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ABSTRACT

Diffusion models have achieved impressive results in world modeling tasks,
including novel view generation from sparse inputs. However, most existing
diffusion-based NVS methods generate target views jointly via an iterative de-
noising process, which makes it less straightforward to impose a strictly causal
structure along a camera trajectory. In contrast, autoregressive (AR) models op-
erate in a causal fashion, generating each token based on all previously generated
tokens. In this work, we introduce ARSS, a novel framework that leverages a
GPT-style decoder-only AR model to generate novel views from a single image,
conditioned on a predefined camera trajectory. We employ a video tokenizer to
map continuous image sequences into discrete tokens and propose a camera en-
coder that converts camera trajectories into 3D positional guidance. Then to en-
hance generation quality while preserving the autoregressive structure, we propose
a autoregressive transformer module that randomly permutes the spatial order of
tokens while maintaining their temporal order. Qualitative and quantitative experi-
ments on public datasets demonstrate that our method achieves overall comparable
to state-of-the-art view synthesis approaches based on diffusion models. Our code
will be released upon paper acceptance.

1 INTRODUCTION

World models (Huang et al., 2024; Zheng et al., 2024) are internal, learned representations in AI sys-
tems that simulate the real world, allowing agents to understand, predict, and plan future events by
modeling physical dynamics or spatial relationships. One important application of world models is
to explore and construct a 3D space given very sparse initial inputs. This task requires the system to
generate high-quality, content-consistent novel views from an input image and a pre-defined camera
trajectory. To scale to large environments and long trajectories, it is desirable to process observations
in a sequential and causal manner, synthesizing new views conditioned on both the inputs and pre-
viously accumulated generations. Recent advances in diffusion models have significantly boosted
the performance of novel view synthesis from sparse or even single inputs (Ren et al., 2025b; Cao
et al., 2025; Yu et al., 2024b; Zhou et al., 2025). However, many of these diffusion-based NVS
methods generate target views jointly via iterative denoising in a high-dimensional latent space,
which can make it less straightforward to impose a strictly causal structure along a camera path or
to incrementally extend and reuse existing generations when the trajectory changes.

The advent of autoregressive (AR) models in visual generation task (Esser et al., 2021; Sun et al.,
2024; Yu et al., 2024a; Pang et al., 2025; Tian et al., 2024; Wang et al., 2025) has shown promis-
ing results from modeling image synthesis as a sequential and causal process. These methods first
utilize an image tokenizer to encode images into discrete tokens and then apply a GPT-style causal
transformer for next-token prediction. While these methods demonstrate the feasibility of AR model
in single-image visual generation, their applications in novel view synthesis have hardly been ex-
plored, as generating novel views require precise camera control and 3D spatial awareness. Inspired
by these works, we believe that AR models have the potential as novel view synthesizer for world
models that require construction of a large 3D space.
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Camera Paths Generated ViewsInput View

Figure 1: Illustration of ARSS. Given a source input image and camera trajectory, ARSS can
generate photorealistic and 3D consistent novel views. Although a lot of previous methods tackle
the same task with other generative model like diffusion models (Rombach et al., 2022; Ho et al.,
2022), ARSS is the first that leverages decoder-only causal transformer and generate multi-views
with a next-token prediction style.

Therefore, in this work, we propose AutoRregressive Novel View Synthesis from a Single Image
(ARSS), a novel approach that applies the causal decoder-only transformers to generate novel views
from a single image conditioned on a pre-defined camera trajectory. We aim at nesting sequential
view generation into a next-token-prediction norm while preserving 3D spatial awareness. The pro-
cess involves tokenizing the multi-view image sequences into discrete codes and maximize the like-
lihood of the current token given all previous tokens with an autoregressive transformer. However,
the AR image generation pipeline has the following three problems: First, previous autoregressive
visual generation relies on Vector-Quantization (VQ) (Esser et al., 2021) for image tokenization.
However, temporal consistency is hard to preserve if VQ is applied for independent per-frame tok-
enization. To address this issue, we adopt a video tokenizer (Tang et al., 2024), which incorporates
both spaital and temporal encoding, to convert the multi-view image sequences into compact latent
tokens.

Second, current autoregressive visual generation usually prefills the output sequence with a class
token for conditional generation. However, it is hard to encode the camera trajectory into a global
token to guide sequence generation. Therefore, we propose to pair each discrete tokens with a 3D
positional guidance token extracted from the pre-defined camera trajectory. To achieve this goal,
we design a camera autoencoder that maps the Plücker raymap (Plucker, 1865) to camera latent
features, which possess the same spatial and temporal dimension as the visual latent tokens. We
pre-train the camera autoencoder such that the encoded camera features contain the information of
original camera trajectory.

Third, visual data are semantically low-level and present bi-directional context. Directly training a
uni-directional causal transformer on bi-directional 2D images may lead to suboptimal solutions (Li
et al., 2024a). Inspired by previous works (Pang et al., 2025; Yu et al., 2024a), we propose to
randomly shuffle the spatial orders of visual tokens such that uni-directional transformer would
be optimized with all the permutations of bi-directional data. While training with random spatial
permutation of image tokens, the temporal order is still maintained to make sure that the tokens from
later frames are always generated based on tokens of former frames. According to Pang et al. (2025)
and Yu et al. (2024a), positional instruction tokens are the key factor of the randomly shuffled image
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tokens. As a matter of fact, the proposed camera tokens indeed provide accurate 3D position in the
scene. Therefore, when predicting the next visual token, a camera token can be inserted, representing
the 3D positional information of the current token to be generated. Through the aforementioned
modules, ARSS integrates novel view synthesis with autoregressive training and sampling paradigm
as well as achieving precise camera control. To the best of our knowledge, ARSS is the first that
applies the GPT-style causal autoregressive model in novel view generation with camera control.

We train and evaluate the proposed pipeline on public datasets including RealEstate-10K (Zhou
et al., 2018) and ACID (Liu et al., 2021). To demonstrate the generalization capability of ARSS, we
conduct zero-shot novel view synthesis experiment on DL3DV benchmark (Ling et al., 2024). Both
qualitative and quantitative results demonstrate that our method out-performs current state-of-the-art
methods.

2 RELATED WORKS

Novel View Generation with Diffusion Models Diffusion models (Rombach et al., 2022; Song
et al., 2020; Meng et al., 2021; Yin et al., 2025) learn a desnoising process that maps a Gaussian
noise to clean samples conditioned on class labels, text prompts, etc. Leveraging diffusion models
for novel view synthesis (Zhou et al., 2025; Yu et al., 2024b; Ren et al., 2025b; Cao et al., 2025;
Gao et al., 2024; Wu et al., 2024; Watson et al., 2024; Chen et al., 2024; Liu et al., 2024; Wu et al.,
2025) is to generate the target novel view given arbitrary number of source input views and both
source and target camera poses. Some of these methods (Yu et al., 2024b; Ren et al., 2025b; Liu
et al., 2024; Chen et al., 2024) construct 3D prior from source inputs and provide globally per-view
condition to the diffusion model. Majority of these methods apply a video diffusion model to revise
the 3D inductive bias. Some other methods (Gao et al., 2024; Cao et al., 2025; Zhou et al., 2025) use
binary mask to differentiate between source and target views and apply multi-view diffusion model
to directly generate the target views. Although these methods excel at generating photo-realistic
images or sequences, they have to generate all the images simultaneously, which is hard to adapt to
new input or generate based on accumulated knowledge.
Autoregressive Visual Generation Autoregressive model applies a causal model (e.g. GPT
model (Brown et al., 2020)) to generate samples sequentially based on previous accumulated in-
formation, and has seen promising application in language modeling tasks (Achiam et al., 2023; Bai
et al., 2023; Chowdhery et al., 2023; Grattafiori et al., 2024; Radford et al., 2018; Team et al., 2023;
Touvron et al., 2023). Some current researches (Esser et al., 2021; Sun et al., 2024; Yu et al., 2024a;
Pang et al., 2025; Tian et al., 2024; Wang et al., 2025; Li et al., 2024b; Huang et al., 2025; Ren
et al., 2025a) focus on integrating autoregressive model into visual generation task. LlamaGen (Sun
et al., 2024) is the pioneer work for autoregressive visual generation but the generation is required
to follow a raster-scan order, which is incompatible with bi-directional data structure of image data.
Recent works (Pang et al., 2025; Yu et al., 2024a; Wang et al., 2025) purpose to reorder the image
tokens to adapt the uni-directional model. Both Pang et al. (2025) and Yu et al. (2024a) purpose to
randomly shuffle the image tokens and insert positional instruction tokens for positional guidance.
Wang et al. (2025) designs a novel approach that divide image tokens into sections and generate to-
kens at different sections simultaneously. However, these methods focus only on image generation
and none of the methods focus on video or multi-view sequence generation.
Video Tokenization Most of the video tokenization methods adopt an encoder-decoder architec-
ture. The encoder will compress the video data into latent tokens w.r.t. both spatial and temporal
dimensions, whereas the decoder reconstructs the latent tokens back to pixels. Vector Quantized-
Variational Autoencoder (VQ-VAE) (Van Den Oord et al., 2017) is introduced to map the encoded
features into a finite set of vectors in a codebook. By contrast, Tang et al. (2024) proposed to ap-
ply Finite Scalar Quantization (FSQ) (Mentzer et al., 2023) to obtain discrete tokens. Different
from Vector Quantization (VQ), FSQ releases from learning the large codebook, thus stabilizes and
facilitates training.

3 METHOD

3.1 PRELIMINARY

Autoregressive Visual Generation. Given a discrete 1-D token sequence, denoted as x =
[x1, x2, ..., xN ], an autoregressive model is trained to maximize the probability of each token xi

3
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Figure 2: Overall architecture of our proposed method. Left: we apply a video tokenizer to
convert image sequence into latent codes. We also apply a camera autoencoder to map camera
Plücker raymap to latent camera tokens. The camera tokens are inserted before visual tokens as
a 3D positional instruction. Right: the interleaved sequence is the input of a decoder-only causal
transformer. The tokens of the first view are the condition tokens thus always visible to all the
subsequent tokens. We use the ground truth sequence from the tokenization process to supervise the
weights of autoregression model.

given all the previous tokens:

max
θ

pθ(x) =

N∏
i=1

p(xi|x1, x2, ..., xi−1) =

N∏
i=1

p(xi|x<i), (1)

where pθ is a probability predictor parameterized by θ. Given the background of image gener-
ation, xi in Eq. 1 represents the image tokens usually obtained by vector quantization in previous
works (Sun et al., 2024; Esser et al., 2021) and the total number of tokens in the sequence (N ) equals
to the number of image tokens in latent space (N = h × w, where h and w are the compressed di-
mensions in y, x coordinates, respectively). In addition, previous visual generation method would
add a class label embedding or text embedding c as a condition at the start of the sequence, and the
image generation process is further formulated as:

max
θ

pθ(x) =

h×w∏
i=1

p(xi|x<i, c). (2)

Concurrent works(Esser et al., 2021; Sun et al., 2024; Yu et al., 2024a; Pang et al., 2025; Tian
et al., 2024; Wang et al., 2025) use a causal decoder-only transformer to model the sequence by
minimizing the following optimization function:

L = CE(fθ([c, x1, x2, ..., xN−1]), [x1, x2, ..., xN ]), (3)

where CE stands for the cross entropy loss, f is the decoder-only transformer with θ the trainable
parameters.

Causal Video Tokenization. Similar to VQ-VAE for image tokenizer, video tokenizer consists of
an encoder E, a decoder D and a regularizer R. Given a video sequence X ∈ RL×3×H×W , the
encoder E compresses X into latent space and decoder D reconstructs the latent feature back to
original:

Z = R(E(X)), X̂ = D(Z), (4)

where Z ∈ Rl×3×h×w is the latent representation. For non-causal scenario, L = rt × l and H =
rs × h,W = rs × w, where rt and rs are the temporal and spatial compression ratio, respectively.
For causal scenario, the original video input is X ∈ R(L+1)×3×H×W , which contains L+1 frames
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will be compressed into Z ∈ R(l+1)×3×h×w. The first frame is independent from the subsequent
frames and will not be compressed along temporal dimension. We use the token of the first frame as
the conditional tokens filled at the start of the result sequence.

3.2 ARSS FRAMEWORK

Overview. In this section, we will introduce our proposed method, ARSS, with overall workflow
depicted in Figure 2. ARSS performs novel view synthesis from a single image input, by rely-
ing on a transformer that performs next-token prediction. Different from the typical autoregressive
transformer models (e.g. VQGAN) that synthesize a single image, ARSS needs to autoregressively
predict visual tokens that are 1) coherent in a sequence/multiple views, 2) controllable by cam-
era trajectories and 3) generated in a manner that captures long-range dependencies across tokens.
The formation of our method is therefore driven by three important modules: a video tokenizer
that converts multi-view images into compact visual tokens while preserving temporal consistency,
a camera autoencoder that encodes camera trajectories into camera tokens serving as positional
guidance, and an autoregressive transformer module that predicts the next token conditioned on
both previously generated visual tokens and the corresponding camera tokens.

3.2.1 LEARNING VISUAL TOKENS FOR NOVEL VIEW SYNTHESIS

The main challenge in novel view synthesis lies in modeling both visual details and temporal con-
sistency across multiple frames. An image tokenizer fails to capture inter-frame relationships, often
lead to temporal artifacts (e.g flickering). To address this, we adopt a video tokenizer that compress
multi-view sequences into tokens while preserving temporal structure. By preserving temporal de-
pendencies, the video tokenizer provides a more robust representation for novel view synthesis,
leading to improved consistency and quality as demonstrated in Section 4.3.

Formally, given an original multi-view image sequence X ∈ R(L+1)×C×H×W and the correspond-
ing camera poses Π ∈ R(L+1)×6×H×W , where L denotes the temporal length and H,W the spatial
dimensions, we process X using a video tokenizer (Tang et al., 2024). The tokenizer learns to en-
code X into a sequence of one-dimensional discrete tokens [x1, x2, . . . , xN ], where the sequence
length is N = l×h×w and (l, h, w) correspond to the compressed temporal and spatial dimensions.

3.2.2 LEARNING 3D POSITIONAL TOKENS

While the video tokenizer provides temporally consistent visual tokens, novel view synthesis also
requires 3D guidance to ensure that generated views align with the underlying camera trajectory.
To address this, we explicitly incorporate 3D geometry by converting the per-frame extrinsic and
intrinsic matrices into Plücker raymaps Π. These raymaps are then compressed into a sequence
of camera tokens [π1, π2, . . . , πN ] using a dedicated camera autoencoder. The trajectory thereby
provides direct global 3D structural information for multi-view sequence. The autoencoder follows
a conventional encoder–decoder design: the encoder maps Plücker coordinates into a latent repre-
sentation using stacked 3D convolutional and downsampling blocks, while the decoder reconstructs
them with symmetric 3D convolutional and upsampling blocks. Different from image or video
autoencoder that applies reconstruction loss, perpetual loss and adversarial loss, we add geometry
constraints to enforce geometry consistency:

Lcam = λ1∥d̂− d∥22 + λ2∥m̂−m∥22 + λ3(∥d̂∥ − 1)2 + λ4(d̂ · m̂)2, (5)

where d is the normalized camera ray direction, d is the momentum term formulated as m = o×d.
The first two loss terms are l2-norm reconstruction loss. The third term regularizes the camera rays
have unit length. The last term regularizes that the camera rays d and momentum m are orthogonal.

3.2.3 NEXT-TOKEN PREDICTION FOR NOVEL VIEW SYNTHESIS

With visual tokens that capture appearance and temporal consistency, and camera tokens that encode
explicit 3D geometry, the final step is to synthesize novel views through token prediction. To this
end, we designed an autoregressive transformer module that performs next token prediction. This
design is made effective by two key components: (1) a hybrid token order permutation strategy that
preserves temporal causality while enabling the model to exploit bi-directional spatial context, and
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(2) a training objective that aligns the autoregressive prediction with this ordering to improve both
fidelity and temporal consistency.

Token order permutations. Previous autoregressive transformers employ causal attention masks,
which impose a strict uni-directional dependency across the token sequence. This is misaligned with
visual data, where spatial context within each frame is inherently bi-directional. To address this, we
introduce a hybrid ordering strategy. Specifically, we permute the spatial order of tokens within each
frame while preserving the original temporal order across frames. This permutation strategy would
guarantee that the tokens from views far from the input would be generated after those close to the
input. The permuted sequence S can be illustrated as the following:

S = [π
P1(1)
11 , x

P1(1)
11 , ..., π

P1(n)
1n , x

P1(n)
1n , π

P2(1)
21 , x

P2(1)
21 , ..., π

P2(n)
2n , x

P2(n)
2n , ..., π

Pl(n)
ln , x

Pl(n)
ln ], (6)

where x
Pi(j)
ij represents the j-th randomly shuffled token under i-th frame, where i ∈ {1, 2, .., l}

and j ∈ {1, 2, ..., n}. This means any given token xij can only be swapped with xik, where 1 ≤
j ̸= k ≤ n.

Training objective and sampling. The shuffled tokens in Eq. 6 are fed into a decoder-only trans-
former for next-token prediction. During optimization, the final objective function (Eq. 3) can be
re-formulated as:

L = CE(fθ([S, [xP2(1)
21 , ..., x

Pl(n)
ln ]), (7)

Given that the first frame is the input, so the corresponding visual and camera tokens are always
visible to the subsequent tokens. During generation, the autoregressive model (Eq. 2) can be re-
formulated as:

max
θ

pθ(x) =

l∏
i=2

n∏
j=1

p(x
Pi(j)
ij |πP≤i(≤j)

≤i,≤j , x
P<i(<j)
<i,<j , [π

P1(1)
11 , x

P1(1)
11 , ..., π

P1(n)
1n , x

P1(n)
1n ]) (8)

where πP≤i(≤j)
≤i,≤j contains the camera tokens for the current and previously generated tokens denoted

as x
P<i(<j)
<i,<j . [π

P1(1)
11 , x

P1(1)
11 , ..., π

P1(n)
1n , x

P1(n)
1n ] are the input tokens prefilled before the output se-

quence. Another advantage of randomly shuffle tokens is that it allows parallel decoding (Pang et al.,
2025). The generation of current token doesn’t need to rely on the tokens spatially surrounding it.
With camera tokens as positional instruction tokens, the system has the capacity to predict multiple
tokens at one time.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Datasets. We use the RealEstate10K dataset (Zhou et al., 2018) and ACID dataset (Liu et al.,
2021) to train and validate our proposed method. RealEstate10K is a large dataset with over 80K
indoor and outdoor scenes from over 10K YouTube videos. ACID is dataset of aerial footage of
natural coastal scenes. To further validate our method, we also evaluated our proposed method on
the benchmark set of DL3DV-10K (Ling et al., 2024) dataset for zero-shot novel view synthesis.
DL3DV is a large-scale scene dataset comprising both bounded and unbounded scenes from over
10L videos.
Baselines and Evaluation Metrics. We compare ARSS against both non-diffusion and diffusion-
based baselines for novel view and video generation. As non-diffusion NVS methods, we include
LVSM (Jin et al., 2024), a transformer-based architecture for sparse-view novel view synthesis,
and RayZer (Ren et al., 2025b), which leverages explicit 3D-aware representations for multi-view
consistent rendering. Among diffusion-based approaches, we consider SEVA (Zhou et al., 2025)
(multi-view diffusion for NVS), Genwarp (Seo et al., 2024) (warping-guided diffusion), MotionC-
trl (Wang et al., 2023) (controls camera and object motion), and ViewCrafter (Yu et al., 2024b).
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LVSMSEVAInput Genwarp Ours Ground Truth

Figure 3: Qualitative Visualization. Qualitative comparison between ARSS with other diffusion-
based and feed-forward transformer-based methods on ReaEstate10K and ACID datasets. Diffusion-
based methods such as SEVA and Genwarp often suffer from distortions and inaccurate camera pose
alignment, while the feed-forward transformer-based LVSM produces results that are noticeably
blurry along boundaries. In contrast, ARSS generates geometrically consistent and sharp views
across diverse scenes.

Table 1: Quantitative results on RealEstate10K, ACID, and DL3DV. Higher PSNR/SSIM and
lower LPIPS/FID/FVD are better. For SEVA, ViewCrafter and RayZer results on DL3DV are not
reported, since DL3DV was part of its training data, while for other methods it serves as zero-shot
evaluation. We highlight the best results in red and second-best in yellow.

Re10K ACID DL3DV

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ FVD ↓

MotionCtrl 16.17 0.609 0.438 59.73 63.58 19.36 0.626 0.405 63.93 66.30 14.58 0.430 0.507 92.91 94.85
ViewCrafter 12.67 0.399 0.490 121.25 108.99 16.96 0.504 0.442 102.48 104.85 - - - - -
RayZer 12.97 0.397 0.639 324.23 130.23 12.64 0.384 0.6521 303.75 138.62 - - - - -
LVSM 18.29 0.579 0.314 50.29 56.31 20.81 0.573 0.308 38.46 55.13 15.86 0.409 0.400 85.75 96.83
SEVA 18.73 0.670 0.349 46.98 57.56 21.77 0.664 0.326 33.16 53.69 - - - - -
Ours 19.02 0.624 0.269 47.60 50.51 21.93 0.623 0.265 47.76 54.60 16.70 0.449 0.347 84.96 91.25

We evaluate all methods using pixel-aligned metrics (PSNR, SSIM (Wang et al., 2004)), perceptual
metrics (LPIPS (Zhang et al., 2018)), and distributional video/image metrics (FID (Heusel et al.,
2017) and FVD (Unterthiner et al., 2019)).

Implementation Details. For the decoder-only transformer, we adopt LlamaGen (Sun et al., 2024)
as our backbone model and the dimension is set to be 1280. We train ARSS with 8 NVIDIA H100
GPUs with a batch size of 8 per GPU for 100K interations. The learning rate is set to 5e − 4 with
5K steps warm up and a cosine schedule to decrease to 0 after the warm up steps. . We apply
VidTok (Tang et al., 2024) as our video tokenizer for temporally causal modeling. The spatial patch
size is 8 and temporal patch size is 4. All the images are in a resolution 256× 256 and the temporal
dimension is 17, so the video tokenizer will extract 17×256×256 image sequence into 5×32×32
latent codes. The first 32 × 32 tokens are the input tokens and their orders would not be permuted.
During inference, we prefill the camera tokens and the visual tokens of the input view as well as the
camera tokens of the first target views to the sequence, and iteratively sample the target tokens using
a next-token prediction manner.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 4: Qualitative Visualization. Zero-shot novel view synthesis comparison between
ARSS with other diffusion-based and feed-forward transformer-based methods on DL3DV bench-
mark (Ling et al., 2024). MotionCtrl and Genwarp exhibit distortions due to incorrect camera pose
alignment, while LVSM produces results that are noticeably blurry. Our proposed method, ARSS,
generates sharp views with geometric consistency

Figure 5: View Generation Results. Zero-shot novel view synthesis visualization on AI Gener-
ated Betker et al. (2023) images. The results demonstrate the strong generalizability of our method,
generating consistent and high-fidelity novel views even when applied to out-of-distribution, syn-
thetically generated inputs.

4.2 RESULTS

Qualitative Results. We provide qualitative comparison between our proposed method and three
baseline methods in Figure 3. Our method visually outperforms majority of the baseline methods for
in-domain testing, demonstrating the strong capability of generating both photorealistic and geomet-
rically consistent novel views from a single image. Genwarp (Seo et al., 2024) follows a warp-and-
inpaint paradigm and highly rely on the metric accuracy of predicted depth and camera transitions,
thus may generate samples with erroneous camera poses or apparent artifacts. LVSM (Jin et al.,
2024) applies bi-directional transformer to directly predict visual tokens thus cannot generate views
based on previous knowledge. SEVA tends to generate high quality and 3D consistent novel views,
but it follows a paradigm that first generates anchor views and interpolate the intermediate views
between input and anchor views, which may sometimes cause content and view inconsistency.

Quantitative Results. We present quantitative comparisons in Table 1. Our method consistently
outperforms most of the baselines: Genwarp and MotionCtrl (Wang et al., 2023) underperform
across metrics due to the lack of explicit modeling of relative camera poses, showing stability only
for nearby views but degrading with larger viewpoint changes, while LVSM, which relies on feed-
forward predictions rather than generative modeling, resulting poor performance. SEVA (Zhou et al.,
2025) achieves results relatively close to ours, but although our method produces higher-fidelity
novel views (e.g., +1.1% PSNR, –21% LPIPS), it can show minor geometric inconsistencies (e.g.,
–6.6% SSIM, +22% FID). It is worth noting that SEVA benefits from large-scale, high-resolution
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Figure 6: Error accumulation analysis. Per-frame PSNR/SSIM/LPIPS vs. frame index, showing
that our method maintains consistently higher image quality and slower degradation than baseline
methods along camera trajectories.

training data and heavy computational resources, whereas our approach attains competitive perfor-
mance without such requirements.

Zero-shot Novel View Synthesis. We directly validate our proposed method on DL3DV bench-
mark (Ling et al., 2024) and compare with other state-of-the-arts method. MotionCtrl (Wang et al.,
2023) is capable of generating images with richer and sharper details but fail to model the rela-
tive camera positioning between source and target views. Both Genwarp (Seo et al., 2024) and
LVSM (Jin et al., 2024) exhibit apparent artifacts and geometry bias of target views. Compared to
baseline methods, our method can generate both 2D and 3D consistent novel views. In addition, Fig-
ure 5 show qualitative result on AI-generated (Betker et al., 2023) oil and cartoonish pictures. The
results demonstrate the strong generalizability of our method, consistently producing high-quality
novel views from diverse input image styles under predefined camera trajectories.

Error Accumulation Analysis. Visualized in Figure 6, our method shows clearly better long-
horizon behavior than all baselines. As the frame index increases, our model maintains consistently
highest or near-highest PSNR/SSIM while exhibiting the lowest LPIPS at every timestep, indicating
both strong pixel-level accuracy and superior perceptual fidelity. Moreover, the slopes of all three
curves for our method are noticeably flatter, meaning quality degrades much more slowly along
the trajectory. Taken together, these per-frame metrics demonstrate that our approach accumulates
significantly less error over time and is overall superior to competing methods for long camera
sweeps.

4.3 ABLATION STUDIES

Ablation on token order permutation. We first compare different ways to permute the target
tokens and the results are shown in Figure 7. One permutation strategy is to keep the original token
order as it is not permuted, where tokens are ordered from top left to bottom right spatially and from
the first to the last view temporarily. We notate it as ”raster” order and the results are shown in the
third row of Figure 7. Another permutation strategy is to randomly shuffle all the tokens with respect
to both spatial and temporal order, which we refer to as ”full perm.” and the results are shown in the
second row of Figure 7. By contrast, our method permutes the target tokens only respect to spatial
dimension while keeping the original temporal order. All of the permutation strategies show similar
visual results on frames close to input view. The quality of ”raster” strategy degrades significantly
at later frames. This is because the images data with bi-directional context is applied to optimize
a uni-directional model, which may fall into sub-optimal solutions. The ”full perm.” strategy also
produces less quality results as the temporal order generation is also random. This means target
views far from input view could be generated earlier than those close to the input view, thus failing
to condition on the knowledge of previous views. Our full method presents the overall best visual
results compared to other permutation strategies.
Ablation on tokenization strategy. We further conduct experiments on different choices of to-
kenizer. To validate the effectiveness of our video tokenizer, we apply the VQ image tokenizer to
convert multi-view images into discrete tokens. To validate the temporal consistency of the gener-
ated sequence, we also report the FVD score except for the classic PSNR score and the quantitative
results are shown in Table 3. our method achieves consistently superior performance across all

9
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Figure 7: Ablation Studies. Visualization of different token permutations. In the figure, full perm.
means to perform both spatial and temporal permutation of all the target tokens during training.
Raster means to keep the original order of target tokens. Full permutation leads to incorrect geom-
etry since later tokens may be generated first, whereas raster ordering causes visual distortions that
grow as the generated frame becomes farther from the input view.

Table 2: Ablation Studies. We report metrics
scores on different token permutation strategies.
In the table, raster means to keep the original
token order while full perm. means to ran-
domly shuffle the token in both spatial and tem-
poral dimension.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓
raster 16.29 0.488 0.402 71.17
full perm. 18.76 0.532 0.315 62.58
ours 19.22 0.565 0.294 60.11

Table 3: Ablation Studies. We report met-
rics scores on different image tokenizers. In the
table, VQ means to apply vector quantization
image tokenization on the multi-view images.
FVD score is evaluated to demonstrate the tem-
poral consistency

Method PSNR ↑ SSIM ↑ LPIPS ↓ FVD ↓
VQ 15.69 0.437 0.498 137.68
ours 19.22 0.565 0.294 52.56

metrics, with the FVD score improving by approximately 62%. This indicates that the VQ image
tokenizer fails to preserve temporal consistency, whereas the video tokenizer can effectively main-
tain.

5 DISCUSSION
To the best our knowledge, ARSS is the first work that uses causal autoregressive models to generate
view consistent sequences with camera control from a single image. We use video finite scalar
quantization to tokenize the multi-view images into 1-D discrete sequences and we design a camera
autoencoder to map Plücker raymap into latent representations as 3D positional instruction tokens
for visual tokens. The experimental results demonstrate that our method outperforms state-of-the-
art methods leveraging diffusion models and transformers. The generation quality of ARSS is still
limited by the quality of tokenizer. Although the current tokenizer is trained on tons of thousands
of video datasets, it is hard to adapt to significant view changes thus would lead to the generaton
of inferior discrete tokens. In the future, we will train a tokenizer that is designed for multi-view
images. In addition, different from the current diffusion-based view synthesis method that mostly
finetuned from pre-trained models, our method is trained from scratch using limited public datasets
with relatively low resolution.
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Figure 8: Architecture of our camera encoder

A APPENDIX

A.1 CAMERA AUTOENCODER ARCHITECTURE

The camera encoder maps the camera Plücker raymap with a compact 3D CNN whose strides are
designed to match the dimension of visual tokens. The architecture is visualized in Figure 8. The
encoder comprises a 3D CNN module followed by 3 downsample blocks. Each block uses residual
3D convolutions (He et al., 2016) with Group Normalization (Wu & He, 2018) and SiLU (Elfwing
et al., 2018) activation. A bottleneck ”post” projects the latent features to camera tokens. The
decoder mostly mirrors the encoding but utilize upsampling module in each up blocks for recon-
struction.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

Classifier-free guidance (CFG). To support CFG, during training, the input camera and visual
tokens would be dropped with a probability 10%. During sampling time, the model would be called
based on both conditional input tokens and unconditional tokens, which we denote us xc and xu for
simplicity. The logits of the generated token at step t would be modified as: logit(xt) = fθ(xt|xu)+
ω · (fθ(xt|xc)− fθ(xt|xu)), where ω is the guidance scale.

A.3 BROADER RESEARCH IMPACT

Our proposed method aims at pioneering the research to integrate the generative paradigm in large
language model into novel view synthesis task, which, as far as we know, is the first work in this
research area. Our proposed method has the potential to bring multimodal generative model into a
unified training and sampling paradigm. Our future work would focus on 1) designing more spe-
cialized tokenizer for multi-view images to further improve the generation quality, and 2) collecting
more high-resolution multi-view image sequences to achieve more robust training.

A.4 ADDITIONAL ABLATION STUDIES

We provide qualitative results of our ablation study in Section 4.3 in Figure 7. The raster order keeps
the original spatial and temporal sequence, while full perm. shuffles tokens across both dimensions.
Our method permutes only the spatial dimension while preserving temporal order. All strategies per-
form similarly on frames near the input view, but raster degrades at later frames due to the mismatch
between bi-directional image context and uni-directional modeling, and full permutation produces
artifacts as distant views may be generated before closer ones. In contrast, our approach achieves
the best visual quality across the sequence.

All strategies perform similarly on frames near the input view, but raster degrades significantly at
later frames due to misalignment between bi-directional image context and uni-directional modeling,
and full permutation performs poorly because distant views may be generated before closer ones. In
contrast, our method achieves the best overall visual quality across sequences.
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A.5 ADDITIONAL VISUALIZATIONS AND COMPARISONS

We provide more visualization results compared with other state-of-the-art method in Figure 9 and
more sequence generation results from single view input in Figure 10 and Figure 11
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LVSMMotionCtrlInput Genwarp Ours Ground Truth

Figure 9: Qualitative Visualization. Qualitative comparison between ARSS with other diffusion-
based and feed-forward transformer-based methods on ReaEstate10K and ACID datasets. Diffusion-
based methods such as SEVA and Genwarp often suffer from distortions and inaccurate camera pose
alignment, while the feed-forward transformer-based LVSM produces results that are noticeably
blurry along boundaries. In contrast, ARSS generates geometrically consistent and sharp views
across diverse scenes.
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Input Target

Figure 10: Qualitative visualization for multi-view sequence generation on RealEstate-10K (Zhou
et al., 2018) and ACID (Liu et al., 2021) datasets

Input Target

Figure 11: Qualitative visualization for zero-shot multi-view sequence generation on DL3DV bench-
mark (Ling et al., 2024) dataset
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