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ABSTRACT

Multimodal Large Language Models (MLLMs) have advanced open-world action
understanding and can be adapted as generative classifiers for closed-set settings
by autoregressively generating action labels as text. However, this approach is
inefficient, and shared subwords across action labels introduce semantic overlap,
leading to ambiguity in generation. In contrast, discriminative classifiers learn task-
specific representations with clear decision boundaries, enabling efficient one-step
classification without autoregressive decoding. We first compare generative and dis-
criminative classifiers with MLLMs for closed-set action understanding, revealing
the superior accuracy and efficiency of the latter. To bridge the performance gap, we
design strategies that elevate generative classifiers toward performance comparable
with discriminative ones. Furthermore, we show that generative modeling can com-
plement discriminative classifiers, leading to better performance while preserving
efficiency. To this end, we propose Generation-Assisted Discriminative (GAD) clas-
sifier for closed-set action understanding. GAD operates only during fine-tuning,
preserving full compatibility with MLLM pretraining. Extensive experiments on
temporal action understanding benchmarks demonstrate that GAD improves both
accuracy and efficiency over generative methods, achieving state-of-the-art results
on four tasks across five datasets, including an average 2.5% accuracy gain and 3 x
faster inference on our largest COIN benchmark.

1 INTRODUCTION

Video understanding has traditionally focused on closed-set recognition and detection (Kay et al.,
2017; Damen et al.| 2022)). Recent advances in Multimodal Large Language Models (MLLMs) (Li
et al.,|2023; Maaz et al.} 2023} [Wang et al.,|2024) have expanded the scope to open-world settings,
enabling free-form language output via autoregressive (AR) token generation. This language-centric
design enables MLLMs to solve diverse video tasks through text output, providing a general and
task-agnostic framework. This motivates examining their utility for conventional classification, where
textual outputs can enrich semantics while avoiding task-specific architectures.

To extend MLLMs to classification tasks in video understanding, prior works (Hu et al.| 2023}
He et al., 2024; |Chen et al., [2024a; Wu et al., 2024} [Chatterjee et al., [2025) cast these tasks as
generative problems, employing MLLMs as Generative Classifiers (Jaini et al., [2023)). In this
formulation, models are prompted with queries such as “What is the action in the video?” and
fine-tuned to autoregressively generate concise action labels (e.g., “add onion”) as free-form text. Yet
the generative objective of MLLMs is not inherently tailored for classification, and the effectiveness
of this reframing remains underexplored. In contrast, Discriminative Classifiers Ng & Jordan
(2001) align more naturally with classification, learning task-specific representations and predicting
actions directly, thus avoiding the additional step required to map free-form text back to predefined
classes (Chen et al.,|2024a). Exploring discriminative learning with MLLMs for video understanding
therefore remains a promising yet under-investigated direction.

In this paper, we demonstrate the advantages of discriminative classifiers over generative ones for
temporal action understanding. We adapt pre-trained MLLMs into discriminative classifiers by
appending a learnable token to the visual input, enabling the model to encode a global representation
for classification. Our discriminative approach surpasses generative classifiers (Lin & Shoul 2025}
Chen et al.| [2024a)) in both accuracy and efficiency. By directly optimizing decision boundaries
(Fig. [1), the discriminative formulation reduces action confusion, leading to consistent performance
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Figure 1: T-SNE plot comparing feature spaces of generative and discriminative classifiers on
CrossTask dataset for actions sharing the verb ‘add’. Generative feature - mean of output token
features; Discriminative feature - the learnable token feature.

gains. Furthermore, it predicts an action (e.g. ‘“add strawberries to cake™) in a single forward
pass, compared to the multiple passes required by generative classifiers to autoregressively output
tokens (e.g. {‘add’, * strawberries’, ‘ to’, * cake’}).

The superior performance of the discriminative classifier motivates an investigation into why it
outperforms the generative one. Generative classifiers are more prone to confuse semantically
similar actions, such as “add onion” and “add rice”. This stems from the fact that action labels are
intentionally annotated to be concise and high-level rather than descriptive (Zhou et al., [2024; Kay
et al., |2017), which produces substantial semantic overlap across classes, e.g. the frequent use of verbs
like “add’ and “put”. As a result, beyond the inherent visual ambiguities in video input, semantic
overlap in the output space poses an additional challenge for generative classifiers. In contrast,
the discriminative formulation ignores label semantics (Ye & Guol 2017), eliminating semantic
overlap and achieving clearer separation between actions. We further show that the generative and
discriminative classifiers can become functionally equivalent when the action labels are introduced
into the tokenizer’s vocabulary as singular tokens, and decoded in one autoregressive step. Adding
single tokens prevent action labels being tokenized into subwords shared across actions, thus removing
semantic overlap. This finding highlights the potential of extending MLLMs as generative classifiers
to learn task-specific representations for discriminative learning.

However, the task-specific discriminative classifiers lose the semantic richness conveyed by generated
text. This motivates us to incorporate generative modeling to complement and thus enhance discrimi-
native learning. To this end, we propose a Generation-Assisted Discriminative (GAD) classifier for
temporal action understanding, which integrates discriminative objectives with auxiliary generative
objectives within a single end-to-end framework. This design maintains the strengths and efficiency of
discriminative learning while incorporating additional semantics and contextual information through
generative modeling, enabling context-aware and semantically enriched representations.

We investigate a broad spectrum of temporal action understanding tasks, spanning basic step and task
recognition and step forecasting (Tang et al.,[2019) to the more challenging setting of online action
detection (Zhukov et al.,|2019; Damen et al., 2022; Song et al., 2023)). Our experiments demonstrate
that the discriminative classifier achieves higher accuracy and lower inference latency than the
generative one. Within the proposed GAD framework, generative modeling further strengthens
classification by regularizing training with semantic encoding and contextual enrichment, while
inference relies solely on classification, preserving the efficiency of discriminative learning. Notably
GAD achieves state-of-the-art across on four tasks across five datasets, including an average 6.8% F1
gain and 1.8x speedup on EPIC-Kitchens-100, 1.5% F1 gain and 3x speedup on Ego4D GoalStep,
and 2.5% Top-1 accuracy gain with 3x speedup on COIN.

Overall, our contributions are summarized as:
* We demonstrate that generative classifiers underperform discriminative ones on classification
tasks, primarily due to semantic overlap in the generative (textual) output space.
* We align generative and discriminative classifiers by interpreting classification as a single-step
generation process, where predefined action labels are introduced as new tokens.
* We propose a generation-assisted discriminative (GAD) framework, showing that auxiliary
generative objectives enrich discriminative learning and improve temporal action understanding.
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2 RELATED WORKS

Temporal action understanding involves recognition tasks such as temporal action detection and
segmentation (Zhao et al., [2017; |Ding et al., [2023)), step recognition and forecasting (Tang et al.,
2019)), and video recognition (Zhang et al., 2021). Classical approaches model temporal dynamics
using temporal convolutional networks (Farha & Gall,|2019), recurrent neural networks (Xu et al.,
2019), or transformers (Liu et al.l |2022). Recently, MLLMs have shown strong performance by
formulating recognition as an autoregressive token generation task, where labels are expressed as
free-form text and decomposed into tokens (Hu et al., 2023; |He et al.,|2024). |Chen et al.| (2024a); Wu
et al.| (2024); Chatterjee et al.|(2025) extended MLLM:s to real-time interaction, temporal summariza-
tion, and forecasting, while Ye et al.[(2025) applied a QA-style generation approach for video action
recognition. However, autoregressive token generation is inefficient, and its effectiveness for recogni-
tion tasks remains underexplored. Our work demonstrates that generative learning underperforms its
discriminative counterparts due to the added semantic complexity in text output.

Customized tokenization may use task-specific or optimized strategies (Liu et al.| 2024} |Zhang
et al.| [2025) to reduce token length for faster decoding and improved semantic representation. Using
Ego4D videos (Grauman et al.| [2022), [Lin & Shou (2025) constructed a hierarchical vocabulary
of video narrations to enable faster inference. In image retrieval, Caron et al.| (2024)); Zhang et al.
(2024)) designed language-based discriminative entity codes, converting images into compact and
semantically rich tokens serving as identifiers for efficient and accurate retrieval. For multiple-choice
question answering, mapping each answer option to a single symbol effectively tokenizes answers into
one token, enabling faster inference (Joshua Robinsonl [2023] [Ranasinghe et al.|[2024)). However, in
action understanding, fine-grained actions that share verbs and objects make distinctive tokenization
difficult, and preserving full semantics is harmful. Similar observations have been made in closed-set
image classification (Cooper et al., [2025} [Conti et al.| 2025), where distinguishing fine-grained
categories remains challenging for LLMs. Specialized prompting has been proposed to improve
differentiation, but the approach remains generative. In contrast, we adopt a classification-style
approach, equivalent to encoding each action as a unique, unstructured atomic code.

Unified retrieval and generation within a single model represents a key step toward building general-
purpose multi-task systems. Earlier vision-language foundation models, (Yu et al.,|2022; L1 et al.,
2022; |Chen et al.}2024b), constructed hybrid frameworks that combine a vision-text encoder and a
text decoder, pretrained jointly with contrastive and language modeling objectives. Large language
models (LLMs) (Koh et al.,[2023; Ma et al., 2024) have also shown potential as unified backbones
when trained jointly with both losses, which can be further enhanced with task-specific instruction
tuning (Muennighoff et al., [2024). Our work investigates MLLMs for classification tasks, aligning
discriminative and generative learning within the same task, in contrast to existing approaches that
address them separately for different tasks.

3 METHOD

We present the Generation-Assisted Discriminative (GAD) classifier, which leverages pre-trained
LLMs for fine-tuning on downstream temporal action understanding tasks. Our focus is on the
fine-tuning stage because general MLLMs typically struggle with task-specific requirements and
must be further adapted for optimal performancem We first formalize the problem of temporal action
understanding, then introduce and analyze the generative classifier baseline and its challenges, before
motivating our proposed solutions.

3.1 PRELIMINARIES

We focus on fine-tuning pre-trained LLMs for temporal action understanding in a closed-set classifi-
cation setting. Given a video sequence V, which may be a short clip or an entire video sampled at a
predefined rate, and a task query Q, the objective is to predict a label y from a predefined category
set Y. This problem formulation is general, accommodating a wide range of recognition scenarios.

Action labels. Temporal action understanding tasks typically involve actions that unfold over time and
exhibit temporal correlations. These actions are generally expressed as concise and simplified verb-
noun phrases (e.g. “add sugar”), and sometimes enriched with additional contextual elements (e.g.

!Qwen2.5-VL-7B only achieves 16.1% and 8.9% zero-shot accuracy on COIN step and next-action prediction,
respectively, compared to 67.3 % and 51.6% after fine-tuning. Find more results in Supplementary C.
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Figure 2: Comparison between different architectures for downstream video-related recognition tasks:
(1) Generative classifier: treating action labels as free text. (2) Discriminative classifier: learning an
extra representation for downstream tasks. (3) Generation-assisted discriminative (GAD) classifier:
learning an extra representation that is regularized through task-related generation.

“add strawberries to cake”), to capture both the action and objects involved. The action vocabulary is
typically closed, consisting of recurring motions (“add”, “screw”) applied to a shared set of objects,
which naturally leads to semantic overlap across labels.

3.2 ARCHITECTURE

We adopt a LLaVA-style (Liu et al.| [2023)) architecture as the backbone, comprising a visual encoder
E,, a language decoder Dy, and a vision-language adaptor A;. Video frames V are first encoded
by the vision encoder E,, then mapped to text-aligned tokens via the vision-language adaptor A,
yielding visual tokens F,, = Ay (E,(V)). Meanwhile, the task query Q is tokenized into text tokens
F:, enabling joint processing with the visual tokens by the language decoder. During fine-tuning,
only the vision—language adaptor and the language decoder are trained using LoRA, while all other
components remain frozen.

Generative Classifier Baseline. In a generative classifier, text and visual tokens are concatenated and
fed into the causal language decoder to autoregressively generate subword tokens using a language
modeling head. During training, the generative classifier is provided with a target action label y, which
is tokenized by the language model’s tokenizer into a sequence of subwords {ug, w1, ,unp—1}.
Here, n represents the total number of subword tokens representing ¥, and these subwords are
drawn from the tokenizer’s vocabulary. For example, the action label “take pancake from pan” is
tokenized as { ‘take’,  panc’, ‘ake’, ‘ from’, ‘ pan’} by the Llama-3 tokenizer (Grattafiori et al., 2024).
The model is trained to maximize the conditional probability of each target subword u; over the
vocabulary, conditioned on the visual and textual inputs and previously generated subwords u.;. The
training is done using the standard language modeling loss Ly, i.e. the negative log-likelihood,
applied to each subword token.

U; = gw(Qv Vv U’<i) = Dt(]:t @]:v @u<i)a Lgen - - Zlogpr(ui ‘ Qa V7 Ui, w) (1)

i
where g, is the generative classifier parameterized by w, & denotes concatenation. When applying
the generative classifier for closed-set classification, the decoder is finetuned to generate subword
tokens from a fixed vocabulary subset that covers the subwords required to represent all action labels.

Discriminative Classifier. Here, we extend the generative model to a discriminative model for
downstream classification tasks. Instead of directly classifying video features using specialized
models, we repurpose the existing MLLM as a task-agnostic classifier, eliminating the need for
task-specific architectures. A learnable [CLS] token (Ye et al.|[2025} Lin & Shoul2025)) is appended
to the end of the language model input sequence, attending to all preceding tokens and generating
representations that integrates both the video input and the task query. We find that using a learnable
token enhances generalization, whereas relying on visual tokens directly can lead to overfitting (see
Appendix [B.4). The resulting output representation o is fed to customized classification heads for
the downstream classification tasks by optimizing the traditional cross-entropy loss. Note that the
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language modeling head is disabled in this case, since generating subwords is unnecessary.
0= f3(Q, V, [CLS]) =Dy(F & Fy @ [CLS]), Las=—logP:(y|o, ¢), (2

where f,; denotes the discriminative classifier parameterized by ¢, and ¢’ represents the parameters
of the classification head.

This discriminative formulation supports faster inference in low-latency scenarios. It also prevents
action labels from being tokenized into subwords, avoiding semantic overlap from shared subwords
across labels. In Sec.[d] we show that such overlap causes discriminative and generative classifiers
to behave differently, with the generative one more prone to confusing verbally similar actions.
Removing this overlap through specific designs, such as isolated tokenization, reduce these confusions
among similar actions. In fact, when action labels are excluded from the text query and only used
as output target, the discriminative classifier becomes a special case of a generative classifier by 1)
adding action labels as new vocabulary entries. 2) merging the classification head into the language
modeling head. Since these added entries are not used as input, their embeddings can be initialized
randomly without affecting performance, and classification is equivalent to generating the entire
action label in one single step. This equivalence demonstrates the potential of extending existing
MLLMs to learn task-specific representations for discriminative learning.

Generation-Assisted Discriminative Classifier. Generative modeling still remains valuable by
providing deeper semantic cues through text generation, effectively encoding label semantics and
context. To combine these benefits with the discriminative classifier, we propose the Generation-
Assisted Discriminative (GAD) classifier, a unified framework that augments the the discriminative
model by adding the language modeling head, to produce auxiliary generative outputs.

We investigate three strategies for unification: (1) sequential learning with discriminative learning
first, followed by generation conditioned on the learned representation. (2) sequential learning with
generation first, followed by representation learning conditioned on the generated output. (3) parallel
learning, where both are learned simultaneously using shared text and visual input. We focus on
the first strategy here as it proves most effective, leaving details of other strategies to Appendix
Specifically, for (1), discriminative learning follows the standard discriminative classifier setup, after
which generative modeling is applied conditioned on the video V, the task query Q, and the learnable
token [CLS]. The generation loss in Eq.[I]is then adapted as

‘C;en = —ZlogPr(ui | Uiy Qa V, [CLS], 9)7 3)

i

where @ denotes the learnable parameters in this model, and u; represents the i*" tokenized subword
corresponding to the generation target. The overall training loss combines the adapted generation loss
and the classification loss from Eq.[2| weighted by a balance factor A, as Loap = Les + )\quen.

We use generative modeling as an auxiliary task to regularize the representation learning in the
discriminative classifier. For instance, it can implicitly capture intentions or reason about past
and future steps, thereby supporting recognition of the current action in goal-oriented procedural
videos. While this formulation could also treat discriminative and generative learning as separate,
independent tasks, prior work shows that simply unifying their objectives in a single model offers
limited benefit (Ma et al., 2024; Muennighoff et al.,|2024). In contrast, our auxiliary-task setting
leverages generative modeling specifically to enhance discriminative learning.

3.3 MODEL TRAINING & INFERENCE

During training, we leverage pre-trained vision encoders and LLMs and perform instruction tuning
with task-specific queries. The vision encoder is frozen; the vision-language adapter is fine-tuned,
and the LLM is updated via LoRA (Hu et al.;|2022). We optimize both discriminative and generative
objectives across all training instances, with the latter serving as auxiliary supervision to enrich
representation learning. At inference, we disable the generative branch and use only the discriminative
classifier to produce final predictions.

4 EXPERIMENTS

Our experiments aim to answer the following research questions for discriminative and generative
classifiers: (1) How do they compare in performance? (2) What factors influence their performance?
(3) When and how can a generative classifier enhance a discriminative one?
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Table 1: Generative (Gen) vs. discriminative (Disc) classifier on OAD tasks. The runtime analysis is
performed on a single NVIDIA RTX A5000 GPU.

LLM Model THUMOS’ 14 CrossTask EPIC-Kitchens-100  Ego4DGoalStep
S-F1/P-F1 FPS S-F1/P-F1 FPS S-F1/P-F1 FPS S-F1/P-F1 FPS

Llama3.2- Gen | 569/38.8 383 46.8/31.7 440 16.7/139 288 89/34 178
IB-Instruct  Disc | 57.8/40.1 58.0 48.8/34.0 594 232/193 511 10.6/41 53.6
Qwen2.5- Gen | 55.8/389 302 44.0/28.6 363 162/13.4 26.6 88/32 123
0.5B-Instruct Disc | 57.3/39.6 488 45.3/29.6 52.8 22.0/18.3 48.6 99/34 521

4.1 DATASETS, EVALUATION, AND IMPLEMENTATION DETAILS

Datasets & Tasks: We evaluate on four temporal action understanding tasks, including step recogni-
tion, step forecasting, task (activity) recognition, and the more challenging setting of online action
detection across five datasets. Step recognition identifies the occurred action in a given video clip,
while Step forecasting anticipates the upcoming action in the clip. The COIN dataset (Tang et al.,
2019) is adopted for these tasks, as it contains fine-grained, goal-oriented action steps. Task Recog-
nition aims to detect the overall activity category of a given video with multiple steps. COIN also
supports this task, providing high-level labels that reflect the hierarchical structure of such activities.
Online Action Detection (OAD) focuses on recognizing actions in a streaming video using only
past observations. Wideely used OAD datasets, including THUMOS’ 14 (Idrees et al., | 2017), EPIC-
Kitchens-100 (Damen et al.,[2022)), and CrossTask (Zhukov et al., 2019)), cover both sport videos with
loosely related actions as well as procedural videos with more correlated and fine-grained actions.
We also include Ego4D GoalStep (Song et al., [2023)), which features more descriptive labels than
the concise ones in the other datasets, allowing us to assess the impact of label complexity on model
performance.

Evaluation. To evaluate OAD tasks, following current SoTA (Pang et al.,[2025), we use segment-wise
F1 score with an IoU threshold of 0.1 (S-F1) and point-wise F1 score for action start detection with a
1s threshold (P-F1). For step recognition/forecasting and task recognition, we report top-1 accuracy
following existing literature (Chen et al.,[2024a; Wu et al., 2024)).

Implementation. We use Llama3 (Dubey et al.,|2024) variants as the primary language decoder with
a 2-layer MLP adapter, and additionally evaluate Qwen2.5 (Qwen et al.,|[2025)) variants. Task-specific
visual encoders are employed following prior works (Wang et al., {2023} [Pang et al., 2025; |Chen et al.,
2024a; Wu et al., [2024)). For OAD tasks, we use RGB features at 1 or 4 FPS, with 1 global token per
frame. Since OAD requires untrimmed videos, video frames are sampled backwards from the current
timestamp within a fixed window to capture both short- and longer-term context (Xu et al., 2021). For
step or task recognition, we follow (Chen et al.|(2024a)) and use SigLIP-ViT-L-384 (Zhai et al., 2023)
with 2 FPS sampled videos, producing 10 tokens per frame (1 global and 9 patch tokens). Trimmed
or full videos are used directly, with downsampling applied only when the sequence exceeds the
predefined maximum length. The LLMs are finetuned using LoRA with » = 128 and o = 256. The
balance factor is set to A = 1 by default. In line with|Chen et al.[(2024a), we post-process generative
outputs by using Levenshtein edit distance to match the generated text to the closed-set action labels.
Additional details are provided in Appendix [B.1]

4.2 MAIN RESULTS

Experiments are designed to systematically investigate the raised research questions.

Generative versus Discriminative Classifier. Tables[T|and[2]compares the performance of generative
and discriminative classifiers. The discriminative classifier (Disc) consistently outperforms the
generative one (Gen) across datasets and LLM variants. It achieves notable improvements for OAD
tasks, especially on EPIC-Kitchens-100, where the large number of fine-grained actions (around
3,600) increases semantic overlap, yielding gains of 6%, and 5% in segment-, and point-wise metrics.
The discriminative classifier also surpasses the generative classifier by an average 6%, 3.5%, and 3%
on step recognition, forecasting, and task recognition. Remarkably, the 1B-version discriminative
model even outperforms the 8B-version generative model.

We attribute these performance improvements to the discriminative classifier’s ability to disregard
output semantics. For example, on CrossTask, Fig. [3]shows that, due to the shared verb add’, the
generative classifier produces more false positives (after mapping the generative output to action
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Table 2: Generative (Gen) vs. discrim- Figure 3: False positives for “add sugar”. Generative classi-
inative (Disc) classifier on COIN for fier incurs more diverse misclassifications.
step/task and next step prediction. s |
1 ();) | Gen. Model
LLM Model COIN Benchmark s Emb. Model
Step Next Task =
Llama3.2- Gen |57.5 458 909 &'
IB-Instruct  Disc | 64.1 50.1 92.8 % ,
Llama3- Gen | 613 483 923 S < N A e O s <\ \\ 5. S Ak . 5
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categories), such as labeling “add sugar” as “add meat” or “add spices”. These diverse errors
are not observed in the discriminative classifier’s predictions.(See Suppl. E for more analysis.)
Following |Sikar et al.| (2024), we further introduce an entropy-based diversity score to measure
the spread of misclassification, with higher values indicating more diverse errors. The generative
classifier scores 0.76, 1.3 and 1.8 on CrossTask, EPIC-Kitchens-100 and Ego4DGoalStep, respectively,
compared to 0.66, 0.79 and 1.5 for the discriminative classifier, reflecting the diverse false predictions
caused by the introduced semantics, see Appendix [B.3]

Discriminative classifiers also offer faster inference compared to generative ones, as it predicts outputs
in a single step rather than generating tokens autoregressively. As shown in Tab. [T} the discriminative
classifier achieves speedups proportional to the token count in action labels. On Ego4DGoalStep, the
discriminative classifier is nearly 4x faster than generative, where the average action label length is
5.5 tokens, compared to 2.1 in THUMOS, 2.6 in CrossTask, and 2.4 in EK100, using the LLaMA3
tokenizer. Although the reported FPS excludes vision encoder computation by using pre-extracted
features, the encoder itself runs at a comparable frame rate (Pang et al.,[2025)), making this speedup a
meaningful improvement for real-time applications. Similarly, the discriminative classifier accelerates
training by avoiding forward and backward passes through many tokens, achieving approximately
1.8x faster training on OAD tasks.

Bridging the Performance Gap. The observed performance gap between the discriminative and
generative classifier motivates us to investigate its underlying cause. We observed that this gap
should stem from the shared semantics in the generative output space. To verify this, we design
three experimental settings in Fig. ] that progressively disrupt these semantics, aiming to bridge the
performance gap between the generative and discriminative classifier.
* Randomized Consistent Mapping. Action labels are split into subwords by the tokenizer. Each
subword is replaced with a random token, but identical subwords are mapped to the same token
across all labels.

* Desynchronized Independent Mapping: Each subword is replaced independently with a random
token, so the same subword will map to different tokens in different labels.

* Extended Vocabulary: Add new action labels to the tokenizer vocabulary and initialize their
embeddings by randomly selecting from the original vocabulary. Each action is thus represented
by a single newly added token.

The corresponding results of these settings are presented in Tab. [3] highlighting several key observa-
tions. First, randomizing tokens removes subword semantics and its relationships with neighbors,
yet results remain unchanged, indicating that subword semantics and local word connections are
not so critical. This is expected, as fine-tuning on predefined action labels encourages memoriza-
tion. Additionally, action labels are concise and expressed in a simplified style rather than natural
language, making word transitions poorly captured and less important. By further desynchronizing
tokens to eliminate overlap among action labels, shared semantics are removed, leading to significant
performance gains that approach the discriminative classifier. This result supports our hypothesis
that the shared semantics in the generative output space are the key cause of the performance gap.
Similarly, extending the tokenizer with action labels ensures non-overlapping tokens and achieves
comparable performance. Unlike desynchronized mapping, each action is represented by a single
token, allowing prediction in a single pass without token-by-token generation. This could help
explain the discriminative classifier as a single-step generation process and align discriminative and
generative approaches.
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Table 3: Bridging generative and discriminative classifiers Figure 4: Tokenization strategies.

using different tokenization with Llama3.2-1B-Instruct. « and f denote random tokens.

Model OAD Benchmark (segment-F1 / point-F1) ;‘;"“"s [,,ld*“l’,k,ei‘t'ﬁl_,] "[’(f‘ff’f',‘f,zf

CrossTask  EPIC-Kitchens-100 Ego4DGoalStep fdd ot | [add’," flour $ [, as]

Gen 46.8731.7 1677139 89734 cutonion | [cut, onion] * [a, 5]

Genrand | 46.9/31.8 16.8/14.0 8.8/3.5

Gen_desync | 48.7/34.1 23.0/19.0 10.4/3.9 oy desynchronize

Gen_extend | 48.9/33.9 23.3/19.2 10.5/4.0 ['add sugar] [or. cun]

Disc 48.8/34.0 23.2/19.3 10.6 / 4.1 I'add flour'] (81, 3]

['cut onion'] [, 5]

Generation-Assisted Discriminative Classifier. While the discriminative classifier are more
effective in classification settings, the generative modeling enables free-form generation, producing
flexible outputs to support representation learning for classification. We investigate several scenarios
to explore how generative capabilities can enhance classifcation performance using the proposed
Generation-Assisted Discriminative Classifier.

» Labeling. The generative head produces the target action label as text, performing the same task
as the discriminative classifier. It is expected to function as a regularizer, incorporating the label
lexical semantics that the discriminative classifier alone does not capture.

» Context generation. The generative classifier generates additional outputs beyond the target labels,
such as related past or future actions or the overall video goal. This process is expected to enhance
representation learning by providing contextual and temporal cues.

To incorporate label semantics, we test two training strategies for labeling: two-stage and joint training.
In two-stage training, the model is first trained using only the generative objective. All parameters
are then frozen to preserve the learned semantics, except the [CLS] token and classification head,
which are trained in the subsequent stage. As shown in Tab. ] the two-stage training results in
significantly lower performance, suggesting that the generative classifier alone does not provide
strong representations. On the other hand, joint training enables representation learning alongside
generative responses, but with only slightly performance improvement, further suggesting that lexical
semantics have limited impact in a closed-vocabulary setting.

Table 4: Comparison with GAD variants with Llama3.2-1B-Instruct.

Model OAD Benchmark (segment-F1 / point-F1) COIN (Top-1 acc.)
CrossTask EPIC-Kitchens-100 Ego4DGoalStep | Step Next Task

Disc 48.8/34.0 23.2/19.3 10.6 /4.1 64.1 50.1 928

GAD (label 2stage) | 41.8/26.7 9376.7 59/1.7 359 28.0 855
GAD (label_joint) | 49.1/33.9 23.6/19.6 10.8 /4.1 64.4 504 932
GAD (context) 50.3/34.5 24.1/20.1 11.0/4.3 65.3 514 93.5

For context generation, the generation outputs the target label along with auxiliary information. In
OAD, where only action labels are available, we explore action relationships as a form of context,
specifically by generating the previous action as the auxiliary output to support current predictions.
This proves more effective than generating future actions, as the previous action is further supported
by visual information from the input video, which contains only past observations in the online setting.
More ablations can be found in Appendix E} In COIN, where task information is available, we
explore the role of task information as auxiliary outputs. Here, no extra information is used, since task
label are already included during training, where task recognition and step recognition/forecasting
are jointly learned within a single model. Results in Tab. ] show that both the task and previous
action information help, with the task cues having a stronger impact. Using the previous action as
auxiliary output brings more benefit to CrossTask, where actions are closely aligned with a single
goal, unlike other datasets where actions follow multiple, loosely related tasks. These results suggest
that the generative modeling would be more helpful when it generates information complementary to
the discriminative classifier.

For efficiency, while incorporating generative objectives slows down training similarly to the gen-
erative classifier, inference speed matches that of the discriminative classifier by removing token
generation, ensuring efficient inference.
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4.3 ABLATION STUDIES

We conduct ablation studies on key design choices of our proposed GAD, evaluated on OAD tasks
with results reported in Tab[5] More ablations are included in Suppl. B.4.

* The learnable token. We adopt a learnable [CLS] token for discriminative prediction. An
alternative is the last visual token, which also aggregates all preceding visual and text information.
Results (w/o [CLS]) show that using [CLS] token performs better, likely due to its stronger
generalization ability, while the last visual token tends to overfit the training data.

e Auxiliary task. To confirm the benefits of capturing semantics via generation, we convert
previous-action prediction into a standalone classification objective, adding an extra classifier
that uses either the existing learnable token (GAD_prev_disc) or an additional learnable token
(GAD_prev_disc+). Results indicate that neither variant improves learning, and both can harm
current-action accuracy, indicating that the advantage arises from generative semantic encoding
rather than the auxiliary classification task itself.

Table 5: Ablation studies of our GAD classifier on OAD tasks.

Model OAD Benchmark. (frame acc./segment F1/point F1)
CrossTask EPIC-Kitchens-100  Ego4DGoalStep
Disc 81.7/48.8/34.0 34.8/23.2/19.3 33.9/10.6/4.1
GAD 81.8/50.3/34.5 35.1/24.1/20.1 34.4/11.0/4.3
w/o [CLS] 81.5/49.2/33.8 34.6/20.7/17.7 33.7/8.6/3.6
GAD_prev_disc | 80.8/48.2/31.6 34.8/23.6/19.3 33.2/10.1/3.8
GAD _prev_disc+ | 80.9/49.5/32.7 34.7/23.0/19.6 33.3/10.6/4.0

4.4 COMPARISON WITH SOTA.

We benchmark our approach against state-of-the-art methods in Tables [f] and [7] Although not
tailored to any specific task, our approach still achieves state-of-the-art performance. Further gains
can be expected through task-specific adaptations. To ensure a fair comparison, we use the same
visual features as state-of-the-art methods, showing that our gains arise from the architectural design
rather than from incorporating advanced features. For online action detection, we present the first
LLM-based method, significantly improving segment- and point-wise performance. For step/task
recognition and step forecasting, our approach also largely outperforms recent methods. Notably,
our 1B model even surpasses prior 8B models, highlighting the effectiveness of the discriminative
classifier augmented with generative assistance.

4.5 QUALITATIVE RESULTS.

Fig. B] presents qualitative results on the COIN benchmark. The generative classifier (Gen) likely
generates semantically similar but incorrect outputs, while the discriminative classifier (Disc) demon-
strate better discrimination. Our GAD model enhances Disc by generating contextual information
that enables task-aware predictions. In the middle example, Disc outputs a task-irrelevant action,
while GAD accurately identifies the correct action. We also observe some edge cases where the
model predicts correctly despite flawed generations. Commonly, the generation identifies the task but
answers the query incorrectly, or is completely wrong or misformatted. These edges cases highlight
the benefit of performing generation after the learnable token. The learned representation remains
robust to generative errors while still benefiting from generative regularization. More analysis is

provided in Appendix [B.6]and [B.3]
Table 6: Comparison with SOTA on OAD tasks.

Model OAD Benchmark (segment-F1 / point-F1)
THUMOS’14  CrossTask  EPIC-Kitchens-100 Ego4DGoalStep
Testra (Zhao & Krihenbiihl[[2022) | 43.0/32.0 48.4/33.8 16.5/14.7 87/35
MAT (Wang et al.| 2023 49.4/34.2 49.7/34.2 17.5/15.5 9.5/3.8
CMeRT (Pang et al. 5 48.9/34.6 50.1/34.3 17.7/15.8 9.7/3.9
Disc (Llama3.2-1B-Instruct) 57.8/40.1 48.8/34.0 232/19.3 10.6/4.1
GAD (Llama3.2-1B-Instruct) 58.1/40.2 50.3/34.5 24.1/20.1 11.0/4.3
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Table 7: Comparison with SOTA on COIN Benchmark.

COIN Benchmark (Top-1 acc.)
Model Step Next Task
VideoTaskGraph (Ashutosh et al.|[2023 57.2 40.2 90.5
Videollm-online-8B (C 63.1 49.1 92.7
Videollm-MoD-8B 63.4 49.7 92.8
StreamMind-8B (Ding et a ) 63.7 49.9 93.2
Disc (Llama3.2-1B-Instruct) 64.1 50.1 92.8
GAD (Llama3.2-1B-Instruct) 65.3 514 93.5
Disc (Llama3-8B-Instruct) 66.4 51.0 94.3
GAD (Llama3-8B-Instruct) 67.3 51.6 94.5
What is the action in the video? What is the action in the video? What is the action in the video?
" SRS [P
b | | g
Gen put the candle wick into a vessel Gen install the air nozzle Gen put aslice of bread in
Disc  fix the candle wick Disc  pump up the fuel Disc take out the slice of bread
GAD pul/ll\m melted soap block into the vessel GAD insl/zl\l! the new bulb GAD take out the slice of bread

"Put the melted soap block into the vessel. "Install the light shell/housing/support. | [ vy o gritt. Tusk - make sandwich.” ]
Task - make soap.” Task - replace a bulb." [

Figure 5: Qualitative results on the step recognition for Generative (Gen) vs. discriminative (Disc) classifier.
Red text denotes false predictions and green correct predictions. Callouts display GAD generation outputs.

4.6 GENERALIZATION TRADE-OFF

MLLMs are naturally strong in open-world scenarios due to their broad, data-driven pretraining, but
perform poorly in closed-set action understanding (see zero-shot performance in Suppl. C). Our
classification setting involves task-specific fine-tuning, which boosts action-classification performance
but reduces general MLLM capabilities, reflecting task-induced forgetting well-documented in the
literature (Oh et al} 2024} [Han et al, 2024)). We provide extra experiments to evaluate generalization
and show this trade-off in Suppl. D.

In fact, the generative head in our GAD model enables leveraging self-curated instruction-tuning data
to preserve generalization, e.g. augmenting action labels. In addition, since the backbone architecture
remains unchanged, removing the introduced LoRA adapters can fully restore the model’s open-world
performance. We leave a more comprehensive exploration of the trade-off between fine-tuning and
generalization to future work.

5 CONCLUSION

This paper studies fine-tuning multimodal large language models for downstream temporal action
understanding. We identify the fundamental limitations of generative modeling in classification tasks,
showing how semantic label overlap constrains performance, and demonstrate the advantages of a
discriminative formulation. Building on these insights, we introduce a unified generative-assisted
discriminative (GAD) classifier that leverages generative modeling as an auxiliary objective to
enhance discriminative learning. Crucially, our approach preserves full compatibility with pretrained
models, requiring no changes to the pretraining process.

Limitations. While our generative-assisted discriminative classifier performs strongly in closed-set
scenarios, discriminative models are still limited to the closed set and cannot directly handle novel or
unseen actions. Additionally, task-specific fine-tuning can hurt general-purpose abilities like question
answering. Future work could focus on improving generalization to new classes through generative
components, while preserving the strengths of discriminative learning for the closed set.

10
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APPENDIX

THE USE OF LARGE LANGUAGE MODELS

In this paper, Large Language Models (LLMs) were used exclusively for polishing the manuscript,
including improving writing style, enhancing readability, and correcting grammatical errors. LLMs
were not employed for research purposes such as literature retrieval, idea generation, or discovery. All
methodological proposals, experimental designs, analyses, and conclusions were developed without
the involvement of LLMs.

A  FEATURE ANALYSIS OF GENERATIVE VS. DISCRIMINATIVE CLASSIFIER

We examine the feature quality of the generative and discriminative classifiers. For generative
outputs, action labels are tokenized into multiple tokens, and representations are derived using one of
four strategies: mean, max, first, or last token. Full t-SNE visualizations reveal the clear decision
boundaries of the discriminative classifier, further highlighting the comparatively inferior performance
of generative decoding.
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Figure 6: T-SNE plot comparing feature spaces of the generative and discriminative classifier on
CrossTask dataset for actions sharing the verb ‘add’. Generative feature is derived from token
representations using four strategies: mean, max, first, or last token. Discriminative feature is the
representation of the learnable token.

B EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

We conduct evaluations on two benchmarks: OAD, for online action detection, and COIN, for
step/task recognition and step forecasting. The used task-specific queries are summarized in Tab. 8]

For the OAD benchmark, training involves sampling a “current” timestamp ¢, and long- and short-term
memories are constructed by padding or cropping past observations up to ¢. The timestamp is sampled
using a sliding window with a random start and a stride equal to the short-term length, while frames
in short- and long-term are selected at a fixed predefined sample rate. During inference, an online
streaming setup is simulated with a sliding window of stride 1 and fixed start time at O, predicting
one frame at a time. We train for 50 epochs on THUMOS’ 14, CrossTask, and EPIC-Kitchens-100,
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Table 8: Task-specific queries.

Task Query
Online action detection What is the action in the last frame?
Step recognition What is the action in the video?
Step forecasting What is the next action in the video?
Task recognition What is the overall activity in the video?

and 20 epochs on Ego4DGoalStep, where the latter contains fewer distracting background frames,
making it easier to train. As training samples are generated with a stride equal to the short-term
length, only a fraction of frames is used per epoch. For example, 50 epochs on CrossTask with
stride 20 is equivalent to 2.5 full passes over the dataset. Optimization is performed with AdamW
using a learning rate of 0.0001, a warmup ratio of 0.1, and a batch size of 32 across all datasets.
Unless otherwise specified, we employ Llama3.2-1B-Instruct as the language model. Details of the
hyper-parameters for OAD can be found in Tab. [9]

Table 9: Hyperparameters for OAD setting.

Datasets long-term (s)  short-term (s) sample rate  visual feature @FPS
THUMOS’ 14 128 32 1 ResNet50@4
CrossTask 128 20 1 DINOV2@1
EPIC-Kitchens-100 128 20 1 TSN@4
Ego4DGoalStep 128 16 1 DINOV2@1

For the COIN benchmark, we adopt a multi-task learning framework to jointly train step recognition,
next-step forecasting, and task recognition using task-specific queries, with separate MLP heads for
step and task predictions. Training is conducted for 5 epochs using the AdamW optimizer with a
learning rate of 0.0001, a warmup ratio of 0.05, and a batch size of 8.

Metric: For OAD tasks, we report only segment-wise and point-wise F1 scores, omitting frame-
wise performance, since frame-level accuracy may not provide sufficiently informative or reliable
evaluation, as shown inPang et al.|(2025)). For completeness, frame-wise accuracy results are included
in the supplementary material.

B.2 GAD UNIFICATION STRATEGY

The generative and discriminative classifiers can be unified either sequentially or in parallel. We
investigate three unification strategies, illustrated with representative examples.

» Sequential learning with discriminative learning first. The learnable [CLS] token is first pro-
cessed, serving as a conditioning context for the generative output.

<|begin_of text[>
User: What is the action in the last frame?
<v><v><v><v><v><v><v><v><v><v><v><v><v><v><v><v><v><v><v><v><v><v><v><v>[cls]

» Sequential learning with generation first. The learnable [CLS] token is positioned after genera-
tion, enabling the discriminative learning to be conditioned on the generative outputs.

<|begin_of text|>

User: What is the action in the last frame?

Sy>Ly >y >y >y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y ><y >
[els]

* Parallel learning. Discriminative learning and generative decoding are performed concurrently in
two branches, sharing the same text and visual tokens, but without conditioning on one another.

To fairly assess the impact of unification strategies, we align the generative task with discriminative

learning in GAD by generating only the target label, as generating extra previous action could
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<|begin of text[>
User: What is the action in the last frame?
<V><V><V><V><V><V><V><V><V><V><V><V><V><V><V><V><V><V><V><V><V><V><V><V>[Cls]

<|begin_of text[>
User: What is the action in the last frame?
Y>> <Y<y > <Ly > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y > <y >

Table 10: Discriminative and generative performance in the proposed GAD classifier, where genera-
tive modeling is for labeling task same as the discriminative learning.

Model OAD Benchmark. (frame acc./segment F1/point F1)
CrossTask  EPIC-Kitchens-100 Ego4DGoalStep
Gen 81.3/46.8/31.7 32.9/16.7/13.9 32.9/8.9/3.4
Disc 81.7/48.8/34.0 34.8/23.2/19.3 33.9/10.6/4.1
GAD_gen 81.5/46.8/31.8 32.1/16.0/13.2 31.4/7.8/3.0
GAD_emb 81.6/49.1/33.9 34.8/23.6/19.6 34.0/10.8/4.1
GAD_seq-g-gen | 81.2/46.3/31.3 33.3/17.1/14.2 32.5/8.9/3.3
GAD_seq-g_emb | 81.2/46.3/31.3 33.3/17.1/14.2 31.5/8.7/3.4
GAD _parallel_gen | 81.5/46.9/31.8 32.4/16.1/13.4 32.2/8.4/3.1
GAD_parallel_emb | 81.7/49.4/34.1 34.9/23.6/19.6 34.1/10.7/4.1

interfere with current action prediction and bias performance. From the results in Tab. we
observe the conflicts between generation and discriminative learning in sequential learning setting. In
the discriminative learning first strategy (GAD), discriminative predictions are largely unaffected
and can even benefit slightly from semantic regularization through generation, whereas generation
performance suffers when conditioned on the learned token. In contrast, in the generation first
strategy (GAD_seq-g), generation performance remains less affected, but discriminative performance
degrades, sometimes exactly matching the generative one. This happens because conditioning on
generative outputs enables the discriminative classifier to learn a shortcut to aligns its representation
with the generative outputs during training, causing it to effectively replicate the generative output at
inference. Since generative outputs are more prone to confusion due to semantic overlap, which can
in turn degrade discriminative classifier performance. Meanwhile, placing the learnable token at the
end slows inference, as autoregressive generation must be completed first.

In the parallel learning strategy (GAD_parallel), discriminative and generative performance are
less affected by interference. Training them simultaneously is analogous to multi-task learning
with a shared backbone, allowing the model to capture cross-task knowledge while benefiting from
regularization. However, this strategy needs two forward passes for each output, which reduces
training efficiency.

In conclusion, given our focus on discriminative outputs, we stick with the discriminative learning
first strategy, which yields strong representations, exploits generative regularization, and ensures
efficient training and inference.

B.3 ENTROPY-BASED DIVERSITY SCORE FOR MISCLASSIFICATIONS

Since the generative classifier treats action labels as subword tokens, shared subwords across similar
actions can lead to greater confusion. To quantify this effect, we introduce an entropy-based
Diversity Score (DScore) to measure the variability of misclassified predictions. We first compute the
confusion matrix C' € RV*N of a given classifier, where NV denotes the number of classes, with rows
representing ground truth labels and columns representing predictions. Then, we set the diagonal
entries (true positives) of the confusion matrix to zero to focus on misclassifications. For OAD datasts,
we additionally exclude misclassifications assigned to the background class to avoid diluting the
results, as background is semantically unrelated to other classes and overwhelmingly represented
in the datasets. Finally, we normalize each row of the modified confusion matrix C’ to obtain an
error distribution p for each target class, and quantify the diversity of misclassifications for each class
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using the Shannon entropy H. The final DScore is computed as the average entropy over actions,
excluding the background and classes absent at test time.
CZ/ ) N—-1
Pij = =i Hi=—) pijloglpi;+€  Vi,je[0,N—1], 4)
k=0 “Yik k=0
where € is a small constant ensuring valid input to the logarithm.

Table |11] presents diversity scores on the OAD datasets, showing that the generative classifier
produces more diverse misclassifications due to semantic overlap. In contrast, our GAD model can
encode semantics through generation while mitigating the error diversity, leading to more consistent
predictions and thus potentially reducing action over-segmentation.

Table 11: Comparison of misclassification diversity for generative (Gen), discriminative (Disc), and
generation-assisted discriminative (GAD) classifiers.

Model OAD Benchmak. DScore
CrossTask  EPIC-Kitchens-100  Ego4DGoalStep
Gen 0.76 1.3 1.8
Disc 0.66 0.79 1.5
GAD 0.67 0.80 1.49

B.4 ABLATION STUDIES

We conduct ablation studies on key design choices of our proposed GAD, evaluated on OAD tasks
with results reported in Tab[T2]

» The generative output can be any text, but we focus on generating the previous action. Beyond
the flexibility of free-form outputs, we aim to show that the benefits stem from generation
itself rather than the auxiliary task. To this end, we reformulate previous action prediction as a
separate classification task, introducing an additional classifier that uses either the representation
of the existing learnable token (GAD_prev_disc) or a new learnable token appended after it
(GAD_prev_disc+). Results indicate that neither approach improves learning and can even disrupt
current action classification, causing a performance drop. This further highlights the advantage of
using generation to encode semantics as an auxiliary task.

* We use the generative head for previous step generation. Alternatives include generating the
next action or past actions within a fixed short-term window. Results show that these alternatives
still outperform the discriminative baseline by capturing action relationships, but remains less
effective than previous step generation. Next-step generation lacks corresponding visual inputs,
while generating multiple past actions reduces performance due to increased complexity that
diverts focus from discriminative learning.

* For discriminative outputs, we use the representation of the learnable [CLS] token for prediction.
An alternative is to use the last visual token, which also aggregates all preceding visual information.
This design fits the setting of online action detection, which requires recognizing the action in the
last frame. However, results (w/o [CLS]) show that using [CLS] token performs better, likely
due to its stronger generalization ability, while the last visual token tends to overfit the training
data.

» The generative response is designed to include the target label along with the context information
describing the previous action. Therefore, generative and discriminative learning are somehow
aligned toward predicting the same target action. To evaluate the effect of separating the tasks, we
remove the target label from the generative output, leaving only the context generation (GAD_sep).
While GAD _sep still performs well, it underperforms the original version, suggesting that sharing
the same target better aligns the discriminative and generative modules, while also providing
valuable context for the action relationship learning.

B.5 ANALYSIS ON GAD GENERATION OUTPUT

We use generation as an auxiliary task and rely solely on the discriminative output during inference.
Nevertheless, it is important to examine the quality of the generative outputs and their role in
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Table 12: Ablation studies of our GAD classifier on OAD tasks.

Model OAD Benchmark. (frame acc./segment F1/point F1)
CrossTask EPIC-Kitchens-100  Ego4DGoalStep

Disc 81.7/48.8/34.0 34.8/23.2/19.3 33.9/10.6/4.1
GAD 81.8/50.3/34.5 35.1/24.1/20.1 34.4/11.0/4.3
GAD_prev_disc | 80.8/48.2/31.6 34.8/23.6/19.3 33.2/10.1/3.8
GAD _prev_disc+ | 80.9/49.5/32.7 34.7/23.0/19.6 33.3/10.6/4.0
GAD_next 81.6/49.8/34.3 34.6/23.7/19.8 34.1/10.8/4.2
GAD _past 81.7/49.5/34.1 34.7/23.9/19.9 33.9/10.4/4.1
w/o [CLS] 81.5/49.2/33.8 34.6/20.7/17.7 33.7/8.6/3.6
GAD_sep 81.5/50.0/33.9 34.7/24.0/20.1 34.3/10.9/4.3

enhancing the discriminative learning. To this end, we specifically analyze the generation results.
We conduct this analysis on the COIN benchmark, as its accuracy metric provides a clearer basis for
evaluation.

We analyze the correctness of three types of GAD output: the discriminative output (Disc), the
generation output for the target label (Gen), and the generation output for the task label (Gen_extra).
These yield eight possible output combinations for step recognition and forecasting, as illustrated in
Fig.[7 In the case of task recognition, the target label and task label are identical, so Gen_extra is not
applicable, leading to four possible output combinations.

By examining the distribution of output correctness combinations, we make several observations.
First, the three types of outputs are generally consistent, with most cases fully correct. Second, step
generation is more challenging than task, as tasks exhibit clearer separation with lower semantic
overlap. As such, cases where the task generation is incorrect while the step generation is correct are
uncommon. Third, there are instances where both generative outputs are flawed, yet the discriminative
output remains accurate, highlighting the benefit of placing the discriminative learning ahead of
generation to avoid the impact of erroneous generated content. Although the discriminative learning
is not conditioned on generation, it is still influenced by generative outputs, which regularize it
to be generation-aware. Finally, some cases show the generative outputs are accurate while the
discriminative output does not, highlighting complementarity between the two and suggesting
potential gains through ensembling.

Step recognition Step forecasting
Disc:i¥  DisciX o
Geniv  Gen:v ©
Gen_ex:X Gen_ex:v Gen
ol " Disc:v Disc:v' Task recognition
Dis:v Disc:v Gen:v Gen:v 9
GGe J—x GGen.’_I Gen jex:X Gen_ex:v
en_ex: en_ex: Disc: X
Gen:v'
e Disc:X
g':s:; Gen:X
8 Gen_ex:v' e
Gen_ex:v S E=m7
Diecir Discir Disc:X
Disc:v Disc:v o o ‘W
Gen:X Gen: Gen: X Gen: X
en: en: X Gen_ex:X Gen_ex:v
Gen_ex:X Gen_ex:v i X

Disc:v
Gen:X

Figure 7: Quantitative analysis of discriminative ouputs (Disc) and generative outputs (Gen &
Gen_ex). Larger areas indicate higher occurrence. Checks and crosses denote correct and incorrect
outputs, respectively.

B.6 QUALITATIVE RESULTS

We provide additional qualitative results on the OAD task and COIN benchmark in Fig. [§] We
observe that even when the previous step generation is occasionally incorrect, the relationship
between the generated previous step and the current step remains meaningful, e.g. ‘close cupboard’
following ‘open cupboard’. This demonstrates that the model can captures action relationships through
generation. Similarly to the COIN benchmark, we also observe that the generative and discriminative
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Table 13: Comparison with SOTA on OAD tasks.

Model OAD Benchmark. (frame acc./segment F1/point F1)

THUMOS’ 14 CrossTask  EPIC-Kitchens-100 Ego4DGoalStep
Testra (IZhao & Kr%ihenbiihll |2022|) 76.9/43.0/32.0  81.2/48.4/33.8 34.7/16.5/14.7 31.7/8.7/3.5
MAT (Wang et al.l 2023) 78.4/49.4/34.2  81.4/49.7/34.2 35.0/17.5/15.5 32.9/9.5/3.8
CMeRT (Pang et al., 2025 78.2/48.9/34.6  81.3/50.1/34.3 35.2/17.7/15.8 32.8/9.7/3.9
Gen (Llama3.2-1B-Instruct) 78.6/56.9/38.8 81.3/46.8/31.7 32.9/16.7/13.9 32.8/8.9/3.4
Disc (Llama3.2-1B-Instruct) 78.5/57.8/40.1 81.7/48.8/34.0 34.8/23.2/19.3 33.9/10.6/4.1
GAD (Llama3.2-1B-Instruct) 78.8/58.1/40.2 81.8/50.3/34.5 35.1/24.1/20.1 34.4/11.0/4.3

Table 14: Comparison with SOTA on OAD tasks.

Model OAD Benchmark (segment-F1 / point-F1)
CrossTask EPIC-Kitchens-100 Ego4DGoalStep

Gen 46.8/31.7 16.7/13.9 89/34
Testra [1] | 48.4/33.8 16.5/14.7 87/35
MAT [2] 49.7/734.2 17.5/15.5 9.5/3.8
CMeRT [3] | 50.1/34.3 17.7/15.8 9.7/3.9
Disc 48.8/34.0 232/19.3 10.6/4.1
Genrand | 46.9/31.8 16.8/14.0 8.8/3.5
Gen_desync | 48.7/34.1 23.0/19.0 10.4/3.9
Gen_extend | 48.9/33.9 23.3/19.2 10.5/4.0
GAD 50.3/34.5 24.1/20.1 11.0/4.3

outputs are not always consistent, highlighting their complementary nature and motivating further
analysis of their ensemble performance.

B.7 SOTA COMPARISON ON OAD TASKS

We include additional frame-wise accuracy results for a more comprehensive assessment. The results
show significant improvements of our GAD classifer in segment- and point-wise performance while
maintaining competitive frame-level accuracy.

C ZERO-SHOT ACTION UNDERSTANDING

We evaluate two MLLMs zero-shot, Qwen2.5-VL-7B and VideoLLM-online (Chen|
[20244)), on the COIN dataset ( 750 actions). For Videollm-Online model, a procedural video
understanding MLLM, we use it for open-ended generation. For Qwen2.5-VL, action prediction is
treated either as an open-ended generation task, or by providing action labels as candidate options in
the prompt. Post-processing is always applied to match the generation to action categories using the
CLIP text encoder and cosine similarity.

As shown in Table[T5] Qwen2.5 performs best but still significantly trails our fine-tuned method.
These results suggest that action understanding with large, semantically similar actions is challenging,
making fine-tuning essential. In addition, providing action categories in the prompt worsens the
performance, suggesting that including a large candidate set in the prompt can hinder MLLMs’ ability
to correctly interpret instructions.

D GENERALIZATION-PERFORMANCE TRADE-OFF

We prove the necessity of fine-tuning in Sec. C. However, extending fine-tuning boosts performance,
but increases memorization and reduces generalization. To quantify memorization, we define the
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Figure 8: Qualitative results on the OAD and step recognition tasks. Gen - generative classifier,
Disc- discriminative classifier. Text in red denotes false predictions, while in green represents correct

predictions. Callouts display the generation outputs produced by our GAD. Bar charts in the bottom
show predictions for streaming videos.
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Table 15: Zero-shot performance of existing MLLMs on COIN dataset.

Model Step Next

GAD (fine-tuned) 67.3 51.6
Videollm-online-8B (open-ended) 48 35
Qwen2.5-VL-7B (open-ended) 16.1 8.9
Qwen2.5-VL-7B (categories in prompt) | 11.9 6.5

memorization rate as the proportion of generated outputs that match training action categories during
inference. As shown in Table[T6] achieving optimal performance on COIN task recognition (Tang]
[2019) requires 4 epochs of fine-tuning, yet the memorization rate evaluated on the unseen
Breakfast dataset (Kuehne et al.| 2014) exceeds 98% after just one epoch, and the zero-shot perfor-
mance on unseen dataset Breakfast decreases over the course of training. This shows the inherent
trade-off between optimal performance and generalization ability.

In fact, the generative head in our GAD model enables leveraging self-curated instruction-tuning data
to preserve generalization—for example, by augmenting action labels. However, this comes at the
cost of some closed-set performance. We leave a more thorough exploration of these generalization
capabilities to future work.

Table 16: Performance-generalization trade-off on our generative baseline.

Epoch 0 Epoch1 Epoch2 Epoch3 Epoch4 EpochS5
Memorization_ratio (on Breakfast) 0.0 98.1 99.6 99.8 99.9 99.9
Accuracy on COIN (test set) 8.3 77.0 85.3 91.3 92.8 92.7
Accuracy on Breakfast (unseen) 6.3 4.5 3.5 3.6 3.6 3.6

E ERROR ANALYSIS: GENERATIVE VS. DISCRIMINATIVE

We provide extra analysis why the generative baseline produce more diverse misclassifications than
the discriminative one. In Figure 0} we compare the confusion matrix comparison on CrossTask
for actions shared verb "add’. The generative baseline exhibits greater difficulty handling semantic
overlap among these actions.

Figure 9: Confusion matrix comparison on CrossTask for actions shared verb ’add’. Generative
classifier incurs more diverse misclassifications.
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