mEDA: Mobile DC-EDA Circuit Validation
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Abstract - Electrodermal activity (EDA) provides a direct
indicator of sympathetic nervous system arousal through
changes in skin conductance. However, wearable EDA
sensing poses challenges such as inconsistent skin contact,
electrode impedance variability, motion artifacts, and power
constraints. To address these issues, this study presents
mobile EDA (mEDA), a compact device driven by a stabilized
direct-current source. A validation study was conducted on
ten healthy adult participants in a time-synchronized protocol
to collect data from BIOPAC and mEDA concurrently.
mEDA recordings employed gel electrodes for PI-P5 and dry
(textile) electrodes for P6—P10, while the BIOPAC MP160
system used gel electrodes for all participants. Participants
underwent a 30-minute protocol of resting, deep breathing,
and three cognitive tasks. The preprocessing pipeline
consisted of low-pass filter and artifact (sharp peaks and flat
line) removal. Cleaned signals were converted into frequency
domain components for decomposition into low and high
frequency components, skin conductance level (SCL), and
skin conductance response (SCR) respectively. SCL and SCR
were converted back to the time domain to analyze
performance metrics between both devices. Pearson
correlation, coherence, and Dynamic Time Warping (DTW)
were computed on SCL, while zero-crossing peaks were
counted for SCR analysis. With gel electrodes, the average
Pearson correlation was 0.92 and the SCR peak count
difference was 38. For textile electrodes, the correlation was
0.88 with a peak count difference of 119. Both configurations
achieved coherence above 0.95 and DTW below 0.5 for most
participants. These results demonstrate mEDA’s reliable
performance in capturing both tonic and phasic EDA across
electrode configurations.
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I.  INTRODUCTION

Human skin is the largest bodily organ, acting as a direct
indicator of internal emotional, cognitive, and physiological
processes. These internal states are closely linked to the
Sympathetic Nervous System (SNS), which governs the body's
automatic responses to arousal and stress. One of the most
direct outcomes of SNS activation is emotional sweating:
secretion of sweat due to psychological triggers alongside
thermoregulation. Changes in the electrical properties of the
skin, primarily caused by emotional sweating, are known as
Electrodermal Activity (EDA) [1].
Electrically, EDA is explained using a parallel resistor model.
In this framework, the thousands of individual sweat ducts are
conceptualized as a set of resistors arranged in parallel. When

sympathetic activation causes these ducts to fill with conductive
sweat, the skin's overall impedance decreases. This is measured
as a corresponding increase in skin conductance [2].

EDA is measured by applying either a direct (DC) or alternating
(AC) current. The AC-based measurement method is more
complex, involving phase shifts that require measuring a
complex value (admittance) with both real (conductance) and
imaginary (susceptance) parts [3]. Although AC can reveal
detailed skin properties, the DC-based measurement method
provides the conductance value that is sufficient for tracking
sympathetic arousal [4]. The skin conductance signal, measured
in micro siemens (uS), is differentiated into tonic and phasic
components. The tonic component, or Skin Conductance Level
(SCL), is the slow-changing baseline that reflects general
arousal. In contrast, the phasic component consists of Skin
Conductance Responses (SCRs), which are the sharp, transient
peaks caused by stimuli or an internal emotional state. Each
SCR has a characteristic sharp rise and slower decline [1]. EDA
is a slow-moving signal that can be represented as a sum of the
SCL and SCRs, typically with a dominant frequency below 1
Hz. SCL or tonic changes are lower frequency components
typically falling in the range of below 0.05 Hz. SCR or phasic
component is relatively a high-frequency component of EDA
up to 2 Hz [5].

Shifting EDA measurements from laboratories to wearables
presents several challenges: ensuring stable electrode—skin
contact, controlling electrode impedance and induced currents,
and mitigating motion artifacts caused by changes in pressure
and electrode placement [6]. EDA can be measured with both
standard gel-based and dry electrodes. For long-term
recordings, dry electrodes are generally preferred to prevent
sweat gland saturation by gel, although they are more
susceptible to motion artifacts and fluctuating skin impedance

[1].
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Figure 1: Concept image of validating mEDA



In this paper, we present the DC sourced mEDA circuit
adaptive for a wide range of skin electrode impedances. While
prior work demonstrated the feasibility of a DC-based EDA
circuit [7], their validation was limited to morphological
inspection without quantitative benchmarking against research-
grade systems. This leaves a gap in confirming whether such
circuits can reliably capture both tonic and phasic components
of EDA compared to gold-standard instrumentation. We
propose to enhance and validate the DC-based EDA circuit to
make it more acceptable across different stimulations for both
gel and dry electrodes. The key contributions include:

e Circuit adaptation: Optimized DC-EDA
bioinstrumentation using an advanced amplifier
(AD860x) for improved gain, resolution, and power
efficiency.

e System validation: Benchmarked mEDA against a gold
standard EDA device (BIOPAC MP160) in ten healthy
adult participants, confirming comparable signal quality
with both gel and textile electrodes.

e Protocol and feasibility analysis: Applied a stress—
relaxation protocol and used standardized metrics
(Pearson correlation, Dynamic Time Warping (DTW),
coherence, AZC) to quantify agreement in SCL and SCR.

II.  MATERIALS AND METHODS

A. mEDA Bioinstrumentation System Development

The EDA acquisition bioinstrumentation comprises a three-
stage operational amplifier [7]. The first stage provides a virtual
ground for single-supply operation (AD8604), followed by a
voltage-controlled linear current source and a low-pass filter.
By choosing R.r = 825 kQ, excitation current is held at 2 pA,
for high sensitivity across a wide range of skin conductance.
The conditioned voltage (Ved) is digitized via a 24-bit ADC
ADSI1219, interfaced to a Raspberry Pi Pico (Fig. 2).
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Skin conductance is computed from skin resistance using
equation (1) where, Ggin is skin conductance (uS), Veda is
divider output voltage, Vpp is supply voltage (3.3V) and Rcris
the reference resistor (825 kQ ). A CSV file containing data
sampled at 100 Hz was saved to the device’s SD card every five
minutes.

Gskin =

B. Human Study Setup and Procedure

Ten healthy adults were recruited to validate our custom EDA
circuit against the gold-standard system (BIOPAC MP160)
with the Bionomadix PPGED-R amplifier [8]. This study
received approval from the University of Rhode Island
Institutional Review Board (IRB No# 2125810-6).

The PPGED-R is a DC-based EDA module that connects to
MP160. To ensure time-synchronized concurrent data capture,
an external digital trigger is used from the mEDA system. Four
EDA electrodes (two for mEDA and two for BIOPAC) were
placed on standard EDA collection sites on the left hand [9]. To
avoid crosstalk, BIOPAC electrodes were placed on the wrist,
and mEDA electrodes were placed on the index and middle
fingers as shown in Fig. 1. BIOPAC EDA was acquired at 1
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Figure 2: The Bioinstrumentation Architecture of the mEDA System.
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KHz, whereas custom EDA was recorded at 100Hz and stored

in local SD card.

Participants completed a 30-minute protocol (Fig. 3A)

consisting of an initial seated baseline, a paced deep-breathing

relaxation period, three back-to-back cognitive challenges, and

a final seated cool-down:

o In the first mental task of M1 (“Speed Math”), they answered
25 multiple-choice arithmetic questions spanning four
difficulty levels within 3 minutes.

e Next M2, there was a two-minute “Reverse Alphabet” task,
they recited the letters from Z to A, restarting from Z
whenever an error occurred.

e The third M3 task required participants to follow a video
prompt and solve 40 arithmetic problems in 4 minutes, with
question difficulty increasing over time.

Mental tasks M1 and M3 were based on math arithmetic

operation questions from pre-recorded video. All the tasks were

presented through continuous slide show. A brief resting period
separated each task where we have detailed them about
instructions for upcoming tasks, and the session concluded with
seated rest to allow physiological measures to return toward
baseline. Participants were asked to close their eyes during each
five-minute rest to ensure a consistent decline in skin
conductance level toward baseline, while calming music played

in background. The first two minutes were treated as a

stabilization phase for the slow-varying EDA signal, and only

data collected after this settling time were used for analysis.

For first five participants (P1-P5), mEDA data were collected

using standard gel electrodes. For the rest of the participants

(P6-P10), mEDA data were recorded using silver-knit textile

electrodes developed in our lab in a previous study [10].

BIOPAC data were recorded using gel electrodes as standard

comparison for all the participants. The morphology of the

waveforms recorded by both devices were very similar
throughout the protocol. Signals acquired from mEDA gel-
based electrodes exhibited amplitudes that closely matched
with BIOPAC gel electrodes, whereas recordings from silver-
knit textile dry electrodes were approximately 50% lower in
amplitude.

C. Comparative Signal Analysis:
1) Preprocessing:

All recordings were resampled to 100Hz via cubic

interpolation and truncated to 30 minutes to ensure matching

durations for BIOPAC and mEDA.
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Figure 3: A) Study Protocol with relaxing and mental task activities. B) Normalized EDA signals after preprocessing during different activities.

A 1.5 Hz low-pass filter was used to remove high-frequency
noise [7], and artifacts were excluded by zeroing and
interpolating any 10-second window with abrupt amplitude
changes exceeding 20 % or a standard deviation below 10°¢
[11]. Finally, each participant’s mEDA and BIOPAC data was
normalized [0 1] (Fig. 3B) before calculating metrics for
validation of mEDA data [12] (Fig. 4).
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Figure 4: EDA Signal Processing Pipeline.

2) Analysis Metrics:
Preprocessed signals were overlaid to assess both BIOPAC and
mEDA waveform morphology as shown in Fig. 3B. EDA signal
was decomposed into SCL and SCR components before
normalization using an FFT-based cutoff at 0.5 Hz [7] [13].
SCL similarity was quantified with the Pearson
cross-correlation coefficient, ranging from -1 (inverse) to +1
(perfect) linear agreement. Temporal alignment was evaluated
using DTW, with normalized scores classified as excellent (0.0-
0.5), good (0.5-1.5), weak (1.5-3.0), or poor (>3.0).

Frequency-domain coupling was measured by coherence,
yielding values between 0 (no shared activity) and 1 (perfect
coupling) at each frequency [12]. SCR peaks were detected via
zero-crossing analysis against a moving-average baseline (1s
sample window, 1s sample shift), and agreement between
devices was expressed as the absolute zero-crossing difference
AZC = |ZCgiopac -ZCmepa| [6]. All computations were
performed in MATLAB.
III. RESULTS
1) Linearity and Stability of Circuit Performance:
Linearity and stability were calibrated using known resistance
with our device. Precision resistors of 100-680kQ were used
over time to test our circuit in the benchtop version before
employing it on human participants. Each resistance showed
<+0.3mV (ADC wvalues) drift, confirming constant
conductance over the targeted range. This shows that
employing Ry of 825 KQ provides consistent current to
measure shift in conductance fluctuating within 20uS range
for dry and gel electrodes.
2) Morphological Comparison:

Fig. 3B presents normalized EDA signals from both mEDA and
BIOPAC systems. The left subplot (P1-P5) compares gel
electrodes, while the right subplot (P6-P10) compares mEDA
dry electrodes against BIOPAC gel electrodes. Across all
participants, the signal trends between devices were well-
aligned, indicating consistent tracking of EDA changes.
Although dry electrodes showed lower amplitude, their signal
shape closely matched BIOPAC, likely due to differences in
skin-electrode impedance affecting current flow. Participant P9
exhibited noticeable motion artifacts, likely from hand



movement during recording. Overall, a downward trend was
observed during the breathing task, followed by increased EDA
during cognitive challenges (14-25 min), and a decline during
the final rest period. Most participants showed an immediate
EDA rise during task instructions, with three distinct peaks
corresponding to each mental task. However, deviations from
protocol were evident in Pl and P9, affecting signal
consistency.

3) SCL and SCR Quantitative Performance Metrics:
Table 1 provides quantitative metrics comparing tonic SCL and
phasic SCR agreement between BIOPAC and mEDA. Gel
electrodes (P1-P5) achieved a high average Pearson correlation
0.92, coherence greater than 0.95, and DTW below 0.5 for all
except P3 (DTW - 0.62), reflecting consistent baseline tracking;
their |AZC| values were low (5-78), indicating nearly identical
SCR counts. P3’s slightly elevated DTW corresponds to a brief
timing offset around the M2 to M3 transition in Fig. 3B.

Table 1: SCL and SCR comparison metrics.

PID SCL SCR

Gel: P1-P5 Pearson DTW Coherence AZC
Dry: P6- Correlation (Loweris | (Closerto 1 (Lower is
P10 (Closer to 1 is better) is better) better)
better)

P1-Gel 0.88 0.24 0.95 78
P2-Gel 0.92 0.40 0.85 5
P3-Gel 0.94 0.82 42
P4-Gel 0.95 0.34 0.96 7
P5-Gel 0.89 0.30 0.97 59
P6-Dry 0.84 0.17 0.98 46
P7-Dry 0.98 0.15 0.96 35
P8-Dry 0.93 0.38 0.97 98
P9-Dry [ 0.66 0.49 0.95 288 |
P10-Dry 0.97 0.27 0.98 126

On the other hand, dry electrodes (P6 - P10) also maintained
strong average correlation of 0.88, coherence higher than 0.95,
and DTW below 0.5 for all but P9 (DTW= 0.49), demonstrating
that even with higher impedance, dry contacts reliably follow
slow EDA trends. However, AZC values were more variable
(35-288), driven by motion artifacts (notably P9) and
impedance fluctuations, leading to occasional SCR over- or
under-counting. Despite gel electrodes outperforming dry in
uniformity, particularly in consistently low DTW and AZC
metrics, dry electrodes still delivered robust SCL and SCR
agreement.
IV. CONCLUSION AND FUTURE WORKS

In this study, a DC-based EDA circuit was modified through an
integration of a new ADC (ADS1219), and skin conductivity
was calculated via a Raspberry Pi Pico to achieve enhanced
resolution. A custom bioinstrumentation system (mEDA) was
developed and characterized using both known resistor values
and human skin. Validation against a research-grade standard
was conducted for gel and dry electrodes across ten healthy
adult participants subjected to relaxation and stress stimuli.
Time-synchronized EDA signals underwent detailed signal
processing and were compared using established metrics. The
mEDA system demonstrated performance comparable to the

BIOPAC device for both electrode types. Interestingly, dry

electrodes often showed stronger tonic alignment with

BIOPAC than gel electrodes, likely due to electrode placement

and the potential for gel to interfere with sweat gland activity.

This highlights the promise of advancing dry electrodes further

if circuit adaptation and optimized form factors are

implemented. Future work will involve further circuit
characterization, evaluation of alternative current sources in
relation to skin-electrode impedance for multiple dry
electrodes, and extensive long-duration human studies
incorporating additional biosignals for event-based skin
conductivity assessment.

ACKNOWLEDGMENT

This research was supported by the National Institutes of Health

(NIH)'s National Institute of Biomedical Imaging and

Bioengineering (NIBIB), grant #1RO1EB033581-01A1. We

also thank all participants and lab members for their support.

REFERENCES

[11] Boucsein, Wolfram. Electrodermal activity. Springer science &
business media, 2012.

[2] Edelberg, Robert. "Electrodermal mechanisms: A critique of the
two-effector hypothesis and a proposed replacement." Progress
in electrodermal research (1993): 7-29.

[3] Grimnes, Sverre, et al. "Electrodermal activity by DC potential
and AC conductance measured simultaneously at the same skin
site." Skin Research and Technology 17.1 (2011): 26-34.

[4] Pabst, Oliver, et al. "Comparison between the AC and DC
measurement of electrodermal activity." Psychophysiology 54.3
(2017): 374-385.

[5] Posada-Quintero, Hugo F., and Ki H. Chon. "Frequency-domain
electrodermal activity index of sympathetic function." 2016
IEEE-EMBS International Conference on Biomedical and
Health Informatics (BHI). IEEE, 2016.

[6] Tronstad, Christian, et al. "Current trends and opportunities in
the methodology of electrodermal activity measurement.”
Physiological measurement 43.2 (2022): 02TRO1.

[7] Zangroniz, Roberto, et al. "Electrodermal activity sensor for
classification of calm/distress condition." Sensors 17.10 (2017):
2324.

[8] BIOPAC Systems, Inc. (n.d.). BIONOMADIX 2CH WIRELESS
ECG  AMPLIFIER.  Part #: BN-PPGED-R. doi:
https://www .biopac.com/product/bionomadix-ppg-and-eda-
amplifier/.

[9] van Dooren, Marieke, and Joris H. Janssen. "Emotional
sweating across the body: Comparing 16 different skin
conductance measurement locations." Physiology & behavior
106.2 (2012): 298-304.

[10] Veeturi, Suparna, et al. "Evaluating Dry Electrodes and
Bioinstrumentation for Wearable Arm ECG Acquisition." 2024
International Conference on the Challenges, Opportunities,
Innovations and Applications in Electronic Textiles (E-
Textiles). IEEE, 2024.

[11] Kong, Youngsun, et al. "Automatic motion artifact detection in
electrodermal activity signals using 1D U-net architecture.”
Computers in Biology and Medicine 182 (2024): 109139.

[12] Bota, Patricia J., et al. "A Wearable System for Electrodermal
Activity Data  Acquisition in Collective Experience
Assessment." ICEIS (2). 2020.

[13] Posada-Quintero, Hugo F., and Ki H. Chon. "Frequency-domain
electrodermal activity index of sympathetic function." 2016
IEEE-EMBS International Conference on Biomedical and
Health Informatics (BHI). IEEE, 2016.



