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ABSTRACT

Semi-supervised learning (SSL) learns an estimator from labeled and unlabeled
data. While diverse methods based on various assumptions have been developed
for parametric models, SSL for tree-based models is largely limited to variants
of self-training, for which decision trees are not well-suited. We introduce an
intrinsic semi-supervised learning algorithm that achieves state-of-the-art perfor-
mance for tree-based models. The algorithm first grows a tree to minimize a
semi-supervised notion of impurity, then assigns leaf values using a leaf similarity
graph to optimize either for smoothness or adversarial robustness of the estimator
near the data. Our methods can be viewed as natural extensions of conventional
tree induction methods emerging from an uncertain interpretation of model input,
or alternatively as inductive tree-based approximations of well-established graph-
based SSL algorithms.

1 INTRODUCTION

In applications of supervised machine learning, there is often copious data available, but labeling
the data accurately is expensive. This motivates semi-supervised learning (SSL), which combines
strategies from supervised and unsupervised learning to learn a predictive model from labeled and
unlabeled data. It does this by leveraging some underlying assumption that informs the use of
unlabeled data, such as clusterability, smoothness, or separability of the data. Effective SSL can
greatly reduce the amount of labeled data needed to achieve a particular level of performance.

Tree-based models such as decision trees, random forests (Breiman, |[2001), ExtraTrees (Geurts et al.,
20006), and XGBoost (Chen & Guestrin, [2016) are popular in real-world applications of supervised
machine learning for various reasons including ease of use, low resource requirements, very fast
inference, reliably good performance on tabular data, and relatively good interpretability. However,
most SSL methods are designed for parametric models, so SSL for tree-based models is largely
limited to model-agnostic wrapper methods such as self-training (Triguero et al., 2015)), for which
tree-based models are not even well-suited (van Engelen & Hoos, [2020). This lack of options also
limits the choice of assumption that drives the SSL process.

A few SSL methods specific to decision trees have been proposed (Liu et al.l [2013}2015; |[Levatié
et al |2017); however, these are limited in that their main contribution is choosing splits in a semi-
supervised way, and they lack the ability to propagate labels across regions of dense unlabeled data,
limiting expressiveness. To fill this gap, we introduce a new SSL algorithm for tree-based models.
It first grows a semi-supervised tree as in [Levatic et al.| (2017), but allows leaves to contain no la-
beled data, increasing expressiveness since trees may grow large even with very few labeled data.
It then assigns leaf values by a novel method: construct a similarity graph over the leaves and use
a graph algorithm. We propose two such algorithms corresponding to different underlying assump-
tions. The first assumes that data with similar feature values should have similar labels, produces
a smooth model, solves a linear system to assign leaf values, and is suitable for classification or
regression. The second assumes the data is separable into classes by a low-density boundary, pro-
duces an adversarially robust model, assigns leaf values using graph min-cut, and is suitable only
for classification. Figure |l| motivates the need for this kind of approach even for simple data and
highlights the difference between the leaf assignment strategies. The former can be viewed as a
tree-based approximation of label propagation (Zhu & Ghahramani, [2002), and the latter is similar
in spirit to min-cut SSL approaches (Blum & Chawla, 2001; [Blum et al., |2004). These are purely
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(a) Fit a semi-supervised tree. (b) Assign smoothed leaf values. (c) Or assign robust leaf values.

Figure 1: An overview of our SSL algorithm. Gray data are unlabeled. We (a) fit a tree to minimize
impurity of both labels and features (Section[3.1)), then assign leaf values using one of two strategies
with different underlying assumptions, which produce either (b) a smooth model (Section [3.2)) or
(c) an adversarially robust model (Section [3.3). Previous tree-based SSL methods do not propagate
labels to similar leaves, so they cannot learn a good boundary in this example.

graph-based algorithms which are transductive, meaning they merely assign labels or pseudo-labels
to the unlabeled data without producing a predictive model. Our method, by contrast, is inductive,
meaning it produces a predictive model. It also scales better computationally with the number of
samples, and by controlling tree size, it allows a tradeoff between a tree-like representation with a
kind of automatic dimension reduction and a kernel-like representation.

Ultimately, semi-supervised learning algorithms perform largely based on how well their under-
lying assumption(s) describe the data; by introducing new assumptions for tree-based models—
assumptions which are grounded, reasonable, and often used outside tree-based methods—we im-
prove performance on data where other tree-based methods fall short, as shown by our experiment
results in Section A

2 RELATED WORK

Over many years, numerous semi-supervised learning algorithms with various underlying assump-
tions have been proposed for a wide range of models. We refer the reader to van Engelen & Hoos|
for a comprehensive overview. We highlight two taxonomic distinctions: first, a method is
inductive if it produces a predictive model, or transductive if it only assigns labels or pseudo-labels
to the unlabeled training data; second, an inductive method is a wrapper method if it is agnostic
to the predictive model used, or intrinsic if it is specialized for a particular class of models. The
algorithm presented in this work is thus an intrinsically semi-supervised method for induction of
decision trees.

Wrapper methods were once the only option for semi-supervised learning of decision trees and
remain a popular approach. Foremost are variants of self-training (Triguero et al.}[2015), an iterative
process whereby the model is fitted to labeled data, then the most confidently predicted among
the unlabeled data are labeled and added to the training pool for the next iteration. Despite its
widespread use with trees, tree-based models are actually not well-suited for self-training due to
poor calibration and overconfident predictions (van Engelen & Hoos|,[2020). As a result, works such

as |Li & Zhou| (2007); [Leistner et al.| (2009); Deng & Guol| (2011); Tanha et al.| (2017); Liu et al.
(2020) propose strategies to improve self-training of tree-based models.

A few intrinsic methods have been proposed for decision trees. By assigning pseudo-labels to unla-
beled data using posterior probability computed from kernel density with reduced dimension on the
labeled data, [Liu et al.| (2013) and [Liu et al.| (2015) choose better oblique splits using unlabeled data.
Similarly, by using impurity of the features in addition to impurity of the labels as a splitting crite-
rion for tree construction, [Levati¢ et al.|(2017)) propose semi-supervised predictive clustering trees
(SSL-PCTs) that choose better conventional axis-aligned splits using unlabeled data. Our methods
leverage SSL-PCTs, but additionally assign leaf values in a semi-supervised way.

Graph-based SSL is a family of transductive methods that constructs a similarity graph over the
labeled and unlabeled data and uses a graph algorithm to assign pseudo-labels. We mention two that
are relevant to this work. First, label propagation Zhu & Ghahramani|(2002) solves a linear system
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such that each pseudo-label is a combination of its neighbors’ labels or pseudo-labels, weighted
by similarity. Second, graph min-cut approaches Blum & Chawlal (2001); |Blum et al.| (2004) use
min-cut (equivalently max-flow) algorithms to separate the data into classes such that the inter-class
similarity is minimized.

3 METHODS

Our proposed semi-supervised learning algorithm has two phases. First, the tree structure is grown
using a semi-supervised generalization of CART for KDDTs which is based on the growth strategy
of SSL-PCTs from |Levati¢ et al.[(2017). Next, a similarity graph over the leaves is constructed
and used to assign leaf values. This assignment, differently from previous work, propagates labels
across leaves, so all leaves can be assigned a value even if only a few contain labeled data. We
propose two assignment approaches; one method implements the assumption that data with similar
features should have similar labels, optimizes for smoothness of the model in regions of high den-
sity, and conceptually relates to label propagation. The other implements the assumption that the
decision boundary should be in low-density regions, optimizes for average adversarial robustness
of predictions, that is, distance from the decision boundary, and conceptually relates to graph-based
SSL using min-cut. A visual summary is provided in Figure [T}

We notate training data «; € RP, with categorical features one-hot encoded, and labels y; € RY,
with each either a vector of ¢ regression targets or a one-hot vector encoding one of ¢ distinct
classes. We write Dy, and Dy the sets of indices of labeled and unlabeled data, respectively, with
Dz U Dy = D the entire data set with |D| = n.

Underlying our approach is a fuzzy decision tree (FDT) method called Kernel Density Decision
Trees (KDDTs) (Good et al.| [2022). FDTs allow a decision to take multiple paths with different
weight so that a prediction is ultimately a sparse weighted combination of leaf values. KDDTs
define the fuzzy splitting by interpreting inputs as uncertain according to a kernel function: inter-
pret each input @ as a continuous random variable x with some probability density x ~ f(-, ).
For the KDDT fitting algorithm to work, it is assumed that f(-, ) can be written as a product of
marginal distributions f(z,x) = [[5_, f;(2;, =) where f;(-, ) may be different for each j € [p]
and « € RP. Typically, f(-,«) is a symmetric, unimodal distribution such as multivariate uniform
or Gaussian. This f is referred to as a “kernel” for its similarity to the kernel from kernel density
estimation. It smooths the model by spreading the input over a local area. The assumptions driving
our SSL approaches are formalized by this uncertain interpretation.

3.1 SEMI-SUPERVISED TREE GROWTH

Since we do semi-supervised learning under the assumption that data with similar feature values
should have similar labels, we grow the tree so that, within each leaf, the labels are pure for labeled
data (as in typical supervised tree learning), and the feature values are pure for all data (as in unsu-
pervised tree-based hierarchical clustering). For this purpose we adopt the framework proposed by
Levati¢ et al.| (2017) for semi-supervised growth of predictive clustering trees (PCTs), which finds
a hierarchical clustering of the data using tree splits. Given a tree T that partitions R? into leaves,
each of which is a hyper-interval . C RP, the loss for classification is

1 Gini{y; |7 € Dp,x; € L 1—w Var{z; ; |1 € D,x; € L
ngL w {yi | L }+ Z { | }

= Gini{y; |1 € D} A Var{z; ; | i € D}

where w € [0, 1] is a hyperparameter that controls the tradeoff between supervised and unsupervised
loss, with w = 1 completely supervised and w = 0 completely unsupervised, and wr, is the weight of
data belonging to leaf L, defined in the next section. For KDDTs, data can have partial membership
in leaves, so the computation of impurity is weighted by membership. For regression, the Gini term
is replaced with the average of the variances of the target variables.

Generally we limit tree growth using a cost-complexity pruning (CCP) parameter «; if the best split
does not result in a loss decrease of at least «, then stop growing this subtree and do not perform
the split. Since the loss is normalized into [0, 1], a given value of « provides a consistent tradeoff
between loss and tree size for various data sets. However, other growth stopping conditions, such as
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maximum depth or minimum sample weight in a leaf, are also options. These semi-supervised trees
can grow quite large compared to a supervised tree on the same data as a result of the unsupervised
component of the impurity. However, once the tree is fitted and the leaf values assigned, it can be
pruned according to the purity of the assigned leaf values to get a tree with size in line with fully
supervised learning.

3.2 SMOOTH LEAF VALUE ASSIGNMENT

As aresult of the smoothing induced by the uncertain input interpretation defining KDDTs, a natural
SSL approach emerges by simply writing the predictions for unlabeled data and using the resulting
system to solve for leaf values. This approach is suitable for both classification and regression.
Given a tree T that partitions RP into leaves, a KDDT prediction pr(x) is derived as follows. Recall
that we interpret an input « as random variable x ~ f(-, ).

pr(z) = Ex(y)

— [ Bly|x=2)f(z2) dz
RP

In each leaf L, approximate the expected label by the average over the leaf.
—Z/Ey|x€]L f(z,2) dz
LeT

Write membership function py,(x) = P(x € L) f]L z,x) dz and compute the expected label
from training data x;, y;, ¢ € D.

_ Z“ ze]D) Y (T;)
LET 1,€]D) /’L]L(wl)

Each leaf L is thus assigned a value vy, = w% Zie]D) L (x;)y;., where wy, is the total sample weight
wr, = Y ;cp pL(®;) at leaf 1L, and the prediction is pr(x) = > ) cq p(x)vL

For i € Dy, y; is unknown; instead substitute the predicted pr(x;).

1
U]szz,u]l‘il?z yz+7 Zulwsz wz

YL jepy, L iepy
1

=— > m(w yz+f BTACT Zuru ) vy
L icDyr zG]DJU
1

=— > m()yi+ Y L ZuL (i) (24)
YL jepy, L/€T Licu

By stacking this equation over each IL, we have a linear system

V=V +AV (D
where V is the unknown matrix of leaf values where (with a slight abuse of notation) each row
is the corresponding leaf’s value V1., = vy, for L € T, V” is similarly the known matrix of leaf
value components from labeled data only V]L”: = w% Zie]DJL ur(x;)y; for L € T, and Ap =
L5 L(2x;)pr (x;) indicates the weight of shared unlabeled samples for each pair of leaves.
wr, €Dy K H g p p

This can be interpreted as a similarity graph over the leaves. Naturally, it can be solved for V'
directly, or iteratively as in label propagation.

3.2.1 CONVERGENCE AND EQUIVALENCE TO LABEL PROPAGATION

We show that our smoothness-based SSL approach can be interpreted as an approximation of label
propagation (Zhu & Ghahramanil |2002) using a kernel that arises from the uncertain input interpre-
tation. Given a kernel £ : R x RP — R, label propagation assigns pseudo-labels Y, by solving
the linear system Yy = KyyYy + Ky Yy where
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is the normalized kernel matrix K; ; = k(x;,x;)/ >, k(;, ), split into blocks corresponding
to labeled data D7, and unlabeled data Dy;. We write the solution Yy (K) in terms of the kernel
similarity matrix K.

For given training data D and tree T, define a kernel

p () (x Juf(z2)dz || f(z,2') dz
kpr(x, ') Z Z L ZleDfH_f(i,mi)dz

LeT LeT

and Ky r the corresponding similarity matrix. Let X/, . = x; be the corresponding feature values
to labels Y. Lemma[I] shows that the semi-supervised tree predicts the pseudo-labels from label
propagation using kernel kp .

Lemma 1. Yy (Kp,r) = pr(Xv).

Proof. As shown in its derivation, Equation |1} which is used to solve for leaf values, is equivalent
to the system

(@) =Y pu(@)or = Y yikor(@, ;) + Y pr(e;)kpr(w,z;)
LeT j€DL j€DU

for i € Dy. Noting that ZjeD kpr(x;,x;) = 1 for all ¢ € D, the above is equivalently written
Yy = KyyYy + KyrYy, where Yy = pjr(X) and K = KD,T~ O]

Next we show that these predictions converge as the size of the tree grows large. Define kernel
EXVERIP
SN ) s

RP Zie]D) f(zv 931)

with similarity matrix K. Lemma (proven in Appendix shows that, as T grows large, Kp 1
converges to Kp.

k]D)(:B7 13/) =

Lemma 2. If f is continuous almost everywhere and w > 0, then lim|r|_, o Kp 1 = Kp.

Finally Theorem |I| concludes that, as the tree grows large, its predictions on the unlabeled data
converge to the pseudo-labels assigned by label propagation with kernel kp. In this sense, our
proposed SSL algorithm is an inductive tree-based approximation of label propagation. As a result,
smaller tree models are more tree-like, while larger tree models are more kernel-like as in label
propagation. Controlling tree size enables a tradeoff between the two extremes.

Theorem 1. If f is continuous almost everywhere and w > 0, then limy_, o pr(Xv) = Yy (Kp).

Proof. By Lemma we have limg|_, o pr(Dy) = lim|r|o Y (Kp,r) With Yy the solution for
label propagation Y7 (K) = (I — Kyy) 'Ky Yz. Matrix inversion is continuous; therefore, by
the properties of limits of sums, products, and compositions, lim |, Kpr = Kp (Lemma
implies lim|r|_,oc Yu (Kp,r) = Yy (Kp). Therefore limp_, o pr(Xv) = Yu (Kp).

3.3 ROBUST LEAF VALUE ASSIGNMENT

Another leaf value assignment strategy, which is only suitable for classification, uses graph min-cut
to maximize adversarial robustness, that is, distance from the decision boundary, thereby placing the
boundary in low-density regions. While determining the robust radius for a given point is NP-Hard
for fuzzy decision trees such as KDDTs (Good et al,2023)), we can use the framework of random-
ized smoothing to efficiently compute good lower bounds. Randomized smoothing is a technique
where a smoothing distribution (usually Gaussian) is used to augment training data with perturbed
samples, and predictions are averaged over similar perturbations; KDDTs deterministically achieve
the same. Then a lower bound on the robust radius of a prediction is computed as an increasing
function of the highest predicted probability. In this sense, the predicted value of a KDDT is di-
rectly linked to the robustness of the prediction. For example, for Gaussian smoothing, the robust
radius is lower bounded by r = 0@‘1(pmax), where @1 is the inverse Gaussian CDF, ¢ is the
standard deviation of the smoother, and pn, .« 1S the highest predicted class probability (Cohen et al.,
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2019). By maximizing this quantity over training data ), p; max, We maximize a robustness ob-
jective Y. ®(r; /o), where each r; lower bounds the robust radius for sample . Thus we define
a semi-supervised objective Dy Diy, + D _icp,, Pimax for the model to be robustly correct on
labeled data and robust on unlabeled data. Note that, regardless of practical concerns, it is necessary
for the objective to be bounded; if we aim to maximize ), r; directly, then the ideal model always
predicts the majority class and has infinite robust radius for data belonging to that class.

To achieve efficient optimization, we instead maximize »,cp,, Piy; + 2 _iepy, 2 p; j» which lower
bounds the original objective and is equal at the extremes pmax = 1 and pmax = p; Vj. Before
discussing the method of optimization, we first motivate this altered objective from the perspec-
tive of minimizing impurity, the typical approach for training tree-based models. For each i, let
yi ~ Categorical(p;) be a random label sampled from the predicted label probabilities at x;. The
Gini impurity typically used in CART is the probability that a prediction sampled in this way is
incorrect: P unif(p,)(y: # vi). Thus minimizing Gini impurity maximizes the probability that
such a prediction is correct. We propose that a natural extension for unlabeled data is to maximize
the probability that a prediction on labeled data is correct, and that a prediction on unlabeled data is
consistent. This targets a high predicted probability, and thus high robustness with KDDTs, for the
predicted class on unlabeled data, without prescribing which class should actually be predicted. Let
v and y; be independently drawn from Categorical (p; ).

P, unitm)(yi = yiandi € Dy, ory; = y; and i € Dy)

o Z Diy: + Z pZTpi (the modified robustness objective)
1€Dy, €Dy

= Te(V'" diag(w)V + VI MTMV)

where V' is as in Equation , diag(w) is a matrix with vector w = (wr,)Le on the diagonal and
0 elsewhere, and M is the membership matrix M; ; = ur, (x;).

With this setup, we can efficiently solve for the leaf values V. Since M ™ M is positive semidefinite,
the objective is convex. Moreover, each row of V' must sum to 1 to represent a valid probability
distribution over the class labels. This constitutes the maximization of a convex function subject
to linear constraints, so at least one maximizer must exist at a corner point; that is, there is some
maximizing V' with only one nonzero element (which has value 1) in each row.

Let A = MT M. With a slight abuse of notation, let WL, be the row of V' corresponding to leaf IL,
and similarly for A. For each L, let ¢f, denote the index such that V]L*:CL = 1, that is, ¢, is the class
predicted at leaf L. Rewrite maximization of the objective as minimization of the following loss.

L(V) = |Dg| + [Dy| — Te(V'" diag(w)V + VTAV)

= Z wr, Z V]ﬁ,c + Z A]L,IL’ - Z wlLVﬁ’cL - Z 1{C]L = C]LI}A]L,]L/
L c L,L’ L L,L’

= Z {c # cL}wVy . + Z 1{cL # cu AL L
L,c

L,L’

We can construct a graph such that this loss is the value of a k-terminal cut, also called a multiway
cut. This is a generalization of the min-cut problem where there may be many terminals, whereas
standard min-cut has only two—a source and a sink. Given nodes N = {si,..., S, n1,n2,... },
a k-terminal cut is a partition of the nodes into k sets Cq,...,Cy such that s; € Cq, so € Co, etc.
The value of the cut is defined as the total weight of edges removed to separate the nodes into sets:

ZC#C’ Zne({j ZH’GC/ w(n, ’I’L/).

The graph is constructed as follows. For each class ¢, define node s., and for each leaf IL, define node
ny.. Set edge weights w(s., ny,) = w]LVH:)C and w(ny,,ny) = Ap . Then, givenacut Cq,...,Cy,
for each L, set V1, ., = 1 such that ny, € C., . Then the value of the cut is

Z Z Z w(n,n') = Z 1{c # c]L}w]LVHj’c + Z {er # e AL = L(V)

C#C’ neC n’/eC/ L,c L,L/

and so the minimum such cut provides leaf values V' * that minimize the loss.
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For k = 2, the problem is simply called min cut or max flow, and there are many algorithms to
solve it with various complexity. The problem of finding the minimum k-terminal cut for k£ > 3 is
NP-Hard; however, a simple heuristic achieves an approximation of 2 — 2/k by solving the standard
minimum cut problem in a one-vs-rest fashion & times (Dahlhaus et al.,|1992). We use this heuristic.

In practice, a model fitted in this way may sacrifice correctness on labeled data for greater robustness
on unlabeled data; in the worst case, if there are relatively few labeled samples and the unlabeled
data is not easily separable, it is possible that the most robust model just predicts the globally most
common label for all inputs. In this case, simply increase the weight of the labeled samples.

3.4 MODEL SELECTION

There are three important hyperparameters that must be selected: w controls the amount of supervi-
sion in tree growth; the cost-complexity pruning « (or other growth stopping condition) controls the
tree size; and the kernel bandwidth h controls the amount of smoothing. If these cannot be chosen
by prior knowledge, e.g. setting h according to a desired radius of adversarial robustness for the
robust leaf assignment method, then a method for automatic selection is desirable.

Despite the limited number of labeled data in in the semi-supervised setting, we find cross-validation
of a supervised metric to the best approach for hyperparameter selection. This is also used by |Levati¢
et al.| (2017) to choose w. Since the tree growth phase dominates the run time of our methods, we
grow the tree just once on all data, then perform k-fold cross validation over the labeled part of the
data by redoing the leaf assignment phase only. When the number of labeled data is small, accuracy
is too coarse, so we use mean absolute error (MAE) instead for model selection. For classification,
MAEis £ 3.1 — yTp(x;).

3.5 ENSEMBLES

Tree-based models are often ensembled to improve generalization to unseen data, and while KDDTs
can generalize better than standard decision trees, they also benefit from ensemble approaches (Good
et al.}2022). For some ensemble methods, the extension to semi-supervised learning is straightfor-
ward. Random forests, perhaps the most popular tree ensemble, use bagging, where each model is
trained on a bootstrap sample of the data, and at each split, only a random subsample of features
is considered. We follow the precedent of [Levati¢ et al.[(2017) and adapt this to semi-supervised
learning by bootstrap sampling from the union of the labeled and unlabeled data, then train the semi-
supervised trees on each bootstrap sample with feature subsampling. Another popular tree ensemble
algorithm, ExtraTrees (Geurts et al.,2006), only changes the tree fitting process by selecting thresh-
olds at random, and can be used for SSL without modification. Boosted tree ensembles, however,
including algorithms such as AdaBoost (Freund & Schapire,|1997) and XGBoost (Chen & Guestrin,
2016), use a supervised loss function, so the adaptation to SSL is not so straightforward. We leave
this topic to future work.

3.6 COMPUTATIONAL COST

In practice, the run time is dominated by the tree growth phase. This semi-supervised tree growth
suffers from adverse complexity with respect to the number of features p; each split iterates over each
feature, and for each feature, impurity must be computed for each feature and class or regression
target, resulting in O(np(p + ¢)) to find an optimal split.

We use the following strategies to mitigate this cost. First, control the tree size by avoiding very
small CCP-q; also, for efficient tuning of «, grow the tree just once using the smallest «, then prune
it to get the model for larger o. Second, when training random forests, sample just log, p features
to consider for splitting instead of the more commonly used ,/p. Normally when fitting a random
forest, if a suitable split is not found in these log, p features, the search continues over the other
features, and growth stops only if none of the p features yield an acceptable split. Thus the cost of
such a search added over the leaves is still O(np(p + ¢)). We instead stop after just the initial log, p
features regardless of whether an acceptable split was found, reducing the cost to O(n(p+ q) log p).

Some additional cost is incurred during tree growth and inference because, in KDDTs, a sample may
belong to more than one decision path. For a kernel with unbounded support, every sample belongs
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Figure 2: Average accuracy on unlabeled data vs. number of labeled data. Solid lines show our
models. Beneath each data set name is shown its number of instances, number of features (after
one-hot encoding categorical features, if applicable), and number of classes.
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to every leaf, so growth and inference time scale linearly with the number of nodes; however, with
a reasonably scaled kernel of bounded support, membership in leaves is sparse, so cost scales more
in line with a crisp decision tree, that is, linearly with the depth for a balanced tree.

For leaf value assignment, the complexity is the same as the related graph-based methods, namely
label propagation and min-cut SSL, but the size of the graph is equal to the number of leaves instead
of the number of data. Therefore, for fixed tree size, our methods’ total cost scales linearly with
the number of data, better than any purely graph-based SSL. These results suggest that our methods
may fill a practical niche wherein there are very many samples but not too many features.

4 EXPERIMENTS

We replicate the experimental setup of [LevatiC et al.|(2017). Of their data sets, we use a subset
containing those that (1) we could find available online, (2) are not primarily categorical features,
and (3) have few enough features that our methods execute in reasonable time. For each data set, we
train our models and several baselines with various numbers of data chosen uniformly at random to
be labeled. We report average accuracy of predictions on the unlabeled data used in training over 5
different samples of labeled data. The baselines include regular supervised decision tree and random
forest, self-trained random forest, and label propagation. Hyperparameter and data preprocessing
details are in Appendix [B] While we are not able to include results from the SSL-PCTs of [Levati¢
et al.|(2017), the matching experimental setup at least enables some comparison.

Figure [2| shows the results. To summarize, among tree-based methods, one of ours outperforms
the baselines for at least one label count on 11 of 14 data sets, and outperforms them in all label
counts on 4 of 14 data sets. In aggregate, one of our models is the best tree-based model in 50%
of cases. Smoothed random forest has the best average rank at 2.47, followed by random forest at
2.52 and robust random forest at 3.02. In cases where our methods perform poorly, we see that label
propagation also performs poorly; this is unsurprising since they rely on similar assumptions. In
most cases, random forests greatly outperform single-tree models. There is usually little difference
in performance between our two leaf value assignment strategies. Neither is preferred for every data
set, but for a given data set, one tends to be consistently better than the other if there is a gap.

To keep the experiment run times down, we use CCP-a no smaller than 1073 for our models, which
substantially limits tree size. This and the modifications to the random forest feature sampling de-
scribed in Section [3.6|reduce the power of our models, which we suspect negatively influences per-
formance on complex data. While this limitation was necessary for comprehensive benchmarking,
it is unlikely to be necessary in practice except perhaps for data with many features.

5 CONCLUSIONS

We have proposed a novel intrinsic method for semi-supervised learning of decision trees. By prop-
agating label information across similar leaves, it improves expressiveness and implements different
assumptions from previous tree-based SSL methods and, as a result, performs well on many data
sets where those methods fall short. It is similar to graph-based semi-supervised learning relying on
Euclidean distance; however, unlike graph-based approaches, it produces a predictive model that has
all the practical benefits of decision trees, scales well with data volume, and ultimately outperforms
graph-based assignment of labels on several data sets.

The key remaining limitation is the scalability of the proposed method vs. the dimensionality of
data. While this can be partially mitigated using dimension reduction and strategies such as those
described in Section our future work will focus on improving the efficiency of fitting unsuper-
vised and semi-supervised PCTs, which would have impact beyond just this work. Future work
will also investigate the proposed approach for regression tasks and consider its adaptation to other
tree-based models, such as boosted ensembles.
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A  PROOF OF LEMMA [2]

Since f(-, ) is continuous almost everywhere, it is uniformly continuous almost everywhere on
a compact domain, So we have for every € > 0, there exists 6 > 0 such that, for any leaf L of
diameter (maximum range of its constituent intervals) less than 6 on which f(-, ) is continuous, we
have maxcy, f(2z,x) — min.cL f(2,x) < €. Likewise for z — f(z,x)f(z,2')/ >, cp f(z, x:).
Let ¢ € L. Then, if we consider T to partition a compact domain X C RP?,

Jo f(z,x)dz [ f(z,2')dz  mean,cf(2,x)Vol(L)mean,cp f(2, z")Vol(L)

Sien Ju f(z @) dz o > iep meanzcr f(z, ;) Vol (L)
_ mean,cp f(2z,x)mean c f(z, ) o
B > icpmeancr f(2, ;) Vol(LL)
_ (fle,m) +0(e))(f (e, ) + O(e))

Yien(fle, i) +0(e))

__feafes) 100
T T flez) (1 0@)
_He@HeE) T | o oot v
= S fle ) (14 O(e) + O(e)* +...)Vol(L)
_Jeafe), -
=S e Vol(L) + O(eVol(L))

Vol(LL)
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and likewise

f(z,@)f(z,a) ,
/inED [z dz = meancr,

Zz’em f(z,z)

_ ({len)flea) , 5

- ( > ien fle, xi) + O )> Vol(L)
fle,z)f(e,x')

= —ZED e,z Vol(L) + O(eVol(L))

Vol(LL)

so we have error

kpr(z, ') — kp(@,2')| = > O(eVol(L))
LeT

= O(eVol(X)).

Since f is continuous almost everywhere, finitely many leaves contain discontinuities, so their error
goes to zero as § — 0. So, for any compact X, we can achieve bounded error with leaves of diameter
less than . Then as X — oo and 6 — 0, we have kp r(x, ') — kp(x,2’). Thus it is sufficient
to show that leaf diameter goes to zero. An exception to this requirement is that, for any . where
fi(zj, i) = f(z], ;) forall 2,2’ € L, i € D, the error is zero over feature j, so the leaf need not
be any smaller in dimension j. And, in fact, the tree growth algorithm will not split on feature j in
such cases because no further gain is possible.

Otherwise, consider a feature j where these conditions are not met, and where splitting results in
some gain. Then there must be some sufficiently small e such that, if the range of each fi (-, x;),
k # j, i € D is less than ¢, then the gain from splitting on feature k is less than the gain from
splitting on feature j. Since fi (-, ;) is continuous almost everywhere, there exists a ¢ such that this
is true with a diameter less than § for all £ # j; then the next split is on feature j. In this way, the
leaf diameters along all necessary dimensions approach zero as the size of the tree grows large.

B EXPERIMENT DETAILS

Here we provide details of experimental setup for reproducibility.

The data is preprocessed by one-hot encoding categorical variables, replacing missing values (there
are not many in these data sets) with the mean, and standardizing all features to mean 0 and standard
deviation 1. When we sample data to be labeled in the training of models, we ensure that at least
one instance of each class is represented, that is, we sample one instance uniformly at random from
each class, then the rest uniformly at random (without replacement) from the entire remaining data
set.

At the time of writing, each data set is available from the UCI Machine Learning Repository (Kelly
et al.) or OpenML (Vanschoren et al., [2013)) at the following URLs:

* Abalone
https://archive.ics.uci.edu/dataset/1/abalone

* banknote authentication
https://archive.ics.uci.edu/dataset/267/banknote+authentication

* QSA biodegradation
https://archive.ics.uci.edu/dataset/254/qsar+biodegradation

* diabetes
https://www.openml.org/d/37

* EEG Eye State
https://archive.ics.uci.edu/dataset/264/eeg+eye+state

* hypothyroid
https://www.openml.org/d/57

* baseball
https://www.openml.org/d/185
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* Cardiotocography
https://archive.ics.uci.edu/dataset/193/cardiotocography

* cmc
https://www.openml.org/d/45056

* Image Segmentation
https://archive.ics.uci.edu/dataset/50/image+segmentation

* MiceProtein
https://www.openml.org/d/40966

* Optical Recognition of Handwritten Digits
https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits

* Page Blocks Classification
https://archive.ics.uci.edu/dataset/78/page+blocks+classification

* Pen-Based Recognition of Handwritten Digits
https://archive.ics.uci.edu/dataset/8 1/pen+based+recognition+of+handwritten+digits

Our baseline models are implementations from the popular machine learning package scikit-learn
Pedregosa et al.|(2011). Hyperparameters are as follows.

¢ Decision tree. We use sklearn.tree.DecisionTreeClassifier with default
hyperparameters. The tree is fully grown.

¢ Random forest. We use sklearn.tree.DecisionTreeClassifier with default
hyperparameters. Each has 100 fully grown trees, and features to consider for splitting are
randomly subsampled to /p at each split. If a suitable split is not found, the remaining
features are searched.

¢ Self-training Random Forest. We use sklearn.tree.DecisionTreeClassifier
as above along with sklearn.semi_supervised.SelfTrainingClassifier
with default hyperparameters.

e Label propagation. We use sklearn.semi_supervised.LabelPropagation
using a RBF (Gaussian) kernel with standard deviation chosen from
[0.01,0.0215,.0464,0.1]. We choose the standard deviation that minimizes the loss
defined in the original label propagation paper Zhu & Ghahramanil (2002).

* Our methods. Our KDDTs use a Gaussian kernel. For fitting, a piecewise-constant kernel
is required, so we use a histogram approximation of Gaussian with 7 pieces truncated to 3
standard deviations. We choose CPP-« from [0.001,0.00316, 0.01, 0.0316, 0.1] and kernel
bandwidth h (standard deviation of the Gaussian kernel) from [0.01,0.0215,.0464, 0.1]
using 10-fold cross validation of the mean absolute error (MAE) on the unlabeled data.
This range for CCP-« limits trees to be relatively small, which is necessitated by the run
time and scope of the experiments; it is a current weakness of this analysis. For efficient
cross validation, a we grow a single tree structure on all data and only reassign the leaf
values for each fold. For the supervised vs. unsupervised tradeoff parameter w, we simply
use w = |Dy|/|D|. This way it is fully unsupervised with zero labeled data and fully
supervised with zero unlabeled data. During leaf assignment, we increase the weight of
labeled data to max(1,|Dy|/|Dg|). This gives at least as much total weight to labeled
data as unlabeled data to prevent collapse to the global majority if the data is not easily
separable.
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