
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

DAGPrompT: Pushing the Limits of Graph Prompting with a
Distribution-aware Graph Prompt Tuning Approach

Anonymous Author(s)∗

Abstract
The "pre-training then fine-tuning" paradigm has advanced Graph
Neural Networks (GNNs) by enabling the capture of general knowl-
edge without task-specific labels. However, a significant objective
gap between pre-training and downstream tasks limits their effec-
tiveness. Recent graph prompting methods aim to bridge this gap by
task reformulations and learnable prompts. Yet, they struggle with
complex graphs like heterophily graphs—freezing the GNN encoder
may diminish prompting effectiveness, and simple prompts fail to
capture diverse hop-level distributions. This paper identifies two
key challenges in adapting graph prompting methods for complex
graphs: (i) adapting the model to new distributions in downstream
tasks to mitigate pre-training and fine-tuning discrepancies from
heterophily and (ii) customizing prompts for hop-specific node re-
quirements. To overcome these challenges, we propose Distribution-
aware Graph Prompt Tuning (DAGPrompT), which integrates a
GLoRA module for optimizing the GNN encoder’s projection ma-
trix and message-passing schema through low-rank adaptation.
DAGPrompT also incorporates hop-specific prompts accounting
for varying graph structures and distributions among hops. Evalua-
tions on 10 datasets and 14 baselines demonstrate that DAGPrompT
improves accuracy by up to 7.55% in node and graph classification
tasks, setting a new state-of-the-art while preserving efficiency. We
provide our code and data via AnonymousGithub.

CCS Concepts
•Mathematics of computing→ Graph algorithms; • Comput-
ing methodologies→ Neural networks; Supervised learning.

Keywords
graph neural networks, graph prompting, few-shot learning
ACM Reference Format:
Anonymous Author(s). 2018. DAGPrompT: Pushing the Limits of Graph
Prompting with a Distribution-aware Graph Prompt Tuning Approach. In
Proceedings of Make sure to enter the correct conference title from your rights
confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA,
13 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
In recent years, the schema of "pre-training then fine-tuning" on
Graph Neural Networks (GNNs) has experienced significant growth,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

especially in few-shot learning scenarios [12, 19, 30, 44]. Specifically,
GNNs are pre-trained in a self-supervised manner on tasks such
as graph property reconstruction [10, 14] or contrastive learning
[26, 40]. Then, GNNs are adapted to downstream tasks during the
fine-tuning. However, a common limitation is that the gap between
pre-training and downstream objectives is often overlooked, which
hinders the model performance. For example, the pre-training ob-
jective may be link prediction, while the downstream objective may
be node classification, and these two objectives vary a lot [28]. To
address this, recent research has begun incorporating graph prompt-
ing techniques [9, 18, 27, 28] to bridge the gap between pre-training
and downstream tasks. They propose using prompts to reformulate
downstream tasks as pre-training tasks with additional learnable
parameters. The pre-trained GNN encoder remains frozen during
this process. For example, GPPT [27] reformulates the downstream
task, node-classification, to the pre-training task, link-prediction.
This reformulation reduces the objective gap between the pre-train
and downstream by the alignment of objective forms.

However, existing promptingmethods are sub-optimal for graphs
with complex distributions, such as heterophily graphs, where con-
nected nodes frequently have different labels [6, 42]. This label
disparity creates a profound disconnect between pre-training objec-
tives and downstream tasks. As most pre-training techniques are
label-agnostic and rely on graph structure to varying extents, they
inherently suffer from this discrepancy. For instance, tasks like link
prediction push the model to generate similar embeddings for con-
nected nodes, ignoring label differences. Consequently, connected
nodes with distinct labels are mapped to similar embeddings in het-
erophily graphs, as shown in Figure 1. During prompting, current
approaches [9, 18, 27, 28, 37, 41] typically freeze the GNN encoder
and employ basic prompting techniques (e.g., projection or additive
layers). However, freezing the GNN encoder restricts its adaptability
to distribution shifts in downstream tasks. As illustrated in Figure 1,
this limitation prevents the model from adjusting GNN parameters
to produce distinct node embeddings for different labels. The basic
prompting mechanisms struggle to disentangle node embeddings
effectively, ultimately leading to reduced performance.

Similar Embeddings

Dissimilar Embeddings

Class Label A

Class Label B

GNN

Pre-train

Input Graph

Prompting

Frozen
GNN

As is frozen, during prompting,
connected nodes with different
labels are consistently mapped to
nearby positions in the latent space,
making them difficult to distinguish.

Figure 1: Heterophily diminishes the effectiveness of prompt-
ing techniques that freeze the GNN encoder, resulting in in-
distinguishable node embeddings.

1

https://anonymous.4open.science/r/DAGPromptHandin-25E1
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Moreover, distributional differences across graph hops in com-
plex graphs further challenge existing prompting methods: some
nodes prioritize information from closer hops, while others rely
more on distant ones [33, 42]. Additionally, the heterophily distri-
bution varies across hops (see Figure 7 in Appendix D) and affects
performance to varying extents. Existing methods typically rely
on the final layer representation of the GNN encoder, overlooking
these hop-specific variations [18, 27, 41]. While some approaches
[9, 28] attempt to merge intermediate embeddings, they fail to ac-
count for hop-specific preferences or offer tailored prompts for
different hops, limiting their adaptability to these variations.

In summary, two primary challenges arise when extending graph
prompting methods to diverse graph data with varying internal dis-
tributions: (i) adapting the model to new distributions in downstream
tasks, reducing the discrepancy between pre-training and fine-tuning
caused by heterophily, and (ii) customizing prompts to address the
hop-specific requirements of different nodes. These challenges stem
from the inherent limitations of the prompting paradigm and the
complexities of heterophily graphs, making them critical obstacles
in advancing graph prompting techniques. While existing methods
perform well on homophily graphs, they degrade on heterophily
graphs due to neglecting these issues. We compare the 5-shot node
classification accuracy of a popular prompting method, GPPT [27],
with a GCN trained from scratch [13] and pre-trained models us-
ing link prediction [19] and DGI [30], as shown in Figure 2. GPPT
and pre-training strategies perform well on the homophily graph
Cora but are outperformed by a GCN trained from scratch on the
heterophily graphs Texas and Cornell, which exhibit strong het-
erophily and variation across hops (see Figure 7 in Appendix D).

Cora (0.81) Texas (0.11) Cornell (0.31)

50

60

Dataset

Ac
cu
ra
cy

GCN GCN Finetune-LP GCN Finetune-DGI GPPT

Figure 2: Conventional graph prompting techniques are less
effective or even detrimental on heterophily datasets. The
homophily ratio [42] is indicated in the brackets, with a lower
ratio representing stronger heterophily.

In this paper, we propose Distribution-aware Graph Prompt
Tuning (DAGPrompT), which comprises two core components
in response to the two challenges outlined above: (i) Graph Low-
Rank Adaptation (GLoRA) module: This module leverages low-rank
matrix approximations to tune both the projection parameters and
the message-passing mechanism in the GNN encoder. By doing so,
it adapts the GNN encoder to the new distributions encountered
in downstream tasks, while preserving the valuable knowledge
embedded in pre-trained weights in an efficient manner. For ex-
ample, in the scenario depicted in Figure 1, GLoRA addresses the
limitations by enabling the GNN encoder to produce separable
embeddings for nodes with different labels. (ii) Hop-specific Graph
Prompting module: This module decomposes downstream tasks

into hop-specific components, allowing the model to weigh the
importance of different hops adaptively. We validate DAGPrompT
through experiments on 10 datasets, focusing on both node and
graph classification tasks, and comparing it against 14 baseline
methods. Our model achieves state-of-the-art performance, with
an average accuracy improvement of 3.63%, and up to 7.55%. In
summary, our contributions are as follows:

• We identify the key challenges of applying graph prompt-
ing techniques to heterophily graphs and introduce DAG-
PrompT as a solution. DAGPrompT distinguishes itself as
a pioneering model in extending the capabilities of graph
prompting techniques to heterophily graphs.

• We propose two key modules for DAGPrompT: GLoRA and
the Hop-specific Graph Prompting module. These modules
mitigate distributional misalignment between pre-training
and downstream tasks, and adapt the model to the diverse
distributions across hops.

• We conduct extensive experiments on both node and graph
classification tasks using 10 datasets and 14 baselines. DAG-
PrompT demonstrates remarkable performance improve-
ments, improving the accuracy up to 7.55%. We further
evaluate DAGPrompT in terms of data heterophily level,
number of shots, transferability, efficiency, and ablation
studies.

2 Preliminary
Notations. Consider an undirected graph G = {V, E}, whereV

represents the set of 𝑁 nodes and E represents the set of 𝐸 edges.
The graph is described by its adjacency matrix A ∈ R𝑁×𝑁 , where
A𝑖 𝑗 = 1 if and only if there exists an edge 𝑒𝑖 𝑗 ∈ E connecting node
𝑣𝑖 and node 𝑣 𝑗 . Additionally, each node 𝑣𝑖 ∈ V is associated with
the feature vector X𝑖 ∈ R𝑁×𝐹 and a label y𝑖 , with 𝐹 representing
the dimension of the node features.

Graph Homophily Measurements. Real-world graphs are inher-
ently complex, often featuring diverse internal structures where
nodes follow varying patterns [20, 24]. Heterophily provides a use-
ful lens for analyzing these structures, particularly through the
concept of label consistency, measured by the homophily ratio [42]
ℎ =

| { (𝑣𝑖 ,𝑣𝑗) :(𝑣𝑖 ,𝑣𝑗) ∈E∧y𝑖=y𝑗 } |
| E | . ℎ represents the fraction of edges in

E that connect nodes with the same label. High homophily indi-
cates strong similarity between connected nodes (ℎ near 1), while
low homophily suggests greater dissimilarity (ℎ near 0).

Graph Neural Networks (GNNs). The remarkable success of GNNs
can largely be attributed to the message-passing mechanism [32],
and a general GNN layer can be defined as:

H(𝑙+1)𝑖 = 𝑓𝜃

(
AGGR

(
H(𝑙)𝑖 ,

{
H(𝑙)𝑗 : 𝑣 𝑗 ∈ N𝑖

}))
, (1)

where H(𝑙) ∈ R𝑁×𝑑 (𝑙) represents the node embeddings at layer
𝑙 , with initial embeddings H(0) = X. The term 𝑑 (𝑙) denotes the
dimensionality at layer 𝑙 , AGGR(·) aggregates the neighboring
node embeddings, and 𝑓𝜃 applies a projection, for example, using a
linear transformation followed by non-linear activation (e.g., ReLU).

Fine-tuning Pre-trained GNNs. For a pre-trained GNN model 𝑓 ,
a learnable projection head 𝜃 , and a downstream task (e.g., node

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

DAGPrompT: Pushing the Limits of Graph Prompting with a Distribution-aware Graph Prompt Tuning Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

GNN Encoder

Sampled Graphs

Link Prediction Loss

(a) Pre-training

GNN Encoder GLoRATransfer Class Tokens

Sim Eval

Sim Eval

(b) Hop-specific Graph Prompting with GLoRA Tuning.

Sim

Sim

Frozen

Pre-training Tuning Prompting

Projection

Message
Passing

Figure 3: The framework of Distribution-aware Graph Prompt Tuning.

classification) dataset D, we fine-tune the parameters of 𝑓 and 𝜃 to
maximize the likelihood of predicting the correct labels y in D:

max
𝑓 ,𝜃

𝑃𝑓 ,𝜃 (y | D) (2)

Prompting Pre-trained GNNs. Given a GNN model 𝑓 pre-trained
under task Tpt, a set of learnable prompting parameters {𝜃 }, and
a downstream task dataset D for task Tds, we introduce a task
reformulation function ℎ. This function maps the downstream task
to a form consistent with the pre-trained task Tpt. For instance,
node classification (Tds) can be reformulated as link prediction
(Tpt) by introducing pseudo nodes, where labels are assigned by
predicting the most probable links between nodes and pseudo nodes
[27]. During the prompting, the parameters of 𝑓 are frozen, and
we optimize 𝜃 to maximize the likelihood of predicting the correct
labels y, guided by ℎ:

max
{𝜃 }

𝑃𝑓 ,{𝜃 } (y | ℎ(D)) (3)

3 Method
In this section, we elaborate on the Distribution-aware Graph
Prompt Tuning (DAGPrompT). The framework of DAGPrompT
is illustrated in Figure 3, which consists of two stages: (i) Link-
prediction-based pre-training. (ii) Graph Low-rank Adaptation with
Hop-specific Graph Prompting. We also provide a detailed algo-
rithm in Appendix A and a complexity analysis in Appendix B.

3.1 Label-free Pre-Training
The pre-training strategy is essential for few-shot learning, allow-
ing the model to capture graph structures across diverse domains
without labeled data, as shown by several approaches [18, 27, 28, 41].
It also aids in capturing local structures and reduces over-fitting
[19]. We adopt link prediction for pre-training due to its advan-
tages: (i) the abundance of inherent edge data in graphs, and (ii)
alignment in objective forms between pre-training and downstream
tasks, as tasks like node and graph classification can be seamlessly
reformulated as link prediction by introducing pseudo-nodes or
pseudo-graphs [18, 27].

Consider a node 𝑣 in a graph G. For training, a positive node 𝑎 is
selected from the neighbors of 𝑣 , and a negative node𝑏 from the non-
neighbors, forming a triplet (𝑣, 𝑎, 𝑏). Let the GNN encoder 𝑓 produce
the corresponding embeddings s𝑣 , s𝑎 , and s𝑏 . By considering all
nodes in G, the pre-training dataset Tpt is constructed. The pre-
training loss is then defined as:

Lpt (Θ) = −
∑︁

(𝑣,𝑎,𝑏) ∈T
ln exp (sim (s𝑣, s𝑎) /𝜏)∑

𝑢∈{𝑎,𝑏} exp (sim (s𝑣, s𝑢) /𝜏)
, (4)

where 𝜏 is a temperature hyper-parameter that controls the sharp-
ness of the output distribution, and Θ represents the parameters
of the function 𝑓 . The goal of pre-training for link prediction is
to push node embeddings connected by edges closer in the latent
space, while separating those without connections [18].

3.2 Distribution-aware Graph Prompt Tuning
In this subsection, we discuss tuning and prompting the pre-trained
GNN 𝑓 for downstream tasks in a distribution-aware approach. We
introduce the Graph Low-Rank Adaptation (GLoRA) module, which
aligns the projection and message passing scheme of 𝑓 with the dis-
tribution of downstream tasks through low-rank adaptation. This
approach preserves the knowledge embedded in the pre-trained
weights while adapting to new tasks. We then detail the prompting
module, which links diverse downstream tasks to the pre-training
objective, ensuring alignment with the unique downstream distri-
butions in a hop-decoupled manner.

3.2.1 Tuning with Graph Low-Rank Adaptation. Previous works
often pre-train GNNs and keep them frozen during prompting, re-
lying on learnable prompts for downstream tasks [9, 18, 27, 28].
While effective in graphs with strong homophily, this approach un-
derperforms in more complex settings, such as graphs with strong
heterophily, as shown in Figure 2. Freezing the GNN can lead to per-
formance degradation in such cases, as most pre-training methods
are label-agnostic, and downstream objectives often differ from pre-
training goals, especially in heterophily graphs. For instance, link
prediction favors similar embeddings for connected nodes, which
aligns with homophily but fails in heterophily, where connected
nodes may have dissimilar characteristics. As illustrated in Figure 1,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

on heterophily graphs, pre-training without tuning the GNN en-
coder can result in nodes with different labels being mapped too
closely in latent space, making them difficult to distinguish dur-
ing prompting. However, tuning GNN parameters directly during
prompting presents other challenges, including computational inef-
ficiency and the risk of over-fitting due to sparse downstream labels
[19]. A theoretical analysis is offered in section 4, with experimental
results in subsection E.6. A theoretical analysis of these issues is
provided in section 4, with corresponding experimental results in
subsection E.6.

To efficiently adapt to the distributions of downstream tasks
while preserving the knowledge in the pre-trained weights, we in-
troduce the Graph Low-Rank Adaptation (GLoRA) module, inspired
by LoRA from the NLP field [11]. GLoRA targets two components
during fine-tuning: (i) the message-passing scheme and (ii) the pro-
jection matrices. Formally, for the 𝑙-th GNN layer, the fine-tuning
process with GLoRA is expressed as follows:

H(𝑙) =
(
A + P(𝑙)A Q(𝑙)A

⊤)
H(𝑙−1)

(
W(𝑙)0 + P(𝑙)Q(𝑙)

⊤)
, (5)

where W(𝑙)0 represents the frozen parameters of the 𝑙-th GNN layer.
P(𝑙) ,Q(𝑙) ∈ R𝑑×𝑟 and P(𝑙)A ,Q(𝑙)A ∈ R

𝑁×1 denotes the trainable low-
rank adaptation matrices of layer 𝑙 with rank of 𝑟 and 1, respectively.
Note that 𝑟 << 𝑑 , and for extremely large graphs, P(𝑙)A Q(𝑙)A

⊤
can

be further reduced, see Appendix A for details.
The adaptation in GLoRA operates on two levels: (i) PA and QA

adjust the message-passing process, allowing for more effective
alignment with downstream tasks by modulating the connections
between nodes; and (ii) P and Q adapt the projection matrices. This
dual adaptation allows DAGPrompT to handle diverse downstream
task distributions, such as disentangling embeddings of connected
nodes with different labels. It retains the benefits of pre-training,
including efficient few-shot learning and adaptability to new tasks.
Meanwhile, the frozen parameters preserve the knowledge acquired
during pre-training.

3.2.2 Hop-specific Graph Prompting.

Unification of Downstream Tasks. We begin the elaboration of
our prompting technique by introducing how we unify various
downstream tasks. To achieve this, we reformulate all downstream
tasks as sub-graph level tasks, as they represent a general and
expressive framework for many tasks [28]. This allows us to adapt
various downstream tasks to our link-prediction pre-training task.
Formally, given a node 𝑣 in a graph G, we define its 𝑘-hop neighbor-
hood as N𝑘 (𝑣) and its embedding (produced by the GNN encoder
𝑓) as s𝑘,𝑣 . Consequently, we have:

• Link-Prediction. Given a node triplet (𝑣, 𝑎, 𝑏) where an
edge exists between nodes (𝑣, 𝑎) but not between (𝑣, 𝑏)
does not, it’s expected that sim(s𝑘,𝑣, s𝑘,𝑎) > sim(s𝑘,𝑣, s𝑘,𝑏).
Here, the similarity measure (sim) can be computed using
methods such as cosine similarity.

• NodeClassification. In a graphwith𝐶 labels, we construct
𝐶 pseudo-nodes, with their embeddings initialized as the
mean of the embeddings of nodes from the same class in
the training set. The label prediction task for a node 𝑣 is
then reduced to identifying the pseudo-node most likely to

form an edge with 𝑣 , transforming the problem into a link
prediction task.

• Graph Classification. For a set of graphs with𝐶 labels, we
generate 𝐶 pseudo-graphs, initializing their embeddings as
the average of the graph embeddings from the training set.
Similar to node classification, predicting a graph’s label is
formulated as a link prediction problem between the graph
and the pseudo-graphs.

Conventional approaches with GNN encoders of 𝐿 layers typi-
cally rely on the final layer embedding H(𝐿) , or a combination of
all intermediate embeddings for prompting [9, 18, 27]. However,
these methods often fail to account for hop-specific preferences
of different nodes, limiting their adaptability. For example, in het-
erophilic graphs like dating networks where gender is the label, the
first-hop neighborhood may exhibit heterophily, while the second-
hop neighborhood may show homophily [20, 42]. We illustrate
this in Figure 7. Given the varying distributions across hops and
their potential differing impact on performance [42], we propose
decoupling the graph prompting process in a hop-specific manner.

First, we collect intermediate embeddings from GNN layers to
construct a more informative sequence than using only H(𝐿) :

H =

[
H(0) ∥H(1) | | · · · ∥H(𝐿)

]
∈ R(𝐿+1)×𝑁×𝑑 , (6)

where H(𝑙) represents the embedding produced by the 𝑙-th layer
of the GNN encoder, and H(0) = Linear(X). Then, we gather the
Layer-specific Class Prompts from each layer:

P =

[
P(0) ∥P(1) | | · · · ∥P(𝐿)

]
∈ R(𝐿+1)×𝐶×𝑑

P(𝑙)𝑐 =
1

|Dtrain
𝑐 |

|Dtrain
𝑐 |∑︁

𝑣∈D train
𝑐

H(𝑙)𝑣 + Θ(𝑙)𝑐 ,
(7)

where 𝐶 denotes the number of classes in the dataset, Dtrain
𝑐 rep-

resents the subset of the training dataset with label 𝑐 , and Θ(𝑙) ∈
R𝐶×𝑑 is a layer-specific learnable prompt that enhances the model’s
representational capacity. These Layer-specific Class Prompts cap-
ture the hop-specific representations of the training nodes, allowing
for more precise prompting and evaluation at each hop.

Based on the two sequences of node embeddings H, and class
tokens P, we prompt the graph in a hop-specific manner, effectively
addressing the diverse hop-wise distributions present in graphs:

S(𝑙) = Sim
(
H(𝑙) , P(𝑙)

)
, 𝑙 = 0, 1, · · · , 𝐿, (8)

where Sim(·, ·) is a similarity function, for which we adopt cosine
similarity, and S(𝑙) represents the prompted scores at hop 𝑙 . Finally,
we introduce a set of learnable coefficients to adaptively integrate
these scores and obtain the final result:

S̃ =

𝐿∑︁
𝑙=1

𝛾 (𝑙)S(𝑙) , Ŷ = argmax
𝑐

S̃𝑐 , (9)

where S̃𝑐 denotes the score for label 𝑐 , and 𝛾 (𝑙) ∈ R is a learnable
parameter, initially set as 𝛾 (𝑙) = 𝛼 (1 − 𝛼)𝑙 with 𝛾 (𝐿) = (1 − 𝛼)𝐿 ,
where 𝛼 ∈ [0, 1] is a hyper-parameter. This setup incorporates prior
knowledge about the relative importance of different hops in the
graph, controlled by 𝛼 . For instance, by tuning 𝛼 , one can prioritize

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

DAGPrompT: Pushing the Limits of Graph Prompting with a Distribution-aware Graph Prompt Tuning Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

closer hops over distant ones, or adjust the relative importance be-
tween them. During training, DAGPrompT adaptively refines 𝛾 (𝑙) ,
which helps handle the diverse distributions across hops, improv-
ing model performance. Additionally, it remains computationally
efficient, requiring only a small number of additional parameters.

Finally, we adopt the following loss to optimize the parameters
with a temperature 𝜏 and a cosine similarity function Sim(·, ·):

Lds = −
𝐿∑︁
𝑙=0

∑︁
(𝑥𝑖 ,𝑦𝑖) ∈Dtrain

exp
(
Sim

(
H(𝑙)𝑥𝑖 , P

(𝑙)
𝑦𝑖

)
/𝜏
)

∑𝐶
𝑐=1 exp

(
Sim

(
H(𝑙)𝑥𝑖 , P

(𝑙)
𝑐

)
/𝜏
) (10)

4 Theoretical Analysis
In this section, we present a theoretical analysis of the GLoRA
module. Although low-rank adaptation may be less optimal than
full-parameter fine-tuning in NLP tasks [31], we demonstrate that in
few-shot settings, low-rank adaptation proves to be more effective.

Theorem 1. LetH be a hypothesis class, and D = {(𝑥𝑖 , 𝑦𝑖)} be
a dataset of𝑚 i.i.d. samples. Suppose the loss function ℓ (ℎ(𝑥), 𝑦) is
bounded by 0 ≤ ℓ (ℎ(𝑥), 𝑦) ≤ 𝐵. Then, with probability at least 1 − 𝛿 ,
for all ℎ ∈ H , we have:

𝐿(ℎ) − �̂�D (ℎ) ≤ 2RD (H) + 3𝐵
√︂

log(2/𝛿)
2𝑚 ,

where 𝐿(ℎ) is the true risk, �̂�D (ℎ) is the empirical risk, and RD (H)
is the empirical Rademacher complexity [25].

When data is limited, the second term grows large due to the
small𝑚, making it crucial to minimize the first term, which is in-
fluenced by model complexity. Low-rank adaptations like GLoRA
reduce model complexity by using much fewer parameters, tight-
ening the generalization bound, and improving performance in
few-shot settings. In contrast, freezing all parameters (resulting
in zero complexity) leads to high empirical risk �̂�D (ℎ) and under-
fitting, which is sub-optimal. GLoRA strikes a balance between
flexibility and complexity, enhancing generalization in limited data
scenarios. The experiment in subsection E.6 supports this analysis.

5 Experiments
In this section, we evaluate the capability of DAGPrompT by ad-
dressing the following key questions:

• Q1: How does DAGPrompT perform compared to state-of-
the-art models on real-world datasets?

• Q2: How does the internal data distribution, such as het-
erophily levels, affect DAGPrompT’s performance?

• Q3: How does the number of labels impact DAGPrompT’s
performance?

• Q4: How well does DAGPrompT transfer to other graphs?
• Q5:What is the running efficiency of DAGPrompT?
• Q6:Howdo themain components of DAGPrompT influence

its performance?
• Q7: How does fine-tuning with GLoRA benefit learning?

We also conduct additional experiments on other backbones,
along with a full-shot evaluation, parameter analysis, and visual-
izations of graph hop-wise distributions and GLoRA weights, as
detailed in Appendix E.

5.1 Datasets and Settings

Table 1: Statistics for node-classification datasets. ℎ stands
for the homophily ratio.

Dataset #Nodes #Edges #Attributes #Class ℎ

Texas 183 325 1703 5 0.11
Wisconsin 251 515 1703 5 0.20
Cornell 183 298 1703 5 0.30
Chameleon 2277 36101 1703 5 0.20
Squirrel 5201 217073 2089 5 0.22
Arxiv-year 169343 1166243 128 5 0.22
Cora 2708 10556 1433 7 0.81

Table 2: Statistics for graph-classification datasets.

Dataset #Graphs #Avg.Nodes #Avg.Edges #Attributes #Class
Texas* 183 10.5 9.96 1703 5
Chameleon* 2277 16.3 31.3 1703 5
MUTAG 177 17.9 19.7 7 2
COX2 467 41.2 43.5 3 2
ENZYMES 600 32.6 62.2 3 6

We evaluate DAGPrompT on both few-shot node classification
and graph classification tasks. For the few-shot node classification,
we use seven datasets of varying scales, types, and heterophily
levels. Texas, Wisconsin, Cornell, Chameleon, Squirrel [23], and
Arxiv-Year [17] represent well-known heterophily datasets, while
Cora [35] is a commonly used homophily graph. The dataset sta-
tistics are provided in Table 1. Additionally, we generate synthetic
graphs with varying levels of heterophily following [20]. Classifi-
cation accuracy is measured on five-shot and ten-shot settings for
all datasets. For few-shot graph classification, we adapt the Texas
and Chameleon datasets (denoted with ∗) by sampling each node’s
2-hop neighbors and labeling each graph with the center node’s
label. We also include three molecular datasets—MUTAG, COX2,
and ENZYMES [15]—for comparison, they are evaluated under a
five-shot setting. Further details can be found in Appendix D.

5.2 Involved Baselines & Settings
To thoroughly evaluate the effectiveness of DAGPrompT, we com-
pare it with several state-of-the-art baselines, categorized as follows:

• Supervised. We train GCN [13] from scratch, which is
widely used for homophily graphs. Additionally, we include
heterophily-aware GNNs such as H2GCN [42], GPR-GNN
[6], and ALT-GNN [33] for comparison.

• Pre-training + Fine-tuning.We pre-train GCN using link
prediction (LP) [19], DGI [30], and GraphCL [36], and then
fine-tune the models on downstream tasks.

• Pre-training + Prompting. We pre-train GNNs using the
link-prediction task (or the task specified by each model)
and prompt them with graph prompting techniques. The
graph prompting methods considered include GPPT [27],
GraphPrompt [18], GPF, GPF-Plus [9], All-In-One [28], HG-
Prompt [37], and GCOPE [41].

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

We employ the Adam Stochastic Gradient Descent optimizer [8]
with a learning rate 𝜂 ∈ {0.1, 0.5, 1, 5, 10} × 10−4, a weight decay
in {0, 2.5, 5} × 10−6, and a maximum of 200 epochs to train all
models. The dimensions of hidden representations are set to 128
or 256. We choose 𝑟 in {8, 16, 32}, and 𝛼 in {0.1, 0.3, 0.5, 0.7, 0.9}.
Hyper-parameters are selected based on performance. We train all
the models on five NVIDIA RTX4090 with 24G memory. For a fair
comparison, we use GCN as the backbone for all models except
for GCOPE, where FAGCN [2] is recommended. For GPF and GPF-
Plus, we choose the link-prediction task for pre-training, referring
to them as GPF-LP and GPF-Plus-LP. The pre-training strategies
for other methods follow the approaches outlined in their original
papers.

5.3 Evaluation on Real-world Datasets (Q1)
We evaluate DAGPrompT with GCN as the backbone, as shown in
Table 3, and draw the following key observations: (i) DAGPrompT
consistently outperforms other baselines by a large margin.
The performance improvements on heterophily datasets are par-
ticularly notable, with up to a 7.55% increase on Texas and an
average improvement of 3.63% across all datasets. (ii) Fine-tuning
or prompting methods sometimes underperform compared
to training from scratch on heterophily graphs. For example,
H2GCN, trained from scratch, surpasses most graph prompt meth-
ods on Texas, Cornell, and Wisconsin. This supports the claim in
section 1 that larger gaps exist between pre-training and down-
stream tasks in complex graphs, where task reformulation and
prompting alone are insufficient to bridge the gap caused by intri-
cate graph distributions. The heterophily in these graphs limits the
effectiveness of prompt-based methods in learning embeddings. (iii)
Fewer labels for training significantly hinder models trained
from scratch, especially in heterophily settings. On graphs
with smaller label ratios, Chameleon, Squirrel, and Arxiv-year, even
non-heterophily-aware models, such as GraphPrompt, outperform
heterophily-aware models by a large margin. This may be due to
better utilization of graph structure during the pre-training and
fine-tuning phases.

We also conduct experiments on the graph classification task1,
as shown in Table 4, where DAGPrompT consistently delivers the
best performance.

5.4 Evaluation on Data Heterophily (Q2) and
Number of Shots (Q3)

We investigate the impact of varying heterophily levels by gener-
ating a series of synthetic graphs, Syn-Chameleon, based on the
Chameleon dataset. Following the method in [20], we control the
homophily ratio of Syn-Chameleon by adjusting the edges, allow-
ing the homophily ratio to range from 0.9 (strong homophily) to 0.1
(strong heterophily). Models are evaluated on these graphs under a
full-shot setting, using 50% of the nodes for training to minimize the
effect of label quantity. The results, shown in Figure 4, demonstrate
that DAGPrompT consistently outperforms the baselines, especially
in strong heterophily scenarios. Notably, heterophily-aware models
like GPR-GNN outperform most non-heterophily-aware models,
such as GraphPrompt and GPF-Plus-LP, in this setting.
1Baselines unsuitable for graph classification are excluded.

DAGPrompT Scratch Finetune-LP GraphPrompt
GPF-Plus-LP GCOPE GPR-GNN

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

60

80

100

Homophily Ratio ℎ

Ac
cu
ra
cy

(%
)

Figure 4: Impact of data heterophily on Syn-Chameleon.

DAGPrompT Scratch Finetune-LP GraphPrompt
GPF-Plus-LP GCOPE GPR-GNN

1 3 5 10
20

40

60

80

Shot 𝑘
Ac

cu
ra
cy

(%
)

Texas

1 3 5 10

30

40

50

60

Shot 𝑘
Chameleon

Figure 5: Impact of shots on Texas and Chameleon.

We evaluate the effect of varying shot numbers on the Texas and
Chameleon datasets, as shown in Figure 5, by adjusting the shot
count from 1 to 10. Overall, DAGPrompT consistently outperforms
the baselines, with the most notable improvements occurring at
5-shot on Texas (5.51%) and 3-shot on Chameleon (3.99%). As the
number of shots increases, the non-pre-trained model, GPR-GNN,
demonstrates a considerable advantage over prompt-based meth-
ods. However, in scenarios with extremely limited labeled data,
GPR-GNN underperforms significantly, lagging behind prompting
approaches.

These two experiments reinforce the findings from subsection 5.3:
heterophily and label scarcity are key factors that limit model per-
formance. Prompting methods address label scarcity but overlook
heterophily, while heterophily-oriented methods generally neglect
label scarcity. If either issue is inadequately addressed, performance
declines significantly, underscoring the need for a distribution-
aware graph prompting approach.

5.5 Evaluation on Transfer Ability (Q4)
We evaluate the transferability of DAGPrompT in Table 5. For pre-
training, we use the Texas dataset as the source domain and test
the transfer to downstream tasks on the Cornell, Wisconsin, and
Chameleon datasets. Models with the suffix -Scratch are those
trained directly on the downstream tasks without pre-training,
while models with the suffix -Cross are pre-trained on the source
domain and then fine-tuned (or prompted) on the target domains.

The results show that pre-training, even across different domains,
generally enhances model performance. DAGPrompT exhibits the
most significant improvement when transitioning from training

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

DAGPrompT: Pushing the Limits of Graph Prompting with a Distribution-aware Graph Prompt Tuning Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Summary of the mean and standard deviation of accuracy across all runs for the few-shot node classification tasks.
The best results for each dataset are highlighted in gray. GCN is used as the backbone encoder, except for H2GCN, GPR-GNN,
ALT-GNN, and GCOPE, which use their specific architectures.

Texas (0.11) Cornell (0.31) Wisconsin (0.20) Chameleon (0.20) Squirrel (0.22) Arxiv-year (0.22) Cora (0.81)

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot
Label Ratio 13.6% 27.3% 13.6% 27.3% 9.9% 19.9% 1.09% 2.19% 0.48% 0.96% 0.0147% 0.0295% 1.29% 2.58%

GCN 56.32±3.45 58.55±4.92 59.01±4.10 63.42±3.24 56.24±3.97 56.37±3.12 31.61±3.32 34.04±4.42 21.07±0.82 23.01±1.73 22.05±1.36 23.94±1.34 55.27±1.34 58.45±1.74
H2GCN 72.95±3.30 76.75±4.74 77.86±4.82 82.62±5.86 68.38±2.95 72.72±3.74 44.74±2.95 49.64±2.75 29.47±2.43 30.61±3.48 28.65±1.44 30.23±1.37 66.56±1.37 69.45±1.42
GPR-GNN 74.83±2.84 77.44±3.96 79.73±3.85 82.87±4.02 71.42±3.28 73.24±2.58 43.32±2.52 50.96±3.28 28.93±1.36 32.05±2.86 28.49±2.94 30.47±2.41 69.03±1.40 71.42±1.08
ALT-GNN 74.36±2.86 78.42±2.76 78.72±3.46 83.51±3.75 70.45±2.38 73.52±2.01 45.51±2.47 52.84±1.98 30.73±2.23 33.26±2.97 29.05±2.74 30.20±1.98 68.15±1.09 71.30±1.42

Finetune-LP 52.26±4.42 52.23±6.15 56.20±4.66 61.53±5.57 55.27±3.85 57.84±2.90 32.26±4.21 35.69±4.28 22.55±1.52 24.29±2.38 22.26±2.16 24.29±1.51 60.31±2.06 65.26±2.07
Finetune-DGI 50.32±5.84 51.52±9.17 54.36±6.31 62.61±6.08 51.45±5.66 54.95±6.02 32.55±1.92 36.58±3.07 22.27±1.87 24.41±1.19 23.22±1.96 24.80±1.72 61.78±2.32 64.75±3.97
Finetune-GCL 46.17±4.13 49.54±6.89 52.06±4.81 61.98±3.10 46.39±5.68 52.48±9.52 30.13±2.42 36.85±5.37 21.07±5.86 22.46±4.97 22.19±3.48 22.91±7.01 53.91±2.96 57.81±2.85
GPPT 54.56±5.24 59.93±4.37 56.79±6.02 62.47±5.37 53.57±2.48 53.94±3.21 38.75±1.55 43.86±2.92 25.78±2.23 28.32±2.86 24.45±1.19 25.08±1.47 63.34±1.84 65.96±1.32
GraphPrompt 68.90±1.95 69.73±2.02 72.38±6.89 79.62±6.99 66.88±2.25 68.09±2.76 47.89±4.17 52.84±2.77 30.23±3.87 32.93±2.45 28.46±1.02 28.76±2.18 70.21±1.35 71.74±0.97
GPF-LP 66.93±6.06 66.01±0.82 69.14±7.40 72.01±8.35 59.46±2.59 61.67±2.43 45.76±2.16 47.55±3.03 28.57±2.79 29.45±1.90 28.64±5.82 29.03±3.84 65.30±2.45 67.31±2.94
GPF-Plus-LP 71.99±4.41 75.51±2.38 78.17±8.48 82.24±3.97 68.26±4.32 72.82±2.45 49.40±3.21 53.37±2.89 31.08±2.06 33.29±2.45 29.45±3.32 30.06±1.72 69.43±1.09 70.85±1.86
All-In-One 71.85±3.08 74.70±2.37 79.42±5.27 81.37±4.72 69.63±3.09 70.18±2.67 48.09±2.97 53.63±2.84 30.22±2.01 32.58±2.74 29.85±3.62 30.89±2.84 67.04±2.01 70.42±1.64
HGPrompt 67.48±2.08 70.30±2.02 72.01±5.33 73.47±6.38 65.87±3.27 66.08±3.58 46.87±3.29 53.10±3.04 30.09±2.33 32.46±2.98 28.41±1.34 28.90±2.08 68.42±1.37 69.54±1.54
GCOPE 75.85±2.36 77.50±1.94 78.53±4.74 82.04±5.36 71.45±2.86 73.85±2.84 49.24±3.37 54.01±2.74 31.32±2.45 34.06±2.45 29.59±1.45 30.67±1.98 69.24±1.35 70.57±2.64

DAGPrompT 81.36±4.93 83.10±2.92 87.28±1.64 89.30±1.44 76.37±1.17 76.52±2.84 53.38±1.97 58.29±2.12 34.95±2.77 36.54±2.77 31.06±1.03 31.99±0.98 71.60±1.77 73.42±0.43
Improvement 5.51 4.68 7.55 5.79 4.92 2.67 3.98 4.28 3.63 2.48 1.21 1.10 1.39 1.68

Table 4: Summary of the mean and standard deviation of
accuracy across all runs for the graph classification. The best
results for each dataset are highlighted in gray.

Texas* Chameleon* MUTAG COX2 ENZYMES

Scratch 52.46±2.34 25.30±2.84 56.43±2.85 45.98±4.97 22.65±3.85
Finetune-LP 53.37±1.84 25.75±2.85 58.87±1.65 51.45±3.65 24.90±4.74
GraphPrompt 72.75±2.09 44.18±2.51 73.85±1.97 55.86±5.73 25.67±3.49
GPF-LP 68.34±2.14 41.01±3.30 70.68±2.75 40.87±5.67 20.58±1.97
GPF-Plus-LP 71.06±2.56 46.27±4.41 73.86±1.90 54.80±3.48 25.65±3.97
All-In-One 73.46±1.90 46.26±2.85 74.58±1.85 55.03±3.48 26.08±4.86
HGPrompt 70.56±2.86 45.93±2.38 73.46±1.37 50.07±4.87 22.75±4.87
GCOPE 73.64±2.11 46.78±2.85 73.98±2.64 52.18±3.38 25.45±5.38
DAGPrompT 79.53±2.89 51.26±3.44 76.01±1.79 56.46±4.76 26.71±4.22
Improvement 5.89 4.48 1.43 0.60 0.63

Table 5: Transfer ability measured by classification accuracy
across different domains. Source domain: Texas. Target do-
mains: Cornell, Wisconsin, and Chameleon.

Cornell Wisconsin Chameleon

Finetune-LP-Scratch 59.01±4.10 56.24±3.97 31.61±3.32
Finetune-LP-Cross 60.50±2.30 56.58±1.90 31.18±2.81
All-In-One-Scratch 64.16±2.13 63.96±2.90 32.56±2.13
All-In-One-Cross 75.57±2.47 66.85±2.48 45.86±2.41
DAGPrompT-Scratch 65.58±1.65 63.34±2.95 33.45±2.09
DAGPrompT-Cross 82.45±2.74 70.75±2.84 52.08±1.38

from scratch to cross-domain pre-training, highlighting its strong
transferability. This makes DAGPrompT particularly useful in cases

where initial training data is unavailable or unsuitable due to pri-
vacy concerns or computational constraints.

5.6 Efficiency Analysis (Q5)

Table 6: Efficiency analysis on the Chameleon dataset, re-
porting iterations per second, peak GPU memory (MB), and
the number of tunable parameters. The average rank across
these metrics is also provided. "PT" refers to pre-training,
"DS" to downstream, "-" indicates not applicable, and "K" rep-
resents thousand.

Iter/sec. ↑ Memory ↓ T.Parameters ↓ Avg.Rank ↓
PT DS PT DS PT DS

Scratch - 72.82 - 889 - 331K #3.3
Finetune-LP 2.82 69.68 586 896 331K 331K #3.3
GPPT 1.30 5.35 583 1527 331K 3.8K #4.2
GraphPrompt 2.57 37.81 591 2101 331K 2K #3.2
GPF-Plus-LP 2.09 34.97 591 2515 331K 93.5K #5.2
All-In-One 1.86 20.45 853 3064 331K 7.4K #6.3
HGPrompt 2.49 24.57 585 2908 331K 2K #4.0
GCOPE 0.49 1.37 525 2184 92.5K 47.6K #5.2
DAGPrompT 2.60 27.54 585 2121 331K 6.4K #3.5

We evaluate the efficiency of DAGPrompT on the Chameleon
dataset, as shown in Table 6. The results demonstrate that DAG-
PrompT is generally efficient, exhibiting fast running speed, low
GPU memory consumption, and a small number of tunable parame-
ters. Overall, DAGPrompT ranks highly in terms of time efficiency,
memory usage, and parameter efficiency.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 6: t-SNE visualization of GNN encoder embeddings on
the Chameleon dataset, with and without GLoRA.

5.7 Ablation Study (Q6)

Table 7: Ablation Study on Texas, Cornell, and Chameleon.
"w/o" denotes without.

Texas Cornell Chameleon

DAGPrompT 81.36±4.93 87.28±3.63 53.38±1.97
w/o GLoRA 79.01±4.29 84.44±2.04 50.74±1.43
w/o Layer-Specific Prompts 79.46±3.95 84.42±3.46 53.17±2.47
w/o Coefficients 𝛾 78.45±3.84 82.08±3.94 51.47±2.47

We conduct an ablation study to evaluate the contribution of each
component in DAGPrompT, as detailed in Table 7, by disabling them
individually. For the coefficients 𝛾 in Equation 9, we fix all values to
1. The results show that GLoRA significantly boosts performance.
Additionally, the coefficients 𝛾 further enhance results. Overall,
each component contributes to performance to varying extents.

5.8 GLoRA Visualizations (Q7)
We extract embeddings from the GNN encoder on the Chameleon
dataset, both with and without GLoRA, and visualize them using t-
SNE, as shown in Figure 6. The results show that GLoRA enhances
the GNN encoder’s ability to adapt to new distributions during
fine-tuning and prompting. With GLoRA, the label clusters are
more compact and separable, indicating that the embeddings are
adjusted according to label information in heterophily graphs. The
issue illustrated in Figure 1, where connected nodes with different
labels have indistinguishable embeddings, is mitigated. This im-
proved separability facilitates classification, contributing to a 2.64%
performance increase compared to the variant without GLoRA.

6 Related Works
6.1 Graph Pre-training and Prompting
In recent years, significant advancements have been made in the
development of pre-trained Graph Neural Networks (GNNs). These
methods can be broadly categorized into three main types: (i) Graph
Property Reconstruction-Based Methods, which focus on reconstruct-
ing specific graph properties such as node attributes [10, 12] or
links [14, 19]; (ii) Sub-Graph Contrastive Methods, which distinguish
positive subgraphs from negative ones [36, 40, 44]; and (iii) Local-
Global Contrastive Methods, which leverage mutual information to
encode global patterns in local representations [26, 30].

The aforementioned approaches often overlook the objective
gap between pre-training and fine-tuning, which limits their gen-
eralization across tasks [28]. To address this, recent studies have
adopted prompting techniques inspired by advances in Natural
Language Processing fields [3, 4]. GPPT [27] was the first to incor-
porate learnable graph label prompts, reformulating downstream
node classification tasks as link prediction tasks to narrow the
gap between pre-training and fine-tuning. VNT [29] introduces
prompts specifically tailored for pre-trained graph transformers in
node classification tasks. Subsequently, GraphPrompt [18] intro-
duced a unified template to accommodate a broader range of down-
stream tasks. All-in-One [28] reformulated all downstream tasks
into graph-level tasks and integrated meta-learning techniques for
multi-task prompting. GPF and GPF-Plus [9] proposed a universal
prompting system operating solely within the node feature space.
While prior work primarily focused on downstream tasks, GCOPE
[41] shifted the emphasis to the pre-training phase, combining dis-
parate graph datasets to distill and transfer knowledge to target
tasks. Additionally, HGraphPrompt [37] and HetGPT [21] extended
prompting techniques to heterogeneous graph learning, broadening
the scope of their application. Recent studies have also explored
cross-domain prompting [34, 39, 43] and multi-task prompting[38].
However, these methods often neglect the complex distributions in
graph data, resulting in performance degradation.

6.2 Heterophily Graph Learning
Traditional GNNs typically assume homophily (similarity between
connected nodes) [22] and are less effective in heterophily graphs,
where connected nodes differ significantly [42]. To address this,
models such as H2GCN [42] and GPR-GNN [6] enhance message-
passing with high-order re-weighting techniques to improve com-
patibility with heterophily. LINKX, a simpler model, is optimized
for large-scale heterophily learning [17]. Other approaches, in-
cluding GloGNN [16], GCNII [5], MWGNN [20], ALT-GNN [33],
and AGS-GNN [7] refine graph convolution for heterophilous data.
However, most heterophily-aware models are designed for training
from scratch in label-rich scenarios and face generalization and
over-fitting issues in few-shot settings.

7 Conclusion
In this paper, we push the limits of the graph prompting paradigm
to graphs with complex distributions, such as heterophily graphs.
We observe that current methods struggle to generalize in these
settings and are, in some cases, outperformed by simple models
trained from scratch. We identify two key challenges for better
generalization on complex graphs: (i) adapting the model to new
distributions in downstream tasks to reduce discrepancies between
pre-training and fine-tuning due to heterophily, and (ii) aligning
model prompts to the hop-specific needs of different nodes. To
address these challenges, we propose Distribution-aware Graph
Prompt Tuning (DAGPrompT), which includes a GLoRA module
and a Hop-specific Graph Prompting module, corresponding to the
two challenges outlined above. Our experiments across 10 datasets
and 14 baselines demonstrate the state-of-the-art performance of
DAGPrompT, achieving up to a 7.55% improvement in accuracy.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

DAGPrompT: Pushing the Limits of Graph Prompting with a Distribution-aware Graph Prompt Tuning Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. 2021. Intrinsic Di-

mensionality Explains the Effectiveness of Language Model Fine-Tuning. In
Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6,
2021.

[2] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond low-frequency
information in graph convolutional networks. In Proceedings of the AAAI confer-
ence on artificial intelligence, Vol. 35. 3950–3957.

[3] Jonathan Bragg, Arman Cohan, Kyle Lo, and Iz Beltagy. 2021. Flex: Unifying
evaluation for few-shot nlp. Advances in Neural Information Processing Systems
34 (2021), 15787–15800.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[5] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International conference on
machine learning. PMLR, 1725–1735.

[6] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2020. Adaptive universal
generalized pagerank graph neural network. arXiv preprint arXiv:2006.07988
(2020).

[7] Siddhartha Shankar Das, SM Ferdous, Mahantesh M Halappanavar, Edoardo
Serra, and Alex Pothen. 2024. AGS-GNN: Attribute-guided Sampling for Graph
Neural Networks. In Proceedings of the 30th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining. 538–549.

[8] P Kingma Diederik. 2014. Adam: A method for stochastic optimization. (No
Title) (2014).

[9] Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. 2024.
Universal prompt tuning for graph neural networks. Advances in Neural Infor-
mation Processing Systems 36 (2024).

[10] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang,
and Jie Tang. 2022. Graphmae: Self-supervised masked graph autoencoders. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 594–604.

[11] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[12] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of
the 26th ACM SIGKDD international conference on knowledge discovery & data
mining. 1857–1867.

[13] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[14] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[15] Nils Kriege and Petra Mutzel. 2012. Subgraph matching kernels for attributed
graphs. Proceedings of the 29th International Conference on Machine Learning,
ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012 (2012).

[16] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and
Weining Qian. 2022. Finding global homophily in graph neural networks when
meeting heterophily. In International Conference on Machine Learning. PMLR,
13242–13256.

[17] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar
Bhalerao, and Ser Nam Lim. 2021. Large Scale Learning on Non-Homophilous
Graphs: New Benchmarks and Strong Simple Methods. Advances in Neural
Information Processing Systems 34 (2021).

[18] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. 2023. Graphprompt:
Unifying pre-training and downstream tasks for graph neural networks. In
Proceedings of the ACM Web Conference 2023. 417–428.

[19] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to pre-
train graph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 35. 4276–4284.

[20] Xiaojun Ma, Qin Chen, Yuanyi Ren, Guojie Song, and Liang Wang. 2022. Meta-
Weight Graph Neural Network: Push the Limits Beyond Global Homophily. In
Proceedings of the ACM Web Conference 2022. 1270–1280.

[21] Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V Chawla. 2024.
Hetgpt: Harnessing the power of prompt tuning in pre-trained heterogeneous
graph neural networks. In Proceedings of the ACM on Web Conference 2024. 1015–
1023.

[22] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:
Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[23] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang.
2020. Geom-gcn: Geometric graph convolutional networks. arXiv preprint
arXiv:2002.05287 (2020).

[24] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2021. Multi-scale attributed
node embedding. Journal of Complex Networks 9, 2 (2021), cnab014.

[25] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning:
From theory to algorithms. Cambridge university press.

[26] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2019. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. arXiv preprint arXiv:1908.01000 (2019).

[27] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. 2022. Gppt:
Graph pre-training and prompt tuning to generalize graph neural networks. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 1717–1727.

[28] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. 2023. All in one:
Multi-task prompting for graph neural networks. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 2120–2131.

[29] Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. 2023. Virtual node tun-
ing for few-shot node classification. In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 2177–2188.

[30] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep graph infomax. ICLR (Poster) 2, 3 (2019), 4.

[31] Shaowen Wang, Linxi Yu, and Jian Li. 2024. LoRA-GA: Low-Rank Adaptation
with Gradient Approximation. arXiv preprint arXiv:2407.05000 (2024).

[32] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[33] Zhe Xu, Yuzhong Chen, Qinghai Zhou, Yuhang Wu, Menghai Pan, Hao Yang,
and Hanghang Tong. 2023. Node classification beyond homophily: Towards a
general solution. In Proceedings of the 29th ACM SIGKDDConference on Knowledge
Discovery and Data Mining. 2862–2873.

[34] Yuchen Yan, Peiyan Zhang, Zheng Fang, and Qingqing Long. 2024. Inductive
Graph Alignment Prompt: Bridging the Gap between Graph Pre-training and
Inductive Fine-tuning From Spectral Perspective. In Proceedings of the ACM on
Web Conference 2024. 4328–4339.

[35] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[36] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
neural information processing systems 33 (2020), 5812–5823.

[37] Xingtong Yu, Yuan Fang, Zemin Liu, and Xinming Zhang. 2024. Hgprompt:
Bridging homogeneous and heterogeneous graphs for few-shot prompt learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 16578–
16586.

[38] Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. 2024. MultiGPrompt
for multi-task pre-training and prompting on graphs. In Proceedings of the ACM
on Web Conference 2024. 515–526.

[39] Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. 2024. Text-Free
Multi-domain Graph Pre-training: Toward Graph Foundation Models. arXiv
preprint arXiv:2405.13934 (2024).

[40] Jiaqi Zeng and Pengtao Xie. 2021. Contrastive self-supervised learning for graph
classification. In Proceedings of the AAAI conference on Artificial Intelligence,
Vol. 35. 10824–10832.

[41] Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, and Jia Li. 2024.
All in one and one for all: A simple yet effective method towards cross-domain
graph pretraining. arXiv preprint arXiv:2402.09834 (2024).

[42] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai
Koutra. 2020. Beyond homophily in graph neural networks: Current limitations
and effective designs. Advances in neural information processing systems 33 (2020),
7793–7804.

[43] Yun Zhu, Yaoke Wang, Haizhou Shi, Zhenshuo Zhang, Dian Jiao, and Siliang
Tang. 2024. GraphControl: Adding Conditional Control to Universal Graph
Pre-trained Models for Graph Domain Transfer Learning. In Proceedings of the
ACM on Web Conference 2024. 539–550.

[44] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

A Algorithm of DAGPrompT
We detail the DAGPrompT algorithm from pre-training to prompt-
ing in Algorithms 1 and 2. For clarity, we present the algorithm
using a for-loop structure, though in practice, we process data in
batches. The example provided focuses on node classification, with
graph classification requiring only a straightforward adjustment:
feeding entire graphs instead of sampling node neighborhoods.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Algorithm 1 DAGPrompT stage one: pre-training.
Input: Node attributes X, adjacency A, GNN 𝑓 with parameter Θ,

temperature 𝜏 , learning rate 𝜂.
Output: Tuned parameter Θ∗.

1: for 𝑖 ← 1 to 𝑁 do ⊲ 𝑁 is the number of nodes in the graph.
2: // Construct positive and negative samples.
3: 𝑣 ← 𝑖; 𝑎 ← 𝑗 | 𝑗 ∈ N (𝑖); 𝑏 ← 𝑘 | 𝑘 ∉ N(𝑖);
4: // Generate embeddings
5: H← 𝑓 (X,A;Θ)
6: H← matmul(H,A)
7: s𝑣 ← H[𝑖]; s𝑎 ← H[𝑎]; s𝑏 ← H[𝑏]
8: end for
9: // Loss calculation and parameter optimization
10: Lpt (Θ) ← −

∑
(𝑣,𝑎,𝑏) ln

exp(sim(s𝑣 ,s𝑎)/𝜏)∑
𝑢∈{𝑎,𝑏} exp(sim(s𝑣 ,s𝑢)/𝜏)

11: Θ← Θ − 𝜂∇Θ (Lpt (Θ))

For extremely large graphs where 𝑁 ≫ 𝑟𝑑 , we enhance effi-
ciency of GLoRA by reducing P(𝑙)A Q(𝑙)A

⊤
to a unified edge-weight

vector. We then apply this edge-weight only to edges connected to
nodes in the training set. This approach reduces the total number
of parameters while maximizing the use of information from the
training data.

B Complexity Analysis
Consider a graph with 𝑁 nodes and 𝐸 edges, where 𝑑 is the hidden
dimension, 𝐿 the number of GNN encoder layers, and𝐶 the number
of classes.

The pre-training complexity of the GNN encoder is O((𝐿𝐸 +
𝑁𝐾)𝑑), where 𝐾 is the number of negative samples. In this work,
we set 𝐾 = 1.

For prompting, the complexity of DAGPrompT arises from three
components: (i) generating layer-wise embeddings from the GNN
encoder 𝑓 , (ii) generating layer-wise class tokens, and (iii) per-
forming similarity calculations. Step (i) incurs a complexity of
O(𝐿(𝐸 + 𝑁𝑑2)), driven by message passing and embedding projec-
tion. Step (ii) has a lighter complexity of O(𝐿𝐶𝑑), involving matrix
addition. Step (iii) incurs a complexity of O(𝐿𝑁𝐶𝑑), dominated by
similarity calculations.

The overall complexity of DAGPrompT is O(𝐿(𝑁𝐶+𝐿𝐶+𝑁𝑑)𝑑+
𝐿𝐸). Given that 𝐿 ≪ 𝑁 and𝐶 ≪ 𝑑 , this simplifies toO(𝐿𝑁𝑑2+𝐿𝐸𝑑),
yielding near-linear complexity with respect to graph size, making
it efficient for large-scale applications.

C Details of Theorem 1
LetH be a hypothesis class, and let D = {(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)}
represent a dataset of𝑚 independent and identically distributed
(i.i.d.) samples drawn from an unknown distribution. The goal is to
evaluate the performance of a hypothesis ℎ ∈ H , which we do by
assessing its true risk (or expected error). The true risk is defined
as:

𝐿(ℎ) = E(𝑥,𝑦)∼D [ℓ (ℎ(𝑥), 𝑦)], (11)
where ℓ (ℎ(𝑥), 𝑦) denotes a bounded loss function, satisfying 0 ≤
ℓ (ℎ(𝑥), 𝑦) ≤ 𝐵. This measures the expected loss of the hypothesis
over the distribution of the data.

Algorithm 2DAGPrompT stage two: prompting and tuning, taking
the node classification as an example.

Input: Node attributes X, adjacency A, training set Dtrain,
pre-trained GNN 𝑓 with parameter Θ∗, GLoRA parameter Θglora,

layer-specific prompts {Θ(𝑙) }𝐿
𝑙=0 , coefficients {𝛾 (𝑙) }𝐿

𝑙=0,
temperature 𝜏 , learning Rate 𝜂.
Output: downstream labels Ŷ.

1: // Construct the node tokens.
2: for 𝑖 ← 1 to 𝑁 do ⊲ 𝑁 is the number of nodes in the graph.
3: X𝑖 ,A𝑖 ← SampleNeighborhood(X,A, 𝑖)
4: for 𝑙 ← 0 to 𝐿 do
5: H(𝑙)𝑖 ← 𝑓 (X𝑖 ,A𝑖 ;Θ∗,Θglora; 𝑙) ⊲ embeddings of layer 𝑙
6: end for
7: end for
8: for 𝑙 ← 0 to 𝐿 do
9: H(𝑙) ←

[
H(𝑙)1 ∥H

(𝑙)
2 | | · · · ∥H

(𝑙)
𝑁

]
∈ R𝑁×𝑑

10: end for
11:
12: // Construct the class tokens, only calculated once.
13: for 𝑐 ← 1 to 𝐶 do ⊲ 𝐶 is the number of classes in the graph.
14: for 𝑙 ← 0 to 𝐿 do
15: P(𝑙)𝑐 ← 1

|Dtrain
𝑐 |

∑ |Dtrain
𝑐 |

𝑣∈D train
𝑐

H(𝑙)𝑣 + Θ(𝑙)𝑐 ∈ R𝑑

16: end for
17: end for
18: for 𝑙 ← 0 to 𝐿 do
19: P(𝑙) ←

[
P(𝑙)1 ∥P

(𝑙)
2 | | · · · ∥P

(𝑙)
𝐶

]
∈ R𝐶×𝑑

20: end for
21:
22: // Prompting
23: for 𝑙 ← 0 to 𝐿 do
24: S(𝑙) ← Similarity

(
H(𝑙) , P(𝑙)

)
25: end for
26: S̃← ∑𝐿

𝑙=1 𝛾
(𝑙)S(𝑙)

27: Ŷ← argmax𝑐 S̃𝑐
28:
29: // Calculate loss and optimize parameters.

30: Lds = −
∑𝐿
𝑙=0

∑
(𝑥𝑖 ,𝑦𝑖) ∈Dtrain

exp
(
Sim

(
H(𝑙)𝑥𝑖

,P(𝑙)𝑦𝑖
)
/𝜏
)

∑𝐶
𝑐=1 exp

(
Sim

(
H(𝑙)𝑥𝑖

,P(𝑙)𝑐

)
/𝜏
)

31: Θglora ← Θglora − 𝜂∇Θglora (Lds (Θglora))
32: for 𝑙 ← 0 to 𝐿 do
33: Θ(𝑙) ← Θ(𝑙) − 𝜂∇Θ(𝑙) (Lds (Θ(𝑙)))
34: 𝛾 (𝑙) ← 𝛾 (𝑙) − 𝜂∇𝛾 (𝑙) (Lds (𝛾 (𝑙)))
35: end for

In practice, however, we do not have access to the true distri-
bution. Instead, we rely on the available sample D to estimate the
performance of ℎ through the empirical risk (or training error),
which is given by:

�̂�D (ℎ) =
1
𝑚

𝑚∑︁
𝑖=1

ℓ (ℎ(𝑥𝑖), 𝑦𝑖). (12)

This empirical risk approximates the true risk by averaging the loss
over the observed data points.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

DAGPrompT: Pushing the Limits of Graph Prompting with a Distribution-aware Graph Prompt Tuning Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

To understand the capacity of the hypothesis classH in fitting
the data, we consider its empirical Rademacher complexity, which
quantifies how wellH can adapt to random noise. The empirical
Rademacher complexity is defined as:

RD (H) = E𝜎

[
sup
ℎ∈H

1
𝑚

𝑚∑︁
𝑖=1

𝜎𝑖ℎ(𝑥𝑖)
]
, (13)

where 𝜎𝑖 are i.i.d. Rademacher variables, each taking values in ±1
with equal probability. This measure helps us understand the rich-
ness of the hypothesis class by evaluating its ability to fit random
labels on the sample D, providing insights into potential over-
fitting and generalization behavior.

The generalization bound for the hypothesis class H [25] can
be formulated as:

𝐿(ℎ) ≤ �̂�D (ℎ) + 2RD (H) + 3𝐵
√︂

log(2/𝛿)
2𝑚 , (14)

which holds with probability at least 1 − 𝛿 . Here, the terms are
defined as follows:

• 𝐿(ℎ): the true risk (expected test error), which reflects the
hypothesis’ error on unseen data,

• �̂�D (ℎ): the empirical risk (training error), representing the
observed performance on the given dataset,

• RD (H): the empirical Rademacher complexity of the hy-
pothesis classH , capturing the class’s capacity to fit ran-
dom noise,

• 𝐵: the upper bound on the loss function ℓ (ℎ(𝑥), 𝑦), ensuring
the loss is bounded within [0, 𝐵],

• 𝛿 : the confidence level, determining the probability that the
bound holds,

• 𝑚: the number of training samples in the dataset D.
This bound shows that the true risk 𝐿(ℎ) is upper-bounded by

the empirical risk �̂�D (ℎ), adjusted by the model’s complexity (as
captured by the empirical Rademacher complexity RD (H)) and
a term that decreases with the number of training samples, 𝑚,
providing insight into how well the model generalizes to unseen
data.

D Dataset Details
In this section, we describe the datasets used in our study.

The Cora dataset [35] is a widely used citation network charac-
terized by strong homophily [22]. In Cora, nodes represent papers,
node features are bag-of-words representations derived from the
content, and edges correspond to citation links. The labels indicate
the subject categories of the papers.

The Texas, Wisconsin, Cornell, Chameleon, and Squirrel datasets
[23] consist of web pages, where nodes represent individual pages,
node features are word embeddings, and edges reflect hyperlinks.
Labels for Texas, Cornell, and Wisconsin represent web page cate-
gories, while Chameleon and Squirrel labels capture averagemonthly
web traffic, grouped into five ranges. Notably, Chameleon and Squir-
rel are complex Wikipedia networks, exhibiting a mix of homophily
and heterophily [20].

TheArXiv-year dataset [17] is a large-scale citation networkwith
high heterophily. Nodes represent research papers, node features
are embeddings from paper titles and abstracts, and edges represent

[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0]
0

0.2
0.4
0.6
0.8

Node-level Homophily Ratio Intervals: Texas

Pe
rc
en
ta
ge

1-hop 2-hop 3-hop

[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0]
0

0.2
0.4

Node-level Homophily Ratio Intervals: Cornell

Pe
rc
en
ta
ge

1-hop 2-hop 3-hop

[0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0]
0

0.2
0.4
0.6
0.8

Node-level Homophily Ratio Intervals: Chameleon

Pe
rc
en
ta
ge

1-hop 2-hop 3-hop

Figure 7: Hop-wise Local Heterophily Distributions.

citation relationships. The labels correspond to publication years,
grouped into five intervals.

TheMUTAG dataset consists of 188 chemical compounds, catego-
rized into two classes based on mutagenic effects on bacteria. Here,
vertices represent atoms, and edges represent chemical bonds. The
COX2 dataset contains molecular structures of 467 cyclooxygenase-
2 inhibitors, and the ENZYME dataset focuses on classifying 600
enzymes into six top-level EC classes [15].

We provide a statistical analysis of hop-wise distributional vari-
ance from the perspective of local homophily, adapted from the
homophily measurement in section 2:

ℎ (𝑘)
𝑖

=
| { (𝑣𝑖 , 𝑣𝑗) : (𝑣𝑖 , 𝑣𝑗) ∈ EN (𝑘) (𝑖) ∧ y𝑖 = y𝑗 | 𝑗 ∈ N (𝑘) (𝑖) } |

| EN (𝑘) (𝑖) |
, (15)

where N (𝑘) (𝑖) denotes the 𝑘-hop neighborhood of node 𝑣𝑖 , and
(𝑢, 𝑣) ∈ EN (𝑘) (𝑖) if and only if there exists a shortest path of length
𝑘 between 𝑢 and 𝑣 in the subgraph induced by N (𝑘) (𝑖). The value
ℎ
(𝑘)
𝑖 represents the distribution within each node’s 𝑘-hop neigh-
borhood.

The results in Figure 7 indicate that the distributions vary signif-
icantly across different hops, highlighting the need for a decoupled
graph prompting procedure. Each hopmay carry unique and diverse
information, contributing to the final representations to different
degrees. Moreover, the distributions vary across different graphs,
emphasizing the need for hop-specific approaches.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 8: Summary of the mean and standard deviation of accuracy over all runs on few-shot node classification tasks. The best
results for each dataset are highlighted in gray. GAT is used as the backbone encoder.

Texas (0.11) Cornell (0.31) Wisconsin (0.20) Chameleon (0.20) Squirrel (0.22) Arxiv-year (0.22) Cora (0.81)

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot
Label Ratio 13.6% 27.3% 13.6% 27.3% 9.9% 19.9% 1.09% 2.19% 0.48% 0.96% 0.0147% 0.0295% 1.29% 2.58%

GAT 52.22±4.22 53.81±5.80 61.36±4.34 64.36±3.58 54.35±3.45 53.40±3.14 28.53±3.24 30.09±3.60 21.35±2.34 23.47±2.98 21.38±1.30 23.75±2.31 62.14±1.08 65.86±1.37

Finetune-LP 50.41±5.80 54.89±7.13 60.72±3.58 65.72±3.97 56.36±3.19 52.13±2.78 30.24±3.10 33.58±2.89 23.45±1.37 23.87±2.45 22.15±2.34 25.36±2.80 65.47±1.35 68.37±2.01
GPPT 57.59±3.02 59.54±5.57 65.57±3.68 64.83±2.98 50.35±2.97 52.41±1.98 40.56±2.94 47.67±3.01 25.67±2.46 29.46±2.09 23.27±3.27 25.35±1.72 58.46±2.85 63.84±1.36
Gprompt 72.98±5.37 73.27±3.56 76.37±4.83 83.32±2.76 67.84±3.03 69.83±2.75 45.65±3.93 52.07±2.90 31.47±1.09 31.64±1.47 28.46±2.37 29.35±1.36 70.06±2.94 72.55±1.83
GPF-LP 68.42±2.39 70.28±4.29 72.12±4.58 78.34±3.85 62.47±3.84 67.45±3.53 40.61±6.04 41.56±4.24 29.46±1.75 30.15±3.73 28.10±3.65 28.34±2.31 68.04±1.86 69.74±1.46
GPF-Plus-LP 73.78±3.21 75.37±3.27 80.36±3.85 82.46±3.01 69.43±2.41 71.34±3.08 45.45±3.85 51.39±2.97 32.57±2.01 34.27±2.71 28.84±2.72 31.01±2.34 68.53±1.47 70.86±1.55
All-In-One 72.36±3.46 74.91±4.27 82.18±2.98 83.49±3.27 70.34±2.80 70.76±3.10 45.96±2.57 51.90±3.08 31.35±2.08 33.46±1.90 27.65±2.02 30.74±1.83 69.52±1.95 72.44±2.38
HGPrompt 72.53±2.96 73.41±3.87 76.45±3.84 81.35±3.56 66.53±2.54 69.47±3.98 44.47±3.01 46.76±3.41 30.37±1.65 32.40±2.42 28.41±2.64 30.01±2.55 67.75±2.31 71.96±1.94

DAGPrompt 78.27±3.03 82.25±2.61 86.05±1.77 88.73±1.99 76.55±1.22 77.22±2.47 49.98±2.31 54.11±1.96 34.80±1.42 37.03±2.17 29.37±2.84 32.56±1.62 70.48±1.41 73.18±0.82
Improvement 4.49 5.84 3.87 4.19 5.31 4.48 3.81 2.04 2.23 2.76 0.53 1.55 0.33 0.34

E Additional Experiments
E.1 DAGPrompt with GAT as Backbone
To evaluate the generalization capability of DAGPrompt, we con-
duct 5-shot and 10-shot node classification experiments using GAT
as the backbone encoder2. The results in Table 8 show that DAG-
Prompt consistently outperforms all baselines, providing strong
evidence of its robust generalization performance.

E.2 Full-shot Experiments

Table 9: Summary of the mean and standard deviation of
accuracy across all runs on full-shot node classification tasks.
The best results for each dataset are highlighted in gray. GCN
is used as the backbone model.

Chameleon (0.20) Squirrel (0.22) Cora (0.81)
GCN 48.57±2.76 38.67±2.10 78.57±1.23
H2GCN 69.54±1.24 57.31±2.47 77.65±0.84
GPR-GNN 70.22±1.45 58.19±3.40 79.56±0.87
ALT-GNN 70.51±1.23 59.34±1.38 78.45±1.85
Finetune-LP 50.73±2.45 39.61±1.98 76.67±1.37
GPPT 59.61±1.23 36.63±1.65 63.71±2.12
GraphPrompt 69.63±1.67 51.23±1.74 78.58±1.04
GPF-LP 61.49±2.53 50.09±2.08 74.16±1.47
GPF-Plus-LP 68.46±1.90 58.65±1.45 79.51±1.36
All-In-One 69.56±1.08 58.46±1.80 77.76±0.86
HGPrompt 68.50±2.48 53.65±1.97 78.15±0.74
GCOPE 70.03±1.35 56.24±2.03 80.09±1.85
DAGPrompt 74.30±0.78 62.78±1.29 81.10±0.72
Improvement 3.79 3.44 1.01

We further evaluate DAGPrompt under the full-shot setting, us-
ing a training-validation-test split of approximately 50%-25%-25%.
The results in Table 9 show that, although the performance im-
provement is less pronounced compared to the few-shot settings in
2Baselines incompatible with GAT are excluded from these experiments. The number
of heads is set to 4.

Texas Cornell Chameleon

60

80

Alpha 𝛼

Ac
cu
ra
cy

(%
)

0.1 0.3 0.5 0.7 0.9

Texas Cornell Chameleon
50
60
70
80

Rank 𝑟

8 16 32

Figure 8: Parameter analysis.

Table 3, DAGPrompt consistently achieves the best results across
all datasets, particularly on those with strong heterophily.

E.3 Parameter Analysis
We conduct a parameter analysis for 𝛼 and 𝑟 in Figure 8. The results
show that Texas and Cornell generally perform better with larger
𝛼 values, up to 0.9, while Chameleon favors smaller values, down
to 0.1. This indicates that Texas and Cornell benefit more from
distant hop information (as larger 𝛼 assigns greater weight to them),
whereas Chameleon relies more on local hop information with a
smaller 𝛼 . Additionally, variations in the rank 𝑟 impact performance
differently across datasets.

E.4 Visualization of GLoRAWeights
We visualize the weight distributions of GLoRA on the Texas and
Cornell datasets in Figure 9. For clarity, we present the final result
of A + PAQ⊤A , representing the edge weights used during message
passing in GNNs. As shown, GLoRA strengthens certain connec-
tions by assigning weights greater than 1, while weakening others
with weights less than 1. This suggests that GLoRA refines the
graph message-passing scheme to better align with downstream
tasks.

E.5 Pre-training Helps the Convergence
To examine the effect of pre-training on model convergence, we
conduct experiments with varying hidden sizes of DAGPrompT on

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

DAGPrompT: Pushing the Limits of Graph Prompting with a Distribution-aware Graph Prompt Tuning Approach Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

0.9
68
0.9
76
0.9
84
0.9
93
1.0
01
1.0
09
1.0
17

0
20
40
60

Weight-Texas

Pe
rc
en
ta
ge

(%
)

0.9
49
0.9
64
0.9
80
0.9
96
1.0
12
1.0
27
1.0
43

0

20

40

Weight-Cornell
Pe
rc
en
ta
ge

(%
)

Figure 9: GLoRA weights distributions of A + PAQ⊤A

Figure 10: Loss curve of DAGPrompT on Chameleon.

the Chameleon dataset. For each configuration, the model is pre-
trained either sufficiently (200 epochs) or minimally (30 epochs).

As shown in Figure 10, the results demonstrate that sufficient pre-
training not only accelerates convergence (evident from a faster
reduction in loss) but also improves final performance (achieving
a lower loss). This aligns with findings in NLP fields, where suf-
ficient pre-training reduces the intrinsic dimension of the model,
simplifying the learning process for downstream tasks [1].

E.6 DAGPrompT with Full-parameter Tuning

Table 10: Summary of the mean and standard deviation of
accuracy across all runs for 5-shot node classification tasks.

Texas (0.11) Wisconsin (0.20) Squirrel (0.22)
DAGPrompT 81.36±4.93 76.37±1.17 53.38±1.97
DAGPrompT-Full 79.36±3.78 75.37±2.42 50.38±5.38
DAGPrompT-Freeze 79.01±4.29 74.74±4.37 50.61±4.70

We conducted an experiment with two variants of DAGPrompT:
DAGPrompT-Full and DAGPrompT-Freeze. DAGPrompT-Full re-
moves the GLoRA module and fine-tunes all GNN encoder pa-
rameters during prompting, while DAGPrompT-Freeze removes
the GLoRA module and freezes all GNN encoder parameters dur-
ing prompting. The results show that both DAGPrompT-Full and
DAGPrompT-Freeze perform worse than DAGPrompT. This sup-
ports the theory from section 4 that neither zero-parameter nor
full-parameter tuning is optimal in few-shot settings.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

13

	Abstract
	1 Introduction
	2 Preliminary
	3 Method
	3.1 Label-free Pre-Training
	3.2 Distribution-aware Graph Prompt Tuning

	4 Theoretical Analysis
	5 Experiments
	5.1 Datasets and Settings
	5.2 Involved Baselines & Settings
	5.3 Evaluation on Real-world Datasets (Q1)
	5.4 Evaluation on Data Heterophily (Q2) and Number of Shots (Q3)
	5.5 Evaluation on Transfer Ability (Q4)
	5.6 Efficiency Analysis (Q5)
	5.7 Ablation Study (Q6)
	5.8 GLoRA Visualizations (Q7)

	6 Related Works
	6.1 Graph Pre-training and Prompting
	6.2 Heterophily Graph Learning

	7 Conclusion
	References
	A Algorithm of DAGPrompT
	B Complexity Analysis
	C Details of Theorem 1
	D Dataset Details
	E Additional Experiments
	E.1 DAGPrompt with GAT as Backbone
	E.2 Full-shot Experiments
	E.3 Parameter Analysis
	E.4 Visualization of GLoRA Weights
	E.5 Pre-training Helps the Convergence
	E.6 DAGPrompT with Full-parameter Tuning

