
 

mEDA: Mobile DC-EDA Circuit Validation
Suparna Veeturi1,§,*, Nishtha Bhagat1,§, Vignesh Ravichandran1, Ben Annicelli1, Stephanie Carreiro3, Krishna Venkatasubramanian2, Dhaval 

Solanki1, Kunal Mankodiya1  
1 Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA 

2 Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI, USA 
3 Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA 

* Corresponding Author, § Authors contributed equally.  

Abstract - Electrodermal activity (EDA) provides a direct 

indicator of sympathetic nervous system arousal through 

changes in skin conductance. However, wearable EDA 

sensing poses challenges such as inconsistent skin contact, 

electrode impedance variability, motion artifacts, and power 

constraints. To address these issues, this study presents 

mobile EDA (mEDA), a compact device driven by a stabilized 

direct-current source. A validation study was conducted on 

ten healthy adult participants in a time-synchronized protocol 

to collect data from BIOPAC and mEDA concurrently. 

mEDA recordings employed gel electrodes for P1–P5 and dry 

(textile) electrodes for P6–P10, while the BIOPAC MP160 

system used gel electrodes for all participants. Participants 

underwent a 30-minute protocol of resting, deep breathing, 

and three cognitive tasks. The preprocessing pipeline 

consisted of low-pass filter and artifact (sharp peaks and flat 

line) removal. Cleaned signals were converted into frequency 

domain components for decomposition into low and high 

frequency components, skin conductance level (SCL), and 

skin conductance response (SCR) respectively. SCL and SCR 

were converted back to the time domain to analyze 

performance metrics between both devices. Pearson 

correlation, coherence, and Dynamic Time Warping (DTW) 

were computed on SCL, while zero-crossing peaks were 

counted for SCR analysis. With gel electrodes, the average 

Pearson correlation was 0.92 and the SCR peak count 

difference was 38. For textile electrodes, the correlation was 

0.88 with a peak count difference of 119. Both configurations 

achieved coherence above 0.95 and DTW below 0.5 for most 

participants. These results demonstrate mEDA’s reliable 

performance in capturing both tonic and phasic EDA across 

electrode configurations. 
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I. INTRODUCTION  

Human skin is the largest bodily organ, acting as a direct 

indicator of internal emotional, cognitive, and physiological 

processes. These internal states are closely linked to the 

Sympathetic Nervous System (SNS), which governs the body's 

automatic responses to arousal and stress. One of the most 

direct outcomes of SNS activation is emotional sweating: 

secretion of sweat due to psychological triggers alongside 

thermoregulation. Changes in the electrical properties of the 

skin, primarily caused by emotional sweating, are known as 

Electrodermal Activity (EDA) [1].  

Electrically, EDA is explained using a parallel resistor model. 

In this framework, the thousands of individual sweat ducts are 

conceptualized as a set of resistors arranged in parallel. When 

sympathetic activation causes these ducts to fill with conductive 

sweat, the skin's overall impedance decreases. This is measured 

as a corresponding increase in skin conductance [2].  

EDA is measured by applying either a direct (DC) or alternating 

(AC) current. The AC-based measurement method is more 

complex, involving phase shifts that require measuring a 

complex value (admittance) with both real (conductance) and 

imaginary (susceptance) parts [3]. Although AC can reveal 

detailed skin properties, the DC-based measurement method 

provides the conductance value that is sufficient for tracking 

sympathetic arousal [4]. The skin conductance signal, measured 

in micro siemens (μS), is differentiated into tonic and phasic 

components. The tonic component, or Skin Conductance Level 

(SCL), is the slow-changing baseline that reflects general 

arousal. In contrast, the phasic component consists of Skin 

Conductance Responses (SCRs), which are the sharp, transient 
peaks caused by stimuli or an internal emotional state. Each 

SCR has a characteristic sharp rise and slower decline [1]. EDA 

is a slow-moving signal that can be represented as a sum of the 

SCL and SCRs, typically with a dominant frequency below 1 

Hz. SCL or tonic changes are lower frequency components 

typically falling in the range of below 0.05 Hz. SCR or phasic 

component is relatively a high-frequency component of  EDA 

up to 2 Hz [5]. 

Shifting EDA measurements from laboratories to wearables 

presents several challenges: ensuring stable electrode–skin 

contact, controlling electrode impedance and induced currents, 

and mitigating motion artifacts caused by changes in pressure 

and electrode placement [6]. EDA can be measured with both 

standard gel-based and dry electrodes. For long-term 

recordings, dry electrodes are generally preferred to prevent 

sweat gland saturation by gel, although they are more 

susceptible to motion artifacts and fluctuating skin impedance 

[1].  

 
Figure 1: Concept image of validating mEDA 



In this paper, we present the DC sourced mEDA circuit 

adaptive for a wide range of skin electrode impedances. While 

prior work demonstrated the feasibility of a DC-based EDA 

circuit [7], their validation was limited to morphological 

inspection without quantitative benchmarking against research-

grade systems. This leaves a gap in confirming whether such 

circuits can reliably capture both tonic and phasic components 

of EDA compared to gold-standard instrumentation. We 

propose to enhance and validate the DC-based EDA circuit to 

make it more acceptable across different stimulations for both 

gel and dry electrodes. The key contributions include: 

• Circuit adaptation: Optimized DC-EDA 

bioinstrumentation using an advanced amplifier 

(AD860x) for improved gain, resolution, and power 

efficiency. 

• System validation: Benchmarked mEDA against a gold 

standard EDA device (BIOPAC MP160) in ten healthy 

adult participants, confirming comparable signal quality 

with both gel and textile electrodes. 

• Protocol and feasibility analysis: Applied a stress–

relaxation protocol and used standardized metrics 

(Pearson correlation, Dynamic Time Warping (DTW), 

coherence, ΔZC) to quantify agreement in SCL and SCR. 

II. MATERIALS AND METHODS 

A. mEDA Bioinstrumentation System  Development 

The EDA acquisition bioinstrumentation comprises a three-

stage operational amplifier [7]. The first stage provides a virtual 

ground for single-supply operation (AD8604), followed by a 

voltage-controlled linear current source and a low-pass filter. 

By choosing Rref = 825 kΩ, excitation current is held at 2 µA, 

for high sensitivity across a wide range of skin conductance. 

The conditioned voltage (Veda) is digitized via a 24-bit ADC 

ADS1219, interfaced to a Raspberry Pi Pico (Fig. 2). 

𝐺𝑠𝑘𝑖𝑛 =
𝑉𝐷𝐷

(𝑉𝐷𝐷−2𝑉𝐸𝐷𝐴)𝑅𝑟𝑒𝑓
× 106……...(1) 

Skin conductance is computed from skin resistance using 

equation (1) where, Gskin is skin conductance (μS), Veda is 

divider output voltage,  VDD is supply voltage (3.3V) and Rref is 

the reference resistor (825 kΩ ). A CSV file containing data 

sampled at 100 Hz was saved to the device’s SD card every five 

minutes. 

B. Human Study Setup and Procedure 

Ten healthy adults were recruited to validate our custom EDA 

circuit against the gold-standard system (BIOPAC MP160) 

with the Bionomadix PPGED-R amplifier [8]. This study 

received approval from the University of Rhode Island 

Institutional Review Board (IRB No# 2125810-6).  

The PPGED-R is a DC-based EDA module that connects to 

MP160. To ensure time-synchronized concurrent data capture, 

an external digital trigger is used from the mEDA system. Four 

EDA electrodes (two for mEDA and two for BIOPAC) were 

placed on standard EDA collection sites on the left hand [9]. To 

avoid crosstalk, BIOPAC electrodes were placed on the wrist, 

and mEDA electrodes were placed on the index and middle 

fingers as shown in Fig. 1. BIOPAC EDA was acquired at 1 

KHz, whereas custom EDA was recorded at 100Hz and stored 

in local SD card.  

Participants completed a 30-minute protocol (Fig. 3A) 

consisting of an initial seated baseline, a paced deep-breathing 

relaxation period, three back-to-back cognitive challenges, and 

a final seated cool-down:  

• In the first mental task of M1 (“Speed Math”), they answered 

25 multiple-choice arithmetic questions spanning four 

difficulty levels within 3 minutes.  

• Next M2, there was a two-minute “Reverse Alphabet” task, 
they recited the letters from Z to A, restarting from Z 

whenever an error occurred.  

• The third M3 task required participants to follow a video 

prompt and solve 40 arithmetic problems in 4 minutes, with 

question difficulty increasing over time.  

Mental tasks M1 and M3 were based on math arithmetic 

operation questions from pre-recorded video. All the tasks were 

presented through continuous slide show.  A brief resting period 

separated each task where we have detailed them about 

instructions for upcoming tasks, and the session concluded with 

seated rest to allow physiological measures to return toward 

baseline. Participants were asked to close their eyes during each 

five-minute rest to ensure a consistent decline in skin 

conductance level toward baseline, while calming music played 

in background. The first two minutes were treated as a 

stabilization phase for the slow-varying EDA signal, and only 

data collected after this settling time were used for analysis. 

For first five participants (P1-P5), mEDA data were collected 

using standard gel electrodes. For the rest of the participants 

(P6-P10), mEDA data were recorded using silver-knit textile 

electrodes developed in our lab in a previous study [10]. 

BIOPAC data were recorded using gel electrodes as standard 

comparison for all the participants. The morphology of the 

waveforms recorded by both devices were very similar 

throughout the protocol. Signals acquired from mEDA gel-

based electrodes exhibited amplitudes that closely matched 

with BIOPAC gel electrodes, whereas recordings from silver-

knit textile dry electrodes were approximately 50% lower in 

amplitude.  

C. Comparative Signal Analysis:  

1) Preprocessing: 

All recordings were resampled to 100 Hz via cubic 

interpolation and truncated to 30 minutes to ensure matching 

durations for BIOPAC and mEDA. 

 
Figure 2: The Bioinstrumentation Architecture of the mEDA System.  



A 1.5 Hz low‑pass filter was used to remove high‑frequency 

noise [7], and artifacts were excluded by zeroing and 

interpolating any 10‑second window with abrupt amplitude 

changes exceeding 20 % or a standard deviation below 10⁻⁶ 

[11]. Finally, each participant’s mEDA and BIOPAC data was 

normalized [0 1] (Fig. 3B) before calculating metrics for 

validation of mEDA data [12] (Fig. 4). 

 
2) Analysis Metrics: 

Preprocessed signals were overlaid to assess both BIOPAC and 

mEDA waveform morphology as shown in Fig. 3B. EDA signal 

was decomposed into SCL and SCR components before 

normalization using an FFT-based cutoff at 0.5 Hz [7] [13]. 

SCL similarity was quantified with the Pearson 

cross‑correlation coefficient, ranging from -1 (inverse) to +1 

(perfect) linear agreement. Temporal alignment was evaluated 

using DTW, with normalized scores classified as excellent (0.0-

0.5), good (0.5-1.5), weak (1.5-3.0), or poor (>3.0). 

Frequency‑domain coupling was measured by coherence, 

yielding values between 0 (no shared activity) and 1 (perfect 

coupling) at each frequency [12]. SCR peaks were detected via 

zero‑crossing analysis against a moving‑average baseline (1s 

sample window, 1s sample shift), and agreement between 

devices was expressed as the absolute zero‑crossing difference 

ΔZC = |ZCBIOPAC - ZCmEDA| [6]. All computations were 

performed in MATLAB. 

III. RESULTS 

1) Linearity and Stability of Circuit Performance: 

Linearity and stability were calibrated using known resistance 

with our device. Precision resistors of 100-680kΩ were used 

over time to test our circuit in the benchtop version before 

employing it on human participants. Each resistance showed 

<±0.3 mV (ADC values) drift, confirming constant 

conductance over the targeted range. This shows that 

employing Rref of 825 KΩ provides consistent current to 

measure shift in conductance fluctuating within 20μS range 

for dry and gel electrodes. 

2) Morphological Comparison: 

Fig. 3B presents normalized EDA signals from both mEDA and 

BIOPAC systems. The left subplot (P1–P5) compares gel 

electrodes, while the right subplot (P6–P10) compares mEDA 

dry electrodes against BIOPAC gel electrodes. Across all 

participants, the signal trends between devices were well-

aligned, indicating consistent tracking of EDA changes. 

Although dry electrodes showed lower amplitude, their signal 

shape closely matched BIOPAC, likely due to differences in 

skin-electrode impedance affecting current flow. Participant P9 

exhibited noticeable motion artifacts, likely from hand 

 
Figure 4: EDA Signal Processing Pipeline. 

 
Figure 3: A) Study Protocol with relaxing and mental task activities. B) Normalized EDA signals after preprocessing during different activities. 



movement during recording. Overall, a downward trend was 

observed during the breathing task, followed by increased EDA 

during cognitive challenges (14–25 min), and a decline during 

the final rest period. Most participants showed an immediate 

EDA rise during task instructions, with three distinct peaks 

corresponding to each mental task. However, deviations from 

protocol were evident in P1 and P9, affecting signal 

consistency. 

3) SCL and SCR Quantitative Performance Metrics: 

Table 1 provides quantitative metrics comparing tonic SCL and 

phasic SCR agreement between BIOPAC and mEDA. Gel 

electrodes (P1-P5) achieved a high average Pearson correlation 

0.92, coherence greater than 0.95, and DTW below 0.5 for all 

except P3 (DTW - 0.62), reflecting consistent baseline tracking; 

their |ΔZC| values were low (5-78), indicating nearly identical 

SCR counts. P3’s slightly elevated DTW corresponds to a brief 

timing offset around the M2 to M3 transition in Fig. 3B. 

 
On the other hand, dry electrodes (P6 - P10) also maintained 

strong average correlation of 0.88, coherence higher than 0.95, 

and DTW below 0.5 for all but P9 (DTW= 0.49), demonstrating 

that even with higher impedance, dry contacts reliably follow 

slow EDA trends. However, ΔZC values were more variable 

(35-288), driven by motion artifacts (notably P9) and 

impedance fluctuations, leading to occasional SCR over‑ or 

under‑counting. Despite gel electrodes outperforming dry in 

uniformity, particularly in consistently low DTW and ΔZC 

metrics, dry electrodes still delivered robust SCL and SCR 

agreement. 

IV. CONCLUSION AND FUTURE WORKS 

In this study, a DC-based EDA circuit was modified through an 

integration of a new ADC (ADS1219), and skin conductivity 

was calculated via a Raspberry Pi Pico to achieve enhanced 

resolution. A custom bioinstrumentation system (mEDA) was 

developed and characterized using both known resistor values 

and human skin. Validation against a research-grade standard 

was conducted for gel and dry electrodes across ten healthy 

adult participants subjected to relaxation and stress stimuli. 

Time-synchronized EDA signals underwent detailed signal 

processing and were compared using established metrics. The 

mEDA system demonstrated performance comparable to the 

BIOPAC device for both electrode types. Interestingly, dry 

electrodes often showed stronger tonic alignment with 

BIOPAC than gel electrodes, likely due to electrode placement 

and the potential for gel to interfere with sweat gland activity. 

This highlights the promise of advancing dry electrodes further 

if circuit adaptation and optimized form factors are 

implemented. Future work will involve further circuit 

characterization, evaluation of alternative current sources in 

relation to skin-electrode impedance for multiple dry 

electrodes, and extensive long-duration human studies 

incorporating additional biosignals for event-based skin 

conductivity assessment. 

ACKNOWLEDGMENT 

This research was supported by the National Institutes of Health 

(NIH)'s National Institute of Biomedical Imaging and 

Bioengineering (NIBIB), grant #1R01EB033581-01A1. We 

also thank all participants and lab members for their support. 

REFERENCES 
[1] Boucsein, Wolfram. Electrodermal activity. Springer science & 

business media, 2012. 

[2] Edelberg, Robert. "Electrodermal mechanisms: A critique of the 

two-effector hypothesis and a proposed replacement." Progress 

in electrodermal research (1993): 7-29. 

 [3] Grimnes, Sverre, et al. "Electrodermal activity by DC potential 

and AC conductance measured simultaneously at the same skin 

site." Skin Research and Technology 17.1 (2011): 26-34. 

[4] Pabst, Oliver, et al. "Comparison between the AC and DC 

measurement of electrodermal activity." Psychophysiology 54.3 

(2017): 374-385. 

[5] Posada-Quintero, Hugo F., and Ki H. Chon. "Frequency-domain 

electrodermal activity index of sympathetic function." 2016 

IEEE-EMBS International Conference on Biomedical and 

Health Informatics (BHI). IEEE, 2016. 

[6] Tronstad, Christian, et al. "Current trends and opportunities in 

the methodology of electrodermal activity measurement." 

Physiological measurement 43.2 (2022): 02TR01. 

[7] Zangróniz, Roberto, et al. "Electrodermal activity sensor for 

classification of calm/distress condition." Sensors 17.10 (2017): 

2324. 

[8] BIOPAC Systems, Inc. (n.d.). BIONOMADIX 2CH WIRELESS 

ECG AMPLIFIER. Part #: BN-PPGED-R. doi: 

https://www.biopac.com/product/bionomadix-ppg-and-eda-

amplifier/. 

[9] van Dooren, Marieke, and Joris H. Janssen. "Emotional 

sweating across the body: Comparing 16 different skin 

conductance measurement locations." Physiology & behavior 

106.2 (2012): 298-304. 

[10] Veeturi, Suparna, et al. "Evaluating Dry Electrodes and 

Bioinstrumentation for Wearable Arm ECG Acquisition." 2024 

International Conference on the Challenges, Opportunities, 

Innovations and Applications in Electronic Textiles (E-

Textiles). IEEE, 2024. 

[11] Kong, Youngsun, et al. "Automatic motion artifact detection in 

electrodermal activity signals using 1D U-net architecture." 

Computers in Biology and Medicine 182 (2024): 109139. 

[12] Bota, Patrícia J., et al. "A Wearable System for Electrodermal 

Activity Data Acquisition in Collective Experience 

Assessment." ICEIS (2). 2020. 

[13] Posada-Quintero, Hugo F., and Ki H. Chon. "Frequency-domain 

electrodermal activity index of sympathetic function." 2016 

IEEE-EMBS International Conference on Biomedical and 

Health Informatics (BHI). IEEE, 2016. 

Table 1: SCL and SCR comparison metrics. 

PID SCL SCR 

Gel: P1-P5 

Dry: P6-

P10 

Pearson 

Correlation 

(Closer to 1 is 

better) 

DTW 

(Lower is 

better) 

Coherence 

(Closer to 1 

is better) 

ΔZC 

(Lower is 

better) 

P1-Gel 0.88 0.24 0.95 78 

P2-Gel 0.92 0.40 0.85 5 

P3-Gel 0.94 0.62 0.82 42 

P4-Gel 0.95 0.34 0.96 7 

P5-Gel 0.89 0.30 0.97 59 

P6-Dry 0.84 0.17 0.98 46 

P7-Dry 0.98 0.15 0.96 35 

P8-Dry 0.93 0.38 0.97 98 

P9-Dry 0.66 0.49 0.95 288 

P10-Dry 0.97 0.27 0.98 126 

 

  


