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DAGPrompT: Pushing the Limits of Graph Prompting with a
Distribution-aware Graph Prompt Tuning Approach

Anonymous Author(s)∗

Abstract
The "pre-training then fine-tuning" paradigm has advanced Graph
Neural Networks (GNNs) by enabling the capture of general knowl-
edge without task-specific labels. However, a significant objective
gap between pre-training and downstream tasks limits their effec-
tiveness. Recent graph prompting methods aim to bridge this gap by
task reformulations and learnable prompts. Yet, they struggle with
complex graphs like heterophily graphs—freezing the GNN encoder
may diminish prompting effectiveness, and simple prompts fail to
capture diverse hop-level distributions. This paper identifies two
key challenges in adapting graph prompting methods for complex
graphs: (i) adapting the model to new distributions in downstream
tasks to mitigate pre-training and fine-tuning discrepancies from
heterophily and (ii) customizing prompts for hop-specific node re-
quirements. To overcome these challenges, we propose Distribution-
aware Graph Prompt Tuning (DAGPrompT), which integrates a
GLoRA module for optimizing the GNN encoder’s projection ma-
trix and message-passing schema through low-rank adaptation.
DAGPrompT also incorporates hop-specific prompts accounting
for varying graph structures and distributions among hops. Evalua-
tions on 10 datasets and 14 baselines demonstrate that DAGPrompT
improves accuracy by up to 7.55% in node and graph classification
tasks, setting a new state-of-the-art while preserving efficiency. We
provide our code and data via AnonymousGithub.

CCS Concepts
•Mathematics of computing→ Graph algorithms; • Comput-
ing methodologies→ Neural networks; Supervised learning.
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1 Introduction
In recent years, the schema of "pre-training then fine-tuning" on
Graph Neural Networks (GNNs) has experienced significant growth,
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especially in few-shot learning scenarios [12, 19, 30, 44]. Specifically,
GNNs are pre-trained in a self-supervised manner on tasks such
as graph property reconstruction [10, 14] or contrastive learning
[26, 40]. Then, GNNs are adapted to downstream tasks during the
fine-tuning. However, a common limitation is that the gap between
pre-training and downstream objectives is often overlooked, which
hinders the model performance. For example, the pre-training ob-
jective may be link prediction, while the downstream objective may
be node classification, and these two objectives vary a lot [28]. To
address this, recent research has begun incorporating graph prompt-
ing techniques [9, 18, 27, 28] to bridge the gap between pre-training
and downstream tasks. They propose using prompts to reformulate
downstream tasks as pre-training tasks with additional learnable
parameters. The pre-trained GNN encoder remains frozen during
this process. For example, GPPT [27] reformulates the downstream
task, node-classification, to the pre-training task, link-prediction.
This reformulation reduces the objective gap between the pre-train
and downstream by the alignment of objective forms.

However, existing promptingmethods are sub-optimal for graphs
with complex distributions, such as heterophily graphs, where con-
nected nodes frequently have different labels [6, 42]. This label
disparity creates a profound disconnect between pre-training objec-
tives and downstream tasks. As most pre-training techniques are
label-agnostic and rely on graph structure to varying extents, they
inherently suffer from this discrepancy. For instance, tasks like link
prediction push the model to generate similar embeddings for con-
nected nodes, ignoring label differences. Consequently, connected
nodes with distinct labels are mapped to similar embeddings in het-
erophily graphs, as shown in Figure 1. During prompting, current
approaches [9, 18, 27, 28, 37, 41] typically freeze the GNN encoder
and employ basic prompting techniques (e.g., projection or additive
layers). However, freezing the GNN encoder restricts its adaptability
to distribution shifts in downstream tasks. As illustrated in Figure 1,
this limitation prevents the model from adjusting GNN parameters
to produce distinct node embeddings for different labels. The basic
prompting mechanisms struggle to disentangle node embeddings
effectively, ultimately leading to reduced performance.

Similar Embeddings

Dissimilar Embeddings

Class Label A

Class Label B

GNN 

Pre-train

Input Graph

Prompting

Frozen 
GNN 

As  is frozen, during prompting, 
connected nodes with different 
labels are consistently mapped to 
nearby positions in the latent space,  
making them difficult to distinguish.

Figure 1: Heterophily diminishes the effectiveness of prompt-
ing techniques that freeze the GNN encoder, resulting in in-
distinguishable node embeddings.
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Moreover, distributional differences across graph hops in com-
plex graphs further challenge existing prompting methods: some
nodes prioritize information from closer hops, while others rely
more on distant ones [33, 42]. Additionally, the heterophily distri-
bution varies across hops (see Figure 7 in Appendix D) and affects
performance to varying extents. Existing methods typically rely
on the final layer representation of the GNN encoder, overlooking
these hop-specific variations [18, 27, 41]. While some approaches
[9, 28] attempt to merge intermediate embeddings, they fail to ac-
count for hop-specific preferences or offer tailored prompts for
different hops, limiting their adaptability to these variations.

In summary, two primary challenges arise when extending graph
prompting methods to diverse graph data with varying internal dis-
tributions: (i) adapting the model to new distributions in downstream
tasks, reducing the discrepancy between pre-training and fine-tuning
caused by heterophily, and (ii) customizing prompts to address the
hop-specific requirements of different nodes. These challenges stem
from the inherent limitations of the prompting paradigm and the
complexities of heterophily graphs, making them critical obstacles
in advancing graph prompting techniques. While existing methods
perform well on homophily graphs, they degrade on heterophily
graphs due to neglecting these issues. We compare the 5-shot node
classification accuracy of a popular prompting method, GPPT [27],
with a GCN trained from scratch [13] and pre-trained models us-
ing link prediction [19] and DGI [30], as shown in Figure 2. GPPT
and pre-training strategies perform well on the homophily graph
Cora but are outperformed by a GCN trained from scratch on the
heterophily graphs Texas and Cornell, which exhibit strong het-
erophily and variation across hops (see Figure 7 in Appendix D).

Cora (0.81) Texas (0.11) Cornell (0.31)

50

60

Dataset

Ac
cu
ra
cy

GCN GCN Finetune-LP GCN Finetune-DGI GPPT

Figure 2: Conventional graph prompting techniques are less
effective or even detrimental on heterophily datasets. The
homophily ratio [42] is indicated in the brackets, with a lower
ratio representing stronger heterophily.

In this paper, we propose Distribution-aware Graph Prompt
Tuning (DAGPrompT), which comprises two core components
in response to the two challenges outlined above: (i) Graph Low-
Rank Adaptation (GLoRA) module: This module leverages low-rank
matrix approximations to tune both the projection parameters and
the message-passing mechanism in the GNN encoder. By doing so,
it adapts the GNN encoder to the new distributions encountered
in downstream tasks, while preserving the valuable knowledge
embedded in pre-trained weights in an efficient manner. For ex-
ample, in the scenario depicted in Figure 1, GLoRA addresses the
limitations by enabling the GNN encoder to produce separable
embeddings for nodes with different labels. (ii) Hop-specific Graph
Prompting module: This module decomposes downstream tasks

into hop-specific components, allowing the model to weigh the
importance of different hops adaptively. We validate DAGPrompT
through experiments on 10 datasets, focusing on both node and
graph classification tasks, and comparing it against 14 baseline
methods. Our model achieves state-of-the-art performance, with
an average accuracy improvement of 3.63%, and up to 7.55%. In
summary, our contributions are as follows:

• We identify the key challenges of applying graph prompt-
ing techniques to heterophily graphs and introduce DAG-
PrompT as a solution. DAGPrompT distinguishes itself as
a pioneering model in extending the capabilities of graph
prompting techniques to heterophily graphs.

• We propose two key modules for DAGPrompT: GLoRA and
the Hop-specific Graph Prompting module. These modules
mitigate distributional misalignment between pre-training
and downstream tasks, and adapt the model to the diverse
distributions across hops.

• We conduct extensive experiments on both node and graph
classification tasks using 10 datasets and 14 baselines. DAG-
PrompT demonstrates remarkable performance improve-
ments, improving the accuracy up to 7.55%. We further
evaluate DAGPrompT in terms of data heterophily level,
number of shots, transferability, efficiency, and ablation
studies.

2 Preliminary
Notations. Consider an undirected graph G = {V, E}, whereV

represents the set of 𝑁 nodes and E represents the set of 𝐸 edges.
The graph is described by its adjacency matrix A ∈ R𝑁×𝑁 , where
A𝑖 𝑗 = 1 if and only if there exists an edge 𝑒𝑖 𝑗 ∈ E connecting node
𝑣𝑖 and node 𝑣 𝑗 . Additionally, each node 𝑣𝑖 ∈ V is associated with
the feature vector X𝑖 ∈ R𝑁×𝐹 and a label y𝑖 , with 𝐹 representing
the dimension of the node features.

Graph Homophily Measurements. Real-world graphs are inher-
ently complex, often featuring diverse internal structures where
nodes follow varying patterns [20, 24]. Heterophily provides a use-
ful lens for analyzing these structures, particularly through the
concept of label consistency, measured by the homophily ratio [42]
ℎ =

| { (𝑣𝑖 ,𝑣𝑗 ) :(𝑣𝑖 ,𝑣𝑗 ) ∈E∧y𝑖=y𝑗 } |
| E | . ℎ represents the fraction of edges in

E that connect nodes with the same label. High homophily indi-
cates strong similarity between connected nodes (ℎ near 1), while
low homophily suggests greater dissimilarity (ℎ near 0).

Graph Neural Networks (GNNs). The remarkable success of GNNs
can largely be attributed to the message-passing mechanism [32],
and a general GNN layer can be defined as:

H(𝑙+1)𝑖 = 𝑓𝜃

(
AGGR

(
H(𝑙 )𝑖 ,

{
H(𝑙 )𝑗 : 𝑣 𝑗 ∈ N𝑖

}))
, (1)

where H(𝑙 ) ∈ R𝑁×𝑑 (𝑙 ) represents the node embeddings at layer
𝑙 , with initial embeddings H(0) = X. The term 𝑑 (𝑙 ) denotes the
dimensionality at layer 𝑙 , AGGR(·) aggregates the neighboring
node embeddings, and 𝑓𝜃 applies a projection, for example, using a
linear transformation followed by non-linear activation (e.g., ReLU).

Fine-tuning Pre-trained GNNs. For a pre-trained GNN model 𝑓 ,
a learnable projection head 𝜃 , and a downstream task (e.g., node

2
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(b) Hop-specific Graph Prompting with GLoRA Tuning.

Sim

Sim

Frozen

Pre-training Tuning Prompting

Projection

Message
Passing

Figure 3: The framework of Distribution-aware Graph Prompt Tuning.

classification) dataset D, we fine-tune the parameters of 𝑓 and 𝜃 to
maximize the likelihood of predicting the correct labels y in D:

max
𝑓 ,𝜃

𝑃𝑓 ,𝜃 (y | D) (2)

Prompting Pre-trained GNNs. Given a GNN model 𝑓 pre-trained
under task Tpt, a set of learnable prompting parameters {𝜃 }, and
a downstream task dataset D for task Tds, we introduce a task
reformulation function ℎ. This function maps the downstream task
to a form consistent with the pre-trained task Tpt. For instance,
node classification (Tds) can be reformulated as link prediction
(Tpt) by introducing pseudo nodes, where labels are assigned by
predicting the most probable links between nodes and pseudo nodes
[27]. During the prompting, the parameters of 𝑓 are frozen, and
we optimize 𝜃 to maximize the likelihood of predicting the correct
labels y, guided by ℎ:

max
{𝜃 }

𝑃𝑓 ,{𝜃 } (y | ℎ(D)) (3)

3 Method
In this section, we elaborate on the Distribution-aware Graph
Prompt Tuning (DAGPrompT). The framework of DAGPrompT
is illustrated in Figure 3, which consists of two stages: (i) Link-
prediction-based pre-training. (ii) Graph Low-rank Adaptation with
Hop-specific Graph Prompting. We also provide a detailed algo-
rithm in Appendix A and a complexity analysis in Appendix B.

3.1 Label-free Pre-Training
The pre-training strategy is essential for few-shot learning, allow-
ing the model to capture graph structures across diverse domains
without labeled data, as shown by several approaches [18, 27, 28, 41].
It also aids in capturing local structures and reduces over-fitting
[19]. We adopt link prediction for pre-training due to its advan-
tages: (i) the abundance of inherent edge data in graphs, and (ii)
alignment in objective forms between pre-training and downstream
tasks, as tasks like node and graph classification can be seamlessly
reformulated as link prediction by introducing pseudo-nodes or
pseudo-graphs [18, 27].

Consider a node 𝑣 in a graph G. For training, a positive node 𝑎 is
selected from the neighbors of 𝑣 , and a negative node𝑏 from the non-
neighbors, forming a triplet (𝑣, 𝑎, 𝑏). Let the GNN encoder 𝑓 produce
the corresponding embeddings s𝑣 , s𝑎 , and s𝑏 . By considering all
nodes in G, the pre-training dataset Tpt is constructed. The pre-
training loss is then defined as:

Lpt (Θ) = −
∑︁

(𝑣,𝑎,𝑏 ) ∈T
ln exp (sim (s𝑣, s𝑎) /𝜏)∑

𝑢∈{𝑎,𝑏} exp (sim (s𝑣, s𝑢 ) /𝜏)
, (4)

where 𝜏 is a temperature hyper-parameter that controls the sharp-
ness of the output distribution, and Θ represents the parameters
of the function 𝑓 . The goal of pre-training for link prediction is
to push node embeddings connected by edges closer in the latent
space, while separating those without connections [18].

3.2 Distribution-aware Graph Prompt Tuning
In this subsection, we discuss tuning and prompting the pre-trained
GNN 𝑓 for downstream tasks in a distribution-aware approach. We
introduce the Graph Low-Rank Adaptation (GLoRA) module, which
aligns the projection and message passing scheme of 𝑓 with the dis-
tribution of downstream tasks through low-rank adaptation. This
approach preserves the knowledge embedded in the pre-trained
weights while adapting to new tasks. We then detail the prompting
module, which links diverse downstream tasks to the pre-training
objective, ensuring alignment with the unique downstream distri-
butions in a hop-decoupled manner.

3.2.1 Tuning with Graph Low-Rank Adaptation. Previous works
often pre-train GNNs and keep them frozen during prompting, re-
lying on learnable prompts for downstream tasks [9, 18, 27, 28].
While effective in graphs with strong homophily, this approach un-
derperforms in more complex settings, such as graphs with strong
heterophily, as shown in Figure 2. Freezing the GNN can lead to per-
formance degradation in such cases, as most pre-training methods
are label-agnostic, and downstream objectives often differ from pre-
training goals, especially in heterophily graphs. For instance, link
prediction favors similar embeddings for connected nodes, which
aligns with homophily but fails in heterophily, where connected
nodes may have dissimilar characteristics. As illustrated in Figure 1,

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

on heterophily graphs, pre-training without tuning the GNN en-
coder can result in nodes with different labels being mapped too
closely in latent space, making them difficult to distinguish dur-
ing prompting. However, tuning GNN parameters directly during
prompting presents other challenges, including computational inef-
ficiency and the risk of over-fitting due to sparse downstream labels
[19]. A theoretical analysis is offered in section 4, with experimental
results in subsection E.6. A theoretical analysis of these issues is
provided in section 4, with corresponding experimental results in
subsection E.6.

To efficiently adapt to the distributions of downstream tasks
while preserving the knowledge in the pre-trained weights, we in-
troduce the Graph Low-Rank Adaptation (GLoRA) module, inspired
by LoRA from the NLP field [11]. GLoRA targets two components
during fine-tuning: (i) the message-passing scheme and (ii) the pro-
jection matrices. Formally, for the 𝑙-th GNN layer, the fine-tuning
process with GLoRA is expressed as follows:

H(𝑙 ) =
(
A + P(𝑙 )A Q(𝑙 )A

⊤)
H(𝑙−1)

(
W(𝑙 )0 + P(𝑙 )Q(𝑙 )

⊤)
, (5)

where W(𝑙 )0 represents the frozen parameters of the 𝑙-th GNN layer.
P(𝑙 ) ,Q(𝑙 ) ∈ R𝑑×𝑟 and P(𝑙 )A ,Q(𝑙 )A ∈ R

𝑁×1 denotes the trainable low-
rank adaptation matrices of layer 𝑙 with rank of 𝑟 and 1, respectively.
Note that 𝑟 << 𝑑 , and for extremely large graphs, P(𝑙 )A Q(𝑙 )A

⊤
can

be further reduced, see Appendix A for details.
The adaptation in GLoRA operates on two levels: (i) PA and QA

adjust the message-passing process, allowing for more effective
alignment with downstream tasks by modulating the connections
between nodes; and (ii) P and Q adapt the projection matrices. This
dual adaptation allows DAGPrompT to handle diverse downstream
task distributions, such as disentangling embeddings of connected
nodes with different labels. It retains the benefits of pre-training,
including efficient few-shot learning and adaptability to new tasks.
Meanwhile, the frozen parameters preserve the knowledge acquired
during pre-training.

3.2.2 Hop-specific Graph Prompting.

Unification of Downstream Tasks. We begin the elaboration of
our prompting technique by introducing how we unify various
downstream tasks. To achieve this, we reformulate all downstream
tasks as sub-graph level tasks, as they represent a general and
expressive framework for many tasks [28]. This allows us to adapt
various downstream tasks to our link-prediction pre-training task.
Formally, given a node 𝑣 in a graph G, we define its 𝑘-hop neighbor-
hood as N𝑘 (𝑣) and its embedding (produced by the GNN encoder
𝑓 ) as s𝑘,𝑣 . Consequently, we have:

• Link-Prediction. Given a node triplet (𝑣, 𝑎, 𝑏) where an
edge exists between nodes (𝑣, 𝑎) but not between (𝑣, 𝑏)
does not, it’s expected that sim(s𝑘,𝑣, s𝑘,𝑎) > sim(s𝑘,𝑣, s𝑘,𝑏 ).
Here, the similarity measure (sim) can be computed using
methods such as cosine similarity.

• NodeClassification. In a graphwith𝐶 labels, we construct
𝐶 pseudo-nodes, with their embeddings initialized as the
mean of the embeddings of nodes from the same class in
the training set. The label prediction task for a node 𝑣 is
then reduced to identifying the pseudo-node most likely to

form an edge with 𝑣 , transforming the problem into a link
prediction task.

• Graph Classification. For a set of graphs with𝐶 labels, we
generate 𝐶 pseudo-graphs, initializing their embeddings as
the average of the graph embeddings from the training set.
Similar to node classification, predicting a graph’s label is
formulated as a link prediction problem between the graph
and the pseudo-graphs.

Conventional approaches with GNN encoders of 𝐿 layers typi-
cally rely on the final layer embedding H(𝐿) , or a combination of
all intermediate embeddings for prompting [9, 18, 27]. However,
these methods often fail to account for hop-specific preferences
of different nodes, limiting their adaptability. For example, in het-
erophilic graphs like dating networks where gender is the label, the
first-hop neighborhood may exhibit heterophily, while the second-
hop neighborhood may show homophily [20, 42]. We illustrate
this in Figure 7. Given the varying distributions across hops and
their potential differing impact on performance [42], we propose
decoupling the graph prompting process in a hop-specific manner.

First, we collect intermediate embeddings from GNN layers to
construct a more informative sequence than using only H(𝐿) :

H =

[
H(0) ∥H(1) | | · · · ∥H(𝐿)

]
∈ R(𝐿+1)×𝑁×𝑑 , (6)

where H(𝑙 ) represents the embedding produced by the 𝑙-th layer
of the GNN encoder, and H(0) = Linear(X). Then, we gather the
Layer-specific Class Prompts from each layer:

P =

[
P(0) ∥P(1) | | · · · ∥P(𝐿)

]
∈ R(𝐿+1)×𝐶×𝑑

P(𝑙 )𝑐 =
1

|Dtrain
𝑐 |

|Dtrain
𝑐 |∑︁

𝑣∈D train
𝑐

H(𝑙 )𝑣 + Θ(𝑙 )𝑐 ,
(7)

where 𝐶 denotes the number of classes in the dataset, Dtrain
𝑐 rep-

resents the subset of the training dataset with label 𝑐 , and Θ(𝑙 ) ∈
R𝐶×𝑑 is a layer-specific learnable prompt that enhances the model’s
representational capacity. These Layer-specific Class Prompts cap-
ture the hop-specific representations of the training nodes, allowing
for more precise prompting and evaluation at each hop.

Based on the two sequences of node embeddings H, and class
tokens P, we prompt the graph in a hop-specific manner, effectively
addressing the diverse hop-wise distributions present in graphs:

S(𝑙 ) = Sim
(
H(𝑙 ) , P(𝑙 )

)
, 𝑙 = 0, 1, · · · , 𝐿, (8)

where Sim(·, ·) is a similarity function, for which we adopt cosine
similarity, and S(𝑙 ) represents the prompted scores at hop 𝑙 . Finally,
we introduce a set of learnable coefficients to adaptively integrate
these scores and obtain the final result:

S̃ =

𝐿∑︁
𝑙=1

𝛾 (𝑙 )S(𝑙 ) , Ŷ = argmax
𝑐

S̃𝑐 , (9)

where S̃𝑐 denotes the score for label 𝑐 , and 𝛾 (𝑙 ) ∈ R is a learnable
parameter, initially set as 𝛾 (𝑙 ) = 𝛼 (1 − 𝛼)𝑙 with 𝛾 (𝐿) = (1 − 𝛼)𝐿 ,
where 𝛼 ∈ [0, 1] is a hyper-parameter. This setup incorporates prior
knowledge about the relative importance of different hops in the
graph, controlled by 𝛼 . For instance, by tuning 𝛼 , one can prioritize
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closer hops over distant ones, or adjust the relative importance be-
tween them. During training, DAGPrompT adaptively refines 𝛾 (𝑙 ) ,
which helps handle the diverse distributions across hops, improv-
ing model performance. Additionally, it remains computationally
efficient, requiring only a small number of additional parameters.

Finally, we adopt the following loss to optimize the parameters
with a temperature 𝜏 and a cosine similarity function Sim(·, ·):

Lds = −
𝐿∑︁
𝑙=0

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈Dtrain

exp
(
Sim

(
H(𝑙 )𝑥𝑖 , P

(𝑙 )
𝑦𝑖

)
/𝜏
)

∑𝐶
𝑐=1 exp

(
Sim

(
H(𝑙 )𝑥𝑖 , P

(𝑙 )
𝑐

)
/𝜏
) (10)

4 Theoretical Analysis
In this section, we present a theoretical analysis of the GLoRA
module. Although low-rank adaptation may be less optimal than
full-parameter fine-tuning in NLP tasks [31], we demonstrate that in
few-shot settings, low-rank adaptation proves to be more effective.

Theorem 1. LetH be a hypothesis class, and D = {(𝑥𝑖 , 𝑦𝑖 )} be
a dataset of𝑚 i.i.d. samples. Suppose the loss function ℓ (ℎ(𝑥), 𝑦) is
bounded by 0 ≤ ℓ (ℎ(𝑥), 𝑦) ≤ 𝐵. Then, with probability at least 1 − 𝛿 ,
for all ℎ ∈ H , we have:

𝐿(ℎ) − �̂�D (ℎ) ≤ 2RD (H) + 3𝐵
√︂

log(2/𝛿)
2𝑚 ,

where 𝐿(ℎ) is the true risk, �̂�D (ℎ) is the empirical risk, and RD (H)
is the empirical Rademacher complexity [25].

When data is limited, the second term grows large due to the
small𝑚, making it crucial to minimize the first term, which is in-
fluenced by model complexity. Low-rank adaptations like GLoRA
reduce model complexity by using much fewer parameters, tight-
ening the generalization bound, and improving performance in
few-shot settings. In contrast, freezing all parameters (resulting
in zero complexity) leads to high empirical risk �̂�D (ℎ) and under-
fitting, which is sub-optimal. GLoRA strikes a balance between
flexibility and complexity, enhancing generalization in limited data
scenarios. The experiment in subsection E.6 supports this analysis.

5 Experiments
In this section, we evaluate the capability of DAGPrompT by ad-
dressing the following key questions:

• Q1: How does DAGPrompT perform compared to state-of-
the-art models on real-world datasets?

• Q2: How does the internal data distribution, such as het-
erophily levels, affect DAGPrompT’s performance?

• Q3: How does the number of labels impact DAGPrompT’s
performance?

• Q4: How well does DAGPrompT transfer to other graphs?
• Q5:What is the running efficiency of DAGPrompT?
• Q6:Howdo themain components of DAGPrompT influence

its performance?
• Q7: How does fine-tuning with GLoRA benefit learning?

We also conduct additional experiments on other backbones,
along with a full-shot evaluation, parameter analysis, and visual-
izations of graph hop-wise distributions and GLoRA weights, as
detailed in Appendix E.

5.1 Datasets and Settings

Table 1: Statistics for node-classification datasets. ℎ stands
for the homophily ratio.

Dataset #Nodes #Edges #Attributes #Class ℎ

Texas 183 325 1703 5 0.11
Wisconsin 251 515 1703 5 0.20
Cornell 183 298 1703 5 0.30
Chameleon 2277 36101 1703 5 0.20
Squirrel 5201 217073 2089 5 0.22
Arxiv-year 169343 1166243 128 5 0.22
Cora 2708 10556 1433 7 0.81

Table 2: Statistics for graph-classification datasets.

Dataset #Graphs #Avg.Nodes #Avg.Edges #Attributes #Class
Texas* 183 10.5 9.96 1703 5
Chameleon* 2277 16.3 31.3 1703 5
MUTAG 177 17.9 19.7 7 2
COX2 467 41.2 43.5 3 2
ENZYMES 600 32.6 62.2 3 6

We evaluate DAGPrompT on both few-shot node classification
and graph classification tasks. For the few-shot node classification,
we use seven datasets of varying scales, types, and heterophily
levels. Texas, Wisconsin, Cornell, Chameleon, Squirrel [23], and
Arxiv-Year [17] represent well-known heterophily datasets, while
Cora [35] is a commonly used homophily graph. The dataset sta-
tistics are provided in Table 1. Additionally, we generate synthetic
graphs with varying levels of heterophily following [20]. Classifi-
cation accuracy is measured on five-shot and ten-shot settings for
all datasets. For few-shot graph classification, we adapt the Texas
and Chameleon datasets (denoted with ∗) by sampling each node’s
2-hop neighbors and labeling each graph with the center node’s
label. We also include three molecular datasets—MUTAG, COX2,
and ENZYMES [15]—for comparison, they are evaluated under a
five-shot setting. Further details can be found in Appendix D.

5.2 Involved Baselines & Settings
To thoroughly evaluate the effectiveness of DAGPrompT, we com-
pare it with several state-of-the-art baselines, categorized as follows:

• Supervised. We train GCN [13] from scratch, which is
widely used for homophily graphs. Additionally, we include
heterophily-aware GNNs such as H2GCN [42], GPR-GNN
[6], and ALT-GNN [33] for comparison.

• Pre-training + Fine-tuning.We pre-train GCN using link
prediction (LP) [19], DGI [30], and GraphCL [36], and then
fine-tune the models on downstream tasks.

• Pre-training + Prompting. We pre-train GNNs using the
link-prediction task (or the task specified by each model)
and prompt them with graph prompting techniques. The
graph prompting methods considered include GPPT [27],
GraphPrompt [18], GPF, GPF-Plus [9], All-In-One [28], HG-
Prompt [37], and GCOPE [41].
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We employ the Adam Stochastic Gradient Descent optimizer [8]
with a learning rate 𝜂 ∈ {0.1, 0.5, 1, 5, 10} × 10−4, a weight decay
in {0, 2.5, 5} × 10−6, and a maximum of 200 epochs to train all
models. The dimensions of hidden representations are set to 128
or 256. We choose 𝑟 in {8, 16, 32}, and 𝛼 in {0.1, 0.3, 0.5, 0.7, 0.9}.
Hyper-parameters are selected based on performance. We train all
the models on five NVIDIA RTX4090 with 24G memory. For a fair
comparison, we use GCN as the backbone for all models except
for GCOPE, where FAGCN [2] is recommended. For GPF and GPF-
Plus, we choose the link-prediction task for pre-training, referring
to them as GPF-LP and GPF-Plus-LP. The pre-training strategies
for other methods follow the approaches outlined in their original
papers.

5.3 Evaluation on Real-world Datasets (Q1)
We evaluate DAGPrompT with GCN as the backbone, as shown in
Table 3, and draw the following key observations: (i) DAGPrompT
consistently outperforms other baselines by a large margin.
The performance improvements on heterophily datasets are par-
ticularly notable, with up to a 7.55% increase on Texas and an
average improvement of 3.63% across all datasets. (ii) Fine-tuning
or prompting methods sometimes underperform compared
to training from scratch on heterophily graphs. For example,
H2GCN, trained from scratch, surpasses most graph prompt meth-
ods on Texas, Cornell, and Wisconsin. This supports the claim in
section 1 that larger gaps exist between pre-training and down-
stream tasks in complex graphs, where task reformulation and
prompting alone are insufficient to bridge the gap caused by intri-
cate graph distributions. The heterophily in these graphs limits the
effectiveness of prompt-based methods in learning embeddings. (iii)
Fewer labels for training significantly hinder models trained
from scratch, especially in heterophily settings. On graphs
with smaller label ratios, Chameleon, Squirrel, and Arxiv-year, even
non-heterophily-aware models, such as GraphPrompt, outperform
heterophily-aware models by a large margin. This may be due to
better utilization of graph structure during the pre-training and
fine-tuning phases.

We also conduct experiments on the graph classification task1,
as shown in Table 4, where DAGPrompT consistently delivers the
best performance.

5.4 Evaluation on Data Heterophily (Q2) and
Number of Shots (Q3)

We investigate the impact of varying heterophily levels by gener-
ating a series of synthetic graphs, Syn-Chameleon, based on the
Chameleon dataset. Following the method in [20], we control the
homophily ratio of Syn-Chameleon by adjusting the edges, allow-
ing the homophily ratio to range from 0.9 (strong homophily) to 0.1
(strong heterophily). Models are evaluated on these graphs under a
full-shot setting, using 50% of the nodes for training to minimize the
effect of label quantity. The results, shown in Figure 4, demonstrate
that DAGPrompT consistently outperforms the baselines, especially
in strong heterophily scenarios. Notably, heterophily-aware models
like GPR-GNN outperform most non-heterophily-aware models,
such as GraphPrompt and GPF-Plus-LP, in this setting.
1Baselines unsuitable for graph classification are excluded.

DAGPrompT Scratch Finetune-LP GraphPrompt
GPF-Plus-LP GCOPE GPR-GNN
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Figure 4: Impact of data heterophily on Syn-Chameleon.
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GPF-Plus-LP GCOPE GPR-GNN
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Figure 5: Impact of shots on Texas and Chameleon.

We evaluate the effect of varying shot numbers on the Texas and
Chameleon datasets, as shown in Figure 5, by adjusting the shot
count from 1 to 10. Overall, DAGPrompT consistently outperforms
the baselines, with the most notable improvements occurring at
5-shot on Texas (5.51%) and 3-shot on Chameleon (3.99%). As the
number of shots increases, the non-pre-trained model, GPR-GNN,
demonstrates a considerable advantage over prompt-based meth-
ods. However, in scenarios with extremely limited labeled data,
GPR-GNN underperforms significantly, lagging behind prompting
approaches.

These two experiments reinforce the findings from subsection 5.3:
heterophily and label scarcity are key factors that limit model per-
formance. Prompting methods address label scarcity but overlook
heterophily, while heterophily-oriented methods generally neglect
label scarcity. If either issue is inadequately addressed, performance
declines significantly, underscoring the need for a distribution-
aware graph prompting approach.

5.5 Evaluation on Transfer Ability (Q4)
We evaluate the transferability of DAGPrompT in Table 5. For pre-
training, we use the Texas dataset as the source domain and test
the transfer to downstream tasks on the Cornell, Wisconsin, and
Chameleon datasets. Models with the suffix -Scratch are those
trained directly on the downstream tasks without pre-training,
while models with the suffix -Cross are pre-trained on the source
domain and then fine-tuned (or prompted) on the target domains.

The results show that pre-training, even across different domains,
generally enhances model performance. DAGPrompT exhibits the
most significant improvement when transitioning from training

6
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Table 3: Summary of the mean and standard deviation of accuracy across all runs for the few-shot node classification tasks.
The best results for each dataset are highlighted in gray. GCN is used as the backbone encoder, except for H2GCN, GPR-GNN,
ALT-GNN, and GCOPE, which use their specific architectures.

Texas (0.11) Cornell (0.31) Wisconsin (0.20) Chameleon (0.20) Squirrel (0.22) Arxiv-year (0.22) Cora (0.81)

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot
Label Ratio 13.6% 27.3% 13.6% 27.3% 9.9% 19.9% 1.09% 2.19% 0.48% 0.96% 0.0147% 0.0295% 1.29% 2.58%

GCN 56.32±3.45 58.55±4.92 59.01±4.10 63.42±3.24 56.24±3.97 56.37±3.12 31.61±3.32 34.04±4.42 21.07±0.82 23.01±1.73 22.05±1.36 23.94±1.34 55.27±1.34 58.45±1.74
H2GCN 72.95±3.30 76.75±4.74 77.86±4.82 82.62±5.86 68.38±2.95 72.72±3.74 44.74±2.95 49.64±2.75 29.47±2.43 30.61±3.48 28.65±1.44 30.23±1.37 66.56±1.37 69.45±1.42
GPR-GNN 74.83±2.84 77.44±3.96 79.73±3.85 82.87±4.02 71.42±3.28 73.24±2.58 43.32±2.52 50.96±3.28 28.93±1.36 32.05±2.86 28.49±2.94 30.47±2.41 69.03±1.40 71.42±1.08
ALT-GNN 74.36±2.86 78.42±2.76 78.72±3.46 83.51±3.75 70.45±2.38 73.52±2.01 45.51±2.47 52.84±1.98 30.73±2.23 33.26±2.97 29.05±2.74 30.20±1.98 68.15±1.09 71.30±1.42

Finetune-LP 52.26±4.42 52.23±6.15 56.20±4.66 61.53±5.57 55.27±3.85 57.84±2.90 32.26±4.21 35.69±4.28 22.55±1.52 24.29±2.38 22.26±2.16 24.29±1.51 60.31±2.06 65.26±2.07
Finetune-DGI 50.32±5.84 51.52±9.17 54.36±6.31 62.61±6.08 51.45±5.66 54.95±6.02 32.55±1.92 36.58±3.07 22.27±1.87 24.41±1.19 23.22±1.96 24.80±1.72 61.78±2.32 64.75±3.97
Finetune-GCL 46.17±4.13 49.54±6.89 52.06±4.81 61.98±3.10 46.39±5.68 52.48±9.52 30.13±2.42 36.85±5.37 21.07±5.86 22.46±4.97 22.19±3.48 22.91±7.01 53.91±2.96 57.81±2.85
GPPT 54.56±5.24 59.93±4.37 56.79±6.02 62.47±5.37 53.57±2.48 53.94±3.21 38.75±1.55 43.86±2.92 25.78±2.23 28.32±2.86 24.45±1.19 25.08±1.47 63.34±1.84 65.96±1.32
GraphPrompt 68.90±1.95 69.73±2.02 72.38±6.89 79.62±6.99 66.88±2.25 68.09±2.76 47.89±4.17 52.84±2.77 30.23±3.87 32.93±2.45 28.46±1.02 28.76±2.18 70.21±1.35 71.74±0.97
GPF-LP 66.93±6.06 66.01±0.82 69.14±7.40 72.01±8.35 59.46±2.59 61.67±2.43 45.76±2.16 47.55±3.03 28.57±2.79 29.45±1.90 28.64±5.82 29.03±3.84 65.30±2.45 67.31±2.94
GPF-Plus-LP 71.99±4.41 75.51±2.38 78.17±8.48 82.24±3.97 68.26±4.32 72.82±2.45 49.40±3.21 53.37±2.89 31.08±2.06 33.29±2.45 29.45±3.32 30.06±1.72 69.43±1.09 70.85±1.86
All-In-One 71.85±3.08 74.70±2.37 79.42±5.27 81.37±4.72 69.63±3.09 70.18±2.67 48.09±2.97 53.63±2.84 30.22±2.01 32.58±2.74 29.85±3.62 30.89±2.84 67.04±2.01 70.42±1.64
HGPrompt 67.48±2.08 70.30±2.02 72.01±5.33 73.47±6.38 65.87±3.27 66.08±3.58 46.87±3.29 53.10±3.04 30.09±2.33 32.46±2.98 28.41±1.34 28.90±2.08 68.42±1.37 69.54±1.54
GCOPE 75.85±2.36 77.50±1.94 78.53±4.74 82.04±5.36 71.45±2.86 73.85±2.84 49.24±3.37 54.01±2.74 31.32±2.45 34.06±2.45 29.59±1.45 30.67±1.98 69.24±1.35 70.57±2.64

DAGPrompT 81.36±4.93 83.10±2.92 87.28±1.64 89.30±1.44 76.37±1.17 76.52±2.84 53.38±1.97 58.29±2.12 34.95±2.77 36.54±2.77 31.06±1.03 31.99±0.98 71.60±1.77 73.42±0.43
Improvement 5.51 4.68 7.55 5.79 4.92 2.67 3.98 4.28 3.63 2.48 1.21 1.10 1.39 1.68

Table 4: Summary of the mean and standard deviation of
accuracy across all runs for the graph classification. The best
results for each dataset are highlighted in gray.

Texas* Chameleon* MUTAG COX2 ENZYMES

Scratch 52.46±2.34 25.30±2.84 56.43±2.85 45.98±4.97 22.65±3.85
Finetune-LP 53.37±1.84 25.75±2.85 58.87±1.65 51.45±3.65 24.90±4.74
GraphPrompt 72.75±2.09 44.18±2.51 73.85±1.97 55.86±5.73 25.67±3.49
GPF-LP 68.34±2.14 41.01±3.30 70.68±2.75 40.87±5.67 20.58±1.97
GPF-Plus-LP 71.06±2.56 46.27±4.41 73.86±1.90 54.80±3.48 25.65±3.97
All-In-One 73.46±1.90 46.26±2.85 74.58±1.85 55.03±3.48 26.08±4.86
HGPrompt 70.56±2.86 45.93±2.38 73.46±1.37 50.07±4.87 22.75±4.87
GCOPE 73.64±2.11 46.78±2.85 73.98±2.64 52.18±3.38 25.45±5.38
DAGPrompT 79.53±2.89 51.26±3.44 76.01±1.79 56.46±4.76 26.71±4.22
Improvement 5.89 4.48 1.43 0.60 0.63

Table 5: Transfer ability measured by classification accuracy
across different domains. Source domain: Texas. Target do-
mains: Cornell, Wisconsin, and Chameleon.

Cornell Wisconsin Chameleon

Finetune-LP-Scratch 59.01±4.10 56.24±3.97 31.61±3.32
Finetune-LP-Cross 60.50±2.30 56.58±1.90 31.18±2.81
All-In-One-Scratch 64.16±2.13 63.96±2.90 32.56±2.13
All-In-One-Cross 75.57±2.47 66.85±2.48 45.86±2.41
DAGPrompT-Scratch 65.58±1.65 63.34±2.95 33.45±2.09
DAGPrompT-Cross 82.45±2.74 70.75±2.84 52.08±1.38

from scratch to cross-domain pre-training, highlighting its strong
transferability. This makes DAGPrompT particularly useful in cases

where initial training data is unavailable or unsuitable due to pri-
vacy concerns or computational constraints.

5.6 Efficiency Analysis (Q5)

Table 6: Efficiency analysis on the Chameleon dataset, re-
porting iterations per second, peak GPU memory (MB), and
the number of tunable parameters. The average rank across
these metrics is also provided. "PT" refers to pre-training,
"DS" to downstream, "-" indicates not applicable, and "K" rep-
resents thousand.

Iter/sec. ↑ Memory ↓ T.Parameters ↓ Avg.Rank ↓
PT DS PT DS PT DS

Scratch - 72.82 - 889 - 331K #3.3
Finetune-LP 2.82 69.68 586 896 331K 331K #3.3
GPPT 1.30 5.35 583 1527 331K 3.8K #4.2
GraphPrompt 2.57 37.81 591 2101 331K 2K #3.2
GPF-Plus-LP 2.09 34.97 591 2515 331K 93.5K #5.2
All-In-One 1.86 20.45 853 3064 331K 7.4K #6.3
HGPrompt 2.49 24.57 585 2908 331K 2K #4.0
GCOPE 0.49 1.37 525 2184 92.5K 47.6K #5.2
DAGPrompT 2.60 27.54 585 2121 331K 6.4K #3.5

We evaluate the efficiency of DAGPrompT on the Chameleon
dataset, as shown in Table 6. The results demonstrate that DAG-
PrompT is generally efficient, exhibiting fast running speed, low
GPU memory consumption, and a small number of tunable parame-
ters. Overall, DAGPrompT ranks highly in terms of time efficiency,
memory usage, and parameter efficiency.
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Figure 6: t-SNE visualization of GNN encoder embeddings on
the Chameleon dataset, with and without GLoRA.

5.7 Ablation Study (Q6)

Table 7: Ablation Study on Texas, Cornell, and Chameleon.
"w/o" denotes without.

Texas Cornell Chameleon

DAGPrompT 81.36±4.93 87.28±3.63 53.38±1.97
w/o GLoRA 79.01±4.29 84.44±2.04 50.74±1.43
w/o Layer-Specific Prompts 79.46±3.95 84.42±3.46 53.17±2.47
w/o Coefficients 𝛾 78.45±3.84 82.08±3.94 51.47±2.47

We conduct an ablation study to evaluate the contribution of each
component in DAGPrompT, as detailed in Table 7, by disabling them
individually. For the coefficients 𝛾 in Equation 9, we fix all values to
1. The results show that GLoRA significantly boosts performance.
Additionally, the coefficients 𝛾 further enhance results. Overall,
each component contributes to performance to varying extents.

5.8 GLoRA Visualizations (Q7)
We extract embeddings from the GNN encoder on the Chameleon
dataset, both with and without GLoRA, and visualize them using t-
SNE, as shown in Figure 6. The results show that GLoRA enhances
the GNN encoder’s ability to adapt to new distributions during
fine-tuning and prompting. With GLoRA, the label clusters are
more compact and separable, indicating that the embeddings are
adjusted according to label information in heterophily graphs. The
issue illustrated in Figure 1, where connected nodes with different
labels have indistinguishable embeddings, is mitigated. This im-
proved separability facilitates classification, contributing to a 2.64%
performance increase compared to the variant without GLoRA.

6 Related Works
6.1 Graph Pre-training and Prompting
In recent years, significant advancements have been made in the
development of pre-trained Graph Neural Networks (GNNs). These
methods can be broadly categorized into three main types: (i) Graph
Property Reconstruction-Based Methods, which focus on reconstruct-
ing specific graph properties such as node attributes [10, 12] or
links [14, 19]; (ii) Sub-Graph Contrastive Methods, which distinguish
positive subgraphs from negative ones [36, 40, 44]; and (iii) Local-
Global Contrastive Methods, which leverage mutual information to
encode global patterns in local representations [26, 30].

The aforementioned approaches often overlook the objective
gap between pre-training and fine-tuning, which limits their gen-
eralization across tasks [28]. To address this, recent studies have
adopted prompting techniques inspired by advances in Natural
Language Processing fields [3, 4]. GPPT [27] was the first to incor-
porate learnable graph label prompts, reformulating downstream
node classification tasks as link prediction tasks to narrow the
gap between pre-training and fine-tuning. VNT [29] introduces
prompts specifically tailored for pre-trained graph transformers in
node classification tasks. Subsequently, GraphPrompt [18] intro-
duced a unified template to accommodate a broader range of down-
stream tasks. All-in-One [28] reformulated all downstream tasks
into graph-level tasks and integrated meta-learning techniques for
multi-task prompting. GPF and GPF-Plus [9] proposed a universal
prompting system operating solely within the node feature space.
While prior work primarily focused on downstream tasks, GCOPE
[41] shifted the emphasis to the pre-training phase, combining dis-
parate graph datasets to distill and transfer knowledge to target
tasks. Additionally, HGraphPrompt [37] and HetGPT [21] extended
prompting techniques to heterogeneous graph learning, broadening
the scope of their application. Recent studies have also explored
cross-domain prompting [34, 39, 43] and multi-task prompting[38].
However, these methods often neglect the complex distributions in
graph data, resulting in performance degradation.

6.2 Heterophily Graph Learning
Traditional GNNs typically assume homophily (similarity between
connected nodes) [22] and are less effective in heterophily graphs,
where connected nodes differ significantly [42]. To address this,
models such as H2GCN [42] and GPR-GNN [6] enhance message-
passing with high-order re-weighting techniques to improve com-
patibility with heterophily. LINKX, a simpler model, is optimized
for large-scale heterophily learning [17]. Other approaches, in-
cluding GloGNN [16], GCNII [5], MWGNN [20], ALT-GNN [33],
and AGS-GNN [7] refine graph convolution for heterophilous data.
However, most heterophily-aware models are designed for training
from scratch in label-rich scenarios and face generalization and
over-fitting issues in few-shot settings.

7 Conclusion
In this paper, we push the limits of the graph prompting paradigm
to graphs with complex distributions, such as heterophily graphs.
We observe that current methods struggle to generalize in these
settings and are, in some cases, outperformed by simple models
trained from scratch. We identify two key challenges for better
generalization on complex graphs: (i) adapting the model to new
distributions in downstream tasks to reduce discrepancies between
pre-training and fine-tuning due to heterophily, and (ii) aligning
model prompts to the hop-specific needs of different nodes. To
address these challenges, we propose Distribution-aware Graph
Prompt Tuning (DAGPrompT), which includes a GLoRA module
and a Hop-specific Graph Prompting module, corresponding to the
two challenges outlined above. Our experiments across 10 datasets
and 14 baselines demonstrate the state-of-the-art performance of
DAGPrompT, achieving up to a 7.55% improvement in accuracy.
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A Algorithm of DAGPrompT
We detail the DAGPrompT algorithm from pre-training to prompt-
ing in Algorithms 1 and 2. For clarity, we present the algorithm
using a for-loop structure, though in practice, we process data in
batches. The example provided focuses on node classification, with
graph classification requiring only a straightforward adjustment:
feeding entire graphs instead of sampling node neighborhoods.
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Algorithm 1 DAGPrompT stage one: pre-training.
Input: Node attributes X, adjacency A, GNN 𝑓 with parameter Θ,

temperature 𝜏 , learning rate 𝜂.
Output: Tuned parameter Θ∗.

1: for 𝑖 ← 1 to 𝑁 do ⊲ 𝑁 is the number of nodes in the graph.
2: // Construct positive and negative samples.
3: 𝑣 ← 𝑖; 𝑎 ← 𝑗 | 𝑗 ∈ N (𝑖); 𝑏 ← 𝑘 | 𝑘 ∉ N(𝑖);
4: // Generate embeddings
5: H← 𝑓 (X,A;Θ)
6: H← matmul(H,A)
7: s𝑣 ← H[𝑖]; s𝑎 ← H[𝑎]; s𝑏 ← H[𝑏]
8: end for
9: // Loss calculation and parameter optimization
10: Lpt (Θ) ← −

∑
(𝑣,𝑎,𝑏 ) ln

exp(sim(s𝑣 ,s𝑎 )/𝜏 )∑
𝑢∈{𝑎,𝑏} exp(sim(s𝑣 ,s𝑢 )/𝜏 )

11: Θ← Θ − 𝜂∇Θ (Lpt (Θ))

For extremely large graphs where 𝑁 ≫ 𝑟𝑑 , we enhance effi-
ciency of GLoRA by reducing P(𝑙 )A Q(𝑙 )A

⊤
to a unified edge-weight

vector. We then apply this edge-weight only to edges connected to
nodes in the training set. This approach reduces the total number
of parameters while maximizing the use of information from the
training data.

B Complexity Analysis
Consider a graph with 𝑁 nodes and 𝐸 edges, where 𝑑 is the hidden
dimension, 𝐿 the number of GNN encoder layers, and𝐶 the number
of classes.

The pre-training complexity of the GNN encoder is O((𝐿𝐸 +
𝑁𝐾)𝑑), where 𝐾 is the number of negative samples. In this work,
we set 𝐾 = 1.

For prompting, the complexity of DAGPrompT arises from three
components: (i) generating layer-wise embeddings from the GNN
encoder 𝑓 , (ii) generating layer-wise class tokens, and (iii) per-
forming similarity calculations. Step (i) incurs a complexity of
O(𝐿(𝐸 + 𝑁𝑑2)), driven by message passing and embedding projec-
tion. Step (ii) has a lighter complexity of O(𝐿𝐶𝑑), involving matrix
addition. Step (iii) incurs a complexity of O(𝐿𝑁𝐶𝑑), dominated by
similarity calculations.

The overall complexity of DAGPrompT is O(𝐿(𝑁𝐶+𝐿𝐶+𝑁𝑑)𝑑+
𝐿𝐸). Given that 𝐿 ≪ 𝑁 and𝐶 ≪ 𝑑 , this simplifies toO(𝐿𝑁𝑑2+𝐿𝐸𝑑),
yielding near-linear complexity with respect to graph size, making
it efficient for large-scale applications.

C Details of Theorem 1
LetH be a hypothesis class, and let D = {(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)}
represent a dataset of𝑚 independent and identically distributed
(i.i.d.) samples drawn from an unknown distribution. The goal is to
evaluate the performance of a hypothesis ℎ ∈ H , which we do by
assessing its true risk (or expected error). The true risk is defined
as:

𝐿(ℎ) = E(𝑥,𝑦)∼D [ℓ (ℎ(𝑥), 𝑦)], (11)
where ℓ (ℎ(𝑥), 𝑦) denotes a bounded loss function, satisfying 0 ≤
ℓ (ℎ(𝑥), 𝑦) ≤ 𝐵. This measures the expected loss of the hypothesis
over the distribution of the data.

Algorithm 2DAGPrompT stage two: prompting and tuning, taking
the node classification as an example.

Input: Node attributes X, adjacency A, training set Dtrain,
pre-trained GNN 𝑓 with parameter Θ∗, GLoRA parameter Θglora,

layer-specific prompts {Θ(𝑙 ) }𝐿
𝑙=0 , coefficients {𝛾 (𝑙 ) }𝐿

𝑙=0,
temperature 𝜏 , learning Rate 𝜂.
Output: downstream labels Ŷ.

1: // Construct the node tokens.
2: for 𝑖 ← 1 to 𝑁 do ⊲ 𝑁 is the number of nodes in the graph.
3: X𝑖 ,A𝑖 ← SampleNeighborhood(X,A, 𝑖)
4: for 𝑙 ← 0 to 𝐿 do
5: H(𝑙 )𝑖 ← 𝑓 (X𝑖 ,A𝑖 ;Θ∗,Θglora; 𝑙) ⊲ embeddings of layer 𝑙
6: end for
7: end for
8: for 𝑙 ← 0 to 𝐿 do
9: H(𝑙 ) ←

[
H(𝑙 )1 ∥H

(𝑙 )
2 | | · · · ∥H

(𝑙 )
𝑁

]
∈ R𝑁×𝑑

10: end for
11:
12: // Construct the class tokens, only calculated once.
13: for 𝑐 ← 1 to 𝐶 do ⊲ 𝐶 is the number of classes in the graph.
14: for 𝑙 ← 0 to 𝐿 do
15: P(𝑙 )𝑐 ← 1

|Dtrain
𝑐 |

∑ |Dtrain
𝑐 |

𝑣∈D train
𝑐

H(𝑙 )𝑣 + Θ(𝑙 )𝑐 ∈ R𝑑

16: end for
17: end for
18: for 𝑙 ← 0 to 𝐿 do
19: P(𝑙 ) ←

[
P(𝑙 )1 ∥P

(𝑙 )
2 | | · · · ∥P

(𝑙 )
𝐶

]
∈ R𝐶×𝑑

20: end for
21:
22: // Prompting
23: for 𝑙 ← 0 to 𝐿 do
24: S(𝑙 ) ← Similarity

(
H(𝑙 ) , P(𝑙 )

)
25: end for
26: S̃← ∑𝐿

𝑙=1 𝛾
(𝑙 )S(𝑙 )

27: Ŷ← argmax𝑐 S̃𝑐
28:
29: // Calculate loss and optimize parameters.

30: Lds = −
∑𝐿
𝑙=0

∑
(𝑥𝑖 ,𝑦𝑖 ) ∈Dtrain

exp
(
Sim

(
H(𝑙 )𝑥𝑖

,P(𝑙 )𝑦𝑖
)
/𝜏
)

∑𝐶
𝑐=1 exp

(
Sim

(
H(𝑙 )𝑥𝑖

,P(𝑙 )𝑐

)
/𝜏
)

31: Θglora ← Θglora − 𝜂∇Θglora (Lds (Θglora))
32: for 𝑙 ← 0 to 𝐿 do
33: Θ(𝑙 ) ← Θ(𝑙 ) − 𝜂∇Θ(𝑙 ) (Lds (Θ(𝑙 ) ))
34: 𝛾 (𝑙 ) ← 𝛾 (𝑙 ) − 𝜂∇𝛾 (𝑙 ) (Lds (𝛾 (𝑙 ) ))
35: end for

In practice, however, we do not have access to the true distri-
bution. Instead, we rely on the available sample D to estimate the
performance of ℎ through the empirical risk (or training error),
which is given by:

�̂�D (ℎ) =
1
𝑚

𝑚∑︁
𝑖=1

ℓ (ℎ(𝑥𝑖 ), 𝑦𝑖 ). (12)

This empirical risk approximates the true risk by averaging the loss
over the observed data points.
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To understand the capacity of the hypothesis classH in fitting
the data, we consider its empirical Rademacher complexity, which
quantifies how wellH can adapt to random noise. The empirical
Rademacher complexity is defined as:

RD (H) = E𝜎

[
sup
ℎ∈H

1
𝑚

𝑚∑︁
𝑖=1

𝜎𝑖ℎ(𝑥𝑖 )
]
, (13)

where 𝜎𝑖 are i.i.d. Rademacher variables, each taking values in ±1
with equal probability. This measure helps us understand the rich-
ness of the hypothesis class by evaluating its ability to fit random
labels on the sample D, providing insights into potential over-
fitting and generalization behavior.

The generalization bound for the hypothesis class H [25] can
be formulated as:

𝐿(ℎ) ≤ �̂�D (ℎ) + 2RD (H) + 3𝐵
√︂

log(2/𝛿)
2𝑚 , (14)

which holds with probability at least 1 − 𝛿 . Here, the terms are
defined as follows:

• 𝐿(ℎ): the true risk (expected test error), which reflects the
hypothesis’ error on unseen data,

• �̂�D (ℎ): the empirical risk (training error), representing the
observed performance on the given dataset,

• RD (H): the empirical Rademacher complexity of the hy-
pothesis classH , capturing the class’s capacity to fit ran-
dom noise,

• 𝐵: the upper bound on the loss function ℓ (ℎ(𝑥), 𝑦), ensuring
the loss is bounded within [0, 𝐵],

• 𝛿 : the confidence level, determining the probability that the
bound holds,

• 𝑚: the number of training samples in the dataset D.
This bound shows that the true risk 𝐿(ℎ) is upper-bounded by

the empirical risk �̂�D (ℎ), adjusted by the model’s complexity (as
captured by the empirical Rademacher complexity RD (H)) and
a term that decreases with the number of training samples, 𝑚,
providing insight into how well the model generalizes to unseen
data.

D Dataset Details
In this section, we describe the datasets used in our study.

The Cora dataset [35] is a widely used citation network charac-
terized by strong homophily [22]. In Cora, nodes represent papers,
node features are bag-of-words representations derived from the
content, and edges correspond to citation links. The labels indicate
the subject categories of the papers.

The Texas, Wisconsin, Cornell, Chameleon, and Squirrel datasets
[23] consist of web pages, where nodes represent individual pages,
node features are word embeddings, and edges reflect hyperlinks.
Labels for Texas, Cornell, and Wisconsin represent web page cate-
gories, while Chameleon and Squirrel labels capture averagemonthly
web traffic, grouped into five ranges. Notably, Chameleon and Squir-
rel are complex Wikipedia networks, exhibiting a mix of homophily
and heterophily [20].

TheArXiv-year dataset [17] is a large-scale citation networkwith
high heterophily. Nodes represent research papers, node features
are embeddings from paper titles and abstracts, and edges represent
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Figure 7: Hop-wise Local Heterophily Distributions.

citation relationships. The labels correspond to publication years,
grouped into five intervals.

TheMUTAG dataset consists of 188 chemical compounds, catego-
rized into two classes based on mutagenic effects on bacteria. Here,
vertices represent atoms, and edges represent chemical bonds. The
COX2 dataset contains molecular structures of 467 cyclooxygenase-
2 inhibitors, and the ENZYME dataset focuses on classifying 600
enzymes into six top-level EC classes [15].

We provide a statistical analysis of hop-wise distributional vari-
ance from the perspective of local homophily, adapted from the
homophily measurement in section 2:

ℎ (𝑘 )
𝑖

=
| { (𝑣𝑖 , 𝑣𝑗 ) : (𝑣𝑖 , 𝑣𝑗 ) ∈ EN (𝑘 ) (𝑖 ) ∧ y𝑖 = y𝑗 | 𝑗 ∈ N (𝑘 ) (𝑖 ) } |

| EN (𝑘 ) (𝑖 ) |
, (15)

where N (𝑘 ) (𝑖) denotes the 𝑘-hop neighborhood of node 𝑣𝑖 , and
(𝑢, 𝑣) ∈ EN (𝑘 ) (𝑖 ) if and only if there exists a shortest path of length
𝑘 between 𝑢 and 𝑣 in the subgraph induced by N (𝑘 ) (𝑖). The value
ℎ
(𝑘 )
𝑖 represents the distribution within each node’s 𝑘-hop neigh-
borhood.

The results in Figure 7 indicate that the distributions vary signif-
icantly across different hops, highlighting the need for a decoupled
graph prompting procedure. Each hopmay carry unique and diverse
information, contributing to the final representations to different
degrees. Moreover, the distributions vary across different graphs,
emphasizing the need for hop-specific approaches.
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Table 8: Summary of the mean and standard deviation of accuracy over all runs on few-shot node classification tasks. The best
results for each dataset are highlighted in gray. GAT is used as the backbone encoder.

Texas (0.11) Cornell (0.31) Wisconsin (0.20) Chameleon (0.20) Squirrel (0.22) Arxiv-year (0.22) Cora (0.81)

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot
Label Ratio 13.6% 27.3% 13.6% 27.3% 9.9% 19.9% 1.09% 2.19% 0.48% 0.96% 0.0147% 0.0295% 1.29% 2.58%

GAT 52.22±4.22 53.81±5.80 61.36±4.34 64.36±3.58 54.35±3.45 53.40±3.14 28.53±3.24 30.09±3.60 21.35±2.34 23.47±2.98 21.38±1.30 23.75±2.31 62.14±1.08 65.86±1.37

Finetune-LP 50.41±5.80 54.89±7.13 60.72±3.58 65.72±3.97 56.36±3.19 52.13±2.78 30.24±3.10 33.58±2.89 23.45±1.37 23.87±2.45 22.15±2.34 25.36±2.80 65.47±1.35 68.37±2.01
GPPT 57.59±3.02 59.54±5.57 65.57±3.68 64.83±2.98 50.35±2.97 52.41±1.98 40.56±2.94 47.67±3.01 25.67±2.46 29.46±2.09 23.27±3.27 25.35±1.72 58.46±2.85 63.84±1.36
Gprompt 72.98±5.37 73.27±3.56 76.37±4.83 83.32±2.76 67.84±3.03 69.83±2.75 45.65±3.93 52.07±2.90 31.47±1.09 31.64±1.47 28.46±2.37 29.35±1.36 70.06±2.94 72.55±1.83
GPF-LP 68.42±2.39 70.28±4.29 72.12±4.58 78.34±3.85 62.47±3.84 67.45±3.53 40.61±6.04 41.56±4.24 29.46±1.75 30.15±3.73 28.10±3.65 28.34±2.31 68.04±1.86 69.74±1.46
GPF-Plus-LP 73.78±3.21 75.37±3.27 80.36±3.85 82.46±3.01 69.43±2.41 71.34±3.08 45.45±3.85 51.39±2.97 32.57±2.01 34.27±2.71 28.84±2.72 31.01±2.34 68.53±1.47 70.86±1.55
All-In-One 72.36±3.46 74.91±4.27 82.18±2.98 83.49±3.27 70.34±2.80 70.76±3.10 45.96±2.57 51.90±3.08 31.35±2.08 33.46±1.90 27.65±2.02 30.74±1.83 69.52±1.95 72.44±2.38
HGPrompt 72.53±2.96 73.41±3.87 76.45±3.84 81.35±3.56 66.53±2.54 69.47±3.98 44.47±3.01 46.76±3.41 30.37±1.65 32.40±2.42 28.41±2.64 30.01±2.55 67.75±2.31 71.96±1.94

DAGPrompt 78.27±3.03 82.25±2.61 86.05±1.77 88.73±1.99 76.55±1.22 77.22±2.47 49.98±2.31 54.11±1.96 34.80±1.42 37.03±2.17 29.37±2.84 32.56±1.62 70.48±1.41 73.18±0.82
Improvement 4.49 5.84 3.87 4.19 5.31 4.48 3.81 2.04 2.23 2.76 0.53 1.55 0.33 0.34

E Additional Experiments
E.1 DAGPrompt with GAT as Backbone
To evaluate the generalization capability of DAGPrompt, we con-
duct 5-shot and 10-shot node classification experiments using GAT
as the backbone encoder2. The results in Table 8 show that DAG-
Prompt consistently outperforms all baselines, providing strong
evidence of its robust generalization performance.

E.2 Full-shot Experiments

Table 9: Summary of the mean and standard deviation of
accuracy across all runs on full-shot node classification tasks.
The best results for each dataset are highlighted in gray. GCN
is used as the backbone model.

Chameleon (0.20) Squirrel (0.22) Cora (0.81)
GCN 48.57±2.76 38.67±2.10 78.57±1.23
H2GCN 69.54±1.24 57.31±2.47 77.65±0.84
GPR-GNN 70.22±1.45 58.19±3.40 79.56±0.87
ALT-GNN 70.51±1.23 59.34±1.38 78.45±1.85
Finetune-LP 50.73±2.45 39.61±1.98 76.67±1.37
GPPT 59.61±1.23 36.63±1.65 63.71±2.12
GraphPrompt 69.63±1.67 51.23±1.74 78.58±1.04
GPF-LP 61.49±2.53 50.09±2.08 74.16±1.47
GPF-Plus-LP 68.46±1.90 58.65±1.45 79.51±1.36
All-In-One 69.56±1.08 58.46±1.80 77.76±0.86
HGPrompt 68.50±2.48 53.65±1.97 78.15±0.74
GCOPE 70.03±1.35 56.24±2.03 80.09±1.85
DAGPrompt 74.30±0.78 62.78±1.29 81.10±0.72
Improvement 3.79 3.44 1.01

We further evaluate DAGPrompt under the full-shot setting, us-
ing a training-validation-test split of approximately 50%-25%-25%.
The results in Table 9 show that, although the performance im-
provement is less pronounced compared to the few-shot settings in
2Baselines incompatible with GAT are excluded from these experiments. The number
of heads is set to 4.
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Figure 8: Parameter analysis.

Table 3, DAGPrompt consistently achieves the best results across
all datasets, particularly on those with strong heterophily.

E.3 Parameter Analysis
We conduct a parameter analysis for 𝛼 and 𝑟 in Figure 8. The results
show that Texas and Cornell generally perform better with larger
𝛼 values, up to 0.9, while Chameleon favors smaller values, down
to 0.1. This indicates that Texas and Cornell benefit more from
distant hop information (as larger 𝛼 assigns greater weight to them),
whereas Chameleon relies more on local hop information with a
smaller 𝛼 . Additionally, variations in the rank 𝑟 impact performance
differently across datasets.

E.4 Visualization of GLoRAWeights
We visualize the weight distributions of GLoRA on the Texas and
Cornell datasets in Figure 9. For clarity, we present the final result
of A + PAQ⊤A , representing the edge weights used during message
passing in GNNs. As shown, GLoRA strengthens certain connec-
tions by assigning weights greater than 1, while weakening others
with weights less than 1. This suggests that GLoRA refines the
graph message-passing scheme to better align with downstream
tasks.

E.5 Pre-training Helps the Convergence
To examine the effect of pre-training on model convergence, we
conduct experiments with varying hidden sizes of DAGPrompT on
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Figure 9: GLoRA weights distributions of A + PAQ⊤A

Figure 10: Loss curve of DAGPrompT on Chameleon.

the Chameleon dataset. For each configuration, the model is pre-
trained either sufficiently (200 epochs) or minimally (30 epochs).

As shown in Figure 10, the results demonstrate that sufficient pre-
training not only accelerates convergence (evident from a faster
reduction in loss) but also improves final performance (achieving
a lower loss). This aligns with findings in NLP fields, where suf-
ficient pre-training reduces the intrinsic dimension of the model,
simplifying the learning process for downstream tasks [1].

E.6 DAGPrompT with Full-parameter Tuning

Table 10: Summary of the mean and standard deviation of
accuracy across all runs for 5-shot node classification tasks.

Texas (0.11) Wisconsin (0.20) Squirrel (0.22)
DAGPrompT 81.36±4.93 76.37±1.17 53.38±1.97
DAGPrompT-Full 79.36±3.78 75.37±2.42 50.38±5.38
DAGPrompT-Freeze 79.01±4.29 74.74±4.37 50.61±4.70

We conducted an experiment with two variants of DAGPrompT:
DAGPrompT-Full and DAGPrompT-Freeze. DAGPrompT-Full re-
moves the GLoRA module and fine-tunes all GNN encoder pa-
rameters during prompting, while DAGPrompT-Freeze removes
the GLoRA module and freezes all GNN encoder parameters dur-
ing prompting. The results show that both DAGPrompT-Full and
DAGPrompT-Freeze perform worse than DAGPrompT. This sup-
ports the theory from section 4 that neither zero-parameter nor
full-parameter tuning is optimal in few-shot settings.
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