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Abstract

Score distillation sampling (SDS) has shown great promise in text-to-3D gen-
eration by distilling pretrained large-scale text-to-image diffusion models, but
suffers from over-saturation, over-smoothing, and low-diversity problems. In this
work, we propose to model the 3D parameter as a random variable instead of a
constant as in SDS and present variational score distillation (VSD), a principled
particle-based variational framework to explain and address the aforementioned
issues in text-to-3D generation. We show that SDS is a special case of VSD and
leads to poor samples with both small and large CFG weights. In comparison,
VSD works well with various CFG weights as ancestral sampling from diffu-
sion models and simultaneously improves the diversity and sample quality with
a common CFG weight (i.e., 7.5). We further present various improvements in
the design space for text-to-3D such as distillation time schedule and density
initialization, which are orthogonal to the distillation algorithm yet not well ex-
plored. Our overall approach, dubbed ProlificDreamer, can generate high rendering
resolution (i.e., 512 × 512) and high-fidelity NeRF with rich structure and com-
plex effects (e.g., smoke and drops). Further, initialized from NeRF, meshes
fine-tuned by VSD are meticulously detailed and photo-realistic. Project page:
https://ml.cs.tsinghua.edu.cn/prolificdreamer/.

1 Introduction

3D content and technologies enable us to visualize, comprehend, and interact with complex objects
and environments that are reflective of our real-life experiences. Their pivotal role extends across a
wide array of domains, encompassing architecture, animation, gaming, and the rapidly evolving fields
of virtual and augmented reality. In spite of the extensive applications, the production of premium 3D
content often remains a formidable task. It necessitates a significant investment of time and effort,
even when undertaken by professional designers. This challenge has prompted the development of
text-to-3D methods [19, 31, 34, 20, 4, 29, 55, 16]. By automating the generation of 3D content based
on textual descriptions, these innovative methods present a promising way towards streamlining
the 3D content creation process. Furthermore, they stand to make this process more accessible,
potentially encouraging a significant paradigm shift in the aforementioned fields.
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A snail on a leaf.

A chimpanzee dressed like 
Henry VIII king of England.A pineapple.

A model of a house in 
Tudor style.

Michelangelo style statue of 
dog reading news on a cellphone.

An astronaut is riding a horse.

An elephant skull.

A tarantula, highly detailed.

(a) ProlificDreamer can generate meticulously detailed and photo-realistic 3D textured meshes.

A DSLR photo of a 
Space Shuttle.

A Matte painting of a castle 
made of cheesecake surrounded 

by a moat made of ice cream.

Inside of a smart home, realistic detailed photo, 4k. A DSLR photo of a hamburger inside a restaurant.

A red fire hydrant 
spraying water.

A DSLR photo of a 
table with dim sum on it.

(b) ProlificDreamer can generate high rendering resolution (i.e., 512× 512) and high-fidelity NeRF with
rich structures and complex effects. Besides, the bottom results show that ProlificDreamer can generate
complex scenes with 360◦ views because of our scene initialization (see Sec. 4.2).

A highly detailed sand castle. A hotdog in a tutu skirt.

(c) ProlificDreamer can generate diverse and semantically correct 3D scenes given the same text.

Figure 1: Text-to-3D samples generated by ProlificDreamer from scratch. Our base model is Stable
Diffusion and we do not employ any other assistant model or user-provided shape guidance (see
Table 1). See our accompanying videos in our project page for better visual quality.
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Diffusion models [46, 14, 49] have significantly advanced text-to-image synthesis [36, 41, 38, 1],
particularly when trained on large-scale datasets [43]. Inspired by these developments, DreamFu-
sion [34] employs a pretrained, large-scale text-to-image diffusion model for the generation of 3D
content from text in the wild, circumventing the need for any 3D data. DreamFusion introduces
the Score Distillation Sampling (SDS) algorithm to optimize a single 3D representation such that
the image rendered from any view maintains a high likelihood as evaluated by the diffusion model,
given the text. Despite its wide application [20, 4, 29, 55], empirical observations [34] indicate that
SDS often suffers from over-saturation, over-smoothing, and low-diversity problems, which have
yet to be thoroughly explained or adequately addressed. Additionally, orthogonal elements in the
design space for text-to-3D, such as rendering resolution and distillation time schedule, have not been
fully explored, suggesting a significant potential for further improvement. In this paper, we present a
systematic study of all these elements to obtain elaborate 3D representations.

We first present Variational Score Distillation (VSD), which treats the corresponding 3D scene given
a textual prompt as a random variable instead of a single point as in SDS [34]. VSD optimizes
a distribution of 3D scenes such that the distribution induced on images rendered from all views
aligns as closely as possible, in terms of KL divergence, with the one defined by the pretrained 2D
diffusion model (see Sec. 3.1). Under this variational formulation, VSD naturally characterizes the
phenomenon that multiple 3D scenes can potentially align with one prompt. To solve it efficiently,
VSD adopts particle-based variational inference [23, 3, 9], and maintains a set of 3D parameters
as particles to represent the 3D distribution. We derive a novel gradient-based update rule for the
particles via the Wasserstein gradient flow (see Sec. 3.2) and guarantee that the particles will be
samples from the desired distribution when the optimization converges (see Theorem 2). Our update
requires estimating the score function of the distribution on diffused rendered images, which can be
efficiently and effectively implemented by a low-rank adaptation (LoRA) [18, 40] of the pretrained
diffusion model. The final algorithm alternatively updates the particles and score function.

We show that SDS is a special case of VSD, by using a single-point Dirac distribution as the variational
distribution (see Sec. 3.3). This insight explains the restricted diversity and fidelity of the generated
3D scenes by SDS. Moreover, even with a single particle, VSD can learn a parametric score model,
potentially offering superior generalization over SDS. We also empirically compare SDS and VSD in
2D space by using an identity rendering function that isolates other 3D factors. Similar to ancestral
sampling from diffusion models, VSD is able to produce realistic samples using a normal CFG weight
(i.e., 7.5). In contrast, SDS exhibits inferior results, sharing the same issues previously observed in
text-to-3D, such as over-saturation and over-smoothing [34].

We further systematically study other elements orthogonal to the algorithm for text-to-3D and present
a clear design space in Sec. 4. Specifically, we propose a high rendering resolution of 512 × 512
during training and an annealed distilling time schedule to improve the visual quality. We also
propose scene initialization, which is crucial for complex scene generation. Comprehensive ablations
in Sec. 5 demonstrate the effectiveness of all the aforementioned elements particularly for VSD. Our
overall approach can generate high-fidelity and diverse 3D results. We term it as ProlificDreamer2.

As shown in Fig. 1 and Sec. 5, ProlificDreamer can generate 512 × 512 rendering resolution and
high-fidelity Neural Radiance Fields (NeRF) with rich structure and complex effects (e.g., smoke
and drops). Besides, for the first time, ProlificDreamer can successfully construct complex scenes
with multiple objects in 360◦ views given the textual prompt. Further, initialized from the generated
NeRF, ProlificDreamer can generate meticulously detailed and photo-realistic 3D textured meshes.

2 Background

We present preliminaries on diffusion models, score distillation sampling, and 3D representations.

Diffusion models. A diffusion model [46, 14, 49] involves a forward process {qt}t∈[0,1] to gradually
add noise to a data point x0 ∼ q0(x0) and a reverse process {pt}t∈[0,1] to denoise/generate data. The
forward process is defined by qt(xt|x0) := N (αtx0, σ

2
t I) and qt(xt) :=

∫
qt(xt|x0)q0(x0)dx0,

where αt, σt > 0 are hyperparameters satisfying α0 ≈ 1, σ0 ≈ 0, α1 ≈ 0, σ1 ≈ 1; and the reverse
process is defined by denoising from p1(x1) := N (0, I) with a parameterized noise prediction

2A prolific dreamer is someone who experiences vivid dreams quite regularly [50], which corresponds to the
high-fidelity and diverse results of our method.
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network ϵϕ(xt, t) to predict the noise added to a clean data x0, which is trained by minimizing

LDiff(ϕ) := Ex0∼q0(x0),t∼U(0,1),ϵ∼N (0,I)[ω(t)∥ϵϕ(αtx0 + σtϵ)− ϵ∥22], (1)
where ω(t) is a time-dependent weighting function. After training, we have pt ≈ qt and thus we can
draw samples from p0 ≈ q0. Moreover, the noise prediction network can be used for approximating
the score function of both qt and pt by ∇xt

log qt(xt) ≈ ∇xt
log pt(xt) ≈ −ϵϕ(xt, t)/σt.

One of the most successful applications of diffusion models is text-to-image generation [41, 36, 38],
where the noise prediction model ϵϕ(xt, t, y) is conditioned on a text prompt y. In practice, classifier-
free guidance (CFG [15]) is a key technique for trading off the quality and diversity of the samples,
which modifies the model by ϵ̂ϕ(xt, t, y) := (1+ s)ϵϕ(xt, t, y)− sϵϕ(xt, t,∅), where ∅ is a special
“empty” text prompt representing for the unconditional case, and s > 0 is the guidance scale. A larger
guidance scale usually improves the text-image alignment but reduces diversity.

Text-to-3D generation by score distillation sampling (SDS) [34]. SDS is an optimization method
by distilling pretrained diffusion models, also known as Score Jacobian Chaining (SJC) [55]. It is
widely used in text-to-3D generation [34, 55, 20, 29, 55, 4] with great promise. Given a pretrained
text-to-image diffusion model pt(xt|y) with the noise prediction network ϵpretrain(xt, t, y), SDS
optimizes a single 3D representation with parameter θ ∈ Θ, where Θ is the space of θ with the
Euclidean metric. Given a camera parameter c with a distribution p(c) and a differentiable rendering
mapping g(·, c) : Θ→ Rd, denote yc as the “view-dependent prompt” [34] (i.e., a text prompt with
view information), qθt (xt|c) as the distribution at time t of the forward diffusion process starting from
the rendered image g(θ, c) with the camera c and 3D parameter θ. SDS optimizes the parameter θ by
solving

min
θ∈Θ
LSDS(θ) := Et,c

[
(σt/αt)ω(t)DKL(q

θ
t (xt|c) ∥ pt(xt|yc))

]
, (2)

where t ∼ U(0.02, 0.98), ϵ ∼ N (0, I), and xt = αtg(θ, c) + σtϵ. Its gradient is approximated by

∇θLSDS(θ) ≈ Et,ϵ,c

[
ω(t)(ϵpretrain(xt, t, y

c)− ϵ)
∂g(θ, c)

∂θ

]
. (3)

Notwithstanding this progress, empirical observations [34] show that SDS often suffers from over-
saturation, over-smoothing, and low-diversity issues, which have yet to be thoroughly explained or
adequately addressed.

3D representations. We employ NeRF [30, 32] (Neural Radiance Fields) and textured mesh [45] as
two popular and important types of 3D representations. In particular, NeRF represents 3D objects
using a multilayer perceptron (MLP) that takes coordinates in a 3D space as input and outputs
the corresponding color and density. Here, θ corresponds to the parameters of the MLP. Given
camera pose c, the rendering process g(θ, c) is defined as casting rays from pixels and computing the
weighted sum of the color of the sampling points along each ray to composite the color of each pixel.
NeRF is flexible for optimization and is capable of representing extremely complex scenes. Textured
mesh [45] represents the geometry of a 3D object with triangle meshes and the texture with color on
the mesh surface. Here the 3D parameter θ consists of the parameters to represent the coordinates of
triangle meshes and parameters of the texture. The rendering process g(θ, c) given camera pose c is
defined by casting rays from pixels and computing the intersections between rays and mesh surfaces
to obtain the color of each pixel. The textured mesh allows high-resolution and fast rendering with
differentiable rasterization.

3 Variational Score Distillation

We now present Variational Score Distillation (VSD) (see Sec. 3.1) that learns to sample from a
distribution of the 3D scenes. By using 3D parameter particles to represent the target 3D distribution,
we derive a principled gradient-based update rule for the particles via the Wasserstein gradient flow
(see Sec. 3.2). We further show that SDS is a special case of VSD and constructs an experiment in
2D space to study the optimization algorithm isolated from the 3D representations, explaining the
practical issues of SDS both theoretically and empirically (see Sec. 3.3).

3.1 Sampling from 3D Distribution as Variational Inference

In principle, given a valid text prompt y, there exists a probabilistic distribution of all possible 3D
representations. Under a 3D representation (e.g., NeRF) parameterized by θ, such a distribution can
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Figure 2: Overview of VSD. The 3D representation is differentiably rendered at a random pose c.
The rendered image is sent to the pretrained diffusion and the score of the variational distribution
(estimated by LoRA) to compute the gradient of VSD. LoRA is also updated on the rendered image.

be modeled as a probabilistic density µ(θ|y). Denote qµ0 (x0|c, y) as the (implicit) distribution of
the rendered image x0 := g(θ, c) given the camera c with the rendering function g(·, c), and denote
p0(x0|yc) as the marginal distribution of t = 0 defined by the pretrained text-to-image diffusion
model with the view-dependent prompt yc. To obtain 3D representations of high visual quality, we
propose to optimize the distribution µ to align the rendered images of its samples with the pretrained
diffusion model in all views by solving

min
µ

DKL(q
µ
0 (x0|c, y) ∥ p0(x0|yc)). (4)

This is a typical variational inference problem that uses the variational distribution qµ0 (x0|c, y) to
approximate (distill) the target distribution p0(x0|yc).
Directly solving problem (4) is hard because p0 is rather complex and the high-density regions of p0
may be extremely sparse in high dimension [47]. Inspired by the success of diffusion models [14, 49],
we construct a series of optimization problems with different diffused distributions indexed by t.
As t increases to T , the optimization problem becomes easier because the diffused distributions get
closer to the standard Gaussian. We simultaneously solve an ensemble of these problems (termed as
variational score distillation or VSD) as follows:

µ∗ := argmin
µ

Et,c [(σt/αt)ω(t)DKL(q
µ
t (xt|c, y) ∥ pt(xt|yc))] , (5)

where qµt (xt|c, y) :=
∫
qµ0 (x0|c, y)pt0(xt|x0)dx0 and pt(xt|yc) :=

∫
p0(x0|yc)pt0(xt|x0)dx0

are the corresponding noisy distributions at time t with the Gaussian transition pt0(xt|x0) =
N (xt|αtx0, σ

2
t I), and ω(t) is a time-dependent weighting function.

Compared with SDS that optimizes for the single point θ, VSD optimizes for the whole distribution
µ, from which we sample θ. Notably, we prove that introducing the additional KL-divergence for
t > 0 in VSD does not affect the global optimum of the original problem (4), as shown below.

Theorem 1 (Global optimum of VSD, proof in Appendix C.4.). For each t > 0, we have

DKL(q
µ
t (xt|c, y) ∥ pt(xt|yc)) = 0⇔ qµ0 (x0|c, y) = p0(x0|yc). (6)

3.2 Update Rule for Variational Score Distillation

To solve problem (5), a direct way can be to train another parameterized generative model for µ, but it
may bring much computation cost and optimization complexity. Inspired by previous particle-based
variational inference [23, 3, 9] methods, we maintain n 3D parameters3 {θ}ni=1 as particles and derive
a novel update rule for them. Intuitively, we use {θ}ni=1 to “represent” the current distribution µ, and
θ(i) will be samples from the optimal distribution µ∗ if the optimization converges. Such optimization
can be realized by simulating an ODE w.r.t. θ, as shown in the following theorem.

Theorem 2 (Wasserstein gradient flow of VSD, proof in Appendix C). Starting from an initial
distribution µ0, denote the Wasserstein gradient flow minimizing problem (5) in the distribution
(function) space at each time τ ≥ 0 as {µτ}τ≥0 with µ∞ = µ∗. Then we can sample θτ from µτ by

3We optimize up to n = 4 particles due to the computation resource limit. See details in Appendix D.3.
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(a) SDS [34] (CFG = 7.5) (b) SDS [34] (CFG = 100)

(c) Ancestral sampling [27] (CFG = 7.5) (d) VSD (CFG = 7.5, ours)

Figure 3: Samples of different methods in 2D space. Similarly to ancestral sampling, VSD generates
realistic images with a common CFG weight of 7.5 and outperforms SDS significantly. The prompts
from left to right are hamburger, horse, and a monster truck, respectively. See details in Appendix G.

firstly sampling θ0 ∼ µ0(θ0|y) and then simulating the following ODE:

dθτ
dτ

= −Et,ϵ,c

[
ω(t)

(
−σt∇xt log pt(xt|yc)︸ ︷︷ ︸

score of noisy real images

− (−σt∇xt log q
µτ

t (xt|c, y))︸ ︷︷ ︸
score of noisy rendered images

)∂g(θτ , c)
∂θτ

]
, (7)

where qµτ

t is the corresponding noisy distribution at diffusion time t w.r.t. µτ at ODE time τ .

According to Theorem 2, we can simulate the ODE in Eq. (7) for a large enough τ to approximately
sample from the desired distribution µ∗. The ODE involves the score function of noisy real im-
ages and that of noisy rendered images at each time4 τ . The score function of noisy real images
−σt∇xt log pt(xt|yc) can be approximated by the pretrained diffusion model ϵpretrain(xt, t, y

c). The
score function of noisy rendered images −σt∇xt log q

µτ

t (xt|c, y) is estimated by another noise
prediction network ϵϕ(xt, t, c, y), which is trained on the rendered images by {θ(i)}ni=1 with the
standard diffusion objective (see Eq. (1)):

min
ϕ

n∑
i=1

Et∼U(0,1),ϵ∼N (0,I),c∼p(c)

[
∥ϵϕ(αtg(θ

(i), c) + σtϵ, t, c, y)− ϵ∥22
]
. (8)

In practice, we parameterize ϵϕ by either a small U-Net [39] or a LoRA (Low-rank adaptation [18, 40])
of the pretrained model ϵpretrain(xt, t, y

c), and add additional camera parameter c to the condition
embeddings in the network. In most cases, we find that using LoRA can greatly improve the fidelity
of the obtained samples (e.g., see results in Fig. 1). We believe that it is because LoRA is designed
for efficient few-shot fine-tuning and can leverage the prior information in ϵpretrain (the information of
both images and text corresponding to y).

Note that at each ODE time τ , we need to ensure ϵϕ matches the current distribution qµτ

t . Thus, we
optimize ϵϕ and θ(i) alternately, and each particle θ(i) is updated by θ(i) ← θ(i) − η∇θLVSD(θ

(i)),
where η > 0 is the step size (learning rate). According to Theorem 2, the corresponding gradient is

∇θLVSD(θ) ≜ Et,ϵ,c

[
ω(t) (ϵpretrain(xt, t, y

c)− ϵϕ(xt, t, c, y))
∂g(θ, c)

∂θ

]
, (9)

where xt = αtg(θ, c)+σtϵ. We show the approach of VSD in Fig. 3 (see pseudo code in Appendix E).

3.3 Comparison with SDS

We now systematically compare VSD with SDS in both theory and practice.

4Note that we have two variables of time: one is the diffusion time t ∈ [0, T ] and the other is the gradient
flow time τ , corresponding to the optimization iteration for each θ.
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Table 1: Design space of text-to-3D via 2D diffusion. We highlight the contributions of this paper
that improve the fidelity, diversity and ability to generate complex scenes by ∗, † and ‡ respectively.

Method DreamFusion [34] Magic3D [20] Fantasia3D [4] Ours
NeRF Representation
Resolution∗ 64 64 - 512
Backbone mipNeRF360 [2] Instant NGP [32] - Instant NGP [32]
Initialization‡ Object Object - Object / Scene initialization

NeRF Training
Base model Imagen [41] eDiff-I [1] - Stable Diffusion [38]
Number of particles† 1 1 - 1∼4
Distillation objective∗† SDS (Eq. (3)) SDS (Eq. (3)) - VSD (Eq. (9))
CFG∗ 100 100 - 7.5
Time schedule∗ U(0.02, 0.98) U(0.02, 0.98) - U(0.02, 0.98)→ U(0.02, 0.5)
Mesh Representation
Initialization - From NeRF Handcrafted From NeRF
Texture and geometry - Entangled Disentangled Disentangled

Mesh Training
Distillation objective∗† - SDS (Eq. (3)) SDS (Eq. (3)) VSD (Eq. (9))
CFG∗ - 100 100 7.5

SDS as a special case of VSD. Theoretically, comparing the update rules of SDS (Eq. (3)) and VSD
(Eq. (9)), SDS is a special case of VSD by using a single-point Dirac distribution µ(θ|y) ≈ δ(θ−θ(1))
as the variational distribution (see Appendix C.3 for derivation). In particular, VSD not only employs
potentially multiple particles but also learns a parametric score function ϵϕ even for a single particle
(i.e., n = 1). Empirically, the learned neural network may potentially offer superior generalization
ability over the Dirac distribution in SDS, thus it may provide more accurate updating directions in
low-density regions. Moreover, by using LoRA, VSD can additionally exploit the text prompt y in the
estimation ϵϕ(xt, t, c, y), while the Gaussian noise ϵ used in SDS cannot leverage the information
from y. Thus, VSD may provide samples which are more aligned with the prompt y.

VSD is friendly to CFG. As VSD aims to sample θ from the optimal µ∗ defined by the pretrained
model ϵpretrain, the effects by tuning the CFG in ϵpretrain for 3D sampling by VSD are quite similar to
2D sampling by the traditional ancestral sampling methods [14, 27]. Therefore, VSD can tune CFG
as flexibly as the classic text-to-image methods, and we use the same setting of CFG (e.g. 7.5) as the
common text-to-image generation task for the best performance. To the best of our knowledge, this
for the first time addresses the problem in previous SDS [34, 20, 4, 29] that it usually requires a large
CFG (i.e., 100).

VSD vs. SDS in 2D experiments that isolate 3D representations. To directly compare SDS
and VSD, we consider a special case of the rendering function g(θ) to decouple the optimization
algorithm from 3D representations. In particular, we set g(θ, c) ≡ θ for any c. Then the rendered
image x = g(θ, c) = θ is the same 2D image as θ. In such a case, optimizing the parameter θ is
equivalent to generating an image in 2D space, thereby independent of the 3D representation. We
show the results of different sampling methods in Fig. 3. SDS exhibits failure under both small
and large CFG weights. Particularly with the default CFG weight (i.e., 100) used in SDS, the 2D
samples share the same issues previously observed in text-to-3D such as over-saturation and over-
smoothing [34]. In contrast, VSD demonstrates flexibility in accommodating various CFG weights
and produces realistic samples using a normal CFG weight (i.e., 7.5), behaving similarly to ancestral
sampling from diffusion models. See more details and analysis in Appendix G.

As other 3D factors are isolated in this comparison, these theoretical and empirical results suggest that
the aforementioned practical issues of SDS [34] stem from the oversimplified variational distribution
and large CFG employed by SDS. Such results strongly motivate us to employ VSD for text-to-3D
generation, where it still substantially and consistently outperforms SDS (see evidence in Sec 5).

4 ProlificDreamer

We further present a clear design space for text-to-3D in Sec. 4.1 and systematically study other
elements orthogonal to the distillation algorithm in Sec. 4.2. Combining all improvements highlighted
in Tab. 1, we arrive at ProlificDreamer, an advanced text-to-3D approach.
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DreamFusion Magic3D Ours

A plate piled high with chocolate chip cookies.

Fantasia3D

A 3D model of an adorable cottage with a thatched roof.

Figure 4: Comparison with baselines. Our results have higher fidelity and more details.

4.1 Design Space of Text-to-3D Generation

We adopt the two-stage approach [20], with several improvements in the design space of text-to-3D
generation as summarized in Table 1. Specifically, in the first stage, we optimize a high-resolution
(e.g., 512) NeRF by VSD to utilize its high flexibility for generating scenes with complex geometry.
In the second stage, we use DMTet [45] to extract textured mesh from the NeRF obtained in the first
stage, and further fine-tune the textured mesh for high-resolution details. The second stage is optional
because both NeRF and mesh have their own advantages in representing 3D content and are preferred
in certain cases. Nevertheless, ProlificDreamer can generate both high-fidelity NeRFs and meshes.

4.2 3D Representation and Training

We systematically study other elements orthogonal to the algorithmic formulation. Specifically, we
propose a high rendering resolution of 512 × 512 during training and an annealed distilling time
schedule to improve the visual quality. We also carefully design a scene initialization, which is crucial
for complex scene generation.

High-resolution rendering for NeRF training. We choose Instant NGP [32] for efficient high-
resolution rendering and optimize NeRF with up to 512 training resolution using VSD. By applying
VSD, we obtain high-fidelity NeRFs with resolutions varying from 64 to 512.

Scene initialization for NeRF training. We initialize the density for NeRF as σinit(µ) = λσ (1−
||µ||2

r ), where λσ is the density strength, r is the density radius, and µ is the coordinate. For object-
centric scenes, we follow the object-centric initialization used in Magic3D [20] with λσ = 10
and r = 0.5; For complex scenes, we propose scene initialization by setting λσ = −10 to make
the density “hollow” and r = 2.5 that encloses the camera. We show in Appendix D that the
scene initialization can help to generate high-fidelity complex scenes without other modifications
to the existing algorithm. In addition, we can further add a centric object to the complex scene
by using object-centric initialization for ||µ||2 < 5/6 and scene initialization for others, where the
hyperparameter 5/6 ensures the initial density function is continuous.

Annealed time schedule for score distillation. We utilize a simple two-stage annealing of time
step t in the score distillation objective, suitable for both SDS (Eq. (3)) and VSD (Eq. (9)). For the
first several steps we sample time steps t ∼ U(0.02, 0.98) and then anneal into t ∼ U(0.02, 0.50).
The key insight is that, essentially, we aim to match the original qµ0 (x0|c, y) with p0(x0|yc). The
KL-divergence for larger t can provide reasonable optimization direction during the early stage of
training. During training, while x∗ is approaching the support of p0(x∗|yc), a smaller t can narrow
the gap between pt(x

∗|yc) and p0(x
∗|yc), and provide elaborate details aligning with p0(x

∗|yc).
Mesh representation and fine-tuning. We adopt a coordinate-based hash grid encoder inherited
from NeRF stage to represent the mesh texture. We follow Fantasia3D [4] to disentangle the
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(1) 64 rendering (2) + 512 rendering (3) + Annealed t (4) + VSD

Figure 5: Ablation study of proposed improvements for high-fidelity NeRF generation. The prompt is
an elephant skull. (1) The common setting [34, 20] adopts 64 rendering resolution and SDS loss. (2)
We improve the generated quality by increasing the rendering resolution. (3) Annealed time schedule
adds more details to the generated result. (4) VSD makes the results even better with richer details.

optimization of geometry and texture by first optimizing the geometry using the normal map and
then optimizing the texture. In our initial experiments, we find that optimizing geometry with VSD
provides no more details than using SDS. This may be because the mesh resolution is not large
enough to represent high-frequency details. Thus, we optimize geometry with SDS for efficiency.
But unlike Fantasia3D [4], our texture optimization is supervised by VSD with CFG = 7.5 with the
annealed time schedule, which can provide more details than SDS.

5 Experiments

5.1 Results of ProlificDreamer

We show the generated results of ProlificDreamer in Fig. 1(a) and 1(b), including high-fidelity mesh
and NeRF results. All the results are generated by VSD. For all experiments without mentioned,
VSD uses n = 1 particle for a fair comparison with SDS. In Fig. 1(c), we also demonstrate VSD can
generate diverse results, showing that different particles in a round are diverse (with n = 4).

Object-centric generation. We compare our method with three SOTA baselines, DreamFusion [34],
Magic3D [20] and Fantasia3D [4]. All of the baselines are based on SDS. Since none of them is
open-sourced, we use the figures from their papers. As shown in Fig. 4, ProlificDreamer generates
3D objects with higher fidelity and more details, which demonstrates the effectiveness of our method.

In appendix, we add user study (Section J) and quantitative results (Section K) of ProlificDreamer
against the baselines to demonstrate the effectiveness of our method.

Large scene generation. As shown in Fig. 1(b), our method can generate 360◦ scenes with high-
fidelity and fine details. The depth map shows that the scenes have geometry instead of being a 360◦

textured sphere, verifying that with our scene initialization alone we can generate high-fidelity large
scenes without much modification to existing components. See more results in Appendix B.

5.2 Ablation Study

Ablation on NeRF training. Fig. 5 provides the ablation on NeRF training. Starting from the
common setting [34, 20] with 64 rendering resolution and SDS loss, we ablate our proposed improve-
ments step by step, including increasing resolution, adding annealed time schedule, and adding VSD
all improve the generated results. It demonstrates the effectiveness of our proposed components. We
provide more ablation on large scene generation in Appendix D, with a similar conclusion.

Ablation on mesh fine-tuning. We ablate between SDS and VSD on mesh fine-tuning, as shown
in Appendix D. Fine-tuning texture with VSD provides higher fidelity than SDS. As the fine-tuned
results of textured mesh are highly dependent on the initial NeRF, getting a high-quality NeRF at the
first stage is crucial. Note that the provided results of both VSD and SDS in mesh fine-tuning are
based on and benefit from the high-fidelity NeRF results in the first stage by our VSD.

Ablation on CFG. We perform ablation to explore how CFG affects generation diversity. We find
that smaller CFG encourages more diversity. Our VSD works well with small CFG and provides
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considerable diversity, while SDS cannot generate plausible results with small CFG (e.g., 7.5), which
limits its ability to generate diverse results. Results and more details are shown in Appendix H.

6 Related Works

Diffusion models. Score-based generative model [48, 49] and diffusion models [14] have shown
great performance in image synthesis [14, 7]. Recently, large-scale diffusion models have shown
great performance in text-to-image synthesis [36, 41, 38], which provides an opportunity to utilize it
for zero-shot text-to-3D generation.

Text-to-3D generation. DreamField [19] proposes a text-to-3D method using CLIP [35] guidance.
DreamFusion [34] proposes a text-to-3D method using 2D diffusion models. Score Jacobian Chaining
(SJC) [55] derives the training objective of text-to-3D using a 2D diffusion model from another theo-
retical basis. Magic3D [20] extends text-to-3D to a higher resolution with mesh [45] representation.
Latent-NeRF [29] optimizes NeRF in latent space. Fantasia3D [4] optimizes a mesh with DMTet [45]
from scratch. Although Fantasia3D achieves remarkable zero-shot text-to-3D generation, it requires
user-provided shape guidance for the generation of complex geometry. [17] propose score debiasing
and prompt debiasing to mitigate multiface problem and is orthogonal to our work. TextMesh [52]
is contemporary with us and proposes a different pipeline for high-fidelity text-to-3D generation.
3DFuse [44] proposes to incorporate 3D awareness into 2D diffusion for better 3D consistency in
text-to-3D generation. In addition, adjusting time schedule has also been discussed in previous
works [12, 55]. However, previous works either require carefully devising the schedule [12] or
perform inferior to the simple random time schedule [55]. Instead, our 2-stage annealing schedule is
easy to train and achieves better generation quality than the random time schedule.

Text-driven large scene generation. Text2Room [16] generates indoor rooms from a given prompt.
However, it uses additional monocular depth estimation models as prior, and we do not use any
additional models. Our method generates the wild text prompt and uses only a text-to-image diffusion
model. Set-the-scene [5] is a contemporary work with us aimed at large scene generation with a
different pipeline. Overall, ProlificDreamer uses an advanced optimization algorithm, i.e, VSD with
our proposed two-stage annealed time schedule, which has a significant advantage over the previous
SDS / SJC (see Appendix C.3 for details). As a result, ProlificDreamer achieves high-fidelity NeRF
with rich structure and complex effects (e.g., smoke and drops) and photo-realistic mesh results.

7 Conclusion

In this work, we systematically study the problem of text-to-3D generation. In terms of the algorithmic
formulation, we propose variational score distillation (VSD), a principled particle-based variational
framework that treats the 3D parameter as a random variable and infers its distribution. VSD
naturally generalizes SDS in the variational formulation and addresses the practical issues of SDS
observed before. With other orthogonal improvements to 3D representations, our overall approach,
ProlificDreamer, can generate high-fidelity NeRF and photo-realistic textured meshes.

Limitations and broader impact. Although ProlificDreamer achieves remarkable text-to-3D results,
the generation takes hours of time, which is much slower than image generation by a diffusion model.
Although large scene generation can be achieved with our scene initialization, the camera poses
during training are regardless of the scene structure, which may be improved by devising an adaptive
camera pose range according to the scene structure for better-generated details. Moreover, due to
the limited expressiveness of the base 2D model, the generation for complex prompts may fail, and
the generated samples may have multi-face Janus problem [57] in some cases because of the poor
text-image alignment for the view-dependent prompts. In addition, content creation by generative
models may cause harmful social impacts on the labor market. Also, like other generative models,
our method may be utilized to generate fake and malicious contents, which needs more caution.
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A Additional Experiment Results of 3D Textured Meshes

A sliced loaf of fresh bread.

A plate of fried chicken and waffles 

with maple syrup on them.

A blue tulip.

A delicious croissant.

A rabbit, animated movie character, 

high detail 3d model.
A lionfish.

A small saguaro cactus planted 

in a clay pot.

A cauldron full of gold coins.

Figure 6: More results of ProlificDreamer of 3D textured meshes.

We provide more results of ProlificDreamer of 3D textured meshes in Fig. 6 and Fig. 7.

15



A car made out of sushi.
A DSLR photo of an imperial 

state crown of England.

A rotary telephone carved out 

of wood.
A marble bust of a mouse.

A typewriter.

A praying mantis wearing roller.A plush dragon toy.

A Matte painting of a castle made of cheesecake 

surrounded by a moat made of ice cream.

Figure 7: More results of ProlificDreamer of 3D textured meshes.
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An old vintage car.

A baby bunny sitting on top of a stack of pancakes.

A banana peeling itself.

A delicious croissant.

A blue jay standing on a large basket of rainbow macarons.

Ours DreamFusion

Figure 8: Results of high quality NeRF from ProlificDreamer. Compared with DreamFusion, our
ProlificDreamer generates better NeRF results in terms of fidelity and details, which demonstrates
the effectiveness of our VSD against SDS.

B Additional Experiment Results of 3D NeRF

Here, we provide more generated results in Fig. 8 of high quality NeRF. We compare with Dream-
Fusion, as DreamFusion also uses NeRF representation. It can be seen from the figure that Pro-
lificDreamer generates better NeRF results in terms of fidelity and details, which demonstrates the
effectiveness of our VSD against SDS.

In Fig. 9, we provide more results of large scenes with 360◦ environment using our scene initialization.

In Fig. 10, we provide more results of multiple particle experiments.

C Theory of Variational Score Distillation

C.1 Particle-based Variational Inference

Particle-based variational inference (ParVI) [23, 6, 3, 56, 25, 9] aims to draw (particle) samples
from a desired distribution by minimizing the KL-divergence between particle samples and the
desired distribution, and is widely-used in Bayesian inference [23, 10, 21]. Specifically, denote
P(Θ) as the set containing all the distributions on a support space Θ with Euclidean distance, and
W2(Θ) := {µ ∈ P(Θ) : ∃θ0 ∈ Θ s.t. Eµ(θ)[∥θ − θ0∥2] < +∞} as the 2-Wasserstein space [53]
equipped with the Wasserstein 2-distance [53]. Given a desired distribution µ∗ ∈ P(Θ), ParVI
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Figure 9: Result of high quality NeRF from ProlificDreamer, a large scene with 360◦ environment
using our scene initialization. The prompt here is Small lavender isometric room, soft lighting, unreal
engine render, voxels.

A car made out of sushi. A tarantula, highly detailed.

Figure 10: More results of multi-particle experiments in NeRF.

starts with some (n) particles {θ(i)0 }ni=1 sampled from an initial distribution µ0 ∈ P(Θ) and update
these particles with a vector field vτ (·) on Θ by dθ

(i)
τ = vτ (θ

(i)
τ )dτ at each time τ ≥ 0, such that

the distribution µτ of {θ(i)τ }ni=0 converges to µ∗ as τ → ∞ and n → ∞. Typically, the measure
µτ follows the “steepest descending curves” of a functional on W2(Θ), which is known as the
Wasserstein gradient flow. A common setting is to define the functional of µτ as the KL-divergence
DKL(µτ ∥ µ∗), and then µτ follows ∂τµτ = −∇θ · (µτ∇θ log

µ∗

µτ
), and the corresponding vector

field is vτ (θτ ) = ∇θ log
µ∗

µτ
. However, directly computing the vector field is intractable because

it is non-trivial to compute the time-dependent score function ∇θ logµτ (θ). To tackle this issue,
traditional ParVI methods either restrict the functional gradient within RKHS and leverage analytical
kernels to approximate the vector field [23, 3, 22], or learn a neural network to estimate the vector
field [8]; but all of these methods are hard to scale up to high-dimensional data such as images.

C.2 VSD as Particle-based Variational Inference

In this section, we formally propose the theoretical guarantee of VSD.

Denote W2(Θ) as the 2-Wasserstein space [53] of the probability distributions defined on the
parameter space Θ. For any distribution µ ∈ W2(Θ) with a corresponding random variable θ ∼
µ(θ|y), denote the implicit distribution for x0 := g(θ, c) as qµ0 (x0|c, y), and let qµt (xt|c, y) :=∫
qµ0 (x0|c, y)qt0(xt|x0)dx0 be the marginal distribution of the random variable xt during the

diffusion process. We want to optimize the distribution µ(θ|y) in the function space W2(Θ) by
distilling a pretrained diffusion model pt(xt|yc) via minimizing the following functional of µ:

min
µ∈W2(Θ)

E [µ] := Et,ϵ,c

[
σt

αt
ω(t)DKL(q

µ
t (xt|c, y) ∥ pt(xt|yc))

]
. (10)
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Compared with the vanilla SDS in Eq. (2) which optimizes the parameter θ in the parameter space Θ,
here we aim to optimize the distribution (measure) µ(θ|y) in the function space W2(Θ). Inspired by
previous ParVI techniques [23, 3, 56], we firstly derive the gradient flow minimizing E [µ] in W2(Θ)
and the update rule of each particle θ ∼ µ(θ), as shown in the following theorem.
Theorem 3 (Wasserstein gradient flow of score distillation). Starting from an initial distribution
µ0(θ|y), the gradient flow {µτ}τ≥0 minimizing E [µτ ] on W2(Θ) at each time τ ≥ 0 satisfies

∂µτ (θ|y)
∂τ

= −∇θ ·
[
µτ (θ|y)Et,ϵ,c

[
σtω(t) (∇xt

log pt(xt|yc)−∇xt
log qµτ

t (xt|c, y))
∂g(θ, c)

∂θ

]]
,

(11)
and the corresponding update rule for each θτ ∼ µτ satisfies

dθτ
dτ

= −Et,ϵ,c

ω(t)
−σt∇xt

log pt(xt|yc)︸ ︷︷ ︸
≈ϵpretrain(xt,t,yc)

− (−σt∇xt
log qµτ

t (xt|c, y))︸ ︷︷ ︸
≈ϵϕ(xt,t,c,y)

 ∂g(θτ , c)

∂θτ

 . (12)

Theorem 3 shows that by letting the random variable θτ ∼ µτ (θτ |y) move across the ODE trajectory
in Eq. (12), its underlying distribution µτ will move by the direction of the steepest descent that
minimizes E [µ]. Therefore, to obtain samples (in Θ) from µ∗ = argminµ E [µ], we can simulate the
ODE in Eq. (12) by estimating two score functions ∇xt

log pt(xt|yc) and ∇xt
log qµτ

t (xt|c, y) at
each ODE time τ , which corresponds to the VSD objective in Eq. (9).

C.3 Discussions of SDS / SJC and VSD

There are three main differences between our proposed VSD and previous SDS [34] / SJC [55]: (1)
VSD can optimize multiple (n ≥ 1) 3D objects, while SDS / SJC only optimizes a single (n = 1) 3D
object. (2) VSD can generate high-fidelity results with the common (e.g., 7.5) CFG (for both n = 1
and n > 1), while SDS / SJC needs extremely large (e.g. 100) CFG. (3) SDS / SJC is a special case
of VSD by using a single-point Dirac distribution µ(θ|y) ≈ δ(θ− θ(1)) as the variational distribution.

SDS / SJC as a special case of VSD. Here we explain SDS / SJC under our variational infer-
ence framework. If we directly approximate µ(θ|y) ≈ δ(θ − θ(1)) by its empirical distribu-
tion with the single sample θ(1), then we have qµt (xt|c, y) ≈ N (xt|αtg(θ

(1), c), σ2
t I) and thus

−σt∇xt
log qµt (xt|c, y) ≈ (xt−αtg(θ

(1), c))/σt = ϵ, which recovers the vanilla SDS / SJC. There-
fore, SDS / SJC is a special case of VSD for the underlying distribution µ(θ|y) by the empirical
distribution with a single point. Such an approximation has no generalization ability for θ ̸= θ(1),
and thus the updating direction by the score function −σt∇xt log q

µ
t (xt|c, y) (or equivalently, the

Gaussian noise ϵ) may be rather bad at low-density regions, resulting poor samples for the final θ(1).
Instead, VSD regards θ(1) as samples from the underlying distribution µ(θ|y) and trains a neural
network ϵϕ to approximate the corresponding score functions, thus can leverage the generalization
ability of neural networks for better approximating the underlying distribution µ(θ|y). Moreover, by
using LoRA, VSD can additionally exploit the text prompt y in the estimation ϵϕ(xt, t, c, y), while
the Gaussian noise ϵ used in SDS cannot leverage the information from y.

SDS / SJC as mode-seeking, VSD as sampling. VSD aims to sample θ from the optimal µ∗, while
SDS / SJC aims to find the optimal θ∗ minimizing the objective in Eq. (2). As the global optimum
θ∗ in SDS / SJC is the mode of Eq. (2), SDS / SJC is also known as performing mode-seeking [34].
To demonstrate the differences between sampling and mode-seeking, we consider a special case
of the rendering function g(θ) to decouple the optimization algorithm and the 3D representation.
In particular, we set g(θ, c) ≡ θ for any c and θ ∈ Rd, then the rendered image x = g(θ, c) = θ
is the same 2D image as θ. In such a case, we have qµ0 = µ, and it is easy to prove that µ∗ = p0
(according to Theorem 1). For VSD, sampling θ from µ∗ is corresponding to the traditional ancestral
sampling [27] from p0; while for SDS / SJC, we have ∇θLSDS(θ) = Et,ϵ[ω(t)ϵpretrain(xt, t, y

c)] ≈
Et,ϵ[−σtω(t)∇xt

log pt(xt|yc)], and thus the optimal θ∗ is the mode of the “averaged likelihood” of
pt for all t. However, it is common that the mode of deep generative models may have poor sample
quality [33]. We show in Fig. 3 that under the same CFG (7.5), both VSD and ancestral sampling can
generate good samples but the sample quality of SDS is quite poor.

SDS / SJC requires large CFG, while VSD is friendly to CFG. As VSD aims to sample θ from
the optimal µ∗ defined by the pretrained model ϵpretrain, the effects by tuning the CFG in ϵpretrain for
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3D samples θ by VSD are quite similar to the effects for the 2D samples by the traditional ancestral
sampling [14, 27]. Therefore, VSD can tune CFG as flexibly as the classic text-to-image methods, and
we use the same setting of CFG (e.g. 7.5) as the common text-to-image generation task for the best
performance. To the best of our knowledge, this for the first time addresses the problem in previous
SDS [34, 20, 4, 29] that it usually requires a large CFG (i.e., 100). Specifically, SDS (Eq. (3)) uses
(ϵpretrain(xt, t, y

c)− ϵ) while VSD (Eq. (9))) uses (ϵpretrain(xt, t, y
c)− ϵϕ(xt, t, c, y)). For example,

for the 2D special case of g(θ, c) ≡ θ, we have ∇θLSDS(θ) = Et,ϵ[ω(t)ϵpretrain(xt, t, y
c)] and

∇θLVSD(θ) = Et,ϵ[ω(t)(ϵpretrain(xt, t, y
c) − ϵϕ(xt, t, c, y))]. Intuitively, to obtain highly detailed

samples, the updating direction for θ needs to be “fine” and “sharp”. As SDS only depends on ϵpretrain,
it needs a large CFG (= 100) to make sure ϵpretrain to be “sharp” enough; however, large CFG, in turn,
reduces the diversity of the results and also hurts the quality. Instead, VSD leverages an additional
score function ϵϕ(xt, t, c, y) to give a more elaborate direction than the zero-mean Gaussian noise,
and the updating direction can be rather “fine” and “sharp” due to the difference between ϵpretrain
and ϵϕ. We empirically find that VSD can obtain much better quality than SDS in both 2D and 3D
generation.

C.4 Proof of Main Theorem

C.4.1 Proof of Theorem 1

Proof of Theorem 1. Denote xq
0 as the random variable following qµ0 (x0|c, y) and xq

t as the random
variable following qµt (xt|c, y). By the definition of qµt , we have

xq
t = αtx

q
0 + σtϵ, (13)

where ϵ ∼ N (0, I). Therefore, the characteristic functions of qµt and qµ0 satisfy

φqµt
(s) = φqµ0

(αts) · φN (0,I)(σts) = e−
σ2
t s2

2 φqµ0
(αts). (14)

Similarly, the characteristic functions of pt and p0 satisfy

φpt(s) = e−
σ2
t s2

2 φp0(αts). (15)

Therefore, we have

DKL(q
µ
t (xt|c, y) ∥ pt(xt|yc)) = 0⇔ qµt = pt ⇔ φqµt

= φpt ⇔ φqµ0
= φp0 ⇔ qµ0 = p0 (16)

C.4.2 Proof of Theorem 3

As the gradient flow minimizing E [µ] on W2(Θ) satisfies

∂µτ

∂τ
= −∇W2

E [µ] = ∇θ ·
(
µτ∇θ

δE [µτ ]

δµτ

)
, (17)

thus we only need to compute the first variation δE[µ]
δµ . We propose the following lemmas for

computing δE[µ]
δµ .

Lemma 1. For p, q ∈W2(Rd), for any x ∈ Rd,(
δDKL(q ∥ p)

δq

)
[x] = log q(x)− log p(x) + 1 (18)

Proof. This is a classic conclusion in particle-based variational inference (e.g., see Sec.3.2. in
[3]).

Lemma 2. For a fixed c and xt,

δqµt (xt|c, y)
δµ

[θ] = qt0(xt|x0) = N (xt|αtx0, σ
2
t I), (19)

where x0 = g(θ, c).
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Proof of Lemma 2. By the definition of qµt , we have

qµt (xt|c, y) = Eqµ0 (x0|c,y)[qt0(xt|x0)] = Eµ(θ|y)[qt0(xt|g(θ, c))], (20)

so
δqµt (xt|c, y)

δµ
[θ] = qt0(xt|g(θ, c)) = N (xt|αtg(θ, c), σ

2
t I) (21)

Lemma 3.
δDKL(q

µ
t (xt|c, y) ∥ pt(xt|yc))

δµ
[θ] = Eϵ[log q

µ
t (xt|c, y)− log pt(xt|yc) + 1], (22)

where xt = αtg(θ, c) + σtϵ, ϵ ∼ N (ϵ|0, I).

Proof of Lemma 3. By the chain rule of functional derivative, according to Lemma 1 and Lemma 2,
we have

δDKL(q
µ
t (xt|c, y) ∥ pt(xt|yc))

δµ
[θ] =

∫
δDKL(q

µ
t ∥ pt)

δqµt
[xt] ·

δqµt (xt|c, y)
δµ

[θ]dxt (23)

=

∫
(log qµt (xt|c, y)− log pt(xt|yc) + 1)qt0(xt|x0)dxt

(24)

= Eqt0(xt|x0) [log q
µ
t (xt|c, y)− log pt(xt|yc) + 1] (25)

= Eϵ [log q
µ
t (xt|c, y)− log pt(xt|yc) + 1] , (26)

where ϵ ∼ N (ϵ|0, I), x0 = g(θ, c), xt = αtx0 + σtϵ.

Below we provide the proof of Theorem 3.

Proof of Theorem 3. According to Lemma 3, we have

δE [µ]
δµ

[θ] = Et,ϵ,c

[
σt

αt
ω(t) (log qµt (xt|c, y)− log pt(xt|yc) + 1)

]
, (27)

where xt = αtg(θ, c) + σtϵ. So

∇θ
δE [µ]
δµ

[θ] = Et,ϵ,c

[
σt

αt
ω(t) (∇xt

log qµt (xt|c, y)−∇xt
log pt(xt|yc))

∂xt

∂θ

]
(28)

= Et,ϵ,c

[
σtω(t) (∇xt

log qµt (xt|c, y)−∇xt
log pt(xt|yc))

∂g(θ, c)

∂θ

]
. (29)

Thus, the measure µτ at step τ during the Wasserstein gradient flow minimizing E [µ] on W2(Θ)
satisfies

∂µτ

∂τ
= −∇W2

E [µ] (30)

= ∇θ ·
(
µτ∇θ

δE [µτ ]

δµτ

)
(31)

= ∇θ ·
[
µτ (θ|y)Et,ϵ,c

[
σtω(t) (∇xt

log qµτ

t (xt|c, y)−∇xt
log pt(xt|yc))

∂g(θ, c)

∂θ

]]
.

(32)

By the definition of Fokker-Planck equation, the corresponding process of each particle θτ at time τ
satisfies

dθτ
dτ

= Et,ϵ,c

[
σtω(t) (∇xt log pt(xt|yc)−∇xt log q

µτ

t (xt|c, y))
∂g(θ, c)

∂θ

]
. (33)
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D Additional Ablation Study

D.1 Ablation Study on Large Scene Generation

Here we perform an ablation study on large scene generation to validate the effectiveness of our
proposed improvements. We start from 64 rendering resolution, with SDS loss and our scene
initialization. The results are shown in Figure 11. It can be seen from the figure that, with our
scene initialization, the results are with 360◦ surroundings instead of being object-centric. Increasing
rendering resolution is slightly beneficial. Adding annealed time schedule improves the visual quality
of the results. Replacing SDS with VSD makes the results more realistic with more details.

SDS

64 Rendering

Scene Initialization

+ 512 

Rendering

+ Annealed 

Time Schedule

+ VSD

Depth

Figure 11: Ablation study on scene generation. With our scene initialization, the results are with
360◦ surroundings instead of being object-centric. Our annealed time schedule and VSD are both
beneficial for the generation quality. The prompt here is Inside of a smart home, realistic detailed
photo, 4k.

D.2 Ablation Study on Mesh Fine-tuning

Here we provide an ablation study on mesh fine-tuning. Fine-tuning with textured mesh further
improves the quality compared to the NeRF result. Fine-tuning texture with VSD provides higher
fidelity than SDS. Note that both VSD and SDS in mesh fine-tuning are based on and benefit from
the high-fidelity NeRF results by our VSD. And it’s crucial to get a high-quality NeRF with VSD at
the first stage.

D.3 Ablation on Number of Particles

Here we provide ablation study on number of particles. We vary the number of particles in 1, 2, 4, 8
and examine how the number of particles affects the generated results. The CFG of VSD is set as 7.5.
The results are shown in Fig. 13. As is shown in the figure, the diversity of the generated results is
slightly larger as the number of particles increases. Meanwhile, the quality of generated results is not
affected much by the number of particles. Owing to the high computation overhead to optimize 3D
representations and limitations on computation resources, we now only test at most 8 particles. We
provide a 2D experiment with 2048 particles in Appendix G to demonstrate the scalability of VSD.
We leave the experiments of more particles in 3D as future work.

22



(1) High fidelity NeRF
generated by VSD (ours).

(2) Extract and fine-tune
geometry from NeRF.

(3a) Texture fine-tuned by
VSD (ours).

(3b) Texture fine-tuned by
SDS.

Figure 12: Pipeline of ProlificDreamer along with ablation study of VSD. After generating a high-
quality NeRF, we extract and finetune a textured mesh. VSD provides high-fidelity texture, while
SDS tends to generate smoother results. Note that both VSD and SDS in mesh fine-tuning are based
on and benefit from the high-fidelity NeRF results by our VSD. The prompt here is an elephant skull.

Algorithm 1 Variational Score Distillation
Input: Number of particles n (≥ 1). Large text-to-image diffusion model ϵpretrain. Learning rate η1
and η2 for 3D structures and diffusion model parameters, respectively. A prompt y.

1: initialize n 3D structures {θ(i)}ni=1, a noise prediction model ϵϕ parameterized by ϕ.
2: while not converged do
3: Randomly sample θ ∼ {θ(i)}ni=1 and a camera pose c.
4: Render the 3D structure θ at pose c to get a 2D image x0 = g(θ, c).
5: θ ← θ − η1Et,ϵ,c

[
ω(t) (ϵpretrain(xt, t, y

c)− ϵϕ(xt, t, c, y))
∂g(θ,c)

∂θ

]
6: ϕ← ϕ− η2∇ϕEt,ϵ||ϵϕ(xt, t, c, y)− ϵ||22.
7: end while
8: return

D.4 Ablation on Rendering Resolution

Here we provide an ablation study on the rendering resolution during NeRF training with VSD.
As shown in Fig. 14, training with a higher resolution produces better results with finer details. In
addition, our VSD still provides competitive results under a lower training resolution (128 or 256),
which is more computationally efficient than the 512 resolution.

E Algorithm for Variational Score Distillation

We provide a summarized algorithm of variational score distillation in Algorithm 1.

We initialize one or several 3D structures {θ(i)}ni=1, a noise prediction model ϵϕ parameterized
by ϕ. At each iteration, we sample a camera pose c from a pre-defined distribution as previous
works [34, 20]. Then we render 2D image from 3D structures at pose c with differentiable rendering
x0 = g(θ, c). To optimize 3D parameters θ, we compute the gradient direction of 2D image and then
back propagate to the parameter of NeRF, using VSD as Eq. (9). To model the score of the variational
distribution, we train an additional diffusion model ϵϕ parameterized by LoRA. We optimize Eq. (8)
to train LoRA after optimization of 3D parameters, using the rendered image x0 = g(θ, c) and pose c.
Note that, at each iteration, we perform differentiable rendering only once but use the rendered image
twice for both computing gradient direction with VSD and training LoRA. Thus the computation
cost will not increase much compared to SDS.

F More Details on Implementation and Hyper-Parameters

Training details. We use v-prediction [42] to train our additional diffusion model ϵϕ. The camera
pose c is fed into a 2-layer MLP and then added to timestep embedding at each U-Net block.
NeRF/mesh and LoRA batch sizes are set to 1 owing to the computation limit. A larger batch size of

23
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Figure 13: Ablation on how number of particles affects the results. The diversity of the generated
results is slightly larger as the number of particles increases. The quality of generated results is not
affected much by the number of particles. The prompt is A high quality photo of an ice cream sundae.

NeRF/mesh may improve the generated quality and we leave it in future work. The learning rate of
LoRA is 0.0001 and the learning rate of hash grid encoder is 0.01. We render in RGB color space for
high-resolution synthesis, unlike [29, 55] that render in latent space. In addition, we set ω(t) = σ2

t .
For most experiments, we only use n = 1 particle for VSD to reduce the computation time (and we
only use a batch size of 1, due to the computation resource limits). For NeRF rendering, we sample
96 points along each ray, with 64 samples in coarse stage and 32 samples in fine stage. We choose a
single-layer MLP to decode the color and volumetric density from the hash grid encoder as previous
work [20].

For object-centric scenes, we set the camera radius as U(1.0, 1.5). The bounding box size is set as
1.0. For large scene generation, we enlarge the range of camera radius to U(0.1, 2.3) for better details
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(1) 64 rendering. (2) 128 rendering. (3) 256 rendering. (4) 512 rendering.

Figure 14: Ablation study on rendering resolution during NeRF training. Training with higher
resolution produces better results with finer details. However, our VSD still provides competitive
results under a lower resolution (128 or 256), which is more computationally efficient. The prompt
here is an elephant skull.

and geometry consistency. We enlarge the bounding box size to 5.0. For large scenes with a centric
object, we set the range of camera radius as U(1.0, 2.0).
DreamFusion [34] introduces an explicit shading model based on normal vectors during the training
process to enhance the geometry. We currently disable the shadings and it reduces the computational
cost and memory consumption. We leave incorporating the shading model into our method as future
work.

Optimization. We optimize 25k steps for each particle with AdamW [26] optimizer in NeRF
stage. We optimize 15k steps for geometry fine-tuning and 30k steps for texture fine-tuning. At
each stage, for the first 5k steps we sample time steps t ∼ U(0.02, 0.98) and then directly change
into t ∼ U(0.02, 0.50). For large scene generation, we delay the annealing time to 10k steps since
large scene generation requires more iterations to converge. The NeRF training stage consumes
17/17/18/27GB GPU memory with 64/128/256/512 rendering resolution and batch size of 1. The
Mesh fine-tuning stage consumes around 17GB GPU memory with 512 rendering resolution and
batch size of 1. The whole optimization process takes around several hours per particle on a single
NVIDIA A100 GPU. We believe adding more GPUs in parallel will accelerate the generation process,
and we leave it for future work.

Licenses Here we provide the URL, citations and licenses of the open-sourced assets we use in this
work.

Table 2: URL, citations and licenses of the open-sourced assets we use in this work.

URL Citation License

https://github.com/ashawkey/stable-dreamfusion [51] Apache License 2.0
https://github.com/threestudio-project/threestudio [13] Apache License 2.0
https://github.com/Stability-AI/stablediffusion [38] MIT License
https://github.com/NVIDIAGameWorks/kaolin [11] Apache License 2.0
https://github.com/huggingface/diffusers [54] Apache License 2.0

G 2D Experiments of Variational Score Distillation

Here we describe the details of the experiments on 2D images with Variation Score Distillation in the
main text of Fig. 3. Here we set the number of particles as 8. We train a smaller U-Net from scratch
to estimate the variational score since the distribution of several 2D images is much simpler than the
distribution of images rendered from different poses of 3D structures. The optimization takes around
6000 steps. Additional U-Net is optimized 1 step on every optimization step of the particle images.
The learning rate of particle images is 0.03 and the learning rate of U-Net is 0.0001. The batch size
of particles and U-Net are both set as 8. Here we do not use annealed time schedule for both VSD
and SDS for a fair comparison.
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To further demonstrate the effectiveness of our VSD, we increase the number of particles to a large
number of 2048. The optimization takes around 20k steps. The batch size of U-Net is 192 and the
batch size of particles is set as 16. The results are shown in Figure 15. It can be seen from the figure
that our VSD generates plausible results even under a large number of particles, which demonstrates
the scalability of VSD. Although, due to the high optimization cost of 3D representation, the number
of particles in 3D experiments is relatively small, we demonstrate that VSD has the potential to scale
up to more particles.

Figure 15: Selected samples from 2048 particles in a 2D experiment of VSD. Our VSD generates
plausible results even under a large number of particles, which demonstrates the scalability of VSD.
The prompt is an astronaut is riding a horse.

To match the 3D experiment setting, we also provide 2D experiments with LoRA and add annealed
time schedule. The results are shown in Figure 16. The number of particles is set as 6 and CFG= 7.5.
Our VSD provides high-fidelity and diverse results in this setting. We also set the number of particles
as 2048 and the results are shown in Figure 17.

Figure 16: 2D experiments of VSD (CFG= 7.5) results with LoRA and annealed time schedule.
The number of particles is 6. Our VSD provides high-fidelity and diverse results in this setting. The
prompt is an astronaut is riding a horse.

We also provide the results of SDS for comparison in Fig. 18. Compared to our VSD, the results of
SDS are smoother and lack details.

Figure 17: Selected samples of 2D experiments of VSD (CFG= 7.5)
results with LoRA. The number of particles is 2048.

Figure 18: SDS
result in 2D.

Moreover, we visualize VSD/SDS training phase of 2D in Fig. 19. Since the gradient is not directly
readable, we visualize x + ∆x, which is the updated results if current sample optimizes via this
gradient direction. As shown in Fig. 19, SDS tends to provide over-saturated and over-smooth
gradient while VSD provides more natural-looking gradients with more details. As a consequence,
VSD provides better final results.

H How will CFG weights affect diversity?

In this section, we explore how CFG affects the diversity of generated results. For VSD, we set
the number of particles as 4 and run experiments with different CFG. For SDS, we run 4 times
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(1) Gradient visualization of SDS.
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(2) Gradient visualization of VSD (ours).
Figure 19: Gradient visualization of VSD and SDS during the training phase in 2D experiment. SDS
tends to provide over-saturated and over-smooth gradient while VSD provides more natural-looking
gradients with more details.

of generation with different random seeds. The results are shown in Figure 20. As shown in the
figure, smaller CFG provides more diversity. We conjecture that this is because the distribution of
smaller guidance weights has more diverse modes. However, when the CFG becomes too small (e.g.,
CFG= 1), it cannot provide enough guidance strength to generate plausible results. Therefore, for
all our 3D experiments shown in the results, we set CFG = 7.5 as a trade-off between diversity and
optimization stability. Note that SDS could not work well in such small CFG weights. Instead, our
VSD provides a trade-off option between CFG weight and diversity, and it can generate more diverse
results by simply setting a smaller CFG.

I Limitations and Discussions

Although ProlificDreamer achieves remarkable text-to-3D results, the generation takes hours (espe-
cially for high-resolution NeRF training), which is much slower than the vanilla image generation by
a diffusion model. Speeding up the text-to-3D generation is another critical problem, and we leave it
in future work.

Besides, our proposed scene initialization demonstrates its effectiveness in generating expansive
scenes, yet there are still limitations, particularly with respect to camera positioning. Our current
model sets the camera with a fixed view toward the scene’s center, which serves object-centric
scenes effectively but may be suboptimal for scenes with intricate geometry and detailed textures.
Furthermore, despite our efforts to produce outcomes with a rich structure, occasional failures occur
and the geometry reverts to a simplistic textured sphere. In order to address these limitations, future
research could focus on developing improved camera poses capable of capturing and rendering scenes
in finer detail. Furthermore, our present model relies solely on the text-to-image diffusion model
without the assistance of other models. The integration of off-the-shelf depth estimation models [37],
as utilized in other studies [16, 58], could potentially enhance the accuracy and detail of the scene
generation process.

In addition, the correspondence between text prompts and generated results is sometimes insufficient,
especially for complex prompts. We conjecture that it is because the ability to generate from
complex prompts is limited by the text encoder of Stable Diffusion. In addition, the multi-face
Janus problem [57] also exists in our case. Nevertheless, we believe our proposed VSD and other
contributions are orthogonal to these problems, and the generation quality can be further improved
by introducing more techniques, such as using a more powerful text-to-image diffusion model that
understands view-dependent prompts better [34, 41], or a diffusion model with more 3D priors [24].

J User Study

For completeness, we follow previous works [20, 4] and conduct a user study by comparing
ProlificDreamer with DreamFusion [34], Magic3D [20] and Fantasia3D [4] under 15 prompts, 5
prompts for each baseline. Since none of the baselines have released their codes, we can only use
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(a) VSD provides more diversity with lower CFG between particles.
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(b) SDS works with only large CFG weights.
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(c) VSD with single particle and different seeds provide slightly less diversity.

Figure 20: Ablation on how CFG weight affects the randomness. Smaller CFG provides more
diversity. But too small CFG provides less optimization stability. The prompt is A high quality photo
of an ice cream sundae.
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the figures from their papers, which limits the number of results from baselines for us to compare.
So we currently only compare under 15 prompts. The volunteers are shown the generated results of
our ProlificDreamer and baselines and asked to choose the better one in terms of fidelity, details and
vividness. We collect results from 109 volunteers, yielding 1635 pairwise comparisons. The results
are shown in Table 3. Our method outperforms all of the baselines.

Table 3: Results of user study. The percentage of user preference (↑) is reported in the table.

Name DreamFusion Magic3D Fantasia3D

Prefer baseline 6.87 5.50 9.73
Prefer ProlificDreamer (Ours) 94.13 94.50 90.27

K Quantitative Results

Table 4: 3D sample quality by SDS or VSD, 100 prompts.

Method SDS VSD (n=1)

3D-FID (↓) 118.92 107.02

Table 5: 3D sample quality by SDS or VSD, 25 prompts.

Method SDS VSD (n=1) VSD (n=4)

3D-FID (↓) 191.82 186.87 185.88

In this section, we add some quantitative results to demonstrate the effectiveness of VSD.

Experiment Setting For 3D experiments, we compute the FID score between rendered images
by SDS/VSD and 2D sampled images by ancestral sampling, named as 3D-FID. Specifically, we
select 100 prompts from previous works including DreamFusion, Magic3D and Fantasia3D. For each
prompt, we use VSD (number of particles n=1, CFG=7.5) or SDS (CFG=100) to optimize one 3D
object and render 10 images uniformly from the circumference at an angle of 30° above the horizon,
and collect 1k images in total. To isolatedly compare VSD with SDS, we run with the default setting
of the stage-1 NeRF training of ProlificDreamer (i.e., both VSD and SDS are in 512 resolution and
use annealed t).

In Table 4, We compute the FID score between the 1k samples from the 100 prompts and a 50k
reference batch, which is sampled by 50-step DPM-Solver++ [28] with 500 images per prompt. In
Table 5, due to the time and computation resource limits, we compare the results for VSD with n=4
under only 25 randomly-selected prompts from the aforementioned 100 prompts, and compare SDS,
VSD (n=1) and VSD (n=4) with the 50-step DPM-Solver++ under these 25 prompts. For VSD (n=4),
as we can get 4 particles (3D objects) per prompt, we randomly select one particle per prompt and
render the corresponding 10 images of the selected particle for fair comparison. For 2D experiments
in Table 6, we follow the common setting of evaluating text-to-image models by computing FID on
MSCOCO2014 validation set. Specifically, we randomly select 1k prompts and sample one image
per prompt by either 50-step DPM-Solver++, SDS (CFG=100), VSD (n=4, CFG=7.5) or VSD (n=8,
CFG=7.5) to collect 1k samples for each method, and then compute the FID between the obtained
samples and the entire COCO validation set. For VSD, as we can get n images per prompt, we
randomly select one image per prompt for fair comparison.

Results VSD with n=1 still outperforms SDS in 3D (both with 512 resolution and annealed t), as
shown in Table 4 and Table 5, which demonstrates the effectiveness of VSD.

Using more particles is slightly better. Due to the limitation of time and computation resources, we
only compare n=1 and n=4 in 3D experiments, and n=4 with n=8 in the 2D experiments. As shown
in Table 5, VSD with 4 particles slightly outperforms VSD with 1 particles in the 3D setting; and as
shown in Table 6, VSD with 8 particles slightly outperforms VSD with 4 particles in the 2D setting.
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Table 6: 2D sample quality by different samplers, 1000 prompts.

Method SDS VSD (n=4) VSD (n=8) DPM++

FID (↓) 90.09 68.02 66.68 47.91

VSD outperforms SDS in 2D. As shown in Table 6, the FID by VSD is much better than SDS. As
the 2D setting isolates the sampling algorithm from the 3D representations, we can directly compare
different sampling algorithms, finding that VSD can get better sample quality than SDS (though still
worse than SOTA diffusion samplers, it can generalize to 3D cases).

L Why using SDS in stage-2 for the geometry optimization of mesh?

VSD can also be used to generate geometry. To validate this, we provide an ablation example in
Fig. 21 (3a),(3b). As shown in the figure, VSD can obtain reasonable geometry. Although the some
part of the geometry from VSD is with more details than SDS (including the tail of the horse), on
the whole, the result from VSD is similar with SDS. We conjecture that this is because currently the
triangle size of the mesh is relatively large and can’t represent very fine details. Thus, for efficiency,
we use SDS instead of VSD for mesh geometry optimization. We believe that VSD can be used to
obtain high quality mesh if more advanced mesh representation is available.

Moreover, despite that we use SDS to optimize the geometry in stage-2, VSD is still crucial in stage-1
and stage-3, in which VSD significantly improves the generated quality.

(1) Generate
NeRF with

VSD.

(2) Get coarse
mesh with

Marching Tets.

(3a) Mesh
optimization

with SDS.

(3b) Mesh
optimization
with VSD.

(4) Inherit
texture from

NeRF.

(5) Finetune
texture with

VSD.

LoRA sample
during stage

(5).

Figure 21: Pipeline along with ablation study of VSD for geometry optimization. In (3a) and (3b),
we show that VSD can also be used for mesh optimization of geometry. We also show intermediate
results of our pipeline in this figure along with the samples from LoRA during the training phase in
(5).

M More Comparisons with Baselines

Here, we provide more comparisons with baselines in Fig. 22, Fig. 23, Fig. 24, Fig. 25, Fig. 26 and
Fig. 27. Since none of the baselines have released their codes, we can only directly copy the figures
from the corresponding papers. Some baselines are missing given a specific prompt because the
prompt is not included in the corresponding papers. To demonstrate geometry, some baselines choose
textureless shading [34, 20], while the other [4] prefers the normal map. For ProlificDreamer, we
uniformly show the normal map for consistency. As shown in the figures, our method achieves better
results in terms of fidelity and details.

30



Michelangelo style statue of dog reading news on a cellphone.

DreamFusionOurs

Ours DreamFusion

A model of a house in Tudor style.

Ours

A chimpanzee dressed like Henry VIII king of England.

DreamFusion

A plate of fried chicken and waffles with maple syrup on them.

Ours DreamFusion

Figure 22: More results of ProlificDreamer compared with baselines.
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A blue tulip.

A lionfish.

A cauldron full of gold coins.

A sliced loaf of fresh bread.

DreamFusionOurs

Ours

Ours

Ours

DreamFusion

DreamFusion

DreamFusion

Figure 23: More results of ProlificDreamer compared with baselines.
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A rotary telephone carved out of wood.

A typewriter.

A praying mantis wearing roller.
DreamFusionOurs

Ours

Ours

DreamFusion

DreamFusion

DreamFusion

A plush dragon toy.

Ours

Figure 24: More results of ProlificDreamer compared with baselines.
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A Matte painting of a castle made of cheesecake 

surrounded by a moat made of ice cream.

Fantasia 3DOurs

Ours Magic3D

A small saguaro cactus planted in a clay pot.

DreamFusion

A pineapple.

Ours Fantasia 3D

Figure 25: More results of ProlificDreamer compared with baselines.
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A delicious croissant.

A rabbit, animated movie character, high detail 3d model.

Fantasia 3DOurs

DreamFusion

Ours

DreamFusion

Magic 3D

Figure 26: More results of ProlificDreamer compared with baselines.
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A car made out of sushi.

A marble bust of a mouse.

Ours

Magic 3D

Ours

DreamFusionMagic 3D

Fantasia 3D

Fantasia 3D

DreamFusion

Figure 27: More results of ProlificDreamer compared with baselines.
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