizes throughout. Our framework employs
three complementary language models: (a) Policy Model: Qwen-2.5-Coder-Instruct (3B/7B) (Yang
et al.,2024; [Team| [2024b; Hui et al., 2024) generates structured, executable programs for abstracted
questions, specifying the reasoning path. (b) Retriever Model: Qwen-2.5-Instruct (3B/7B) serves as
our retriever model; it executes the simple retrieval calls generated within the programs by the policy
model. (c¢) Judge Model: the same Qwen-2.5-Instruct (3B/7B) checkpoint as the retriever, used as
an evaluator to score whether sub-questions cover key factors and to propose a concise improved
program p™ for logic-level alignment checking. This architectural separation is identical across scales
and ensures that the policy must formulate its reasoning strategy without direct access to factual
information during program generation.

Rejection Prompts in Retrieval To encourage the policy model to learn robust, generalizable
reasoning and prevent the policy model from circumventing the intended reasoning process by issuing
trivial or multi-step queries—behavior akin to the “deceptive shortcuts” observed in prior work (Li
et al.| 2024b)—we equip the retriever model with a rejection-prompt filter. With a few-shot prompt
(see Appendix [A.T.1)), the retriever only accepts straightforward, single-step factual questions (e.g.,
Is {ProductX} sold at {RestaurantY }?) and replies with “idk” to any multi-step or invalid queries.
Any rejected call will incur the penalty R..;, thereby incentivizing the policy model to offload only
elementary lookups and to internalize the full reasoning chain within the generated program.

Interactive Training Pipeline. The GRPO training loop proceeds interactively. First, the policy
model proposes a program in response to an abstracted question. Second, this program is executed
on both the original question and its five similar variants. Any information retrieval calls embedded
in the program are handled by the retriever model. Finally, based on the execution outcomes across
the entire question family, a scalar reward is computed. This reward considers accuracy, retrieval
efficiency, and the rejection ratios.

Reward Components. Our composite reward function R is designed to guide the model toward
effective and generalizable reasoning. It is defined as R = Ryec + Rret + Rrej + Rtc + Rea. and

comprises two families: execution-based signals (Racc, R, Rrej) that are directly verifiable from
program execution, and critique-based signals (RfC7 Rsa) that come from a frozen judge model.

¢ Accuracy Reward (Racc): This reward is calculated as Raec = 0.2 - Neorrect, Where Neorect €
{0,1,...,6} is the number of correctly answered questions within the cohort of similar
questions (1 original + 5 similar). This yields R, € [0, 1.2]. We scale this term to 0.2 per
correct so that gaining a few additional correct variants outweighs any single term, thereby
aligning training with the cohort-consistency objective rather than stylistic surrogates.

* Retrieve-Function Usage Reward (R,): This component encourages appropriate problem
decomposition and is assigned based on the number of retrieval calls (n¢ys) made by the

Under review as a conference paper at ICLR 2026

program:
—0.6 if Nealls — 0

R = 0 if neans = 1

4+0.6 if neys > 1

This results in Ry € {—0.6,0,0.6}. The retrieve-function usage reward encourages
problem decomposition and discourages trivial solutions with no retrieval calls.

* Rejection Penalty (R,¢j): This penalty discourages ineffective retrieval calls and is given
by Rej = —0.1 - Nyejected> Where niyejectea € {0,1,...,6} is the number of questions in the
group whose retrieve call is rejected by the retrieve model. This leads to Ry € [—0.6,0].
The Rejection Penalty penalizes attempts to re-ask the original question or formulate overly
similar questions, forcing multi-step, valid reasoning.

* Factor-Complete Decomposition Reward(FRg.): Given the program, the full set of similar
questions, and failure patterns, a judging model scores whether the program’s retrieve
sub-questions cover the key factors needed to solve the original abstraction. Let s¢. € [1, 10]
be this judged coverage score; we map it to Ry, = 0.06 - s, which yields Ry, € [0.06,0.6].
This term rewards factor-complete decompositions even when some variants remain wrong.

* Structural Alignment Reward(R,,): Given the full context (cohort, original program p,
failure patterns), a judge model proposes an improved program p*. We then compare p and
pT at the logic level: after stripping comments and formatting, we compute an AST-level
structural similarity siogic € [0, 1]. We set R, = 0.6 - Siogic € [0, 0.6].

By construction, higher Ry, indicates that, after reflection, the logic of the original program p
is becoming closer to that of its improved counterpart pt—i.e., alignment in logiv increases
over training—rather than merely matching on superficial patterns.

RL Variants To isolate how the accuracy signal shapes learning, we consider two training-time
variants that differ only in how R, is computed (all other terms unchanged; to avoid confusion,
lenient/strict refer only to evaluation criteria): (a) Cohort Accuracy: Accuracy-based rewards (FRaec)
are granted only if the generated program successfully answers at least 4 out of the 6 questions in one
group. This enforces a higher standard of generalizability. (b) Normal Accuracy: Accuracy rewards
(Racc) are granted for every successful program execution on a question within the group, regardless
of performance on other questions in that group. This provides a more granular learning signal.

3.4 COHORT EXECUTION TEST

We evaluate each program on a cohort of six questions (original + five variants). We report two
criteria: Strict Accuracy—the program is correct iff it answers > 5 of 6; Lenient Accuracy—correct
iff it answers > 4 of 6. In addition, we apply a lightweight rejection check at evaluation to prevent
degenerate behavior that simply re-asks the original question or violates the simple-fact constraint;
any instance with a rejected retrieve call is counted as incorrect under both criteria.

3.5 WHY COHORTS HELP: A SIMPLE THEORETICAL ANALYSIS

Setup. Fix a cohort of N variants {x; }}¥; from an abstraction. A program p is executed unchanged
on all variants. Let Z;(p) € {0, 1} indicate correctness on x; (with the retriever and rejection filter).

Define S(p) = Zfil Z;(p) and the evaluation metric
Jr(p) == Pr[S(p) > K],
where K =4 (lenient) or 5 (strict) in our experiments.
We compare two training surrogates: 1) Normal accuracy: Ryormal(p) = E[% va:l Z; (p)]; 2)

Cohort accuracy: Reonort (p) = E[1{S(p) > K}].

Proposition 1 (Exact alignment). R.onort(p) = Jx (p) for every p. Hence maximizing the cohort
reward exactly maximizes the K -of-V consistency objective used at evaluation.

Proof. Immediate from the definition. [J

Under review as a conference paper at ICLR 2026

Proposition 2 (Normal accuracy is an inconsistent surrogate for K -of-N). There exist programs
P, q such that Rnormal(q) > Rnormal (p) but JK (q) < JK (p)

Intuition. Raising the mean per-variant success by trading one “hard” variant for several “easier”
ones can lower the chance that enough variants succeed simultaneously. A concrete counterexample
and numbers are in App.

4 EXPERIMENTS

In this section, we provide detailed experimental settings and results that highlight the effectiveness of
our RL framework in training LLMs to perform transparent reasoning through structured, executable
programs. The full set of hyperparameters is listed in Appendix [A.2]

Baselines. We compare our cohort-based RL models against two configurations: (a) Vanilla Model:
the off-the-shelf Qwen-2.5-Coder-Instruct checkpoint, used without any additional supervised fine-
tuning or RL. (b) Supervised Fine-Tuning (SFT): we consider two SFT variants on the same
backbone. SFThq.500 (“High Quality SFT”) fine-tunes on a curated set of 500 exemplar programs
(100 per domain) until held-out loss stabilizes (typically ~1.1 epochs; see Sec.[3.2). SFTpwm.sk (“Data-
Matched SFT”) fine-tunes on the same 5,000 instances used for RL, using programs synthesized by
LLaMA-3.3-70B-Instruct with the same prompting but without exhaustive curation, isolating the
effect of RL’s cohort-level credit assignment from simply scaling SFT on the RL data distribution.

4.1 EXPERIMENTAL SETUP

Datasets and Test Set We evaluate on five publicly available benchmarks: ARC-Easy, ARC-
Challenge, CSQA, StrategyQA, and HotpotQA. Our test set comprises random 2,500 questions in
total (500 per dataset, randomly sampled from dev/test split), each paired with five similar questions
generated by our abstraction pipeline.

Evaluation Protocol For each of the 2,500 test questions, we draw 11 samples from the policy, exe-
cute each sampled program on its six-question cohort, and aggregate predictions via self-consistency:
the final answer is the majority vote over the 11 runs. We then compute strict and lenient accuracy as
defined in Sec. This protocol enables us to report not only standard accuracy but also the critical
generalization-across-variants metrics.

4.2 MAIN RESULTS

On 7B, RLcohort (Exec+Crit) improves over the strongest SFT baseline (SFTpy.sk) by +33.2 on
ARC-Easy (74.8 vs. 41.6), +37.4 on CSQA (73.4 vs. 36.0), and +28.2 on StrategyQA (45.8 vs. 17.6)
under the lenient metric; Under the strict metric, gains remain large: +36.8 (ARC-Easy: 68.0 vs.
31.2), +35.2 (CSQA: 62.4 vs. 27.2), +22.4 (StrategyQA: 31.0 vs. 8.6), and +36.2 (ARC-Challenge:
56.6 vs. 20.4). HotpotQA and ARC-Challenge are exceptions: under the lenient metric, RLcoport
(Exec+Cerit) is slightly below the strongest RL variant. Under the strict metric, HotpotQA still trails
(—5.2: 54.2 vs. 59.4 with execution-only), while ARC-Challenge is effectively tied (56.6 vs. 56.2).

On 3B, RLcohort (Exec+Crit) improves over SFTpy.sx by +20.2 (ARC-Easy: 40.8 vs. 20.6), +28.6
(ARC-Challenge: 41.8 vs. 13.2), and +15.0 (CSQA: 42.6 vs. 27.6)under the lenient metric; strict
gains are +23.0 (ARC-Easy), +26.6 (ARC-Challenge), +17.4 (CSQA), and +31.0 (StrategyQA).
HotpotQA shows little change at 3B (—3.2 lenient; +0.8 strict). Taken together (Tables[I]and2), these
gains are consistent across criteria and model sizes, indicating that enforcing a single executable
program with critique yields more stable, consistent reasoning on complex, multi-step questions.

4.3 SANITY CHECK EXPERIMENTS

Reject Prompts Analysis We validate the retriever’s rejection prompts by measuring rejection
ratios on 5k training questions and on SimpleQA (Wei et al., 2024) to check over-rejection. As shown
in Table[3] multi-step questions are rejected far more often than SimpleQA, indicating the mechanism
efficiently distinguishes question types and curbs rephrasing-based retrieval shortcuts.

Under review as a conference paper at ICLR 2026

Model Methods ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

Vanilla 19.0+ 3.1 30.0+4.0 29.8+4.0 126+29 450443
Qwen2.5- SFThq 500 19.84+35 334+41 320+41 120+29 468+44
Coder. SFTowsk 28.8+4.0 41.6+43 36.0+£42 17.6+33 T77.6+3.7
71‘3’_ er- R LNormal (Acc) 30.2+4.0 434443 36.0+42 158432 73.2+3.8
Instruct RLconon (Exec) 51.0+4.4 60.8+43 59.6+43 382+42 814+34

RLnNorma (Exec+Crit) 66.2 £4.1 726+39 68.0+£41 43.6+43 81.0£34
RLcohort (Exec+Crit) 65.8 £4.1 748+38 734+39 458+44 794=£35

Qwen2.5- Vanilla 12.2£29 144+£31 120+£29 544+£20 17.0+3.3
Coder- SFTpwm-sk 13.2+ 3.0 20635 276+£39 36+17 182+34
3B- RLcohort (Exec) 31.6 4.1 304+4.0 380+£42 18=£12 04+£0.7

Instruct RLconon (Exec+Crit) 41.8 £4.3 408 +43 426143 442+43 150+3.1

Table 1: Lenient Accuracy (%) across datasets. Vanilla: off-the-shelf Qwen-2.5-Coder-Instruct.
SFTHqQ-500/SFTpm.sk: curated 500 exemplars vs. data-matched Sk set. RLnormal (Acc): RL with
accuracy-only reward (R,.; baseline). RLconort (Exec): RL with execution-based rewards only
(Race, Rrets Rrej). RLNormal/R Leohort(Exec+Crit): RL using both execution- and critique-based rewards
(Rfe, Rsa), With per-instance vs. cohort-gated accuracy. Here & denotes the half-width of the 95%
Wilson confidence interval. Bold = best, underline = second best.

Model Methods ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

Vanilla 13.6 £ 2.9 22.6+3.7 206+35 6.8+22 272+39
Qwen2.5- SFThq-500 14.4+£3.1 242437 250+38 6.2+21 27.8+£39
Coder- SFTbm-sk 204+ 3.5 31.2+41 272+39 86+25 532443
7B- RLNormal (Acc) 22.4+3.7 354+42 276+£39 84+£24 498444
Instruct RLconort (Exec) 40.6 £4.3 51.2+4.4 484+44 222437 594+43

RLNorma (Exec+Crit) 56.2 +4.3 644+42 598+43 272+39 56.2+4.3
RLcohort (Exec+Crit) 56.6 £ 4.3 680+41 624+42 31.0+40 542+44

Qwen2.5- Vanilla 7.6+£23 9.8£2.6 8.2+24 1.2+1.0 6.0£21
Coder- SFTpm-sk 8.8+2.5 14.0+30 18.8+34 16+£1.2 6.8+2.2
3B- RLcohort (Exec) 26.4+3.9 266+39 324+41 14+1.1 0.2£0.3

Instruct RLcopor (Exec+Crit) 35.4+4.2 37.0+4.2 362+42 326+41 7.6+23

Table 2: Strict Accuracy (%) across datasets. Naming and notes follow [Table 1} Bold = best,
underline = second best.

Upper Bound Analysis To assess the theoretical feasibility of our evaluation protocol, we estimate
a theoretical upper-bound performance by running pass@ 128 on a random subset of 50 questions
per domain and then manually correcting any incorrect programs. As shown in Table [3] after this
minor intervention the model reaches near-perfect accuracy. Crucially, this demonstrates that the
evaluation itself is not an insurmountable “mission impossible”; rather, the large gap between these
upper-bound scores and our current best results underscores that existing LLMs still fall well short of
their potential and require significant advances in reasoning consistency and generalization.

4.4 ABLATION STUDIES

Training on Original Questions Only. To further evaluate the effectiveness of the similar question
during training, we conducted an ablation study where RL training was performed solely on the
original questions without considering the similar variants. [Table 4] and [Table 5| compare the perfor-
mance of this approach with our Cohort RL variant. The results demonstrate consistent performance
degradation when training solely on original questions, particularly for complex reasoning tasks like
ARC-Challenge and CSQA. This confirms that the similar questions play a crucial role in compelling
the model to learn generalizable reasoning strategies rather than question-specific shortcuts.

High-Quality Retriever & Judge To further probe how retriever/judge strength affects training,
we run a controlled study where all models are trained at 3B. Concretely: 3B-3B trains with a
3B retriever+judge and evaluates with a 3B retriever; 3B-7B trains with a 3B retriever+judge but

Under review as a conference paper at ICLR 2026

evaluates with a 7B retriever; 7B-7B trains with a 7B retriever+judge and evaluates with a 7B retriever.
As shown in Table [6and Table [7] across different datasets under lenient/strict metrics, 7B-7B yields
the strongest scores on most datasets, while 3B-7B is consistently second-best and improves over
3B-3B. An exception is StrategyQA, where lighter judges (3B-3B / 3B-7B) edge out 7B-7B. Overall,
stronger retrieval/judging generally boosts reasoning, but dataset dynamics can favor smaller judges.

Out Of Domain data Accuracy To assess generalization beyond our training domains, we eval-
uated on three out of domain benchmarks—OpenBookQA, PubMedQA, and MMLU (Table [g).
Because constructing reliable similar-question cohorts is nontrivial for these datasets, we report
single-question accuracy only, using the same self-consistency strategy as in our in-domain evalua-
tion. RLcohort (Exec+Cerit) attains the best accuracy on PubMedQA and MMLU and is on par with
RLNormal (Exec+Crit) on OpenBookQA; both RL variants substantially outperform SFTpysx and
Vanilla across all three datasets. These results indicate that CC-LEARN not only stabilizes in-domain
reasoning but also transfers effectively to new tasks without cohort construction.

4.5 HUMAN STUDY

Similar Question Quality Assessment To verify that our automated pipeline produces high-quality
question variants, we assigned five annotators to assess a random sample of 150 generated questions
(30 per domain) along two criteria: whether the answer label matches the ground truth, and whether
the question follows its abstraction. The detailed results are summarized in Table[9] As shown in
Table[9] our generated similar questions have high label and abstraction accuracy(> 90%).

Comparison of Reasoning Path We also conducted a comparison of programmatic reasoning
paths from our RL-trained model versus a supervised fine-tuning (SFT) baseline. Two annotators
evaluated 100 instances (20 per domain), choosing which program showed superior logical coherence,
clarity, and decomposition. Results are included in Table[0] As shown in Table[9] the Cohort RL’s
reasoning paths are preferred 47% of the time over the left 2 models.

Failure Case Analysis We analyze 50 shared failure questions(10 per domain) where both SFT
and RL answered incorrectly, and label each with one of three mutually exclusive types: Ambigu-
ity/Annotation: the question or the label is ambiguity; Control-Flow/Syntax: the program’s explicit
logic is wrong (e.g., AND/OR aggregation, quantifier handling, branching/looping) or syntax mishaps
lead to an incorrect branch; Retrieve: misuse of the retrieve call (non-atomic or multi-hop
queries, re-asking the original question, or queries that trigger rejection). Results are included in
Table[I0] Two annotators independently labeled all items. As shown in the Table[I0] RL reduces
retrieve failures, consistent with execution signals and rejection penalties discouraging non-atomic
or shortcut queries. Residual RL errors shift toward Control-Flow/Syntax. This supports our claim
that cohort-gated RL suppresses retrieval shortcuts and enforces more disciplined, programmatic
reasoning.

5 CONCLUSION

We present a training framework that improves the consistency and reliability of LLM reasoning by
forming cohorts of similar questions and training a single executable program to run unchanged across
each cohort, optimized with a composite RL objective that combines execution feedback and judge
critique. This directly addresses inconsistent answers across similar inputs by rewarding uniform,
factor-complete procedures instead of instance-specific shortcuts. Ablation analyses indicate that
cohort-gated accuracy better aligns training with the K-of-/N objective than instance-wise rewards,
and the rejection-filtered retriever curbs shortcut queries, yielding more disciplined decompositions.
Across five in-domain benchmarks and three out-of-domain benchmarks, the method outperforms
vanilla, supervised fine-tuning and RL baselines under both lenient and strict evaluations, with clear
gains on complex multi-step tasks; human evaluation further prefers our reasoning paths. Together,
these results indicate that cohort-gated, program-based RL effectively instills generalizable, stable
reasoning.

Under review as a conference paper at ICLR 2026

REFERENCES

JJ Ahn et al. LIm self-inconsistency beyond generative randomness. arXiv preprint arXiv:2504.01282,
2025. URLhttps://arxiv.org/abs/2504.01282.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Transactions on Machine
Learning Research, 2023. doi: 10.48550/arXiv.2211.12588. URL https://arxiv.org/abs/
2211.12588.

Wenging Chen, Weicheng Wang, Zhixuan Chu, Kui Ren, Zibin Zheng, and Zhichao Lu. Self-
para-consistency: Improving reasoning tasks at low cost for large language models. In Lun-
Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Compu-
tational Linguistics: ACL 2024, pp. 14162-14167, Bangkok, Thailand, August 2024. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.842. URL https:
//aclanthology.orqg/2024.findings—-acl.842/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948\

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhilasha Ravichander, Eduard Hovy, Hinrich Schiitze,
and Yoav Goldberg. Measuring and improving consistency in pretrained language models. Trans-
actions of the Association for Computational Linguistics, 9:1012—1031, 2021.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. PAL: Program-aided language models. arXiv preprint arXiv:2211.10435, 2022.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665-673, 2020.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of
the Association for Computational Linguistics, 9:346-361, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song, and Jacob
Steinhardt. Aligning ai with shared human values. Proceedings of the International Conference on
Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021b.

Ruixin Hong, Hongming Zhang, Xiaoman Pan, Dong Yu, and Changshui Zhang. Abstraction-of-
thought makes language models better reasoners, 2024. URL https://arxiv.org/abs/
2406.12442\

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William Cohen, and Xinghua Lu. PubMedQA: A dataset
for biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun
Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language

10

https://arxiv.org/abs/2504.01282
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://aclanthology.org/2024.findings-acl.842/
https://aclanthology.org/2024.findings-acl.842/
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2406.12442
https://arxiv.org/abs/2406.12442

Under review as a conference paper at ICLR 2026

Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 2567-2577, Hong Kong, China, November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-1259. URL https://aclanthology.org/D19-1259/.

Bangzheng Li, Ben Zhou, Xingyu Fu, Fei Wang, Dan Roth, and Muhao Chen. Famicom: Further
demystifying prompts for language models with task-agnostic performance estimation, 2024a.

Bangzheng Li, Ben Zhou, Fei Wang, Xingyu Fu, Dan Roth, and Muhao Chen. Deceptive semantic
shortcuts on reasoning chains: How far can models go without hallucination?, 2024b. URL
https://arxiv.org/abs/2311.09702.

R Thomas McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. arXiv preprint arXiv:1902.01007, 2019.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018. URL https://arxiv,
org/abs/1809.027809.

Hoang Nguyen, Mario Araya, and Finale Doshi-Velez. Learning to utilize shaping rewards: A new
approach of potential-based reward shaping. In NeurIPS 2020, 2020.

Harsh Raj, Vipul Gupta, Domenic Rosati, and Subhabrata Majumdar. Improving consistency in large
language models through chain of guidance. arXiv preprint arXiv:2502.15924, 2025.

SaiSathiesh Rajan, Ezekiel Soremekun, and Sudipta Chattopadhyay. Knowledge-based consistency
testing of large language models. In Findings of EMNLP 2024, 2024. to appear.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Yankai Li, Yufei Wu, and Daya Guo. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models, 2024.

Maohao Shen, Guangtao Zeng, Zhenting Qi, Zhang-Wei Hong, Zhenfang Chen, Wei Lu, Gregory
Wornell, Subhro Das, David Cox, and Chuang Gan. Satori: Reinforcement learning with chain-of-
action-thought enhances 1lm reasoning via autoregressive search, 2025a. URL https://arxiv,
org/abs/2502.02508.

Ming Shen, Zhikun Xu, Xiao Ye, Jacob Dineen, and Ben Zhou. Bow: Bottlenecked next word
exploration, 2025b. URL https://arxiv.org/abs/2506.13502,

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceed-
ings of the Twentieth European Conference on Computer Systems, EuroSys *25, pp. 1279-1297.
ACM, March 2025. doi: 10.1145/3689031.3696075. URL http://dx.doi.org/10.1145/
3689031.3696075.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and Douwe Kiela.
Masked language modeling and the distributional hypothesis: Order word matters pre-training
for little. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 2888-2913, 2021.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A question
answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pp. 4149-4158, Minneapolis, Minnesota, June 2019. Association for
Computational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.,
org/N19-1421/.

LLaMA Team. The llama 3 herd of models, 2024a. URL https://arxiv.org/abs/2407.
21783.

Qwen Team. Qwen2.5: A party of foundation models, September 2024b. URL https://gwenlm,
github.io/blog/gqwen2.5/.

11

https://aclanthology.org/D19-1259/
https://arxiv.org/abs/2311.09702
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2502.02508
https://arxiv.org/abs/2502.02508
https://arxiv.org/abs/2506.13502
http://dx.doi.org/10.1145/3689031.3696075
http://dx.doi.org/10.1145/3689031.3696075
https://aclanthology.org/N19-1421/
https://aclanthology.org/N19-1421/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Under review as a conference paper at ICLR 2026

Haiyang Wang, Yuchen Pan, Xin Song, Xuechen Zhao, Minghao Hu, and Bin Zhou. F2rl: Fac-
tuality and faithfulness reinforcement learning framework for claim-guided evidence-supported
counterspeech generation. In EMNLP 2024, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, and Aleksei
Gusev. Self-consistency improves chain-of-thought reasoning in language models. In International
Conference on Learning Representations (ICLR), 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903, 2022.

Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
John Schulman, and William Fedus. Measuring short-form factuality in large language models,
2024. URL https://arxiv.org/abs/2411.04368.

Yifei Xu, Tusher Chakraborty, Srinagesh Sharma, and et al. Direct reasoning optimization: Llms
can reward and refine their own reasoning for open-ended tasks. arXiv preprint arXiv:2506.13351,
2025a.

Zhikun Xu, Ming Shen, Jacob Dineen, Zhaonan Li, Xiao Ye, Shijie Lu, Aswin RRYV, Chitta Baral,
and Ben Zhou. Tow: Thoughts of words improve reasoning in large language models, 2025b. URL
https://arxiv.org/abs/2410.16235.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
2369-2380. Association for Computational Linguistics, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In ICLR, 2023. URL https:
//arxiv.orqg/abs/2210.036209.

Yihang Yao, Zhepeng Cen, Miao Li, William Han, Yuyou Zhang, Emerson Liu, Zuxin Liu, Chuang
Gan, and Ding Zhao. Your language model may think too rigidly: Achieving reasoning consis-
tency with symmetry-enhanced training. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,
and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational Lin-
guistics: ACL 2025, pp. 23036-23052, Vienna, Austria, July 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.1182. URL
https://aclanthology.org/2025.findings—-acl.1182/.

Xiaodong Yu, Ben Zhou, Hao Cheng, and Dan Roth. Reasonagain: Using extractable symbolic
programs to evaluate mathematical reasoning, 2024. URL https://arxiv.org/abs/2410,
19056.

Tony Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. In International Conference on Machine Learning, pp.
12697-12706. PMLR, 2021.

Ben Zhou, Hongming Zhang, Sihao Chen, Dian Yu, Hongwei Wang, Baolin Peng, Dan Roth,
and Dong Yu. Conceptual and unbiased reasoning in language models, 2024. URL https:
//arxiv.org/abs/2404.00205.

12

https://arxiv.org/abs/2411.04368
https://arxiv.org/abs/2410.16235
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://aclanthology.org/2025.findings-acl.1182/
https://arxiv.org/abs/2410.19056
https://arxiv.org/abs/2410.19056
https://arxiv.org/abs/2404.00205
https://arxiv.org/abs/2404.00205

Under review as a conference paper at ICLR 2026

Ben Zhou, Sarthak Jain, Yi Zhang, Qiang Ning, Shuai Wang, Yassine Benajiba, and Dan Roth. Self-
supervised analogical learning using language models, 2025. URL https://arxiv.org/
abs/2502.00996.

Chunting Zhou, Junxian He, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Prompt
consistency for zero-shot task generalization, 2022. URL https://arxiv.org/abs/2205,
00049.

A APPENDIX

You may include other additional sections here.

A.1 PROMPTS

A.1.1 REJECTION PROMPT

Prompt for Fact-Lookup Assistant

System: You are a fact-lookup assistant. For each user query, first decide if it’s a simple, single-step fact lookup without solving it
and then return a JSON object with exactly one key, "answer”, wrapped in “‘json ...“*. Match the type specified in parentheses (int,
str, list, bool). If a query requires more than a straightforward fact check or true/false lookup—for example, multi-step reasoning or

subjective judgment—reply with "idk”.

User: Who finished immediately after the winner at the 1992 Olympic 100m final? (str)
Assistant: [Explanation] You must identify the winner, then determine who came second—this isn’t single-step. “‘json “answer”:
mdi?

User: How many planets are in the solar system? (int)

Assistant: [Explanation] Simple fact check. “‘json “answer”: 8 “*
User: What is the profession of Michael Jackson? (str)
Assistant: [Explanation] Single well-known profession of a public figure. “‘json “answer”: ”singer

5 cce

User: Who has more than one Nobel Prize? (list)
Assistant: [Explanation] Factual list of individuals with multiple Nobel Prizes. “‘json “answer”: ["John Bardeen”, “Frederick
Sanger”, "Linus Pauling”, ”Marie Curie”] “*

User: Is the CEO of Tesla older than the current President of France? (bool)
Assistant: [Explanation] Requires fetching and comparing two birthdates—multi-step. “‘json “answer”: "idk” “*

User: Is the Eiffel Tower located in Paris, France? (bool)
Assistant: [Explanation] Single-step landmark location. “‘json “answer”: true “‘

User: Did England win any Olympic gold medals in 1800? (bool)
Assistant: [Explanation] Must check when the modern Olympics began and then medal records—multi-step. “‘json “answer”: "idk”

e

User: What is the population of the largest country entirely south of the equator? (int)
Assistant: [Explanation] Identify the country then lookup its population—multi-step. “‘json “answer”: "idk” “*

User: List the U.S. states admitted to the Union between the first and the last of the original 13 colonies. (list)

Assistant: [Explanation] Order states by admission date and filter—multi-step. “‘json “answer”: “idk” “‘

User: Can food be cooked in the cosmic microwave background? (bool)

Assistant: [Explanation] Must compare CMB temperature (2.7 K) to cooking physics—multi-step. “‘json “answer”: “idk” “*

User: Are Waris Hussein and Mathieu Kassovitz both actors? (bool)
Assistant: [Explanation] Fetch each person’s profession and compare—multi-step. “‘json “answer’: 7idk” “

User: {prompt} ({return_type})
Assistant:

13

https://arxiv.org/abs/2502.00996
https://arxiv.org/abs/2502.00996
https://arxiv.org/abs/2205.00049
https://arxiv.org/abs/2205.00049

Under review as a conference paper at ICLR 2026

A.1.2 ABSTRACTION GENERATION PROMPT

Prompt for Masked Question Generation

System: Generate a masked question and corresponding parameters for the given question. These generations will be used to create
similar questions that share the same reasoning path and options. The similar questions can only replace the values in the parameters.
Therefore, be careful with the parameters. Do not include options or answers in the parameters. Present the output in JSON format.

User: The Sugarcubes and SCH, are related to music? Options: A. No B. Yes. Answer: B

Assistant:
{
"masked_question": "Are Entityl and Entity2 both related to DomainX?",
"parameters": {
"Entityl": "The Sugarcubes",
"Entity2": "SCH",
"DomainX": "music"

User: Are Ken Kwapis and Jan gvankmajer both filmmakers? Options: A. No B. Yes. Answer: B

Assistant:
{
"masked_question": "Are Personl and Person2 both ProfessionX?",
"parameters": {
"Personl": "Ken Kwapis",
"Person2": "Jan évankmajer",
"ProfessionX": "filmmakers"

User: Which of these is one similarity of the elements in the first group of the periodic table? Options: A. The elements in the group
are very unreactive metals. B. The elements in the group react with oxygen in similar ways. Answer: B

Assistant:
{
"masked_question": "Which of these is one similarity of the elements in the Groupl of thq periodic table?",
"parameters": {
"Groupl": "first group"

}

User: Which celestial object listed below has the greatest density? Options: A. a planet B. a neutron star. Answer: B

Assistant:
{
"masked_question": "Which celestial object listed below has the Superlative Property?",
"parameters": {
"Superlative": "greatest",
"Property": "density"

User: On what would you serve an egg to someone? Options: A. plate B. chicken coop. Answer: A

Assistant:
{
"masked_question": "On what would you serve a FoodItem to someone?",
"parameters": {
"FoodItem": "egg"

}

User: Fighting inflation means being aware of many things, such as what with loans? Options: A. rising interest rates B. loss of
money. Answer: A

Assistant:
{
"masked_question": "Fighting EconomicIssue means being aware of many things, such as what] with FinancialAspect?",
"parameters": {
"EconomicIssue": "inflation",
"FinancialAspect": "loans"

User: Question: {question} Options: {options}. Answer: {answer}
Assistant:

14

Under review as a conference paper at ICLR 2026

A.1.3 SIMILAR QUESTION PROMPT

Prompt for Similar Question Generation

System: Generate five new questions that follow the same underlying reasoning process based on the masked questions, parameters,
and the original question. Ensure that the choices and masked question remain the same as the original. You may only change the
values within the parameters dictionary. Present the output in JSON format.

User: The Sugarcubes and SCH, are related to music? Options: A. No B. Yes. Answer: B. Masked Question: Are Entityl and
Entity2 both related to DomainX? Parameters: "Entity1’: *The Sugarcubes’, ’Entity2’: ’SCH’, ’DomainX’: *music’.

"question":

Assistant:
{
"similar_questions": [
{
"question": "Are The Beatles and ABBA both related to music?",
"answer": "B",
"parameters": {
"Entityl": "The Beatles",
"Entity2": "ABBA",
"DomainX": "music"
}
I
{
"question": "Are Marvel and DC both related to comics?",
"answer": "B",
"parameters": {
"Entityl": "Marvel",
"Entity2": "DC",
"DomainX": "comics"

"Are NASA and SpaceX both related to space exploration?",

"answer": "B",
"parameters": {
"Entityl": "NASA",
"Entity2": "SpaceX",
"DomainX": "space exploration"
}
by
{
"question": "Are Pepsi and Coca-Cola both related to beverages?",
"answer": "B",
"parameters": {
"Entityl": "Pepsi",
"Entity2": "Coca-Cola",
"DomainX": "beverages"
}
e
{
"question": "Are Microsoft and Apple both related to technology?",
"answer": "B",
"parameters": {
"Entityl": "Microsoft",
"Entity2": "Apple",
"DomainX": "technology"

User: Are Ken Kwapis and Jan Svankmajer both filmmakers? Options: A. No B. Yes. Answer: B. Masked Question: Are
Personl and Person2 both ProfessionX? Parameters: "Person1’: *Christopher Nolan’, *Person2’: *Quentin Tarantino’, 'ProfessionX’:

*filmmakers’.
Assistant:
{
"similar_questions": [
{
"question": "Are Christopher Nolan and Quentin Tarantino both filmmakers?",
"answer": "B",
"parameters": {
"Personl": "Christopher Nolan",
"Person2": "Quentin Tarantino",
"ProfessionX": "filmmakers"
}
I
{
"question": "Are J.K. Rowling and Stephen King both authors?",

15

Under review as a conference paper at ICLR 2026

{

{

"answer":

"parameter
"Personl
"Person2
"Profess

"question":

"answer":

"parameter
"Personl
"Person2
"Profess

"question":

"answer":

"parameter
"Personl
"Person2
"Profess

"question"

"answer":

"parameter
"Personl
"Person2
"Profess

User: Which of these is one similarity of the elements in the first group of the periodic table? Options: A. They all react similarly
with water B. They have similar electron configurations. Answer: A. Masked Question: Which of these is one similarity of the
elements in Groupl of the periodic table? Parameters: *Groupl’: *first group’.

Assistant:

"similar_questions": [

"question": "Which of these is one similarity of the elements in the 18th group of t
"answer": "B",
"parameters": {
"Groupl": "18th group"
}
"question": "Which of these is one similarity of the elements in the alkali metals of]
"answer": "B",
"parameters": {
"Groupl": "alkali metals"
}
"question": "Which of these is one similarity of the elements in the noble gases of {
"answer": "B",
"parameters": {
"Groupl": "noble gases"
}
"question": "Which of these is one similarity of the elements in the halogens of the
"answer": "A",
"parameters": {
"Groupl": "halogens"
}
"question": "Which of these is one similarity of the elements in the transition metal
"answer": "B",
"parameters": {
"Groupl": "transition metals"

}

ngn,
s": |

": "J.K. Rowling",
"Stephen King",
"authors"

n.

ionX":

"Are Beyoncé and Elon Musk both singers?"
v,

s": |

": "Beyoncé",

"Elon Musk",

ionX": "singers"

"Are Henry Ford and Albert Einstein both automobile entrepreneurs?",

nan,
s": |

": "Henry Ford",

": "Albert Einstein",

ionX": "automobile entrepreneurs"

: "Are Tony Hawk and Bob Burnquist both professional skateboarders?",
ngw,

g¥vg {

": "Tony Hawk",

"Bob Burnquist",

ionX": "professional skateboarders"

e periodic table?",

the periodic table?"

he periodic table?",

periodic table?",

s of the periodic table?",

16

Under review as a conference paper at ICLR 2026

User: Which celestial object listed below has the greatest density? Options: A. a planet B. a neutron star. Answer: B. Masked
Question: Which celestial object listed below has the Superlative Property? Parameters: ’Superlative’: ’greatest’, *Property’:
*density’.

Assistant:

{

"similar_questions": [

{

"question": "Which celestial object listed below has the greatest density?",
"answer": "A",
"parameters": {
"Superlative": "greatest",
"Property": "density"
}
by
{
"question": "Which celestial object listed below has the highest temperature?",
"answer": "A",
"parameters": {
"Superlative": "highest",
"Property": "temperature"
}
br
{
"question": "Which celestial object listed below has the largest mass?",
"answer": "B",
"parameters": {
"Superlative": "largest",
"Property": "mass"
}
I
{
"question": "Which celestial object listed below has the brightest luminosity?",
"answer": "B",
"parameters": {
"Superlative": "brightest",
"Property": "luminosity"
}
by
{
"question": "Which celestial object listed below has the longest lifespan?",
"answer": "B",
"parameters": {
"Superlative": "longest",
"Property": "lifespan"

User: On what would you serve an egg to someone? Options: A. plate B. chicken coop. Answer: A. Masked Question: On what

would you serve a FoodItem to someone? Parameters: 'FoodItem’: "egg’.
Assistant:

{
"similar_gquestions": [

{

"question": "On what would you serve an egg to someone?",
"answer": "A",
"parameters": {
"FoodItem": "egg"
}
by
{
"question": "On what would you serve a soup to someone?",
"answer": "B",
"parameters": {
"FoodItem": "soup"
}
I
{
"question": "On what would you serve a salad to someone?",
"answer": "B",
"parameters": {
"FoodItem": "salad"

}
b
{

17

Under review as a conference paper at ICLR 2026

"question": "On what would you serve a sandwich to someone?",
"answer": "A",
"parameters" {
"FoodItem": "sandwich"
}
b
{
"question": "On what would you serve a steak to someone?",
"answer": "B",
"parameters": {
"FoodItem": "steak"

Parameters: ’Economiclssue’: ’inflation’, *Financial Aspect’: ’loans’.
Assistant:
{

"similar_questions": [

{

{answer}. Masked Question: {masked_question}. Parameters: {entities}.
Assistant:

User: Fighting inflation means being aware of many things, such as what with loans? Options: A. rising interest rates B. loss of money.
Answer: A. Masked Question: Fighting Economiclssue means being aware of many things, such as what with Financial Aspect?

"question": "Fighting inflation means being aware of many things, such as what with]
"answer": "A",
"parameters": {
"EconomicIssue": "inflation",
"FinancialAspect": "loans"
}
I
{
"question": "Fighting recession means being aware of many things, such as what with
"answer": "B",
"parameters": {
"EconomicIssue": "recession",
"FinancialAspect": "unemployment"
}
by
{
"question": "Fighting deflation means being aware of many things, such as what with {
"answer": "B",
"parameters": {
"EconomicIssue": "deflation",
"FinancialAspect": "prices"
}
br
{
"question": "Fighting an economic crisis means being aware of many things, such as w
"answer": "A",
"parameters": {
"EconomicIssue": "economic crisis",
"FinancialAspect": "market volatility"
}
b
{
"question": "Fighting a budget deficit means being aware of many things, such as whaf
"answer": "B",
"parameters": {
"EconomicIssue": "budget deficit",
"FinancialAspect": "government spending"

User: NOTE: Make sure the choices and masked question remain the same. Question: {question} Options: {options}. Answer:

oans?",

nemployment?",

rices?",

at with market volatility~

with government spending:

18

Under review as a conference paper at ICLR 2026

A.1.4 PROGRAM GENERATION PROMPT FOR SFT

Prompt for Answer Function Implementation

System: Implement the provided answer (...) function exactly as specified by the signature in Python. Return an inte-
ger corresponding to the index of the correct option in Options. Use the helper function retrieve (question: str,
answer_type: Type) —> Any only for simple fact-checking. Allowed answer_type values: int, float, 1ist, str,
or bool. Do not embed reasoning logic inside ret rieve calls—just simple fact-check questions. If a single ret rieve question
requires multi-step reasoning, decompose it into multiple simpler ret rieve calls. Assume retrieve is implemented; do not
define it. Include every input parameter in your answer function. Produce only the answer function—no extra code, comments,
or imports beyond what’s necessary.

User: Masked Question: Are Entityl and Entity2 both related to DomainX? Parameters: dict_keys ([’Entityl’,

"Entity2’, ’‘DomainX’]). Options: ["No’, ’'Yes’]. Function header: def answer (Entityl: str,
Entity2: str, DomainX: str) -> int.
Assistant:

from typing import Any

def answer (Entityl: str, Entity2: str, DomainX: str) -> int:

First check Entityl’s relationship
entityl_related = retrieve(

f"Is {Entityl} related to {DomainX}?", bool
)
Then check Entity2’s relationship
entity2_related = retrieve(

f"Is {Entity2} related to {DomainX}?", bool
)
Both must be related for "Yes"
if entityl_related and entity2_ related:

return 1
else:
return 0
User: Masked Question: Are both founders of CompanyX still involved in the company? Parameters:
dict_keys ([’ CompanyX’]).Options: ['No’, ’Yes’].Functionheader: def answer (CompanyX: str) -> int.

Assistant:

from typing import Any, List

def answer (CompanyX: str) —-> int:
founders = retrieve (
f"Who are the founders of {CompanyX}?", list
)
still_involved = []
for founder in founders:
involved = retrieve (
f"Is {founder} still involved with {CompanyX}?", bool
)
still_involved.append (involved)
if all(still_involved) :
return 1
else:
return 0

User: Masked Question: Which of these is one similarity of the elements in Groupl of the periodic table? Parameters:

dict.keys ([’Groupl’]). Options: [’They all react similarly with water’, ’They have similar
electron configurations.’]. Function header: def answer (Groupl: str) -> int.
Assistant:

from typing import Any, List

def answer (Groupl: str) —-> int:
elements = retrieve (
f"List the elements in {Groupl} of the periodic table", list
)
valence_counts = []
for el in elements:
count = retrieve (
f"How many valence electrons does {el} have?", int
)
valence_counts.append (count)
if len(set (valence_counts)) ==
return 1
water_reactivities = []
for el in elements:
reactive = retrieve(
f"Is {el} reactive with water?", bool
)
water_reactivities.append (reactive)
if len(set (water_reactivities)) ==

19

Under review as a conference paper at ICLR 2026

return 0
return 0
User: Masked Question: Which celestial object listed below has the Superlative Property? Parameters:
dict_keys ([’ Superlative’, ’Property’]). Options: [’a planet’, ’‘a neutron star’]. Function
header: def answer (Superlative: str, Property: str) -> int

Assistant:

from typing import Any, List

def answer (Superlative: str, Property: str) -> int:
planet_list = retrieve (
f"Which known planet has the {Superlative} {Property}?", list
)
planet_name = planet_list[0]
planet_value = retrieve(
f"What is the {Property} of {planet_name} in standard units?", float
)
neutron_list = retrieve(
f"Which known neutron star has the {Superlative} {Property}?", list
)
neutron_name = neutron_list[0]
neutron_value = retrieve (
f"What is the {Property} of {neutron_name} in the same units?", float
)
is_max = retrieve (
f"Does ’ {Superlative}’ mean selecting the highest {Property}?", bool
)
if is_max:
return 0 if planet_value > neutron_value else 1
is_min = retrieve (
f"Does ’ {Superlative}’ mean selecting the lowest {Property}?", bool
)
if is_min:
return 0 if planet_value < neutron_value else 1

return 0
User: Masked Question: On what would you serve a FoodItem to someone? Parameters: dict_keys ([’ FoodItem’]). Options:
["plate’, ’"bowl’].Function header: def answer (FoodItem: str) -> int
Assistant:

from typing import Any

def answer (FoodItem: str) —-> int:
served_on_plate = retrieve(
f"Is a plate a common item to serve {FoodItem}?", bool
)
served_on_bowl = retrieve (
f"Is a bowl a common item to serve {FoodItem}?", bool
)
if served_on_plate:
return 0
else:
return 1

User: Masked Question: Did HistoricalFigure have ethnicity closer to NativeGroup than ForeignGroup? Parame-

ters: dict-keys ([’HistoricalFigure’, ’'NativeGroup’, ’'ForeignGroup’]). Options: [’'No’, ’Yes’].
Function header: def answer (HistoricalFigure: str, NativeGroup: str, ForeignGroup: str)
-> int.

Assistant:

from typing import Any

def answer (HistoricalFigure: str, NativeGroup: str, ForeignGroup: str) -> int:
has_native = retrieve(
f"Did {HistoricalFigure} have ancestry from {NativeGroup}?", bool
)
has_foreign = retrieve (
f"Did {HistoricalFigure} have ancestry from {ForeignGroup}?", bool
)

if has_native and not has_foreign:

return 1

if has_foreign and not has_native:
return 0

more_native = retrieve(

f"Did {HistoricalFigure} have a greater proportion of {NativeGroup} ancestry than {ForeignGroup}?", bool
)
if more_native:

return 1
else:

return 0

20

Under review as a conference paper at ICLR 2026

User: Masked Question: Which reaction did Person have after TimePeriod in a ColdEnvironment? Parame-

ters: dict.keys ([’Person’,’ TimePeriod’,’ColdEnvironment’,’PhysicalReaction’]). Op-
tions: [’chills’,’calm down’]. Function header: def answer (Person: str, TimePeriod: str,
ColdEnvironment: str, PhysicalReaction: str) -> int.

Assistant:

from typing import Any

def answer (Person: str, TimePeriod: str, ColdEnvironment: str, PhysicalReaction: str) -> i
had_chills = retrieve(
f"Did {Person} have chills after {TimePeriod} in a {ColdEnvironment}?", bool
)
if had_chills:
return 0
had_calm = retrieve(
f"Did {Person} calm down after {TimePeriod} in a {ColdEnvironment}?", bool
)
if had_calm:

return 1
return 0
User: Masked Question: Which is a way that Earth loses energy from the EnergySource? Parameters:
dict_keys ([’EnergySource’]). Options: ["reflection’,’absorption’]. Function header: def
answer (EnergySource: str) -> int.

Assistant:

from typing import Any

def answer (EnergySource: str) -> int:
source_desc = retrieve (
f"How does Earth lose energy from {EnergySource}?", str
)
is_reflection = retrieve (
f"Does ' {source_desc}’ indicate reflection?", bool
)
if is_reflection:
return 0
is_absorption = retrieve(
f"Does ’ {source_desc}’ indicate absorption?", bool
)
if is_absorption:
return 1
return 0

User: NOTE: You must use all input parameters, decompose complex queries into multiple ret rieve calls, and ensure at least two
retrieve calls per function. {input}
Assistant:

A.1.5 PROGRAM GENERATION PROMPT FOR RL

Prompt for Answer Function Implementation

System: Implement the provided answer (...) function exactly as specified by the signature in Python. Return an inte-
ger corresponding to the index of the correct option in Options. Use the helper function retrieve (question: str,
answer_type: Type) -> Any only for simple fact-checking. Allowed answer_type values: int, float, list, str,
or bool. Do not embed reasoning logic inside retrieve calls—just simple fact-check questions. If a single ret rieve question
requires multi-step reasoning, decompose it into multiple simpler ret rieve calls. Assume retrieve is implemented; do not
define it. Include every input parameter in your answer function. Produce only the answer function—no extra code, comments,
or imports beyond what’s necessary.

User: Masked Question: Are both founders of CompanyX still involved in the company? Parameters:
dict_keys ([’ CompanyX’]).Options: ["No’, ’Yes’].Functionheader: def answer (CompanyX: str) -> int.
Assistant:

from typing import Any, List

def answer (CompanyX: str) —-> int:
founders = retrieve (
f"Who are the founders of {CompanyX}?", list
)
still_involved = []
for founder in founders:
involved = retrieve (
f"Is {founder} still involved with {CompanyX}?", bool
)
still_involved.append (involved)
if all(still_involved) :
return 1
else:

21

Under review as a conference paper at ICLR 2026

return 0
User: Masked Question: Which celestial object listed below has the Superlative Property? Parameters:
dict_keys ([’ Superlative’, ’'Property’]). Options: [’a planet’, ’‘a neutron star’]. Function
header: def answer (Superlative: str, Property: str) -> int

Assistant:
from typing import Any, List

def answer (Superlative: str, Property: str) -> int:
planet_list = retrieve (
f"Which known planet has the {Superlative} {Property}?", list
)
planet_name = planet_list[0]
planet_value = retrieve (
f"What is the {Property} of {planet_name} in standard units?", float
)
neutron_list = retrieve(
f"Which known neutron star has the {Superlative} {Property}?", list
)
neutron_name = neutron_list[0]
neutron_value = retrieve (
f"What is the {Property} of {neutron_name} in the same units?", float
)
is_max = retrieve (
f"Does ’ {Superlative}’ mean selecting the highest {Property}?", bool
)
if is_max:
return 0 if planet_value > neutron_value else 1
is_min = retrieve (
f"Does ’ {Superlative}’ mean selecting the lowest {Property}?", bool
)
if is_min:
return 0 if planet_value < neutron_value else 1

return 0
User: Masked Question: On what would you serve a FoodItem to someone? Parameters: dict_keys ([’ FoodItem’]). Options:
["plate’, ’bowl’].Functionheader: def answer (FoodItem: str) -> int
Assistant:

from typing import Any

def answer (FoodItem: str) -> int:
served_on_plate = retrieve(
f"Is a plate a common item to serve {FoodItem}?", bool
)
served_on_bowl = retrieve (
f"Is a bowl a common item to serve {FoodItem}?", bool
)
if served_on_plate:
return 0
else:
return 1

User: Masked Question: Did HistoricalFigure have ethnicity closer to NativeGroup than ForeignGroup? Parame-
ters: dict_keys ([’HistoricalFigure’, ’NativeGroup’, ’ForeignGroup’]). Options: ['No’, ’Yes’].
Function header: def answer (HistoricalFigure: str, NativeGroup: str, ForeignGroup: str)
-> int.

Assistant:

from typing import Any

def answer (HistoricalFigure: str, NativeGroup: str, ForeignGroup: str) -> int:
has_native = retrieve (
f"Did {HistoricalFigure} have ancestry from {NativeGroup}?", bool
)
has_foreign = retrieve (
f"Did {HistoricalFigure} have ancestry from {ForeignGroup}?", bool
)

if has_native and not has_foreign:

return 1

if has_foreign and not has_native:
return 0

more_native = retrieve (

f"Did {HistoricalFigure} have a greater proportion of {NativeGroup} ancestry than {ForeignGroup}?", bool
)
if more_native:

return 1
else:

return 0

User: NOTE: You must use all input parameters, decompose complex queries into multiple ret rieve calls, and ensure at least two
retrieve calls per function. {input}

22

Under review as a conference paper at ICLR 2026

A.1.6 PROGRAM JUDGE & REGENERATION PROMPT (RL)

Prompt for Program Evaluation and Improvement

System: You are given a group of questions derived from the same masked template. Your job is (1) to evaluate the PREVIOUS
program and assign a single integer score, and (2) to REGENERATE one improved Python function that solves all questions
in the group. Think step-by-step. Then output a valid JSON with exactly two keys: {"score": <int>, "program":
"<code>"}.

Tasks (output JSON with ”score” and “’program”):
A) Evaluate the PREVIOUS program and produce ONE integer “’score” (1-10) based on three dimensions:

1. Factor alignment: covers important reasoning factors from the Reasoning Path (e.g., alternatives, typical requirements,
cultural variability, conservative defaults).

2. No shortcuts: no hard-coded mappings/dictionaries; no direct string checks for specific entities; no pattern-matching
the literal question text; no label leakage.

3. Proper decomposition: breaks the task into simple, orthogonal subquestions via retrieve () or equivalent evidence
checks that generalize to unseen items (not relying on concrete examples).

Scoring rubric (guidance):
* 9-10: strong factor coverage, no shortcuts, clear multi-step decomposition with robust fallbacks.
* 7-8: good factor coverage, minor gaps, mostly clean decomposition.
* 5-6: partial factor coverage and/or weak decomposition.
¢ 3—4: major gaps; some shortcut-like behavior or brittle logic.
* 1-2: fails most dimensions; relies on prohibited shortcuts or ignores factors.
B) Generate a NEW program as a single Python function:
 Signature: def answer (..) -> int.ReturnOor 1.

* Must use decomposition into general, masked sub-queries (e.g., via ret rieve ()) that do not include concrete items
or terms from the questions. Only use placeholders from inputs (e.g., FoodItem, Utensil) and generic concepts.

* Must not define or rely on any hard-coded mapping/dictionary/list of specific entities; must not read or reference the
literal question text.

* Should reflect the Premise and the Inference. Keep the logic self-contained except for a black-box
retrieve (prompt: str, type-hint: type) -> Any.

* Code should be concise, readable, and deterministic given ret rieve’s returns; include brief comments.

OUTPUT FORMAT:
{
"score": <integer 1-10>,
"program": "<the improved Python code as a single string>"

}

User: Masked template

— Masked question: "<masked_gquestion>"
— Choices: <choices>
- Options: ["A", "B"]

Questions and results of the previous program

- Q0: "<question_0>" | Gold: <gold_0> | Program: <pred_ 0>
- Ql: "<question_1>" | Gold: <gold_1> | Program: <pred_ 1>

Reasoning Path (reference facts you should respect)
<reasoning_path_text>

Previous candidate program (to be evaluated and then improved)
<previous_program_code_block>

A.2 RL TRAINING

We train our RL models on two H200 GPUs using the VERL framework (Sheng et al., 2025). The
retriever runs with temperature 0.7. To characterize memory footprint, we co-locate an Instruct
serving endpoint and training on the same two H200s: during backpropagation GPU memory
saturates, whereas at inference it uses about half of the capacity. Unless stated otherwise, we use a
learning rate of 1 x 10~°, a KL-divergence coefficient of 0.001, five rollouts per update, a training
batch size of 128, and rollout temperature = 1.

23

Under review as a conference paper at ICLR 2026

A.3 EXAMPLE

39, 9 EXINEE)

Prompt messages = [’role”: “system”,

99 99

content”: “Let’s solve the following question step by
step”, . o s

role”: "user”, “content”: f’{question}”,]

Result Question: Can you order a Tesla at Dunkin’ Donuts?

Answer: Certainly, let§ break this down step by step: 1. **Understanding the Context™*: - An Alfa
Romeo is a brand of luxury sports cars and sedans. - Starbucks is a global coffee chain known for its
beverages, food items, and retail products.2. **Analyzing the Question**: - The question asks if one
can “order” an Alfa Romeo at Starbucks. - This implies that the person wants to purchase or acquire
an Alfa Romeo from Starbucks.3. **Evaluating Possibilities**: - Starbucks primarily sells beverages,
food, and some merchandise related to their brand. - They do not sell vehicles, including cars like
Alfa Romeos.4. **Conclusion**: - It is not possible to order an Alfa Romeo at Starbucks because
they do not sell automobiles. Therefore, the answer to the question "Can you order an Alfa Romeo at
Starbucks?” is no.

Question: Can you order an Alfa Romeo at Starbucks?

Answer: Certainly! LetS$ break this down step by step:1. **Identify the Companies**: - Tesla is
an electric vehicle manufacturer. - DunkinDonuts is a coffee and donut chain.2. **Understand
Their Business Models**: - Tesla sells vehicles, primarily electric cars, through its own dealerships
and online. - DunkinDonuts sells food and beverages in physical stores and through various
digital platforms.3. **Check for Overlap**: - There is no direct business relationship or overlap
between Tesla and DunkinDonuts. They operate in completely different industries.4. **Consider
the Question**: - The question asks if you can “order” a Tesla at DunkinDonuts. This implies
purchasing or ordering a product from one company at the location of another.5. **Conclusion**: -
You cannot order a Tesla at DunkinDonuts because Tesla is not a product sold by DunkinDonuts, and
there is no mechanism for ordering a Tesla through a DunkinDonuts location. Therefore, the answer
to the question "Can you order a Tesla at DunkinDonuts?”” is no.

24

Under review as a conference paper at ICLR 2026

A.4 THEORY PROOF

Example (N=6, K=5). Assume conditional independence across variants with per-variant success
probabilities

p = (0.99,0.99,0.99,0.99,0.99,0.20), ¢ = (0.70,0.70,0.99,0.99,0.99, 0.90).

Then
Ruormat(p) = £ _pi ~0.858, Ruomal(q) = 0.878 (>0.858),

but the tail probabilities for S > 5 satisfy
J5(p) = 0.961 versus J5(q) ~ 0.855 (< 0.961).

Thus improving per-instance mean accuracy can reduce K-of-IN consistency, while optimizing R.on
directly targets Jx. O

Remark (Monotone lower bound in the mean). Let p = <>, Pr[Z;(p)=1]. By classical
extremal properties of Poisson—binomial sums, Pr[S > K] > Pr[Binomial(N,) > K|. Hence
increasing Ry oy, increases a lower bound on Jg , but—as Proposition 2 shows—does not guarantee
improving J itself, especially when K is large and success must occur simultaneously across many
variants.

v

25

Under review as a conference paper at ICLR 2026

Domain Rejection Upper-bound Acc
ARC-Challenge 72.8 96.0
ARC-Easy 79.7 96.0
CSQA 70.1 88.0
StrategyQA 65.7 92.0
HotpotQA 71.8 100.0
SimpleQA 46.0 —

Table 3: Unified sanity checks: Rejection rates(%) during RL training and estimated Upper-bound
accuracies(%) after pass @128 sampling with manual program correction.

A.5 SANITY CHECK EXPERIMENT

26

Under review as a conference paper at ICLR 2026

A.6 ABLATION STUDY

A.6.1 TRAINING ON ORIGINAL QUESTIONS ONLY

Model = ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

RLoye 46.6 £4.4 55.4+43 476+44 36.8+42 T754+38
RLcohorrt 65.8+4.1 748+38 734+39 458+44 794+35

Table 4: Lenient accuracy (%) comparison between original (Org) and Cohort RL variant(Cohort).
Bold = best

Model = ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

RLoyg 34.0+£4.1 422+43 376+42 208+3.6 5H2.8+44
RLcohort 56.6 = 4.3 68.0+41 624+42 31.0+40 542+44

Table 5: Strict accuracy (%) comparison between original (Org) and Cohort RL variant(Cohort). Bold
= best.

A.6.2 HIGH-QUALITY RETRIEVER & JUDGE

Model ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

3B-3B 41.8+4.3 408+43 426+43 442+43 15.0+3.1
3B-7B 42.0+4.3 41.0+£43 422+43 440+£43 18.6+34
7B-7B 56.84+43 656+4.1 656+41 392+43 23.6+4.2

Table 6: Lenient accuracy (%) across reasoning datasets with Qwen2.5-7B-Instruct serving as both
retriever and judge for the 3B model. “3B-3B” refers to models trained and evaluated with the 3B
retriever and judge; “3B-7B” refers to models trained with the 3B retriever/judge and evaluated with
the 7B retriever; “7B-7B” refers to models trained and evaluated with the 7B retriever. Bold = best,
underline = second best.

Model ARC-Challenge ARC-Easy CSQA StrategyQA HotpotQA

3B-3B 354+£4.2 37042 36.2+42 326+41 7.6+23
3B-7B 354+£4.2 374+£42 358+42 326+41 114428
7B-71B 478+44 56.4+43 568+43 25.8+38 17.4+43

Table 7: Strict accuracy (%) across reasoning datasets with Qwen2.5-7B-Instruct serving as both the
retriever and judge for the 3B model. Naming and notes follow Bold = best, underline =
second best.

A.6.3 OUT OF DOMAIN DATA ACCURACY

27

Under review as a conference paper at ICLR 2026

Model OpenBookQA PubMedQA MMLU
Vanilla 19.0 £ 3.1 30.0+4.0 29.84+4.0
SFTpmsk 57.6 4.3 10.8+2.7 40.0+4.3

RLNormal (Exec+Crit) 79.6 £3.5 41.2+43 62.2£4.2
RLcohort (Exec+Crit) 79.4+36 500+44 62.4+4.2

Table 8: Out-of-distribution (OOD) single-question accuracy (%) on OpenBookQA, PubMedQA,
and MMLU. Bold = best, underline = second best.

A.7 HUMAN ANALYSIS

Accuracy (%) Win Rate (%)
Answer Label Abstraction Match SFT RLynomai RLcohort
92.0 96.7 23.0 30.0 47.0

Table 9: Human evaluation of generated questions and reasoning paths, reporting both accuracy
metrics and win rates for different models.

Method Ambiguity / Annotation ~ Control-Flow / Syntax Retrieve

RLCohort 38 54 8
SFTpm.sk 38 20 42

Table 10: Failure type distribution(%) on failure questions. RL reduces Retrieve errors while shifting
residual errors to Control-Flow/Syntax.

A.8 LLM USAGE

During manuscript preparation, we used a general-purpose large language model (OpenAl ChatGPT)
only for language polishing and structural editing. Concretely, we asked the model to: improve
fluency and clarity at the sentence/paragraph level (grammar, wording, concision), suggest local
reordering for better flow (e.g., merging redundant sentences, moving a definition earlier) and help
finding related works. All edits were treated as suggestions and were reviewed, accepted, or rewritten
by the authors.

28

	Introduction
	Related Work
	Method
	Program Generation
	Data Generation and Preprocessing
	Cohort-based Reinforcement Learning
	Cohort Execution Test
	Why Cohorts Help: A Simple Theoretical Analysis

	Experiments
	Experimental Setup
	Main Results
	Sanity Check Experiments
	Ablation Studies
	Human Study

	Conclusion
	Appendix
	Prompts
	Rejection Prompt
	Abstraction Generation Prompt
	Similar Question Prompt
	Program Generation Prompt For SFT
	Program Generation Prompt For RL
	Program Judge & Regeneration Prompt (RL)

	RL training
	Example
	Theory Proof
	Sanity Check Experiment
	Ablation Study
	Training on Original Questions Only
	High-Quality Retriever & Judge
	Out of Domain data Accuracy

	Human Analysis
	LLM Usage

