DeltaPhi: Physical States Residual Learning for
Neural Operators in Data-Limited PDE Solving

Xihang Yue'-2, Yi Yang!-2, Linchao Zhu'?*
ICollege of Computer Science and Technology, Zhejiang University
’The State Key Lab of Brain-Machine Intelligence, Zhejiang University
https://github.com/yuexihang/DeltaPhi

Abstract

The limited availability of high-quality training data poses a major obstacle in data-
driven PDE solving, where expensive data collection and resolution constraints
severely impact the ability of neural operator networks to learn and generalize
the underlying physical system. To address this challenge, we propose DeltaPhi,
a novel learning framework that transforms the PDE solving task from learning
direct input-output mappings to learning the residuals between similar physical
states, a fundamentally different approach to neural operator learning. This refor-
mulation provides implicit data augmentation by exploiting the inherent stability
of physical systems where closer initial states lead to closer evolution trajectories.
DeltaPhi is architecture-agnostic and can be seamlessly integrated with existing
neural operators to enhance their performance. Extensive experiments demonstrate
consistent and significant improvements across diverse physical systems including
regular and irregular domains, different neural architectures, multiple training data
amount, and cross-resolution scenarios, confirming its effectiveness as a general
enhancement for neural operators in data-limited PDE solving.

1 Introduction

Due to the lack of analytical solutions, solving complex Partial Differential Equations (PDEs)
e.g. Navier-Stokes traditionally relies on numerical simulations based on ultra-fine grid division,
which consumes expensive computational resources and time. This computational bottleneck has
motivated the development of machine learning based PDE solving approaches [1, 2, 3, 4, 5]. In
particular, neural operator learning [1, 2, 6] has emerged as a promising direction by directly learning
the mapping between input-output function fields, enabling efficient solution prediction through
neural network forward computation.

A critical challenge in neural operators is the severe scarcity of high-quality training data [7, 8],
which manifests in multiple aspects: (1) collecting comprehensive training data often require expen-
sive physical experiments or high-resolution numerical simulations; (2) computational and storage
constraints may restrict the resolution of available data; (3) the collected data frequently exhibits
distribution bias due to physical or experimental limitations. These data limitations fundamentally
constrain the generalization capability of current neural operators. To address these challenges, we
propose DeltaPhi, a novel framework that helps neural operators learn from scarce data.

The core innovation of DeltaPhi lies in reformulating the PDE solving task from learning direct
input-output mappings to learning the residuals between similar physical states. This reformulation
enables implicit data augmentation by leveraging a key property of physical systems: states with
similar initial conditions tend to follow similar solutions. By learning residuals between pairs of

*Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/yuexihang/DeltaPhi

similar trajectories, DeltaPhi effectively expands the diversity of training samples without requiring
additional data collection. This is fundamentally different from existing approaches that attempt to
learn the straight mapping for each sample independently.

The proposed framework presents two advantages: (1) Enhanced Training Sample Diversity: The
framework enables enhanced diversity in training labels through random auxiliary solution sampling,
effectively mitigating distribution bias issues. This training distribution augmentation preserves
physical validity while expanding the learned solution space. (2) Architecture Flexibility: DeltaPhi
is architecture-agnostic and can seamlessly enhance existing neural operators [2, 9, 10] through a
unified residual learning mechanism, making it applicable across different PDE solving scenarios.

We conduct extensive experiments to validate the effectiveness of physical states residual learning
across various settings: (1) diverse physical systems including both regular domains (Darcy Flow,
Navier-Stokes) and irregular domains (Heat Transfer, Blood Flow); (2) different neural architectures
including spectral-based and attention-based operators; (3) varied numbers of training samples to test
robustness under data scarcity; and (4) cross-resolution scenarios to evaluate generalization capability.
The results consistently demonstrate that DeltaPhi significantly improves the performance of base
models, particularly in data-limited settings.

Overall, this work introduces a promising framework for enhancing neural operators in practical PDE
solving applications where high-quality training data is scarce or expensive to obtain. The physical
states residual learning framework could potentially benefit other high-dimensional regression prob-
lems in scientific machine learning, especially when dealing with physically governed systems that
exhibit stability properties.

2 Background and Related Work
2.1 Direct Neural Operator Learning

Neural operator learning aims to learn mappings between infinite-dimensional function spaces for
solving parametric PDEs [1]. The operator mapping G : A — U/ maps between Banach spaces A
and Y. For steady-state problems like Darcy Flow, the input function a(z) € A typically represents
coefficients while u(z) € U is the solution. For time-series problems like Navier-Stokes, a(z)
commonly represents prior states, and u(x) represents future states [2].

Neural operators are constructed using various network architectures, with two prominent families
being kernel-based operators and DeepONet-style operators. Kernellntegral-form architectures, such
as Graph Neural Operators (GNO) [1], are often based on iterative kernel integration. Deep Operator
Networks (DeepONet) [3] instead use separate branch and trunk networks to approximate the operator.
These two general forms can be represented as:

Kernellntegral-form: Gy = Qoo(W,+K;)o---0o(W; + K1) o P

p
1
DeepOnet-form:  Gy(a)(y) = ZBk(a)Tk(y) M
k=1

In the Kernellntegral-form, P and () are projection layers, KC; are learnable kernel integral operators,
W, are local linear operators, and ¢ is a nonlinear activation. In the DeepOnet-form, By, (a) represents
the branch network outputs encoding the input function a, and T} (y) represents the trunk network
outputs encoding the output coordinates y. It is noted that the framework proposed in this work is
applicable to both forms of architectures.

The components of these architectures are differently instantiated in previous works. Fourier Neural
Operator (FNO) [2] utilizes the Fourier Transform based integral operation to efficiently learn the
physical dynamics using limited training data. Factorized Fourier Neural Operator (FFNO) [10]
factorize the Fourier Transform along each dimension, reducing the number of network weights. Clif-
ford Fourier Neural Operator (CFNO) [11] employs the Clifford Algebra in the network architecture,
incorporating geometry prior between multi-physical fields. The various neural operators could be
simply integrated with the proposed Physical States Residual Learning.

Other works investigate architecture improvements for different needs, including chaotic systems
modeling [12], physical-informed instance-wise finetuning [13], accelerating computation [14, 15, 16,
17, 18], spherical fields processing [19], irregular fields learning [20, 21], non-periodic boundary fields



modeling [22], large-scale pretraining [23, 24], efc. In addition, some works explore other network
backbones, e.g. improved frequency-spatial domain transformation [25, 26, 27, 28, 29, 30, 31, 32],
convolutions [33], graph neural network [34, 6, 35], attention mechanism [36, 21, 37, 38], and
diffusion models [39, 40, 41, 42].

Despite theoretical approximation capabilities, practical limitations persist in generalization across
resolutions [13], handling data scarcity [43], and managing biased training distributions [7]. Our
work addresses these challenges through residual learning between physical trajectories.

2.2 Residual Learning in Previous Works

Some works [44, 45, 46, 47] learn residual between different data samples. Similar to ResMem [44],
we also utilize the training set as auxiliary memory during inference, enjoying its generalization
enhancement property. The difference lies that (1) we memorize the auxiliary labels and learn
the residuals, while ResMem memorizes the residuals and learns the labels, (2) our framework is
end-to-end trained while ResMem is trained in separate stages. Similar external memory augmented
strategies are popular in the Language Modeling community [48, 49].

Other works learn residuals between low resolution and high resolution representation for image
super-resolution [50] and deep learning based CFD simulation [50]. Similar residual learning is
investigated in time series prediction task [51, 45]. The primary distinction between these works
to ours is that we do not utilize the corresponding low-resolution solutions or previous time-step
solutions, but instead, learn the residuals between different trajectories.

Additionally, [52] studies learning residuals between PDE solutions with similar geometric domains.
In contrast, our work focuses on a fundamentally different problem of learning residuals between
similar physical states, enabling broader applicability. We establish this based on physical system
stability and develop implicit data augmentation through similarity-based sampling during training,
effectively addressing distribution bias and overfitting issues in data-limited scenarios.

3 Methodology

3.1 Preliminary: Stability of Physical Systems

Stability of PDEs. For a well-posed PDE system with solution operator G, stability means:

1G(a1) — G(az)llu < Cllay — azl|4, 2
where a1, ay are input functions and C'is a positive constant. This property, also known as Lipschitz
continuity of the solution operator, is one of Hadamard’s criteria for well-posedness of PDEs. This
stability property is well-established in various PDEs: elliptic PDEs satisfy stability under appropriate
boundary conditions; parabolic PDEs exhibit stability through their dissipative mechanisms; and even
certain chaotic systems maintain stability for suitable time intervals.

It’s noted that this stability condition is not an additional assumption imposed by our method, but
rather a fundamental prerequisite for any data-driven operator learning approach to succeed [3, 2].
If small changes in the input function could lead to arbitrarily large, discontinuous changes in the
solution, learning a generalizable mapping would be extremely challenging for neural networks.

Foundation of Residual Learning. Stability of PDEs establishes a relationship where the magnitude
range of difference between output functions systematically changes with respect to the difference
between input functions. This relationship allows us to explicitly control the diversity of output
function residuals by selecting input function pairs with varying similarity ranges. This establishes
the foundation of residual neural operator learning and enables the effectiveness of implicit data
augmentation, introduced in Section 3.5.

3.2 Residual Operator Mapping: A Unified Formulation

Residual Operator Mapping. Based on the stability of physical systems, we formulate the residual
operator mapping that captures the differences between pairs of physical trajectories:
GA A2 — AU,
A% {(ai,a)) | a; € A a; € A}, (3)
AU :{u; —uj | u; €U, u; €U,



-

Input Function
*

& °
Auxiliary Sample Auxiliary Sample x >
Retriever |

Step2: Randomly sample

- i
Input Function L F
x|

Auxiliary Sample

|
i

i

i

| |

| L

i 5 i - one trajectory.
i 4 ,. Input Similar F .

{ © Function | Samples .

i :

i

i 1 L

i

i

i

Neural Operator Neural Operator

e FNOs, DeepOnet, GNOT e.g. FNOs, DeepOnet, GNOT Step1: Find top-K similar

trajectories.

Output ' Similarity « traimi K>1
m I Function Scores ﬁ ! s sger
L y i * infe stage: K=1
Random retricval at training stage enables \\ y—’ ‘—‘ I
“Implicit Data Augmentation”. One direct \ ' =
Output Function Output Function “""ples( B esoueiTerenCand paid Training Set Wﬂw ’
residual samples {( , ), — }-. l ”

-
Input
Function L -
(Section 3.5)

(a) Direct Neural Operator (b) Residual Neural Operator (¢) Auxiliary Sample Retriever

Figure 1: The overall architecture of Physical States Residual Learning. Given an input function a;,

we first sample a similar auxiliary sample (ay, ,uy,) from the training sample set T. Subsequently,
. . A . .

a; and (ag,, uk, ) are concatenated and fed into the the neural operator G;*, producing the predicted

states residual. Finally, the predicted solution 4, is obtained by adding the predicted states residual

with the auxiliary solution uy, .

Fourier-based Down/Up Sampling

where G2 represents the residual mapping operator. A2 is the Cartesian product of A with itself,
meaning it consists of all possible pairs of functions from .A. AU represents the space of function
residuals, which are the differences between pairs of functions from U/. a. and u, are functions in the
space of A and U, respectively.

Solving PDEs by Residual Operator G2. InPDE solving, given an input function a;, we first retrieve
an auxiliary sample (ay,, ug,) from the set of physical samples with known solution e.g. training set.
Then the residual neural operator G2 predicts the solution residual between u; and uy,. The final
solution u; could be obtained by adding this predicted residual to ug,:

u; = G2 (a;, ag,) + ug, - )

We introduce how to obtain auxiliary samples in Section 3.3, and the specific implementation of
residual neural operators in Section 3.4.

3.3 Auxiliary Sample Retriever Frt

Given an input function a; and the training set 7 = {a;,u;}Y ;, we could retrieve an auxiliary
sample (ag, , uy,) from 7, formulated as follows:

ki :]:ret(aiaT>7 ki S {172a"'aN}7 k’b 7527 (5)
where F™ is the sampling function. Below we present our implementation of 7™ in detail.

Training stage. During training, given an input function a;, we randomly retrieve a sample a; from
training set with top-k similarity scores to a;:

F**(a;, T) = RandSample(argtopK; ; ; Sim(a;, a;)),
ai - a; (6)

inai, a5) = 1ol

where RandSample(-) represents randomly sampling one element from the given set. K is the
sampling range, a hyperparameter that could be adjusted for different PDEs. For a fair comparison,
except for specific statements, we set K = 20 for all experiments in this work.

test

Inference stage. During inference, given the input function a****, we select the most similar auxiliary

sample from the training set:
F(a'*", T) = argmax; Sim(a'**", a;). (7

While we take the most similar sample for inference, Appendix A.4 shows that the model is robust
to different auxiliary sample choices. When randomly selecting from the top 10 similar samples,
repeated testing shows minimal variation - a standard deviation of just 5.41e-5 across five runs. This
indicates that neural operators effectively learn to handle varied auxiliary samples for the same input.



Algorithm 1 Residual Operator Learning (DeltaPhi)

Input: Training set 7 = {(a;, u;)},, Neural operator G5, Number of retrieval neighbors /&
Output: Trained residual operator G(,A
while not converged do
Sample training pair (a;, w;) from 7
Calculate similarities s;; = sim(a;, a;),a; € T,j # i
Find indices N; of top-K similar samples
Randomly select k; from N;
Predict residual Au; = G2 ([a;; ax,])
l)l = Alli + Uk,
Update 6 by minimizing ||t; — u;||3
end while

Cross-Resolution Sample Retrieval. For cross-resolution scenarios where auxiliary samples have
different resolutions from the input function, we employ Fourier Transform-based alignment. Specifi-
cally, during inference with high-resolution input function a”, we downsample a*’ to match training
resolution via truncating high-frequency components for similarity calculation:

aignea (a!, T) = F™(DownSampling(a'), a;), (®)

where DownSampling is implemented through frequency-domain truncation:

DownSampling(a’?) = F;_ L. (Truncate(Frouier(a’))). ©)

fourier

Here Fiourier and }'fgulrier denote the Fourier transform and its inverse, respectively. The Truncate
operation removes high-frequency components in Fourier space to match the target resolution. This
Fourier-based downsampling preserves the low-frequency structures of the physical field while
ensuring consistent resolution for similarity computation. This resolution alignment enables effective

utilization of auxiliary samples across different resolutions.

Retrieval Cost Analysis. The computational overhead of our retrieval process is minimal compared
to neural network inference. The total complexity consists of similarity score calculation (O (N f;erq -
Nirain)) and ranking (O(Nrain - 108 Ntrain)), Where Nyieiq is the number of field points and
Nirqin 1s the training set size. Our comprehensive experiments on Darcy Flow demonstrate the high
efficiency: GPU-based retrieval only takes 0.2-0.3ms across different training set sizes (100-900), and
the entire residual learning pipeline, including both retrieval and data preparation, adds merely 0.5ms
to the inference time. This negligible overhead makes our method highly practical for real-world
applications. Detailed complexity analysis and timing experiments are provided in Appendix C.2.

3.4 Architecture of Residual Neural Operators QQA

Residual Neural Operator Backbone. Benefiting from the universal approximation capability of
neural operator networks [2, 10] for direct operator learning, they could be quickly employed as
residual neural operators QGA for learning residual operator mapping G=:

QQA:Qoa(VVl—&—ICl)on-oa(Wl—|—IC1)0P, (10)

where P and () are projection layers, /C; and W; are learnable operators, and ¢ is a nonlinear activation.
Next, we introduce how to modify existing neural operators for learning residual mappings.

Concatenation of Auxiliary Samples. As aforementioned, the residual operator QQA requires
additional auxiliary function ay, as input. In specific implementation, a; and aj, could be straightly
concatenated along their channel dimension:

Qinput = Aj 2 A (11)

where @ represents the concatenation operation of two vectors. Then the concatenated vector a;ppy:
is feed into the neural operator network:

Vo = P(ainput)7 (12)

where P is the fully connected encoder in the operator network (Equation (10)), and v represents
the first latent function in the hidden space.



Concatenation of Additional Information. The residual operator mapping can be challenging
to learn due to the variability of output residuals for different auxiliary samples. To mitigate such
difficulty, we introduce additional information related to ay, as input:

* Taking the corresponding ug, (x) of a, (x) as the input.
* Utilizing calculated relation metrics, e.g. similarity between a; and ay,, as inputs.

Our experimental results (Appendix A.3) indicate that such customized inputs could improve the
performance of residual neural operators.

Physical Residual Connection. Based on Equation (4), to obtain the final predicted solution ;,
we introduce a physical residual connection at the final layer of the base operator network. This
connection adds the auxiliary solution uy, to the predicted residual:

Uy = Q(vr) + ug,, (13)

where @ is the last fully connected projector of the operator network, v; is the last latent function in
hidden space produced by o(W; + K;) shown in Equation (10). This enables end-to-end training
with existing frameworks while maintaining consistent setups (loss functions, trainable parameters,
etc. ) with the base operator networks.

Cross-Resolution Sample Integration. For cross-resolution scenarios where we need to predict high-
resolution outputs u using low-resolution auxiliary trajectories (ag,, uy, ), we employ Fourier-based
upsampling to align the resolutions before integration:

Ginput = UpSampling(ay,) @ a™. (14)

Similarly, for the residual connection, we upsample the low-resolution auxiliary solution:

" = Q(vr) + UpSampling(uy, ), (15)

where @ is the decoder and v; is the final hidden state.

The upsampling is performed through zero-padding in Fourier space to preserve the low-frequency
structures while extending to higher resolution, formulated as follows:

UpSampling(a) = F, ZeroPad(Frourier())), (16)

ourier

where Frouier and F, L., denote the Fourier transform and its inverse, and ZeroPad extends the
spectral representation with zeros to match the target resolution. This Fourier-based approach ensures

smooth upsampling while preserving the physical characteristics of the auxiliary trajectories.

3.5 How DeltaPhi Improves Generalization Capability

In data-limited scenarios, DeltaPhi enhances generalization by mitigating overfitting, which is
achieved through a form of implicit data augmentation > enabled by our residual learning framework.

Mitigating Overfitting via Implicit Data Augmentation. The core benefit of residual learning is its
effectiveness in mitigating overfitting, particularly in data-limited settings. This is achieved through
two complementary mechanisms.

First, DeltaPhi functions as an implicit data augmentation strategy. For a training set with [NV samples,
direct learning provides only N input-output pairs. In contrast, DeltaPhi transforms each sample
(a;,u;) into K distinct residual pairs {(a;, ax), u; — ug }&_, by pairing it with K different auxiliary
samples selected via Section 3.3. The effectiveness of this augmentation stems from the stability
property of PDEs (Section 3.1), which establishes a structured relationship between input differences
and solution residuals. This property allows us to meaningfully control the diversity of the augmented
training residuals by sampling auxiliary inputs with varying similarity levels. Therefore, with an
opportune retrieval range, we can expand the sparse training distribution—thus mitigating distribution
bias—while ensuring the residual learning task remains feasible and does not involve highly dissimilar,
difficult-to-learn pairs. This process significantly increases the density and diversity of the training
distribution, directly addressing the problem of sparse training data.

*We name this implicit data augmentation because there are no more explicit input-output physical function
pairs, but directly training on more diverse residual pairs.



NORM (Previous) NORM (DeltaPhi)

NORM 1 0.08 NORM 3.00
(Previous) (Previous)
NORM 0.00 NORM 0.00
(DeltaPhi) Error (DeltaPhi) Error
Relative Gain: 7.14% T Relative Gain: 40.99% T Relative Gain: 50.00%T
(a) Irregular Darcy (b) Pipe Turbulance (¢) Heat Transfer

Figure 2: Prediction error visualization on irregular domain problems.

Second, the residual learning formulation itself discourages memorization. Because the predicted
residual G5* (a;, ay, ) must adapt to different auxiliary samples ay, for the same input a;, the model is
discouraged from simply memorizing a fixed input-output mapping. Thus, the model is less prone to
memorizing labels for specific input functions in data-limited scenarios.

From a geometric perspective, this framework effectively shifts the learning paradigm from approx-
imating isolated points (absolute solutions) on the solution manifold to learning tangent vectors
(solution residuals) that describe the manifold’s local geometry. Learning these relational vectors
provides a richer learning signal. The stability property discussed in Section 3.1 ensures this task is
tractable, as it establishes a structured relationship between input differences and solution residuals,
allowing us to expand the training distribution while maintaining learnability.

Tractability of Residual Mapping Learning. It’s noted that learning the residual mapping G2 can
be more difficult than learning the direct mapping G. However, this increased difficulty does not
arise from the introduction of spurious high-frequency noise; if two solution functions are smooth,
their residual will also be smooth. Instead, the challenge stems from the inherent complexity of the
residual mapping itself, which requires the model to synthesize information from two separate input
functions (a; and ay,). Despite this increased complexity, our experiments demonstrate that existing
neural operators are fully capable of learning this mapping effectively, even learning to respect its
inherent symmetry without explicit constraints (see Appendix A.8).

Influence of Retrieval Range. While the retrieval range controls the diversity of residuals for
training, our results in Appendix A.l show DeltaPhi is robust to the selection of this hyperparameter.
For experimental consistency, we set K = 20 throughout our comparisons. We further analysis its
impact across different test splits in Appendix A.2 and discuss its selection in Appendix C.1. In
addition, we introduce an alternative sampling strategy without K selection in Appendix A.6.

4 Experiment

This section provides the comparison on various PDEs, comparison on resolution generalization
problems, and statistical analysis of residual operator learning. We present more experimental results
and analysis in Appendix A.

4.1 Comparison on Various PDEs

We evaluate residual operator learning across irregular and regular domain PDEs, testing performance
with different training data sizes. For fair comparisons, all comparisons use exactly identical
hyperparameters, model weights, optimizer settings, and training steps.

Irregular domain problems. Following [9], we evaluate five problems: 2D (Irregular Darcy
Flow, Pipe Turbulence) and 3D (Heat Transfer, Composite, Blood Flow) scenarios, all defined on
irregular domains represented by discrete triangle meshes. We compare against GraphSAGE [53],
DeepOnet [3], POD-DeepOnet [54], FNO [2] and NORM [9] baselines, implementing a residual
learning version of NORM for direct comparison. Appendix B provides more details.

Results in Table | show that NORM (DeltaPhi) outperforms all baselines across irregular domain
problems. Performance gains are most notable for Pipe Turbulence and Heat Transfer, showing
40-50% improvement over NORM, demonstrating the residual operator’s effectiveness.



Table 1: Relative error comparison of operator learning on irregular domains.

Model Irregular Darcy Pipe Turbulence = Heat Transfer Composite Blood Flow
ode (Train Size=1000) (Train Size=300) (Train Size=100) (Train Size=400) (Train Size=400)
GraphSAGE 6.73e-2 2.36e-1 - 2.09e-1 -
DeepOnet 1.36e-2 9.36e-2 7.20e-4 1.88e-2 8.93e-1
POD-DeepOnet 1.30e-2 2.5%-2 5.70e-4 1.44e-2 3.74e-1
FNO 3.83e-2 3.80e-2 - - -
NORM (Direct) 1.05e-2 1.0le-2 2.70e-4 9.99¢-3 4.82e-2
NORM (DeltaPhi) 9.75e-3 5.96e-3 1.35¢-4 9.18e-3 4.29¢-2
Relative Gain 7.14% 1 40.99% 1 50.00% T 8.11% 1 11.00% 1

In addition, we visualize the prediction error in Figure 2. The error value is calculated as the absolute
difference between the predicted function @ and ground-truth function u“7, i.e. | —u“T|. Compared
to previous direct learning methods, DeltaPhi significantly reduces the error scale.

Regular domain problems. We conduct the experiment on two regular domain problems i.e. Darcy
Flow and Navier-Stokes, following [2]. The training data amount is 100. We validate DeltaPhi on
different neural operators, including FNO [2], FFNO [10], CFNO [11], GNOT [21], Galerkin [36],
MiOnet [55] and Resnet [56]. The metric is relative L2 error. Appendix B presents more details.

Table 2 shows DeltaPhi improves performance across all base models for both Darcy Flow and
Navier-Stokes equations, confirming its effectiveness on regular domains. The improvement on the
Navier-Stokes, while modest compared to Darcy Flow, is particularly noteworthy given the inherently
chaotic nature of fluid dynamics at viscosity v = le — 5. Even within this challenging scenario
characterized by weakened correlation between similar initial conditions a(z) and their evolved states
u(x), DeltaPhi still achieves consistent gains. This robustness to complex dynamics strengthens
conclusions regarding the method’s general applicability. Performance on temporal systems could
be further enhanced through designs such as performing auxiliary sample retrieval at each step of
time-series prediction to mitigate the decay in correlation between input and output functions.

Table 2: Relative error comparison on regular Darcy Flow and Navier-Stokes Equation.

Darcy Flow Navier-Stokes Equation

Model Direct Learnin, Residual Learnin; . . Direct Learning Residual Learnin . .

Direcy (Delaphiy  Relative Gain Direcy (Delaphiy  Relative Gain
FNO 3.70e-2 3.31e-2 10.54% 1 2.24e-1 2.13e-1 4.86% 1
FFNO 5.22e-2 2.93e-2 43.76% 1 2.40e-1 2.20e-1 8.54% 1
CFNO 4.79¢-2 3.15e-2 34.23% 1 3.51e-1 3.35¢e-1 4.56% 1
GNOT 6.74¢-2 5.50e-2 18.39% 1 4.16e-1 4.06e-1 2.33% 1
Galerkin 6.78e-2 6.54e-2 3.60% 1 3.60e-1 3.54e-1 1.86% 1
MiOnet 8.61e-2 8.22¢-2 4.53% 1 4.79-1 4.61e-1 3.80% 1
Resnet 1.25e-1 1.07e-1 14.14% 1 4.39-1 4.30e-1 1.87% 1

Different training scales. We train residual Table 3: Comparison on different training scales
operators using FNO, FFNO, and Resnet on - p Dfferent Train Stae g .

Darcy Flow with varying training set sizes =~ Model | 100 300 500 700 900

(100, 300, 500, 700, and 900) and test their ENO (Direct) 37002 140c2  1.02e2  837¢-3 7393
i FNO (DeltaPhi) | 3.31e-2  1.34e-2  9.64e-3  8.06e-3  7.18¢-3
performance on the additional 100 samples. Relative Gain | 10.54% 1  4.08% 1 549%1 3.74%1 2.83%1
The experimenta] results are shown in Ta- FENO (Direct) 5.22e-2 1.69e-2  9.73e-3  7.48e-3  6.16e-3
. . . FFNO (DeltaPhi) | 2.93e-2  l.1le-2  7.20e-3 6223  5.30e-3

ble 3. On different training set sizes,

Relative Gain ~ 43.76% 1 34.47%1 2598% 1 16.79% 1 14.02% 1

DeltaPhi improves the prediction perfor-
mances of neural operators. As the number of available training data decreases, the relative im-
provement percent (the row "Relative Gain") consistently increases on FNO and FFNO. In addition,
several residual neural operators even outperform direct neural operators using less training data
amount, e.g. FFNO (DeltaPhi) with training size 500 outperforms FFNO (Direct) with training size
700, Resnet (DeltaPhi) with training size 700 outperforms Resnet (Direct) with training size 900. The
results empirically demonstrate the effectiveness of DeltaPhi across different training set scales.

4.2 Comparison on Resolution Generalization Problem

This section presents the experimental results of training-free resolution generalization.

Resolution generalization problem. Fourier neural operator [2] enables zero-shot resolution
generalization inference. However, when the training data grid is excessively coarse, the inference



performance over high resolution data drops a lot. The performance degeneration is more serious
when learning operator mapping between fields with weaker spatial continuity such as Darcy Flow.

Setup. We conduct the training-free resolution generalization experiment on Darcy Flow [2]. Specif-
ically, we train the neural operators with low resolutions 85 x 85, 43 x 43, 31 x 31, and 22 x 22
respectively, then evaluate them using high resolution 421 x 421 test data. Both FNO [2] and
FFNO [10] are compared as the base models. The training set scale includes 100 and 900 trajectories.

Table 4: Relative error comparison on zero-shot resolution generalization.

Train Size=100 Train Size=900
‘85><85 43 x 43 31 x31 22 x 22 85 x 85 43 x 43 31 x 31 22 x 22

729-2  1.19e-1  149%-1  1.70e-1 | 673¢-2  L.lle-l  134e-1  1.76e-1
FNO (DeltaPhi) | 6.91e-2  1.13e-1  133e-1  153e-1 | 491e2  937e-2  1.15e-1  1.57e-1
Relative Gain | 5.13% 1 5.06% 1 1043%1 10.08% 1 | 27.04% 1 15.65% 1 1429%1 10.31% 1

FFNO (Direct) 6.64e-2  1.04e-1 1.24e-1 1.43e-1 4.89e-2 1.01e-1 1.27e-1 1.49e-1
FFNO (DeltaPhi) | 6.34e-2  9.90e-2 1.18e-1 1.36e-1 4.42e-2 9.00e-2 1.12e-1 1.35e-1
Relative Gain ~ 4.53% 1 5.06% 1 4.84%1 509% 71 | 948% 1 10.72% 1 11.94%1 9.29% 1

Model

FNO (Direct)

Performance comparison. Table 4 presents

the resolution generalization results. Com- - T R A High Resolution, FNO

pared to FNO [2], FENO [10] shows prefer- <101 High Resolution, DP-FNO
. . oy . < —— Low Resolution, FNO

able generalization ability for its less num- < — Low Resolution, DP-FNO

ber of network weights. In all experimen- £ Mitigating Serious Overfitting —

tal settings, the proposed physical residual ¢ ¢ “

models (tagged with "DeltaPhi") evidently = ,

outperform their counterpart base models. %

The performance improvement of residual = 2

operator learning is more noticeable when : - o = o =
the training set size is 900. In this setting, Training Epochs

FNO (DeltaPhi) managed to match, or even

surpass FFNO [10] on resolution 85 x 85, Figure 3: Training curve comparison. "DP-*" denotes
43 x 43, and 22 x 22, despite using the rel- the proposed residual learning version of base models.
atively weaker base network. The results

empirically draw the conclusion that physical residual learning improves zero-shot resolution gener-
alization performance.

Training curve comparison. We also report the test loss curve during training in Figure 3. The
training amount is 900 and the training resolution is 85 x 85. As the training proceeds, the relative
error on resolution 85 x 85 data continues to decline. However, after some epochs, the loss on
resolution 421 x 421 gradually increases due to overfitting. The proposed residual operator (named
with DP-FNO) significantly mitigates this overfitting tendency of the base model (named with FNO).

4.3 Statistical Analysis of Residual Operator Learning

This section validates DeltaPhi’s foundations through statistical analysis.

Similarity between output functions. We

. aqe . . ] — Retrieval Set Size: 100 — Retrieval Set Size: 700

Valldate the Stablhty property m SeCthn 3 1 s 5 0.40 Retrieval Set Size: 300 — Retrieval Set Size: 900/—/J_/
which states that similar inputs lead to sim- 7 9351~ Retrieval Set Size: 500

. . . . ) £ 030

ilar solutions. This property is essential for £

our residual learning approach. In Figure 4, % 20 M

. . X
we show how the normalized distance be- 3015

0 10 20 30 40 50 60 70 80
a(x) Similarity Rank

Figure 4: The curve of distance between u'“**(z) and
ug, (x) as retrieval similarity rank increases.

tween output functions «'¢**(x) and ug, ()
changes as the similarity rank of their input
functions increases for Darcy Flow. (Ap-
pendix D.1 provides visualization details.)
The normalized distance grows consistently
with similarity rank across all retrieval set sizes. This confirms the stability property - when input
functions become less similar, their solutions also become less similar. The relationship also shows
that increasing the retrieval range K during training adds more diversity to the training samples by



including a wider range of residual patterns, thereby expanding the learned solution space while

maintaining physical validity.

Training label distribution comparison.
We demonstrate how DeltaPhi provides im-

1004 == Standard Deviation

® Training Labels|

-~ Standard Deviation

® Training Labels

plicit data augmentation on Darcy Flow by s e I e NG
visualizing label distributions. We project / / o N\
both training and testing labels (output func- // / // \‘\ \\
tions for direct learning, output residuals for ( TR 10y
DeltaPhi) into 2D using PCA. Appendix D.2 \\ \\ // /
details this process. Figure 5 reveals the . \\ NI /
main benefits of our residual learning frame- \\\_/ Thed iy o wainglesdsiss héncec
work: In direct operator learning (left), lim- \ 1

35 0 25 50 95 10 —150 10 S0 0 50 100

ited training data restricts coverage of the
solution space, making generalization diffi-
cult. This shows the fundamental challenge
of distribution bias in data-limited scenarios.
With DeltaPhi (right), we see that: (a) the
testing label distribution becomes more con-
centrated, showing that learning residuals is
easier than learning absolute solutions, and
(b) the training labels show greater spread,
demonstrating the implicit data augmenta-
tion claimed in Section 3.5. By creating diverse valid residual pairs through controlled auxiliary
sample retrieval, DeltaPhi effectively enhances the training distribution while preserving physical
validity.

Direct Operator Learning Residual Operator Learning

Figure 5: Label distribution visualization. The points
represent dimension-reduced labels (u, (z) for direct
learning, . (x) —ug, (x) for residual learning) through
Principal Component Analysis. The ellipses with dot-
ted lines and solid lines represent standard deviation
and range, respectively. Green and red color corre-
spond to training and testing set, respectively.

5 Limitation

Despite the comprehensive validation of DeltaPhi’s superiority through an extensive range of experi-
ments, we recognize some inherent limitations that, nevertheless, do not impact the solidity of our
conclusions. First, although highly challenging, it is significant to study more realistic applications
where training data acquisition is extremely costly, such as high-fidelity fluid modeling or biomedical
simulations. Second, we acknowledge the potential constraints of using a general cosine similarity
metric. While effective, this metric may not be optimal for all physical systems. This is particularly
relevant for highly chaotic systems, such as the low-viscosity Navier-Stokes equations (Table 2),
where DeltaPhi, while effective, showed a more modest relative improvement compared to other
problems. This suggests that the complexities associated with such systems, where simple initial state
similarity may not sufficiently capture the relationship between solution trajectories, warrant further
investigation. Future work could explore these aspects, for instance, by developing more advanced
auxiliary sample retrieval strategies better suited for complex dynamics, which may unlock greater
performance gains in these challenging applications.

6 Conclusion

This work proposes to learn physical state residuals for PDE solving by reformulating the task
from direct mapping to learning residuals between similar physical states, supported by physical
system stability. This approach enables implicit data augmentation without requiring additional data
collection, effectively addressing challenges in data-limited scenarios. We validate the effectiveness
across various physical systems, neural architectures, and both regular and irregular domains. We
hope this framework provides insights for future development of machine learning based PDE solving.

Acknowledgments

This work is partially supported by National Science and Technology Major Project
(20227ZD0117802). This work was supported in part by General Program of National Natural
Science Foundation of China (62372403) and "Pioneer" and "Leading Goose" R&D Program of
Zhejiang (No. 2025C02032). This work is also supported by the Fundamental Research Funds for
the Central Universities (226-2025-00080) and the Earth System Big Data Platform of the School of
Earth Sciences, Zhejiang University.

10



References

[1] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. arXiv preprint arXiv:2108.08481, 2021.

[2] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations. arXiv preprint arXiv:2010.08895, 2020.

[3] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193, 2019.

[4] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686-707, 2019.

[5] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International conference on machine learning, pages 3208-3216. PMLR, 2018.

[6] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial
differential equations. arXiv preprint arXiv:2003.03485, 2020.

[7] Florent Bonnet, Jocelyn Mazari, Paola Cinnella, and Patrick Gallinari. Airfrans: High fi-
delity computational fluid dynamics dataset for approximating reynolds-averaged navier—stokes
solutions. Advances in Neural Information Processing Systems, 35:23463-23478, 2022.

[8] Jose Antonio Lara Benitez, Takashi Furuya, Florian Faucher, Anastasis Kratsios, Xavier Tric-
oche, and Maarten V de Hoop. Out-of-distributional risk bounds for neural operators with
applications to the helmholtz equation. Journal of Computational Physics, page 113168, 2024.

[9] Gengxiang Chen, Xu Liu, Qinglu Meng, Lu Chen, Changqing Liu, and Yingguang Li. Learning
neural operators on riemannian manifolds. arXiv preprint arXiv:2302.08166, 2023.

[10] Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

[11] Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
layers for pde modeling. arXiv preprint arXiv:2209.04934, 2022.

[12] Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli,
Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative dynamics
in chaotic systems. arXiv preprint arXiv:2106.06898, 2021.

[13] Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794,2021.

[14] Michael Poli, Stefano Massaroli, Federico Berto, Jinkyoo Park, Tri Dao, Christopher Ré, and
Stefano Ermon. Transform once: Efficient operator learning in frequency domain. Advances in
Neural Information Processing Systems, 35:7947-7959, 2022.

[15] Colin White, Renbo Tu, Jean Kossaifi, Gennady Pekhimenko, Kamyar Azizzadenesheli, and
Anima Anandkumar. Speeding up fourier neural operators via mixed precision. arXiv preprint
arXiv:2307.15034, 2023.

[16] Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
operators. arXiv preprint arXiv:2204.11127, 2022.

[17] Pengpeng Xiao, Muqing Zheng, Anran Jiao, Xiu Yang, and Lu Lu. Quantum deeponet: Neural
operators accelerated by quantum computing. Quantum, 9:1761, 2025.

11



[18] Wenhan Gao and Chunmei Wang. Active learning based sampling for high-dimensional
nonlinear partial differential equations. J. Comput. Phys., 475:111848, February 2023.

[19] Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable
dynamics on the sphere. arXiv preprint arXiv:2306.03838, 2023.

[20] Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural oper-
ator with learned deformations for pdes on general geometries. arXiv preprint arXiv:2207.05209,
2022.

[21] Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pages 12556-12569. PMLR, 2023.

[22] Ziyuan Liu, Yuhang Wu, Daniel Zhengyu Huang, Hong Zhang, Xu Qian, and Songhe Song.
Spfno: Spectral operator learning for pdes with dirichlet and neumann boundary conditions.
arXiv preprint arXiv:2312.06980, 2023.

[23] Thomas J Grady, Rishi Khan, Mathias Louboutin, Ziyi Yin, Philipp A Witte, Ranveer Chandra,
Russell J Hewett, and Felix J Herrmann. Model-parallel fourier neural operators as learned
surrogates for large-scale parametric pdes. Computers & Geosciences, page 105402, 2023.

[24] Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov,
Michael Mahoney, and Amir Gholami. Towards foundation models for scientific machine
learning: Characterizing scaling and transfer behavior. arXiv preprint arXiv:2306.00258, 2023.

[25] Xihang Yue, Yi Yang, and Linchao Zhu. Holistic physics solver: Learning pdes in a unified
spectral-physical space. In Forty-second International Conference on Machine Learning.

[26] Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for
differential equations. Advances in neural information processing systems, 34:24048-24062,
2021.

[27] Jiawei Zhao, Robert Joseph George, Yifei Zhang, Zongyi Li, and Anima Anandkumar. Incre-
mental fourier neural operator. arXiv preprint arXiv:2211.15188, 2022.

[28] Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Lno: Laplace neural operator
for solving differential equations. arXiv preprint arXiv:2303.10528, 2023.

[29] Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial
differential equations in computational mechanics problems. Computer Methods in Applied
Mechanics and Engineering, 404:115783, 2023.

[30] Tian Wang and Chuang Wang. Latent neural operator for solving forward and inverse pde
problems. arXiv preprint arXiv:2406.03923, 2024.

[31] Wenhan Gao, Jian Luo, Ruichen Xu, and Yi Liu. Dynamic schwartz-fourier neural operator for
enhanced expressive power. Transactions on Machine Learning Research.

[32] Wenhan Gao, Ruichen Xu, Yuefan Deng, and Yi Liu. Discretization-invariance? on the
discretization mismatch errors in neural operators. In The Thirteenth International Conference
on Learning Representations, 2025.

[33] Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
Alaifari, Siddhartha Mishra, and Emmanuel de Bezenac. Convolutional neural operators for
robust and accurate learning of pdes. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[34] Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers.
arXiv preprint arXiv:2202.03376, 2022.

12



[35] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. Advances in Neural Information Processing Systems, 33:6755-6766,
2020.

[36] Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information
processing systems, 34:24924-24940, 2021.

[37] Michael Prasthofer, Tim De Ryck, and Siddhartha Mishra. Variable-input deep operator
networks. arXiv preprint arXiv:2205.11404, 2022.

[38] Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A
fast transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366, 2024.

[39] Jae Hyun Lim, Nikola B Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Az-
izzadenesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, et al.
Score-based diffusion models in function space. arXiv preprint arXiv:2302.07400, 2023.

[40] Hang Zhou, Yuezhou Ma, Haixu Wu, Haowen Wang, and Mingsheng Long. Unisolver: Pde-
conditional transformers are universal pde solvers. arXiv preprint arXiv:2405.17527, 2024.

[41] Siming Shan, Min Zhu, Youzuo Lin, and Lu Lu. Red-diffeq: Regularization by denoising
diffusion models for solving inverse pde problems with application to full waveform inversion.
arXiv preprint arXiv:2509.21659, 2025.

[42] Siming Shan, Pengkai Wang, Song Chen, Jiaxu Liu, Chao Xu, and Shengze Cai. Pird: Physics-
informed residual diffusion for flow field reconstruction. arXiv preprint arXiv:2404.08412,
2024.

[43] Ricardo Vinuesa and Steven L Brunton. Emerging trends in machine learning for computational
fluid dynamics. Computing in Science & Engineering, 24(5):33—41, 2022.

[44] Zitong Yang, Michal Lukasik, Vaishnavh Nagarajan, Zonglin Li, Ankit Singh Rawat, Manzil
Zaheer, Aditya Krishna Menon, and Sanjiv Kumar. Resmem: Learn what you can and memorize
the rest. arXiv preprint arXiv:2302.01576, 2023.

[45] Chen Xu and Yao Xie. Sequential predictive conformal inference for time series. In International
Conference on Machine Learning, pages 38707-38727. PMLR, 2023.

[46] Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for
image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2472-2481, 2018.

[47] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and
an application to boosting. In European conference on computational learning theory, pages
23-37. Springer, 1995.

[48] Shuohang Wang, Yichong Xu, Yuwei Fang, Yang Liu, Siqi Sun, Ruochen Xu, Chenguang Zhu,
and Michael Zeng. Training data is more valuable than you think: A simple and effective
method by retrieving from training data. arXiv preprint arXiv:2203.08773, 2022.

[49] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval
augmented language model pre-training. In International conference on machine learning,
pages 3929-3938. PMLR, 2020.

[50] Loh Sher En Jessica, Naheed Anjum Arafat, Wei Xian Lim, Wai Lee Chan, and Adams Wai Kin
Kong. Finite volume features, global geometry representations, and residual training for deep
learning-based cfd simulation. arXiv preprint arXiv:2311.14464, 2023.

[51] Anastasios N Angelopoulos, Emmanuel J Candes, and Ryan J Tibshirani. Conformal pid control
for time series prediction. arXiv preprint arXiv:2307.16895, 2023.

[52] Ze Cheng, Zhongkai Hao, Xiaoqiang Wang, Jianing Huang, Youjia Wu, Xudan Liu, Yiru Zhao,
Songming Liu, and Hang Su. Reference neural operators: Learning the smooth dependence of
solutions of pdes on geometric deformations. arXiv preprint arXiv:2405.17509, 2024.

13



[53] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[54] Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang,
and George Em Karniadakis. A comprehensive and fair comparison of two neural operators
(with practical extensions) based on fair data. Computer Methods in Applied Mechanics and
Engineering, 393:114778, 2022.

[55] Pengzhan Jin, Shuai Meng, and Lu Lu. Mionet: Learning multiple-input operators via tensor
product. SIAM Journal on Scientific Computing, 44(6):A3490-A3514, 2022.

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

[57] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

14



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The main claims have been included in the abstract and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have provided limitation section in the end of main text.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and

how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have provided the assumption for the theoretical advantage of the proposed
method in Section 3.1.

15



Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Sufficient experimental details have been provided for every base models and
datasets.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

16



Justification: We have provided open access to the data and code to reproduce the main
experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized ver-
sions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental setup for every result has been stated.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

» The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Statistical analysis for random sample retrieval is provided in Appendix A.4.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

17


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

10.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% ClI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

* If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-

puter resources (type of compute workers, memory, time of execution) needed to reproduce

the experiments?

Answer: [Yes]

Justification: The computational resource is stated in Appendix B.3.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work comprises the NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consideration
due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative

societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work poses no such risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the employed data and methods are open sourced and the original papers

are stated.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of service
of that source should be provided.

« If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

« For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.

Guidelines:

19


paperswithcode.com/datasets

14.

15.

16.

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

 The paper should discuss whether and how consent was obtained from people whose asset
is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)

approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any

important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

20


https://neurips.cc/Conferences/2025/LLM

A Additional Experiment

A.1 Impact of Retrieval Range and Random Sampling

This section analyzes how different retrieval range values (/) affect the performance of our residual
learning framework. Additionally, we investigate the importance of similarity-based retrieval by
replacing it with random sampling (denoted as "w/o F™").

Table 5: Relative error comparison of FNO (DeltaPhi) with different retrieval ranges (K) and training
set sizes on Darcy Flow. The symbols 1 and | denote performance increasing and decreasing
respectively, compared to direct learning.

Training FNO FNO (DeltaPhi) with different X values ret

Set Size  (Direct) who 7
K=5 K=10 K=20 K=30 K=40 K=50

100 3.57e-2  3.34e-21 33le-21 3.3le-27T 3.3le21 3.36e-21 3.30e-21 3.04e-27

300 1.41e-2 1.38e-21 14le-21T 1.35¢-271T 1.36e-21 1.40e-21 1.37e-21 1.62e-2

500 1.02e-2  1.0le-21 1.0le-21T 9.64e-31T 9.96e-31 1.00e-21 1.0le-21 1.29e-2

700 8.37e-3  8.29%-31 8.55e-3] 8.06e-31T 8.04e-37 8.03e-31T 8.19¢-31 1.10e-2 |

Impact of retrieval range K. Table 5 presents the relative error of FNO (DeltaPhi) with different
retrieval range values across various training set sizes. We observe several important patterns:

* In data-limited scenarios (100 to 500 samples), DeltaPhi demonstrates robust performance across
different K values, obtaining consistent performance gains across diverse selection of K.

* With very limited training data (100 samples), larger K values (40-50) tend to perform slightly
better, suggesting that expanding the retrieval range becomes beneficial when the training data is
extremely sparse.

* Conversely, with abundant training data (700 samples), moderate K values (20-40) generally
outperform both smaller and larger retrieval ranges, indicating an optimal balance between sample
diversity and learning difficulty.

The consistent performance across different K values demonstrates that our framework is not overly
sensitive to this hyperparameter, making it practical for real-world applications where exhaustive
hyperparameter tuning may not be feasible.

Importance of similarity-based retrieval. The last column of Table 5 shows the performance
when auxiliary samples are randomly selected from the training set without considering similarity
("Random Sampling"). Comparing this with similarity-based retrieval reveals:

* For most training set sizes (700, 500, and 300), random sampling performs significantly worse than
similarity-based retrieval, with error increases compared to the best K value configuration.

* This performance degradation confirms our discussion in Section 3.1: the stability property of
PDEs makes learning residuals between similar states more tractable than between arbitrary states.

These results empirically validate the importance of similarity-based auxiliary sample retrieval in our
framework, particularly as the training set size increases. The optimal retrieval strategy may depend
on the specific characteristics of the PDE system and the available training data, but similarity-based
retrieval provides a robust default approach for most scenarios.

A.2 Performance Analysis on Different Test Distribution

To evaluate the robustness of DeltaPhi under varying test distributions, we conduct experiments on
test samples with different distances from the training set. Specifically, we first compute the cosine
similarity score between each test sample and its closest training sample on Darcy Flow. Based
on these scores, we divide the test set into 7 non-overlapping splits, where a lower average score
indicates a more challenging split due to greater deviation from the training distribution.

We evaluate both direct operator learning and residual operator learning using FNO as the base model
across these splits. Additionally, we test different retrieval range settings (K) to analyze their impact
on performance. The results are presented in Table 7.

The experimental results reveal several key findings:

21



Table 6: Statistics of different test splits based on similarity to training data.

Sample Number Min Score Max Score Average Score

Splitl 23 0.85 0.86 0.86
Split2 14 0.86 0.88 0.87
Split3 30 0.88 0.90 0.89
Split4 37 0.90 0.91 0.90
Split5 33 0.91 0.93 0.92
Split6 43 0.93 0.95 0.94
Split7 16 0.95 0.96 0.95

Table 7: Relative error comparison on different test splits. Numbers in parentheses show relative
improvement over direct learning.

Methods Split1 Split2 Split3  Split4  SplitS Split6 Split7

Direct Learning 5.08e-2 5.00e-2 4.71e-2 3.31e-2 2.77e-2 2.73e-2 2.43e-2
DeltaPhi (K=20) 4.77e-2 4.68¢-2 4.32e-2 3.14e-2 2.58e-2 2.46e-2 2.18e-2
(6.06%71) (6.34%1) (8.28%1) (5.30%1) (6.83%1) (10.09%1) (10.46%1)
DeltaPhi (K'=50)  4.80e-2 4.66e-2 4.32e-2 3.13e-2 2.57e-2 2.47e-2 2.11e-2
(5.39%1) (6.73%1) (8.35%1) (5.51%71) (7.24%71) (9.76%1) (13.10%7)
DeltaPhi (K=5) 4.83e-2 5.0le-2 4.39-2 3.27e-2 2.52e-2 2.43e-2 2.10e-2
(4.78%71) (-0.28%)) (6.76%1) (1.31%1) (8.88%1) (11.15%1) (13.84%1)

* DeltaPhi with appropriate retrieval ranges (K =20 or K{=50) consistently outperforms direct operator
learning across all splits, even on the most challenging ones (Splitl, Split2, Split3) that significantly
deviate from the training distribution.

* The choice of retrieval range K has a notable impact on performance. A relatively small K value
(K=5) leads to smaller improvements on challenging splits (Splitl, Split2, and Split4), and can
even underperform direct learning in some cases (Split2).

K values (K=20 or K=50) in appropriate ranges generally provide stable improvements across
different splits, suggesting they enable more robust generalization under distribution shifts.

These results demonstrate that DeltaPhi maintains its effectiveness even when test samples signifi-
cantly differ from training data, supporting its robustness in practical scenarios where training and
testing distributions may not perfectly align.

A.3 Customized Auxiliary Input Ablation

This section conducts ablation experiments on the customized auxiliary input.

Setup. We evaluate the influence of customized auxiliary input on Navier-Stokes. The training
trajectory number is 100. FNO [2] is used as the base model. We test 3 types input of ay, (z),
including complete ay, (x), empty ag, (z) and partial (only input last 3 trajectory steps) a, (x). In
addition, we experiment with the inclusion or omission of uy, (x), as well as the addition or exclusion
of Score; ;.

Customized Auxiliary Input Influence. The results are shown in Table 8. The first three rows
indicate that utilizing partial ay, (z) yields the best results for ay, (z). When comparing the third row
with the fourth row, or the fifth row with the sixth row, it’s evident that incorporating Score; i, is
also meaningful. Additionally, when comparing the third row with the fifth row, as well as the fourth
row with the sixth row, the inclusion of ug, (x) proves to be extremely crucial. The above findings
suggest that the utilization of customized input is beneficial, thereby confirming the conclusion that
proper customized input could improve performance.

A4 Auxiliary Sample Selection during Inference

As described in Section 3.3, we greedily select take the auxiliary sample with the top similarity
score during inference. To validate the robustness of the trained residual neural operator on different

22



Table 8: Ablation of customized auxiliary input on Navier-Stokes. Bold font, underline and wavyline
respectively denote the best, second best, and inferior results.

Customized Auxiliary Input Relative Error

a, (x)  uk,(x) Score;,

All v v 2.14e-1
X v v 2.20e-1
Partial v v 2.13e-1
Partial v 2.13e-1
Partial v 2.34e-1
Partial 237e-1

auxiliary samples, we experiment with randomly sampled auxiliary trajectories from the top-10
similarity scores. The experiment is conducted on Darcy Flow with FNO as the base model.

Table 9: Results of repeat Evaluation using random auxiliary sample with Top-10 similarity score.

Relative Error of FNO (DeltaPhi)

Infer 1 3.3441876e-2
Infer 2 3.3364178e-2
Infer 3 3.3501464e-2
Infer 4 3.3489122e-2
Infer 5 3.3489122¢-2
STD 5.40649¢-5

Table 9 presents the relative error of every experimental run and the standard deviation (STD) across
five repeated experiments. The low standard deviation value 5.41e-5 indicates that the trained residual
neural operators are not sensitive to the selection of auxiliary samples. This concludes that the neural
operator effectively learns the proposed residual operator mapping.

A.5 Different Similarity Function

We use Cosine Similarity for its two advantages:

* Unaffected by the magnitude of the numerical value. Thus it could be conveniently applied to
various PDEs without considering the numerical scale distribution of physical fields.

* Taking normalized values in [0, 1]. We could simply use it as an additional network input. As
Table 8 shows, incorporating the similarity scores improves the model’s performance on the
Navier-Stokes equation.

To explore more retrieval metrics for scientific machine learning, we experiment with other discrep-
ancy metrics (all the distance values are calculated after normalization), as shown in Table 10.

Table 10: Results of DeltaPhi-FNO using different similarity functions.

Similarity Functions Relative Error

Cosine Similarity 3.31e-2
Euclidean Distance 3.31e-2
Manhattan Distance 3.28e-2

The results indicate that different distance functions yield subtle impacts. Euclidean Distance and
Manhattan Distance are also appropriate choices. Additionally, inspired by the great success of the
NLP community, conducting retrieval in the latent space may yield superior results. We will explore
this in future work.

23



A.6 Alternative Sampling Strategy: Importance Sampling

In addition to the similarity-based sampling strategy with a fixed range K described in Section 3.3,
we also explored the importance sampling approach. Instead of selecting auxiliary samples from a
fixed-size neighborhood, this method assigns sampling probabilities to all training instances based on
their similarity scores with the input function.

Specifically, given an input function a;, the probability of selecting any training sample a; as the
auxiliary sample is defined as:

P(ajla;) = exp(sim(as, a;)/7)
(aj]as) ZkNﬂeXp(Sim(a“ak)/T)

, (17)

where sim(+, -) is the cosine similarity function defined in Equation (6), 7 is a temperature parameter
controlling the sharpness of the distribution, and NV is the total number of training samples.

We evaluated this importance sampling strategy on two representative problems: Darcy Flow with
FNO and Heat Transfer with NORM. The results are presented in Table 11.

Table 11: Performance comparison of different sampling strategies

Method Heat Transfer Darcy Flow
Baseline (Direct Learning) 2.70e-4 3.70e-2
DeltaPhi (K = 20) 1.35e-4 3.31e-2
DeltaPhi (Importance Sampling) 2.02e-4 3.22e-2

The experimental results demonstrate that importance sampling can effectively enhance model
performance, achieving 25.04% and 12.95% relative improvement on Heat Transfer and Darcy
Flow respectively. Notably, on Darcy Flow, importance sampling even outperforms the fixed-range
sampling strategy (K = 20). This suggests that adaptive probability-based sampling could be a
promising alternative to the fixed-range approach, particularly for problems where the similarity
structure of the solution space is more complex.

A.7 Comparison of Interpolation Methods for Cross-resolution Residual Learning

In our framework, we employ Fourier-based interpolation for cross-resolution alignment and integra-
tion (as discussed in Section 3.3 and Section 3.4). This choice is advantageous as zero-padding in the
frequency domain, which is equivalent to ideal sinc interpolation in the spatial domain, effectively
upsamples the signal while exactly preserving the original low-frequency components without dis-
tortion. This characteristic aligns with the core principles of FNO-like architectures for zero-shot
resolution generalization, which rely on accurately capturing the low-frequency dynamics of the
physical solution.

Table 12: Comparison of different interpolation methods on Darcy Flow.

Interpolation Method Relative Error

Fourier Interpolation 6.91e-2
Bilinear Interpolation 7.36e-2
Nearest Interpolation 7.39e-2

To validate this choice, we conducted a comparison with other common interpolation methods,
specifically Bilinear and Nearest Interpolation. The experiment was performed on the Darcy Flow
problem, training on a 85 X 85 resolution and testing on a 421 x 421 resolution. The results, presented
in Table 12, show that Fourier-based interpolation achieves the lowest error, confirming its suitability
for zero-shot generalization tasks.

24



A.8 Symmetry Analysis of Residual Operator

A key property of our residual learning formulation is the inherent symmetry between paired samples.
To investigate whether the network naturally captures this property without explicit enforcement, we
analyze the symmetry behavior of trained residual neural operators.

Symmetry Metric. We introduce a Symmetry Loss metric to quantify how well the learned operator
respects the expected symmetry for paired samples (a;, u;) and (ag,, uk, ):

195" (i, ax,) + G5 (ar,, ai)ll2

Symmetry Loss =
||g0A(ai7 aki)

(18)

2

This metric measures the normalized discrepancy between residual predictions when the input order
is reversed. A perfectly symmetric operator would yield a value of zero, while larger values indicate
asymmetric behavior.

Experimental Setup. We track this metric throughout the training process for our DeltaPhi-FNO
model on the Darcy Flow problem. Importantly, we do not explicitly optimize for symmetry in the
training objective; we simply observe how the standard training process affects symmetry properties.

Table 13: Evolution of Symmetry Loss during training of DeltaPhi-FNO on Darcy Flow

Metric Epoch 0 Epoch 300 Epoch 600 Epoch900 Epoch1200 Epoch 1500 Epoch 1800
Symmetry Loss  2.01e+0 1.16e-1 8.00e-2 4.52e-2 4.12e-2 3.84e-2 3.22e-2

Results and Analysis. The results in Table 13 demonstrate that the model progressively learns to
respect the inherent symmetry of the residual mapping without explicit guidance. Starting from a
highly asymmetric state (Symmetry Loss of 2.01), the model naturally converges toward increasingly
symmetric behavior, reaching a much lower Symmetry Loss of 3.22¢-2 by the end of training.

This emergence of symmetry-aware behavior validates that our residual learning approach inherently
captures physically meaningful properties of the underlying systems. The network effectively learns
that the relationship between two physical states should maintain consistent properties regardless of
which state is considered the reference, aligning with fundamental principles of physical systems.

These findings suggest potential future improvements through explicit symmetry enforcement during
training or through specialized architectures designed to leverage this property, which could further
enhance the physical consistency and sample efficiency of neural operator learning.

A.9 Integration with Other Base Models

The formulated residual mapping is a general operator learning task, fundamentally independent
of the specific base architecture. Consequently, any neural operator can be employed to learn this
mapping. In Table 14, we include two more base models, Transolver [38] and HPM [25], on the
Irregular Darcy problem.

Table 14: Performance of DeltaPhi integrated with more base architectures.

Model Relative Error
Transolver (Direct) [38] 8.54e-3
Transolver (DeltaPhi) 8.18e-3
HPM (Direct) [25] 7.39¢-3
HPM (DeltaPhi) 6.67¢-3

The results show that DeltaPhi consistently improves the base models. In the future, it is significant
to integrate DeltaPhi with more advanced architectures.

25



B Experimental Detail

B.1 Dataset

B.1.1 Regular Domain

Darcy Flow. Darcy Flow is a steady-state solving problem. We conduct the experiment on Darcy
Flow using the same dataset as [2], consisting of 421 x 421 resolution fields with Dirichlet boundary.
The low resolution data e.g. 22 x 22 are obtained via uniformly downsampling operation.

Navier-Stokes. Navier-Stokes is a challenging time-series solving problem. We use the public dataset
from [2]. The viscosity of trajectories is 1e — 5 (Re = 2000). The spatial resolution is 64 x 64. The
input and output time step length are both 10.

B.1.2 Irregular Domain

For these irregular domain problems, we take the exact same setting with NORM, more details about
the dataset can be found in [9].

Irregular Darcy. The irregular Darcy problem is to solve the Darcy Flow equation defined on an
irregular domain. The input function a(x) represents the diffusion coefficient field and the output
function u(x) is the corresponding pressure field. The domain is represented with a set of triangle
meshes consisting of 2290 nodes. Following [9], we train the neural operators with 1000 data and
test them on additional 200 trajectories.

Pipe Turbulence. Pipe Turbulence is a dynamic fluid system described by the Navier-Stokes equation.
The computational domain is an irregular pipe shape represented as 2673 triangle mesh nodes. In
this problem, the neural operator is required to predict the velocity field in the next frame given the
previous velocity field. Same as [9], 300 trajectories are employed for training, and 100 data are
used for evaluation in our experiments.

Heat Transfer. In the Heat Transfer problem, the energy transfer phenomena due to temperature
difference is studied. The system evolves under the governing law described by the Heat equation.
The neural operator is optimized to predict the 3-dimensional temperature field in 3 seconds given
the initial boundary temperature state. The output physical domain is represented by triangle meshes
with 7199 nodes. We use 100 data for training and the rest of 100 data for evaluation.

Composite. Composite problem is to predict the deformation field in high-temperature stimulation,
which is greatly significant for composites manufacturing. The learned operator is expected to predict
the deformation field given the input temperature field. Following [9] The studied geometry in this
work is an air-intake structural part of a jet, which is composed of 8232 nodes. The training data size
is 400 and the test data size is 100.

Blood Flow. This problem aims to predict blood flow in the aorta, which contains 1 inlet and 5
outlets. The blood flow is simulated as a homogeneous Newtonian fluid. The computational domain
is completely irregular and represented by a set of triangle meshes comprising 1656 nodes. The
simulated temporal length is 1.21 seconds with the temporal step length of 0.01 seconds. The neural
operator predicts the velocity field at different times given the velocity boundary at the inlet and
pressure boundary at the outlet. In this problem, we have 400 data for training and 100 data for
testing, same as [9].

B.2 Base Model

Fourier Neural Operator (FNO) [2]. Fourier Neural Operator (FNO) [2] utilizes the Fourier
Transform based integral operation to implement the neural operator kernel ;. We implement
the FNO with the officially published code under the up-to-date deep learning framework. All
model hyperparameters except the hidden channel width (64 in our experiment, 32 in the original
implementation) are kept the same as in the original manuscript. The incremental hidden channels
enhance the model’s representation capability, obtaining consistent performance improvement in
all settings. The optimization setup (Adam [57] optimizer with initial learning rate 0.001 and
weight decay 0.0001, StepLR scheduler with step size 100 and v = 0.5) is consistent with official
implementation.

26



Factorized Fourier Neural Operator (FFNO) [10]. Factorized Fourier Neural Operator
(FFNO) [10] conducts the Fourier Transform along every dimension independently, reducing the
model size and enabling deep layer optimization. We implement FFNO via the independent Fourier
Transform along each dimension, the improved residual connections, and the FeedForward-based
encoder-decoder. All model hyperparameters and optimization setups are consistent with FNO.

Clifford Fourier Neural Operator (CFNO) [11]. Clifford Fourier Neural Operator (CFNO) [11]
employs the Clifford Algebra in the neural network architecture, incorporating geometry prior
between multiple physical fields. We employ the official implementation for the model architecture.
The signature is set as (—1, —1) and we pad lacked physical channels with zero. All hyperparameters
except the channel width (32 in CFNO) remain consistent with FNO. The training setup (including
the optimizer and scheduler) is the same as FNO.

Galerkin [36]. Galerkin proposes to learn the neural operator with linear attention. We employ
the same model architecture as the original work. The network depth is 4, the head number in the
attention layer is set as 2, and the latent dimension in the feedforward layer is 256. We use the
Galerkin attention mechanism and set the dropout value as 0.05. In our experiment, we use the same
training setup as FNO.

GNOT [21]. GNOT is also an attention-based neural operator structure, which introduces the
heterogeneous normalized attention layer to handling various inputs such as multiple system inputs
and irregular domain meshes. We employ the official architecture implementation. The network
depth is set as 4, the hidden dimension is 64, and the activation function is GeLU. The training setup
is the same as FNO.

MiOnet [55]. MiOnet [55] is an enhanced version of DeepOnet [3]. It processes multiple inputs by
utilizing multiple branch networks and then merging all branch outputs with several fully connected
layers. In our implementation, the depth of all branch layers, trunk layer, and merging layer are set as
4. The latent dimension is set as 128. We take the same training setup with FNO.

Resnet [56]. Resnet [56] is a classical network architecture in image processing. Although it fails in
zero-shot resolution generalization inference for learning infinite dimension operator mapping, the
powerful capability of capturing local details deserves attention. We implement Resnet by simply
replacing the spectral convolution in FNO with 3 x 3 spatial convolution operation. All model
hyperparameters and optimization setups remain consistent with FNO.

B.3 Implementation Details

Except for specific statements, the experimental details are as follows: (a) Retrieval: For training, the
auxiliary sample retrieval range K is set as 20. During inference, the auxiliary sample with the most
similarity with a; is retrieved. (b) Input: The customized input function is partial (last 3 channels) ay,
and complete ug,. (c) Optimizing: We use the Adam [57] optimizer with initial learning rate 0.001
and weight decay 0.0001. The StepLR scheduler with step size 100 and v = 0.5 is used to control
the learning rate. The batch size is set as 8. All models are trained for 500 epochs. All experiments
could be conducted on a single NVIDIA GeForce RTX 4090 device.

B.4 Metric

The evaluated metric is Relative L2 Error, defined as:

Z Hul_ul||27 (19)

[[uill2
where 4; and u; are predicted solution and real solution respectively.
C Additional Method Detail

C.1 Selection of K Value

The optimal value of K is hard to determine. It depends on the generalization problem type (limited
training data problem and resolution generalization problem in this work), the base models, etc.

27



Empirically, the larger the value of K, the better the model’s generalization range, but the learning
difficulty also increases. A proper value of K should ensure enough diversity of training residuals
for generalizing to the targeted pending solved physical trajectories. Thus, it is advisable to set a
larger K value when the discrepancy between the training set and test set is evident, and the model’s
representation ability is considerably strong. Through extensive experiments, we find K = 20 is
an applicable value for the focused generalization problem of this work, ie. the limited amount and
resolution of training data.

For more challenging generalization problems (eg. serious data bias problems in realistic scenarios),
we provide an empirical selection algorithm for the "initial value" decision of K (the "final value" of
K is also related to the base model’s capability). Given the training set (noted as {af"*"} Ntrein),

suppose the input functions (noted as {a‘;“t}l{v:ti“) of pending solved physical trajectories is available.

The initial value of K could be calculated with the following steps: (1) Retrieve the most similar
sample (noted as {affft fV:‘iS") from the training set for every pending solving function. We denote

the similarity values between a}**" and af°*" as s{°**. (2) Calculate the maximum value s5s", of
{Sf»ESt N

max
N .. (3) For every training sample """, calculate its similarity with other training trajectories.
Denote the index of r-th similar sample with a"*" as k7, and the similar score between a}"**" and

aj;*" as s7. (4) The K is calculated as the minimum r satisfying s75), < s for any i € [1, N*r@™").

C.2 Complexity Analysis of Auxiliary Sample Retrieval

The computational cost for retrieval is negligible compared to neural network inference. Here we
provide both theoretical complexity analysis and comprehensive experimental validation.

Theoretical Analysis. The computational complexity primarily depends on two factors: the training
set size (denoted as Ny,4ir) and the number of physical field points (i.e., the resolution of physical
field) (denoted as Ny;¢1q). The retrieval process consists of two main steps:

 Step 1: Similarity Score Calculation. For each sample in the retrieval set, computing the similarity
metric (e.g., Cosine Similarity) has linear time complexity O(Nf;c1q). Thus, calculating similarity
scores for all retrieved samples has complexity O(Neiq - Nirqin)-

* Step 2: Similarity Score Ranking. Using QuickSort to rank samples based on similarity scores has
complexity O(Ntrain : log Ntrain)'

The overall time complexity is O(N tield * Nirain + Nirain - 108 Nirqin). With typical values of
Nticta and Nipq;p, ranging from 103 to 10% and 10 to 10* respectively, the computation is feasible
on standard hardware.

Experimental Validation. We conducted extensive experiments to measure the actual computational
overhead of retrieval:

* Retrieval Time Analysis: We tested retrieval time across different training set sizes on both CPU
and GPU (single RTX 3090) for Darcy Flow (85 x 85 resolution):

Table 15: Retrieval time (in seconds) for different training set sizes

Device 100 300 500 700 900

CPU  2.67e-3 5.57e-3 9.05e-3 1.32e-2 1.66e-2
GPU  1.89e-4 1.83e-4 1.64e-4 2.43e-4 3.06e-4

* End-to-End Inference Time: We compared the total inference time per example between direct
learning and residual learning across different models:

Table 16: Average inference time (in seconds) comparison

Method FNO FFENO  Galerkin

Direct Learning ~ 1.20e-3  2.39¢-3  5.0le-3
Residual Learning 1.67e-3  2.85e-3  5.58e-3
Increased Time 4.67e-4 4.66e-4 5.75e-4

28



The experimental results demonstrate that:

* GPU-based retrieval is highly efficient, taking only 0.2-0.3ms across different training set sizes.

* The total additional time for residual learning, including retrieval and data preparation, is consis-
tently around 0.5ms.

These comprehensive experiments confirm that the auxiliary sample retrieval introduces negligible
computational overhead and does not significantly impact the practical deployment of our method.

C.3 Discussion on Boundary Conditions

In this work, DeltaPhi does not explicitly process boundary conditions as a separate input. Instead,
it implicitly handles them by leveraging the full auxiliary solution uy, as a strong physical prior.
This auxiliary solution, which is a key input to the model, already satisfies the boundary conditions
of its corresponding system. The model’s effectiveness in handling complex boundary effects is
demonstrated by its strong performance on irregular domain problems, such as Pipe Turbulence and
Blood Flow, which feature complex inlet/outlet conditions. While our current approach is effective,
future work could explore enhancing the retrieval mechanism with a boundary-aware similarity metric
for enhanced residual neural operator.

D Visualization Analysis Detail

D.1 Similarity between u(x) Visulization Detail

We visualize the correlation between u(x) normalized distance and a(z) similarity rank (shown in
Figure 4) as following steps: Firstly, taking the training set 7 as retrieval set, we retrieve auxiliary
sample (ax, ., ur, ) with r-th top similarity score for every test sample (a°**, uf°*") in the test set.
Here r represents the similarity rank (higher r indicates lower similarity), and we take gradually
increasing values from 1 to 80 for . Next, we calculate the normalized distance between u;?“t
with its auxiliary sample uy, .. The normalized distance is defined the same as the relative error in
Equation (19).

D.2 Label Distribution Visualization Detail

We visualize the label distribution (as shown in Figure 5) by reducing the high-dimension function
fields to 2 dimensions utilizing Principle Component Analysis. Specifically, for both direct operator
mapping and residual operator mapping, we first optimize a PCA model on the training labels (100
labels) and then calculate the dimension-reduced labels for every sample in the training and testing set.
Finally, we visualize every two-dimension label point on the graph as well as the ellipses representing
the stand deviation and the range along each dimension.

29



	Introduction
	Background and Related Work
	Direct Neural Operator Learning
	Residual Learning in Previous Works

	Methodology
	Preliminary: Stability of Physical Systems
	Residual Operator Mapping: A Unified Formulation
	Auxiliary Sample Retriever Fret
	Architecture of Residual Neural Operators G
	How DeltaPhi Improves Generalization Capability

	Experiment
	Comparison on Various PDEs
	Comparison on Resolution Generalization Problem
	Statistical Analysis of Residual Operator Learning

	Limitation
	Conclusion
	Additional Experiment
	Impact of Retrieval Range and Random Sampling
	Performance Analysis on Different Test Distribution
	Customized Auxiliary Input Ablation
	Auxiliary Sample Selection during Inference
	Different Similarity Function
	Alternative Sampling Strategy: Importance Sampling
	Comparison of Interpolation Methods for Cross-resolution Residual Learning
	Symmetry Analysis of Residual Operator
	Integration with Other Base Models

	Experimental Detail
	Dataset
	Regular Domain
	Irregular Domain

	Base Model
	Implementation Details
	Metric

	Additional Method Detail
	Selection of K Value
	Complexity Analysis of Auxiliary Sample Retrieval
	Discussion on Boundary Conditions

	Visualization Analysis Detail
	Similarity between u(x) Visulization Detail
	Label Distribution Visualization Detail


