

000 001 002 003 004 005 006 007 008 009 010 ON DISCRIMINATIVE VS. GENERATIVE CLASSIFIERS: RETHINKING MLLMS FOR ACTION UNDERSTANDING

005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal Large Language Models (MLLMs) have advanced open-world action understanding and can be adapted as generative classifiers for closed-set settings by autoregressively generating action labels as text. However, this approach is inefficient, and shared subwords across action labels introduce semantic overlap, leading to ambiguity in generation. In contrast, discriminative classifiers learn task-specific representations with clear decision boundaries, enabling efficient one-step classification without autoregressive decoding. We first compare generative and discriminative classifiers with MLLMs for closed-set action understanding, revealing the superior accuracy and efficiency of the latter. To bridge the performance gap, we design strategies that elevate generative classifiers toward performance comparable with discriminative ones. Furthermore, we show that generative modeling can complement discriminative classifiers, leading to better performance while preserving efficiency. To this end, we propose **Generation-Assisted Discriminative** (GAD) classifier for closed-set action understanding. GAD operates only during fine-tuning, preserving full compatibility with MLLM pretraining. Extensive experiments on temporal action understanding benchmarks demonstrate that GAD improves both accuracy and efficiency over generative methods, achieving state-of-the-art results on four tasks across five datasets, including an average 2.5% accuracy gain and 3 \times faster inference on our largest COIN benchmark.

1 INTRODUCTION

Video understanding has traditionally focused on closed-set recognition and detection (Kay et al., 2017; Damen et al., 2022). Recent advances in Multimodal Large Language Models (MLLMs) (Li et al., 2023; Maaz et al., 2023; Wang et al., 2024) have expanded the scope to open-world settings, enabling free-form language output via autoregressive (AR) token generation. This language-centric design enables MLLMs to solve diverse video tasks through text output, providing a general and task-agnostic framework. This motivates examining their utility for conventional classification, where textual outputs can enrich semantics while avoiding task-specific architectures.

To extend MLLMs to classification tasks in video understanding, prior works (Hu et al., 2023; He et al., 2024; Chen et al., 2024a; Wu et al., 2024; Chatterjee et al., 2025) cast these tasks as generative problems, employing MLLMs as *Generative Classifiers* (Jaini et al., 2023). In this formulation, models are prompted with queries such as “What is the action in the video?” and fine-tuned to autoregressively generate concise action labels (e.g., “add onion”) as free-form text. Yet the generative objective of MLLMs is not inherently tailored for classification, and the effectiveness of this reframing remains underexplored. In contrast, *Discriminative Classifiers* Ng & Jordan (2001) align more naturally with classification, learning task-specific representations and predicting actions directly, thus avoiding the additional step required to map free-form text back to predefined classes (Chen et al., 2024a). Exploring discriminative learning with MLLMs for video understanding therefore remains a promising yet under-investigated direction.

In this paper, we demonstrate the advantages of discriminative classifiers over generative ones for temporal action understanding. We adapt pre-trained MLLMs into discriminative classifiers by appending a learnable token to the visual input, enabling the model to encode a global representation for classification. Our discriminative approach surpasses generative classifiers (Lin & Shou, 2025; Chen et al., 2024a) in both accuracy and efficiency. By directly optimizing decision boundaries (Fig. 1), the discriminative formulation reduces action confusion, leading to consistent performance

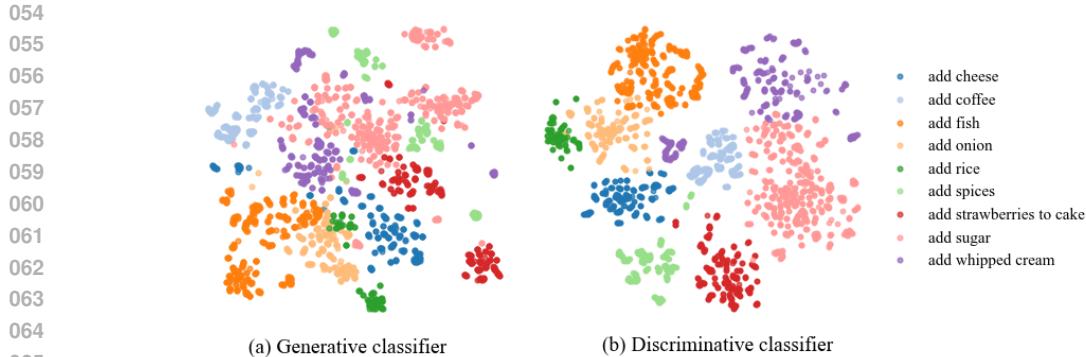


Figure 1: T-SNE plot comparing feature spaces of generative and discriminative classifiers on CrossTask dataset for actions sharing the verb ‘add’. Generative feature - mean of output token features; Discriminative feature - the learnable token feature.

gains. Furthermore, it predicts an action (*e.g.* “add strawberries to cake”) in a single forward pass, compared to the multiple passes required by generative classifiers to autoregressively output tokens (*e.g.* {‘add’, ‘strawberries’, ‘to’, ‘cake’}).

The superior performance of the discriminative classifier motivates an investigation into why it outperforms the generative one. Generative classifiers are more prone to confuse semantically similar actions, such as “add onion” and “add rice”. This stems from the fact that action labels are intentionally annotated to be concise and high-level rather than descriptive (Zhou et al., 2024; Kay et al., 2017), which produces substantial semantic overlap across classes, *e.g.* the frequent use of verbs like “add” and “put”. As a result, beyond the inherent visual ambiguities in video input, semantic overlap in the output space poses an additional challenge for generative classifiers. In contrast, the discriminative formulation ignores label semantics (Ye & Guo, 2017), eliminating semantic overlap and achieving clearer separation between actions. We further show that the generative and discriminative classifiers can become functionally equivalent when the action labels are introduced into the tokenizer’s vocabulary as singular tokens, and decoded in one autoregressive step. Adding single tokens prevent action labels being tokenized into subwords shared across actions, thus removing semantic overlap. This finding highlights the potential of extending MLLMs as generative classifiers to learn task-specific representations for discriminative learning.

However, the task-specific discriminative classifiers lose the semantic richness conveyed by generated text. This motivates us to incorporate generative modeling to complement and thus enhance discriminative learning. To this end, we propose a **Generation-Assisted Discriminative** (GAD) classifier for temporal action understanding, which integrates discriminative objectives with auxiliary generative objectives within a single end-to-end framework. This design maintains the strengths and efficiency of discriminative learning while incorporating additional semantics and contextual information through generative modeling, enabling context-aware and semantically enriched representations.

We investigate a broad spectrum of temporal action understanding tasks, spanning basic step and task recognition and step forecasting (Tang et al., 2019) to the more challenging setting of online action detection (Zhukov et al., 2019; Damen et al., 2022; Song et al., 2023). Our experiments demonstrate that the discriminative classifier achieves higher accuracy and lower inference latency than the generative one. Within the proposed GAD framework, generative modeling further strengthens classification by regularizing training with semantic encoding and contextual enrichment, while inference relies solely on classification, preserving the efficiency of discriminative learning. Notably GAD achieves state-of-the-art across on four tasks across five datasets, including an average 6.8% F1 gain and 1.8x speedup on EPIC-Kitchens-100, 1.5% F1 gain and 3x speedup on Ego4D GoalStep, and 2.5% Top-1 accuracy gain with 3x speedup on COIN.

Overall, our contributions are summarized as:

- We demonstrate that generative classifiers underperform discriminative ones on classification tasks, primarily due to semantic overlap in the generative (textual) output space.
- We align generative and discriminative classifiers by interpreting classification as a single-step generation process, where predefined action labels are introduced as new tokens.
- We propose a generation-assisted discriminative (GAD) framework, showing that auxiliary generative objectives enrich discriminative learning and improve temporal action understanding.

108

2 RELATED WORKS

109
110 **Temporal action understanding** involves recognition tasks such as temporal action detection and
111 segmentation (Zhao et al., 2017; Ding et al., 2023), step recognition and forecasting (Tang et al.,
112 2019), and video recognition (Zhang et al., 2021). Classical approaches model temporal dynamics
113 using temporal convolutional networks (Farha & Gall, 2019), recurrent neural networks (Xu et al.,
114 2019), or transformers (Liu et al., 2022). Recently, MLLMs have shown strong performance by
115 formulating recognition as an autoregressive token generation task, where labels are expressed as
116 free-form text and decomposed into tokens (Hu et al., 2023; He et al., 2024). Chen et al. (2024a); Wu
117 et al. (2024); Chatterjee et al. (2025) extended MLLMs to real-time interaction, temporal summariza-
118 tion, and forecasting, while Ye et al. (2025) applied a QA-style generation approach for video action
119 recognition. However, autoregressive token generation is inefficient, and its effectiveness for recogni-
120 tion tasks remains underexplored. Our work demonstrates that generative learning underperforms its
121 discriminative counterparts due to the added semantic complexity in text output.

122 **Customized tokenization** may use task-specific or optimized strategies (Liu et al., 2024; Zhang
123 et al., 2025) to reduce token length for faster decoding and improved semantic representation. Using
124 Ego4D videos (Grauman et al., 2022), Lin & Shou (2025) constructed a hierarchical vocabulary
125 of video narrations to enable faster inference. In image retrieval, Caron et al. (2024); Zhang et al.
126 (2024) designed language-based discriminative entity codes, converting images into compact and
127 semantically rich tokens serving as identifiers for efficient and accurate retrieval. **For multiple-choice
128 question answering, mapping each answer option to a single symbol effectively tokenizes answers into
129 one token, enabling faster inference (Joshua Robinson, 2023; Ranasinghe et al., 2024).** However, in
130 action understanding, fine-grained actions that share verbs and objects make distinctive tokenization
131 difficult, and preserving full semantics is harmful. Similar observations have been made in closed-set
132 image classification (Cooper et al., 2025; Conti et al., 2025), where distinguishing fine-grained
133 categories remains challenging for LLMs. Specialized prompting has been proposed to improve
134 differentiation, but the approach remains generative. In contrast, we adopt a classification-style
135 approach, equivalent to encoding each action as a unique, unstructured atomic code.

136 **Unified retrieval and generation** within a single model represents a key step toward building general-
137 purpose multi-task systems. Earlier vision-language foundation models, (Yu et al., 2022; Li et al.,
138 2022; Chen et al., 2024b), constructed hybrid frameworks that combine a vision-text encoder and a
139 text decoder, pretrained jointly with contrastive and language modeling objectives. Large language
140 models (LLMs) (Koh et al., 2023; Ma et al., 2024) have also shown potential as unified backbones
141 when trained jointly with both losses, which can be further enhanced with task-specific instruction
142 tuning (Muennighoff et al., 2024). Our work investigates MLLMs for classification tasks, aligning
143 discriminative and generative learning within the same task, in contrast to existing approaches that
144 address them separately for different tasks.

145

3 METHOD

146 We present the Generation-Assisted Discriminative (GAD) classifier, which leverages pre-trained
147 LLMs for fine-tuning on downstream temporal action understanding tasks. **Our focus is on the
148 fine-tuning stage because general MLLMs typically struggle with task-specific requirements and
149 must be further adapted for optimal performance.¹** We first formalize the problem of temporal action
150 understanding, then introduce and analyze the generative classifier baseline and its challenges, before
151 motivating our proposed solutions.

152

3.1 PRELIMINARIES

153 We focus on fine-tuning pre-trained LLMs for temporal action understanding in a closed-set classifi-
154 cation setting. Given a video sequence \mathcal{V} , which may be a short clip or an entire video sampled at a
155 predefined rate, and a task query \mathcal{Q} , the objective is to predict a label y from a predefined category
156 set Y . This problem formulation is general, accommodating a wide range of recognition scenarios.

157 **Action labels.** Temporal action understanding tasks typically involve actions that unfold over time and
158 exhibit temporal correlations. These actions are generally expressed as concise and simplified verb-
159 noun phrases (*e.g.* “add sugar”), and sometimes enriched with additional contextual elements (*e.g.*

160 ¹Qwen2.5-VL-7B only achieves 16.1% and 8.9% zero-shot accuracy on COIN step and next-action prediction,
161 respectively, compared to 67.3 % and 51.6% after fine-tuning. Find more results in Supplementary C.

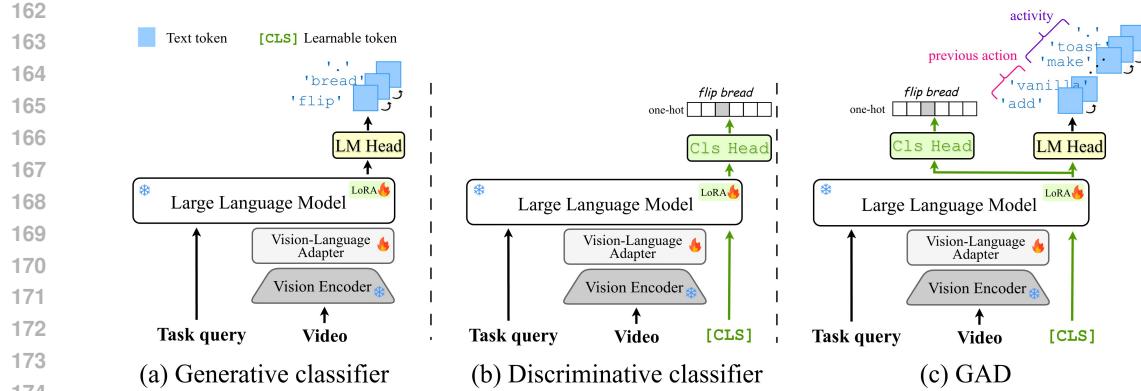


Figure 2: Comparison between different architectures for downstream video-related recognition tasks: (1) Generative classifier: treating action labels as free text. (2) Discriminative classifier: learning an extra representation for downstream tasks. (3) Generation-assisted discriminative (GAD) classifier: learning an extra representation that is regularized through task-related generation.

“add strawberries to cake”), to capture both the action and objects involved. The action vocabulary is typically closed, consisting of recurring motions (“add”, “screw”) applied to a shared set of objects, which naturally leads to semantic overlap across labels.

3.2 ARCHITECTURE

We adopt a LLaVA-style (Liu et al., 2023) architecture as the backbone, comprising a visual encoder E_v , a language decoder D_t , and a vision-language adaptor A_{vt} . Video frames \mathcal{V} are first encoded by the vision encoder E_v , then mapped to text-aligned tokens via the vision-language adaptor A_{vt} , yielding visual tokens $\mathcal{F}_v = A_{vt}(E_v(\mathcal{V}))$. Meanwhile, the task query Q is tokenized into text tokens \mathcal{F}_t , enabling joint processing with the visual tokens by the language decoder. During fine-tuning, only the vision–language adaptor and the language decoder are trained using LoRA, while all other components remain frozen.

Generative Classifier Baseline. In a generative classifier, text and visual tokens are concatenated and fed into the causal language decoder to autoregressively generate subword tokens using a language modeling head. During training, the generative classifier is provided with a target action label y , which is tokenized by the language model’s tokenizer into a sequence of subwords $\{u_0, u_1, \dots, u_{n-1}\}$. Here, n represents the total number of subword tokens representing y , and these subwords are drawn from the tokenizer’s vocabulary. For example, the action label “take pancake from pan” is tokenized as $\{‘take’, ‘panc’, ‘ake’, ‘from’, ‘pan’\}$ by the Llama-3 tokenizer (Grattafiori et al., 2024). The model is trained to maximize the conditional probability of each target subword u_i over the vocabulary, conditioned on the visual and textual inputs and previously generated subwords $u_{<i}$. The training is done using the standard language modeling loss \mathcal{L}_{gen} , *i.e.* the negative log-likelihood, applied to each subword token.

$$u_i = g_\omega(Q, \mathcal{V}, u_{<i}) = D_t(\mathcal{F}_t \oplus \mathcal{F}_v \oplus u_{<i}), \quad \mathcal{L}_{gen} = - \sum_i \log P_r(u_i | Q, \mathcal{V}, u_{<i}, \omega) \quad (1)$$

where g_ω is the generative classifier parameterized by ω , \oplus denotes concatenation. When applying the generative classifier for closed-set classification, the decoder is finetuned to generate subword tokens from a fixed vocabulary subset that covers the subwords required to represent all action labels.

Discriminative Classifier. Here, we extend the generative model to a discriminative model for downstream classification tasks. Instead of directly classifying video features using specialized models, we repurpose the existing MLLM as a task-agnostic classifier, eliminating the need for task-specific architectures. A learnable [CLS] token (Ye et al., 2025; Lin & Shou, 2025) is appended to the end of the language model input sequence, attending to all preceding tokens and generating representations that integrates both the video input and the task query. We find that using a learnable token enhances generalization, whereas relying on visual tokens directly can lead to overfitting (see Appendix B.4). The resulting output representation o is fed to customized classification heads for the downstream classification tasks by optimizing the traditional cross-entropy loss. Note that the

216 language modeling head is disabled in this case, since generating subwords is unnecessary.
 217

$$218 \quad o = f_\phi(Q, \mathcal{V}, [\text{CLS}]) = D_t(\mathcal{F}_t \oplus \mathcal{F}_v \oplus [\text{CLS}]), \quad \mathcal{L}_{\text{cls}} = -\log P_r(y | o, \phi'), \quad (2)$$

219 where f_ϕ denotes the discriminative classifier parameterized by ϕ , and ϕ' represents the parameters
 220 of the classification head.

221 This discriminative formulation supports faster inference in low-latency scenarios. It also prevents
 222 action labels from being tokenized into subwords, avoiding semantic overlap from shared subwords
 223 across labels. In Sec. 4, we show that such overlap causes discriminative and generative classifiers
 224 to behave differently, with the generative one more prone to confusing verbally similar actions.
 225 Removing this overlap through specific designs, such as isolated tokenization, reduce these confusions
 226 among similar actions. In fact, when action labels are excluded from the text query and only used
 227 as output target, the discriminative classifier becomes a special case of a generative classifier by 1)
 228 adding action labels as new vocabulary entries. 2) merging the classification head into the language
 229 modeling head. Since these added entries are not used as input, their embeddings can be initialized
 230 randomly without affecting performance, and classification is equivalent to generating the entire
 231 action label in one single step. This equivalence demonstrates the potential of extending existing
 232 MLLMs to learn task-specific representations for discriminative learning.
 233

234 **Generation-Assisted Discriminative Classifier.** Generative modeling still remains valuable by
 235 providing deeper semantic cues through text generation, effectively encoding label semantics and
 236 context. To combine these benefits with the discriminative classifier, we propose the Generation-
 237 Assisted Discriminative (GAD) classifier, a unified framework that augments the the discriminative
 238 model by adding the language modeling head, to produce auxiliary generative outputs.

239 We investigate three strategies for unification: (1) sequential learning with discriminative learning
 240 first, followed by generation conditioned on the learned representation. (2) sequential learning with
 241 generation first, followed by representation learning conditioned on the generated output. (3) parallel
 242 learning, where both are learned simultaneously using shared text and visual input. We focus on
 243 the first strategy here as it proves most effective, leaving details of other strategies to Appendix B.2.
 244 Specifically, for (1), discriminative learning follows the standard discriminative classifier setup, after
 245 which generative modeling is applied conditioned on the video \mathcal{V} , the task query Q , and the learnable
 246 token $[\text{CLS}]$. The generation loss in Eq. 1 is then adapted as
 247

$$248 \quad \mathcal{L}'_{\text{gen}} = -\sum_i \log P_r(u_i | u_{<i}, Q, \mathcal{V}, [\text{CLS}], \theta), \quad (3)$$

249 where θ denotes the learnable parameters in this model, and u_i represents the i^{th} tokenized subword
 250 corresponding to the generation target. The overall training loss combines the adapted generation loss
 251 and the classification loss from Eq. 2, weighted by a balance factor λ , as $\mathcal{L}_{\text{GAD}} = \mathcal{L}_{\text{cls}} + \lambda \mathcal{L}'_{\text{gen}}$.
 252

253 We use generative modeling as an auxiliary task to regularize the representation learning in the
 254 discriminative classifier. For instance, it can implicitly capture intentions or reason about past
 255 and future steps, thereby supporting recognition of the current action in goal-oriented procedural
 256 videos. While this formulation could also treat discriminative and generative learning as separate,
 257 independent tasks, prior work shows that simply unifying their objectives in a single model offers
 258 limited benefit (Ma et al., 2024; Muennighoff et al., 2024). In contrast, our auxiliary-task setting
 259 leverages generative modeling specifically to enhance discriminative learning.

260 3.3 MODEL TRAINING & INFERENCE

261 During training, we leverage pre-trained vision encoders and LLMs and perform instruction tuning
 262 with task-specific queries. The vision encoder is frozen; the vision-language adapter is fine-tuned,
 263 and the LLM is updated via LoRA (Hu et al., 2022). We optimize both discriminative and generative
 264 objectives across all training instances, with the latter serving as auxiliary supervision to enrich
 265 representation learning. At inference, we disable the generative branch and use only the discriminative
 266 classifier to produce final predictions.

267 4 EXPERIMENTS

268 Our experiments aim to answer the following research questions for discriminative and generative
 269 classifiers: (1) How do they compare in performance? (2) What factors influence their performance?
 270 (3) When and how can a generative classifier enhance a discriminative one?

270 Table 1: Generative (Gen) vs. discriminative (Disc) classifier on OAD tasks. The runtime analysis is
 271 performed on a single NVIDIA RTX A5000 GPU.

272 273 LLM	274 275 Model	276 277 THUMOS'14		278 279 CrossTask		280 281 EPIC-Kitchens-100		282 283 Ego4DGoalStep	
		S-F1 / P-F1	FPS	S-F1 / P-F1	FPS	S-F1 / P-F1	FPS	S-F1 / P-F1	FPS
Llama3.2- 1B-Instruct	Gen	56.9 / 38.8	38.3	46.8 / 31.7	44.0	16.7 / 13.9	28.8	8.9 / 3.4	17.8
Qwen2.5- 0.5B-Instruct	Disc	57.8 / 40.1	58.0	48.8 / 34.0	59.4	23.2 / 19.3	51.1	10.6 / 4.1	53.6
	Gen	55.8 / 38.9	30.2	44.0 / 28.6	36.3	16.2 / 13.4	26.6	8.8 / 3.2	12.3
	Disc	57.3 / 39.6	48.8	45.3 / 29.6	52.8	22.0 / 18.3	48.6	9.9 / 3.4	52.1

284 4.1 DATASETS, EVALUATION, AND IMPLEMENTATION DETAILS

285 **Datasets & Tasks:** We evaluate on four temporal action understanding tasks, including step recognition,
 286 step forecasting, task (activity) recognition, and the more challenging setting of online action
 287 detection across five datasets. **Step recognition** identifies the occurred action in a given video clip,
 288 while **Step forecasting** anticipates the upcoming action in the clip. The COIN dataset (Tang et al.,
 289 2019) is adopted for these tasks, as it contains fine-grained, goal-oriented action steps. **Task Recog-
 290 nition** aims to detect the overall activity category of a given video with multiple steps. COIN also
 291 supports this task, providing high-level labels that reflect the hierarchical structure of such activities.
 292 **Online Action Detection (OAD)** focuses on recognizing actions in a streaming video using only
 293 past observations. Widely used OAD datasets, including THUMOS'14 (Idrees et al., 2017), EPIC-
 294 Kitchens-100 (Damen et al., 2022), and CrossTask (Zhukov et al., 2019), cover both sport videos with
 295 loosely related actions as well as procedural videos with more correlated and fine-grained actions.
 296 We also include Ego4D GoalStep (Song et al., 2023), which features more descriptive labels than
 297 the concise ones in the other datasets, allowing us to assess the impact of label complexity on model
 298 performance.

299 **Evaluation.** To evaluate OAD tasks, following current SoTA (Pang et al., 2025), we use segment-wise
 300 F1 score with an IoU threshold of 0.1 (S-F1) and point-wise F1 score for action start detection with a
 301 1s threshold (P-F1). For step recognition/forecasting and task recognition, we report top-1 accuracy
 302 following existing literature (Chen et al., 2024a; Wu et al., 2024).

303 **Implementation.** We use Llama3 (Dubey et al., 2024) variants as the primary language decoder with
 304 a 2-layer MLP adapter, and additionally evaluate Qwen2.5 (Qwen et al., 2025) variants. Task-specific
 305 visual encoders are employed following prior works (Wang et al., 2023; Pang et al., 2025; Chen et al.,
 306 2024a; Wu et al., 2024). For OAD tasks, we use RGB features at 1 or 4 FPS, with 1 global token per
 307 frame. Since OAD requires untrimmed videos, video frames are sampled backwards from the current
 308 timestamp within a fixed window to capture both short- and longer-term context (Xu et al., 2021). For
 309 step or task recognition, we follow Chen et al. (2024a) and use SigLIP-ViT-L-384 (Zhai et al., 2023)
 310 with 2 FPS sampled videos, producing 10 tokens per frame (1 global and 9 patch tokens). Trimmed
 311 or full videos are used directly, with downsampling applied only when the sequence exceeds the
 312 predefined maximum length. The LLMs are finetuned using LoRA with $r = 128$ and $\alpha = 256$. The
 313 balance factor is set to $\lambda = 1$ by default. **In line with Chen et al. (2024a), we post-process generative
 314 outputs by using Levenshtein edit distance to match the generated text to the closed-set action labels.**
 315 Additional details are provided in Appendix B.1.

316 4.2 MAIN RESULTS

317 Experiments are designed to systematically investigate the raised research questions.

318 **Generative versus Discriminative Classifier.** Tables 1 and 2 compares the performance of generative
 319 and discriminative classifiers. The discriminative classifier (Disc) consistently outperforms the
 320 generative one (Gen) across datasets and LLM variants. It achieves notable improvements for OAD
 321 tasks, especially on EPIC-Kitchens-100, where the large number of fine-grained actions (around
 322 3,600) increases semantic overlap, yielding gains of 6%, and 5% in segment-, and point-wise metrics.
 323 The discriminative classifier also surpasses the generative classifier by an average 6%, 3.5%, and 3%
 324 on step recognition, forecasting, and task recognition. Remarkably, the 1B-version discriminative
 325 model even outperforms the 8B-version generative model.

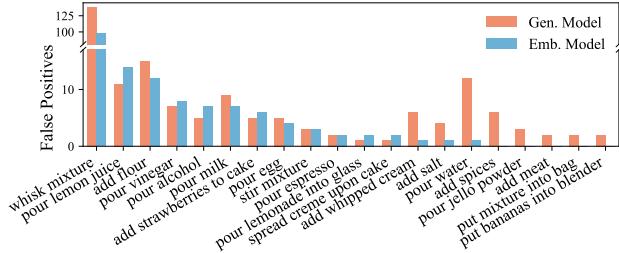
326 We attribute these performance improvements to the discriminative classifier's ability to disregard
 327 output semantics. **For example, on CrossTask, Fig. 3 shows that, due to the shared verb 'add', the
 328 generative classifier produces more false positives (after mapping the generative output to action**

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 2: Generative (Gen) vs. discriminative (Disc) classifier on COIN for step/task and next step prediction.

LLM	Model	COIN Benchmark		
		Step	Next	Task
Llama3.2-1B-Instruct	Gen	57.5	45.8	90.9
Llama3.2-1B-Instruct	Disc	64.1	50.1	92.8
Llama3.8B-Instruct	Gen	61.3	48.3	92.3
Llama3.8B-Instruct	Disc	66.4	51.0	94.3

Figure 3: False positives for “add sugar”. Generative classifier incurs more diverse misclassifications.



categories), such as labeling “add sugar” as “add meat” or “add spices”. These diverse errors are not observed in the discriminative classifier’s predictions.(See Suppl. E for more analysis.) Following Sikar et al. (2024), we further introduce an entropy-based diversity score to measure the spread of misclassification, with higher values indicating more diverse errors. The generative classifier scores 0.76, 1.3 and 1.8 on CrossTask, EPIC-Kitchens-100 and Ego4DGoalStep, respectively, compared to 0.66, 0.79 and 1.5 for the discriminative classifier, reflecting the diverse false predictions caused by the introduced semantics, see Appendix B.3.

Discriminative classifiers also offer faster inference compared to generative ones, as it predicts outputs in a single step rather than generating tokens autoregressively. As shown in Tab. 1, the discriminative classifier achieves speedups proportional to the token count in action labels. On Ego4DGoalStep, the discriminative classifier is nearly 4x faster than generative, where the average action label length is 5.5 tokens, compared to 2.1 in THUMOS, 2.6 in CrossTask, and 2.4 in EK100, using the LLaMA3 tokenizer. Although the reported FPS excludes vision encoder computation by using pre-extracted features, the encoder itself runs at a comparable frame rate (Pang et al., 2025), making this speedup a meaningful improvement for real-time applications. **Similarly, the discriminative classifier accelerates training by avoiding forward and backward passes through many tokens, achieving approximately 1.8x faster training on OAD tasks.**

Bridging the Performance Gap. The observed performance gap between the discriminative and generative classifier motivates us to investigate its underlying cause. We observed that this gap should stem from the shared semantics in the generative output space. To verify this, we design three experimental settings in Fig. 4 that progressively disrupt these semantics, aiming to bridge the performance gap between the generative and discriminative classifier.

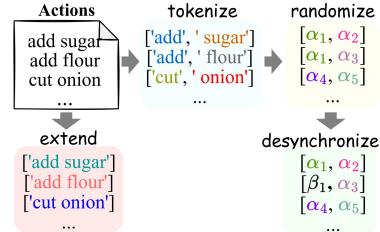
- **Randomized Consistent Mapping.** Action labels are split into subwords by the tokenizer. Each subword is replaced with a random token, but identical subwords are mapped to the same token across all labels.
- **Desynchronized Independent Mapping:** Each subword is replaced independently with a random token, so the same subword will map to different tokens in different labels.
- **Extended Vocabulary:** Add new action labels to the tokenizer vocabulary and initialize their embeddings by randomly selecting from the original vocabulary. Each action is thus represented by a single newly added token.

The corresponding results of these settings are presented in Tab. 3, highlighting several key observations. First, randomizing tokens removes subword semantics and its relationships with neighbors, yet results remain unchanged, indicating that subword semantics and local word connections are not so critical. This is expected, as fine-tuning on predefined action labels encourages memorization. Additionally, action labels are concise and expressed in a simplified style rather than natural language, making word transitions poorly captured and less important. By further desynchronizing tokens to eliminate overlap among action labels, shared semantics are removed, leading to significant performance gains that approach the discriminative classifier. This result supports our hypothesis that the shared semantics in the generative output space are the key cause of the performance gap. Similarly, extending the tokenizer with action labels ensures non-overlapping tokens and achieves comparable performance. Unlike desynchronized mapping, each action is represented by a single token, allowing prediction in a single pass without token-by-token generation. This could help explain the discriminative classifier as a single-step generation process and align discriminative and generative approaches.

378
379
380
381 Table 3: Bridging generative and discriminative classifiers
382 using different tokenization with Llama3.2-1B-Instruct.

Model	OOD Benchmark (segment-F1 / point-F1)		
	CrossTask	EPIC-Kitchens-100	Ego4DGoalStep
Gen	46.8 / 31.7	16.7 / 13.9	8.9 / 3.4
Gen_rand	46.9 / 31.8	16.8 / 14.0	8.8 / 3.5
Gen_desync	48.7 / 34.1	23.0 / 19.0	10.4 / 3.9
Gen_extend	48.9 / 33.9	23.3 / 19.2	10.5 / 4.0
Disc	48.8 / 34.0	23.2 / 19.3	10.6 / 4.1

387
388
389
390 Figure 4: Tokenization strategies.
391 α and β denote random tokens.
392
393



394
395
396
397
398 **Generation-Assisted Discriminative Classifier.** While the discriminative classifier are more
399 effective in classification settings, the generative modeling enables free-form generation, producing
400 flexible outputs to support representation learning for classification. We investigate several scenarios
401 to explore how generative capabilities can enhance classification performance using the proposed
402 Generation-Assisted Discriminative Classifier.

- 403
- 404 • **Labeling.** The generative head produces the target action label as text, performing the same task
405 as the discriminative classifier. It is expected to function as a regularizer, incorporating the label
406 lexical semantics that the discriminative classifier alone does not capture.
 - 407 • **Context generation.** The generative classifier generates additional outputs beyond the target labels,
408 such as related past or future actions or the overall video goal. This process is expected to enhance
409 representation learning by providing contextual and temporal cues.

410 To incorporate label semantics, we test two training strategies for labeling: two-stage and joint training.
411 In two-stage training, the model is first trained using only the generative objective. All parameters
412 are then frozen to preserve the learned semantics, except the [CLS] token and classification head,
413 which are trained in the subsequent stage. As shown in Tab. 4, the two-stage training results in
414 significantly lower performance, suggesting that the generative classifier alone does not provide
415 strong representations. On the other hand, joint training enables representation learning alongside
416 generative responses, but with only slightly performance improvement, further suggesting that lexical
417 semantics have limited impact in a closed-vocabulary setting.

418
419
420
421
422
423
424
425
426
427
428
429 Table 4: Comparison with GAD variants with Llama3.2-1B-Instruct.

Model	OOD Benchmark (segment-F1 / point-F1)			COIN (Top-1 acc.)		
	CrossTask	EPIC-Kitchens-100	Ego4DGoalStep	Step	Next	Task
Disc	48.8 / 34.0	23.2 / 19.3	10.6 / 4.1	64.1	50.1	92.8
GAD (label_2stage)	41.8 / 26.7	9.3 / 6.7	5.9 / 1.7	35.9	28.0	85.5
GAD (label_joint)	49.1 / 33.9	23.6 / 19.6	10.8 / 4.1	64.4	50.4	93.2
GAD (context)	50.3 / 34.5	24.1 / 20.1	11.0 / 4.3	65.3	51.4	93.5

430 For context generation, the generation outputs the target label along with auxiliary information. In
431 OAD, where only action labels are available, we explore action relationships as a form of context,
432 specifically by generating the previous action as the auxiliary output to support current predictions.
433 This proves more effective than generating future actions, as the previous action is further supported
434 by visual information from the input video, which contains only past observations in the online setting.
435 More ablations can be found in Appendix B.4. In COIN, where task information is available, we
436 explore the role of task information as auxiliary outputs. Here, no extra information is used, since task
437 label are already included during training, where task recognition and step recognition/forecasting
438 are jointly learned within a single model. Results in Tab. 4 show that both the task and previous
439 action information help, with the task cues having a stronger impact. Using the previous action as
440 auxiliary output brings more benefit to CrossTask, where actions are closely aligned with a single
441 goal, unlike other datasets where actions follow multiple, loosely related tasks. These results suggest
442 that the generative modeling would be more helpful when it generates information complementary to
443 the discriminative classifier.

444 For efficiency, while incorporating generative objectives slows down training similarly to the gen-
445 erative classifier, inference speed matches that of the discriminative classifier by removing token
446 generation, ensuring efficient inference.

432 **4.3 ABLATION STUDIES**
433434 We conduct ablation studies on key design choices of our proposed GAD, evaluated on OAD tasks
435 with results reported in Tab.5. More ablations are included in Suppl. B.4.

- 436
- 437 • The learnable token. We adopt a learnable [CLS] token for discriminative prediction. An
438 alternative is the last visual token, which also aggregates all preceding visual and text information.
439 Results (w/o [CLS]) show that using [CLS] token performs better, likely due to its stronger
440 generalization ability, while the last visual token tends to overfit the training data.
 - 441 • Auxiliary task. To confirm the benefits of capturing semantics via generation, we convert
442 previous-action prediction into a standalone classification objective, adding an extra classifier
443 that uses either the existing learnable token (GAD_prev_disc) or an additional learnable token
444 (GAD_prev_disc+). Results indicate that neither variant improves learning, and both can harm
445 current-action accuracy, indicating that the advantage arises from generative semantic encoding
446 rather than the auxiliary classification task itself.

447 Table 5: Ablation studies of our GAD classifier on OAD tasks.

448

Model	OAD Benchmark. (frame acc./segment F1/point F1)		
	CrossTask	EPIC-Kitchens-100	Ego4DGoalStep
Disc	81.7/48.8/34.0	34.8/23.2/19.3	33.9/10.6/4.1
GAD	81.8/50.3/34.5	35.1/24.1/20.1	34.4/11.0/4.3
w/o [CLS]	81.5/49.2/33.8	34.6/20.7/17.7	33.7/8.6/3.6
GAD_prev_disc	80.8/48.2/31.6	34.8/23.6/19.3	33.2/10.1/3.8
GAD_prev_disc+	80.9/49.5/32.7	34.7/23.0/19.6	33.3/10.6/4.0

456 **4.4 COMPARISON WITH SOTA.**457 We benchmark our approach against state-of-the-art methods in Tables 6 and 7. Although not
458 tailored to any specific task, our approach still achieves state-of-the-art performance. Further gains
459 can be expected through task-specific adaptations. To ensure a fair comparison, we use the same
460 visual features as state-of-the-art methods, showing that our gains arise from the architectural design
461 rather than from incorporating advanced features. For online action detection, we present the first
462 LLM-based method, significantly improving segment- and point-wise performance. For step/task
463 recognition and step forecasting, our approach also largely outperforms recent methods. Notably,
464 our 1B model even surpasses prior 8B models, highlighting the effectiveness of the discriminative
465 classifier augmented with generative assistance.466 **4.5 QUALITATIVE RESULTS.**467 Fig. 5 presents qualitative results on the COIN benchmark. The generative classifier (Gen) likely
468 generates semantically similar but incorrect outputs, while the discriminative classifier (Disc) demon-
469 strate better discrimination. Our GAD model enhances Disc by generating contextual information
470 that enables task-aware predictions. In the middle example, Disc outputs a task-irrelevant action,
471 while GAD accurately identifies the correct action. We also observe some edge cases where the
472 model predicts correctly despite flawed generations. Commonly, the generation identifies the task but
473 answers the query incorrectly, or is completely wrong or misformatted. These edges cases highlight
474 the benefit of performing generation after the learnable token. The learned representation remains
475 robust to generative errors while still benefiting from generative regularization. More analysis is
476 provided in Appendix B.6 and B.5.

477 Table 6: Comparison with SOTA on OAD tasks.

478

Model	OAD Benchmark (segment-F1 / point-F1)			
	THUMOS'14	CrossTask	EPIC-Kitchens-100	Ego4DGoalStep
Testra (Zhao & Krähenbühl, 2022)	43.0 / 32.0	48.4 / 33.8	16.5 / 14.7	8.7 / 3.5
MAT (Wang et al., 2023)	49.4 / 34.2	49.7 / 34.2	17.5 / 15.5	9.5 / 3.8
CMeRT (Pang et al., 2025)	48.9 / 34.6	50.1 / 34.3	17.7 / 15.8	9.7 / 3.9
Disc (Llama3.2-1B-Instruct)	57.8 / 40.1	48.8 / 34.0	23.2 / 19.3	10.6 / 4.1
GAD (Llama3.2-1B-Instruct)	58.1 / 40.2	50.3 / 34.5	24.1 / 20.1	11.0 / 4.3

486
487 Table 7: Comparison with SOTA on COIN Benchmark.
488
489

Model	COIN Benchmark (Top-1 acc.)		
	Step	Next	Task
VideoTaskGraph (Ashutosh et al., 2023)	57.2	40.2	90.5
Videollm-online-8B (Chen et al., 2024a)	63.1	49.1	92.7
Videollm-MoD-8B (Wu et al., 2024)	63.4	49.7	92.8
StreamMind-8B (Ding et al., 2025)	63.7	49.9	93.2
Disc (Llama3.2-1B-Instruct)	64.1	50.1	92.8
GAD (Llama3.2-1B-Instruct)	65.3	51.4	93.5
Disc (Llama3-8B-Instruct)	66.4	51.0	94.3
GAD (Llama3-8B-Instruct)	67.3	51.6	94.5

501
502
503
504 Figure 5: Qualitative results on the step recognition for Generative (Gen) vs. discriminative (Disc) classifier.
505 Red text denotes false predictions and green correct predictions. Callouts display GAD generation outputs.
506
507508
509 4.6 GENERALIZATION TRADE-OFF
510

511 MLLMs are naturally strong in open-world scenarios due to their broad, data-driven pretraining, but
512 perform poorly in closed-set action understanding (see zero-shot performance in Suppl. C). Our
513 classification setting involves task-specific fine-tuning, which boosts action-classification performance
514 but reduces general MLLM capabilities, reflecting task-induced forgetting well-documented in the
515 literature (Oh et al., 2024; Han et al., 2024). We provide extra experiments to evaluate generalization
516 and show this trade-off in Suppl. D.

517 In fact, the generative head in our GAD model enables leveraging self-curated instruction-tuning data
518 to preserve generalization, *e.g.* augmenting action labels. In addition, since the backbone architecture
519 remains unchanged, removing the introduced LoRA adapters can fully restore the model’s open-world
520 performance. We leave a more comprehensive exploration of the trade-off between fine-tuning and
521 generalization to future work.

522
523 5 CONCLUSION
524

525 This paper studies fine-tuning multimodal large language models for downstream temporal action
526 understanding. We identify the fundamental limitations of generative modeling in classification tasks,
527 showing how semantic label overlap constrains performance, and demonstrate the advantages of a
528 discriminative formulation. Building on these insights, we introduce a unified generative-assisted
529 discriminative (GAD) classifier that leverages generative modeling as an auxiliary objective to
530 enhance discriminative learning. Crucially, our approach preserves full compatibility with pretrained
531 models, requiring no changes to the pretraining process.

532 **Limitations.** While our generative-assisted discriminative classifier performs strongly in closed-set
533 scenarios, discriminative models are still limited to the closed set and cannot directly handle novel or
534 unseen actions. **Additionally, task-specific fine-tuning can hurt general-purpose abilities like question**
535 **answering.** Future work could focus on improving generalization to new classes through generative
536 components, while preserving the strengths of discriminative learning for the closed set.

540 ETHICS STATEMENT
541542 The methods, data, and results presented in this paper raise no known ethical concerns. All ex-
543 periments were conducted using publicly available datasets under their respective licenses. This
544 paper also did not involve ethically sensitive activities, such as research with human subjects, dataset
545 releases, potentially harmful experiments, or issues related to discrimination & privacy.
546547 REPRODUCIBILITY STATEMENT
548549 All technical details, such as experiment settings, evaluation protocols and implement instructions are
550 detailed described in Sec.4.1 of the paper and Sec.B.1 of the supplementary to ensure reproducibility.
551 All datasets used in this paper are publicly accessible. The code to reproduce our experiments will be
552 released after the review process.
553554 REFERENCES
555556 Kumar Ashutosh, Santhosh Kumar Ramakrishnan, Triantafyllos Afouras, and Kristen Grauman.
557 Video-mined task graphs for keystep recognition in instructional videos. *Advances in Neural*
558 *Information Processing Systems*, 36:67833–67846, 2023.560 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
561 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
562 2025.563 Mathilde Caron, Ahmet Iscen, Alireza Fathi, and Cordelia Schmid. A generative approach for
564 wikipedia-scale visual entity recognition. In *Proceedings of the IEEE/CVF Conference on Com-*
565 *puter Vision and Pattern Recognition*, pp. 17313–17322, 2024.566 Dibyadip Chatterjee, Edoardo Remelli, Yale Song, Bugra Tekin, Abhay Mittal, Bharat Bhatnagar,
567 Necati Cihan CamgÃ¼z, Shreyas Hampali, Eric Sauser, Shugao Ma, et al. Memory-efficient stream-
568 ing videollms for real-time procedural video understanding. *arXiv preprint arXiv:2504.13915*,
569 2025.570 Joya Chen, Zhaoyang Lv, Shiwei Wu, Kevin Qinghong Lin, Chenan Song, Difei Gao, Jia-Wei Liu,
571 Ziteng Gao, Dongxing Mao, and Mike Zheng Shou. Videollm-online: Online video large language
572 model for streaming video. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
573 *Pattern Recognition*, pp. 18407–18418, 2024a.574 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
575 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
576 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision*
577 *and pattern recognition*, pp. 24185–24198, 2024b.578 Alessandro Conti, Massimiliano Mancini, Enrico Fini, Yiming Wang, Paolo Rota, and Elisa Ricci.
579 On large multimodal models as open-world image classifiers. *arXiv preprint arXiv:2503.21851*,
580 2025.581 Avi Cooper, Keizo Kato, Chia-Hsien Shih, Hiroaki Yamane, Kasper Vinken, Kentaro Takemoto, Taro
582 Sunagawa, Hao-Wei Yeh, Jin Yamanaka, Ian Mason, et al. Rethinking vlms and llms for image
583 classification. *Scientific Reports*, 15(1):19692, 2025.584 Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kazakos, Jian
585 Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Rescaling egocentric vision:
586 Collection, pipeline and challenges for epic-kitchens-100. *International Journal of Computer*
587 *Vision*, 130(1):33–55, 2022.588 Guodong Ding, Fadime Sener, and Angela Yao. Temporal action segmentation: An analysis of
589 modern techniques. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(2):
590 1011–1030, 2023.

- 594 Xin Ding, Hao Wu, Yifan Yang, Shiqi Jiang, Donglin Bai, Zhibo Chen, and Ting Cao. Streammind:
 595 Unlocking full frame rate streaming video dialogue through event-gated cognition. *arXiv preprint*
 596 *arXiv:2503.06220*, 2025.
- 597 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 598 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 599 *arXiv e-prints*, pp. arXiv–2407, 2024.
- 600 601 Yazan Abu Farha and Jurgen Gall. Ms-tcn: Multi-stage temporal convolutional network for action
 602 segmentation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 603 *recognition*, pp. 3575–3584, 2019.
- 604 605 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 606 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 607 models. *arXiv preprint arXiv:2407.21783*, 2024.
- 608 609 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
 610 Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
 611 3,000 hours of egocentric video. In *Proceedings of the IEEE/CVF conference on computer vision*
 612 *and pattern recognition*, pp. 18995–19012, 2022.
- 613 614 Jinwei Han, Zhiwen Lin, Zhongyisun Sun, Yingguo Gao, Ke Yan, Shouhong Ding, Yuan Gao, and
 615 Gui-Song Xia. Anchor-based robust finetuning of vision-language models. In *Proceedings of the*
 616 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 26919–26928, 2024.
- 617 618 Bo He, Hengduo Li, Young Kyun Jang, Menglin Jia, Xuefei Cao, Ashish Shah, Abhinav Shrivastava,
 619 and Ser-Nam Lim. Ma-Imm: Memory-augmented large multimodal model for long-term video
 620 understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 621 *Recognition*, pp. 13504–13514, 2024.
- 622 623 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 624 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- 625 626 Hexiang Hu, Yi Luan, Yang Chen, Urvashi Khandelwal, Mandar Joshi, Kenton Lee, Kristina
 627 Toutanova, and Ming-Wei Chang. Open-domain visual entity recognition: Towards recognizing
 628 millions of wikipedia entities. In *Proceedings of the IEEE/CVF International Conference on*
 629 *Computer Vision*, pp. 12065–12075, 2023.
- 630 631 Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban, Ivan Laptev, Rahul Sukthankar, and
 632 Mubarak Shah. The thumos challenge on action recognition for videos “in the wild”. *Computer*
 633 *Vision and Image Understanding*, 155:1–23, 2017.
- 634 635 Priyank Jaini, Kevin Clark, and Robert Geirhos. Intriguing properties of generative classifiers. *arXiv*
 636 *preprint arXiv:2309.16779*, 2023.
- 637 638 David Wingate Joshua Robinson, Christopher Michael Ryting. Leveraging large language models
 639 for multiple choice question answering. *arXiv preprint arXiv:2210.12353*, 2023.
- 640 641 Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
 642 Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.
 643 *arXiv preprint arXiv:1705.06950*, 2017.
- 644 645 Jing Yu Koh, Ruslan Salakhutdinov, and Daniel Fried. Grounding language models to images for
 646 multimodal inputs and outputs. In *International Conference on Machine Learning*, pp. 17283–
 647 17300. PMLR, 2023.
- 648 649 Hilde Kuehne, Ali Arslan, and Thomas Serre. The language of actions: Recovering the syntax and
 650 semantics of goal-directed human activities. In *Proceedings of the IEEE conference on computer*
 651 *vision and pattern recognition*, pp. 780–787, 2014.
- 652 653 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 654 training for unified vision-language understanding and generation. In *International conference on*
 655 *machine learning*, pp. 12888–12900. PMLR, 2022.

- 648 KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhui Wang, Ping Luo, Yali Wang, Limin Wang, and
 649 Yu Qiao. Videochat: Chat-centric video understanding. *arXiv preprint arXiv:2305.06355*, 2023.
 650
- 651 Kevin Qinghong Lin and Mike Zheng Shou. Vlog: Video-language models by generative retrieval of
 652 narration vocabulary. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 653 pp. 3218–3228, 2025.
- 654 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 655 *neural information processing systems*, 36:34892–34916, 2023.
 656
- 657 Yanting Liu, Tao Ji, Changzhi Sun, Yuanbin Wu, and Xiaoling Wang. Generation with dynamic
 658 vocabulary. *arXiv preprint arXiv:2410.08481*, 2024.
- 659 Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
 660 former. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 661 pp. 3202–3211, 2022.
- 662 Feipeng Ma, Hongwei Xue, Guangting Wang, Yizhou Zhou, Fengyun Rao, Shilin Yan, Yueyi Zhang,
 663 Siying Wu, Mike Zheng Shou, and Xiaoyan Sun. Multi-modal generative embedding model. *arXiv*
 664 *preprint arXiv:2405.19333*, 2024.
 665
- 666 Muhammad Maaz, Hanooma Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
 667 Towards detailed video understanding via large vision and language models. *arXiv preprint*
 668 *arXiv:2306.05424*, 2023.
- 669 Niklas Muennighoff, SU Hongjin, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh,
 670 and Douwe Kiela. Generative representational instruction tuning. In *The Thirteenth International*
 671 *Conference on Learning Representations*, 2024.
- 672 Andrew Ng and Michael Jordan. On discriminative vs. generative classifiers: A comparison of
 673 logistic regression and naive bayes. *Advances in neural information processing systems*, 14, 2001.
 674
- 675 Changdae Oh, Hyesu Lim, Mijoo Kim, Dongyo Han, Sangdoo Yun, Jaegul Choo, Alexander
 676 Hauptmann, Zhi-Qi Cheng, and Kyungwoo Song. Towards calibrated robust fine-tuning of vision-
 677 language models. *Advances in Neural Information Processing Systems*, 37:12677–12707, 2024.
 678
- 679 Zhanzhong Pang, Fadime Sener, and Angela Yao. Context-enhanced memory-refined transformer
 680 for online action detection. In *Proceedings of the Computer Vision and Pattern Recognition*
 681 *Conference*, pp. 8700–8710, 2025.
- 682 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 683 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 684 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 685 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
 686 Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 687 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 688 <https://arxiv.org/abs/2412.15115>.
- 689 Kanchana Ranasinghe, Xiang Li, Kumara Kahatapitiya, and Michael S Ryoo. Understanding long
 690 videos with multimodal language models. *arXiv preprint arXiv:2403.16998*, 2024.
 691
- 692 Daniel Sikar, Artur Garcez, Robin Bloomfield, Tillman Weyde, Kaleem Peeroo, Naman Singh, Maeve
 693 Hutchinson, Dany Laksono, and Mirela Reljan-Delaney. The misclassification likelihood matrix:
 694 Some classes are more likely to be misclassified than others. *arXiv preprint arXiv:2407.07818*,
 695 2024.
- 696 Yale Song, Eugene Byrne, Tushar Nagarajan, Huiyu Wang, Miguel Martin, and Lorenzo Torresani.
 697 Ego4d goal-step: Toward hierarchical understanding of procedural activities. *Advances in Neural*
 698 *Information Processing Systems*, 36:38863–38886, 2023.
 699
- 700 Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng, Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie
 701 Zhou. Coin: A large-scale dataset for comprehensive instructional video analysis. In *Proceedings*
 702 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1207–1216, 2019.

- 702 Jiahao Wang, Guo Chen, Yifei Huang, Limin Wang, and Tong Lu. Memory-and-anticipation
 703 transformer for online action understanding. In *Proceedings of the IEEE/CVF International*
 704 *Conference on Computer Vision*, pp. 13824–13835, 2023.
- 705 Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video
 706 understanding with large language model as agent. In *European Conference on Computer Vision*,
 707 pp. 58–76. Springer, 2024.
- 708 Shiwei Wu, Joya Chen, Kevin Qinghong Lin, Qimeng Wang, Yan Gao, Qianli Xu, Tong Xu, Yao Hu,
 709 Enhong Chen, and Mike Zheng Shou. Videolm-mod: Efficient video-language streaming with
 710 mixture-of-depths vision computation. *Advances in Neural Information Processing Systems*, 37:
 711 109922–109947, 2024.
- 712 Mingze Xu, Mingfei Gao, Yi-Ting Chen, Larry S Davis, and David J Crandall. Temporal recurrent
 713 networks for online action detection. In *Proceedings of the IEEE/CVF international conference on*
 714 *computer vision*, pp. 5532–5541, 2019.
- 715 Mingze Xu, Yuanjun Xiong, Hao Chen, Xinyu Li, Wei Xia, Zhuowen Tu, and Stefano Soatto. Long
 716 short-term transformer for online action detection. *Advances in Neural Information Processing*
 717 *Systems*, 34:1086–1099, 2021.
- 718 Meng Ye and Yuhong Guo. Zero-shot classification with discriminative semantic representation
 719 learning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 720 7140–7148, 2017.
- 721 Shaokai Ye, Haozhe Qi, Alexander Mathis, and Mackenzie W Mathis. Llavaction: evaluating
 722 and training multi-modal large language models for action recognition. *arXiv preprint arXiv:2503.18712*, 2025.
- 723 Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
 724 Coca: Contrastive captioners are image-text foundation models. *arXiv preprint arXiv:2205.01917*,
 725 2022.
- 726 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 727 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 728 pp. 11975–11986, 2023.
- 729 Hanling Zhang, Yayu Zhou, Tongcheng Fang, Zhihang Yuan, Guohao Dai, and Yu Wang. Vocabtailor:
 730 Dynamic vocabulary selection for downstream tasks in small language models. *arXiv preprint arXiv:2508.15229*, 2025.
- 731 Xing Zhang, Zuxuan Wu, Zejia Weng, Huazhu Fu, Jingjing Chen, Yu-Gang Jiang, and Larry S Davis.
 732 Videolt: Large-scale long-tailed video recognition. In *Proceedings of the IEEE/CVF international*
 733 *conference on computer vision*, pp. 7960–7969, 2021.
- 734 Yidan Zhang, Ting Zhang, Dong Chen, Yujing Wang, Qi Chen, Xing Xie, Hao Sun, Weiwei Deng,
 735 Qi Zhang, Fan Yang, et al. Irgen: Generative modeling for image retrieval. In *European Conference*
 736 *on Computer Vision*, pp. 21–41. Springer, 2024.
- 737 Yue Zhao and Philipp Krähenbühl. Real-time online video detection with temporal smoothing
 738 transformers. In *European Conference on Computer Vision*, pp. 485–502. Springer, 2022.
- 739 Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xiaou Tang, and Dahua Lin. Temporal action
 740 detection with structured segment networks. In *Proceedings of the IEEE international conference*
 741 *on computer vision*, pp. 2914–2923, 2017.
- 742 Jiaming Zhou, Junwei Liang, Kun-Yu Lin, Jinrui Yang, and Wei-Shi Zheng. Actionhub: a large-scale
 743 action video description dataset for zero-shot action recognition. *arXiv preprint arXiv:2401.11654*,
 744 2024.
- 745 Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk Cinbis, David Fouhey, Ivan Laptev, and
 746 Josef Sivic. Cross-task weakly supervised learning from instructional videos. In *Proceedings of*
 747 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3537–3545, 2019.

APPENDIX

THE USE OF LARGE LANGUAGE MODELS

In this paper, Large Language Models (LLMs) were used exclusively for polishing the manuscript, including improving writing style, enhancing readability, and correcting grammatical errors. LLMs were not employed for research purposes such as literature retrieval, idea generation, or discovery. All methodological proposals, experimental designs, analyses, and conclusions were developed without the involvement of LLMs.

A FEATURE ANALYSIS OF GENERATIVE VS. DISCRIMINATIVE CLASSIFIER

We examine the feature quality of the generative and discriminative classifiers. For generative outputs, action labels are tokenized into multiple tokens, and representations are derived using one of four strategies: mean, max, first, or last token. Full t-SNE visualizations reveal the clear decision boundaries of the discriminative classifier, further highlighting the comparatively inferior performance of generative decoding.

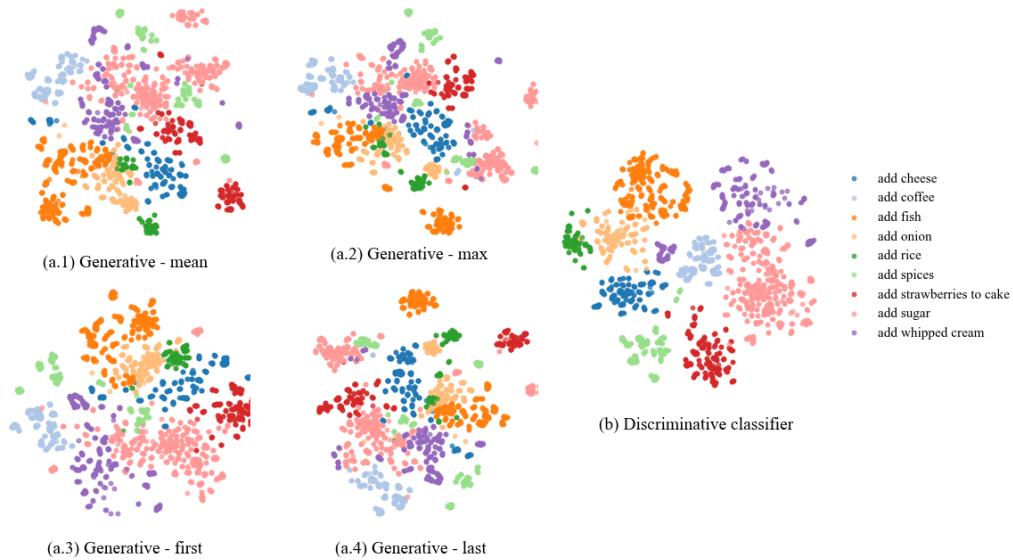


Figure 6: T-SNE plot comparing feature spaces of the generative and discriminative classifier on CrossTask dataset for actions sharing the verb ‘add’. Generative feature is derived from token representations using four strategies: mean, max, first, or last token. Discriminative feature is the representation of the learnable token.

B EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

We conduct evaluations on two benchmarks: OAD, for online action detection, and COIN, for step/task recognition and step forecasting. The used task-specific queries are summarized in Tab. 8.

For the OAD benchmark, training involves sampling a “current” timestamp t , and long- and short-term memories are constructed by padding or cropping past observations up to t . The timestamp is sampled using a sliding window with a random start and a stride equal to the short-term length, while frames in short- and long-term are selected at a fixed predefined sample rate. During inference, an online streaming setup is simulated with a sliding window of stride 1 and fixed start time at 0, predicting one frame at a time. We train for 50 epochs on THUMOS’14, CrossTask, and EPIC-Kitchens-100,

Table 8: Task-specific queries.

Task	Query
Online action detection	<i>What is the action in the last frame?</i>
Step recognition	<i>What is the action in the video?</i>
Step forecasting	<i>What is the next action in the video?</i>
Task recognition	<i>What is the overall activity in the video?</i>

and 20 epochs on Ego4DGoalStep, where the latter contains fewer distracting background frames, making it easier to train. As training samples are generated with a stride equal to the short-term length, only a fraction of frames is used per epoch. For example, 50 epochs on CrossTask with stride 20 is equivalent to 2.5 full passes over the dataset. Optimization is performed with AdamW using a learning rate of 0.0001, a warmup ratio of 0.1, and a batch size of 32 across all datasets. Unless otherwise specified, we employ Llama3.2-1B-Instruct as the language model. Details of the hyper-parameters for OAD can be found in Tab. 9.

Table 9: Hyperparameters for OAD setting.

Datasets	long-term (s)	short-term (s)	sample rate	visual feature@FPS
THUMOS'14	128	32	1	ResNet50@4
CrossTask	128	20	1	DINOV2@1
EPIC-Kitchens-100	128	20	1	TSN@4
Ego4DGGoalStep	128	16	1	DINOV2@1

For the COIN benchmark, we adopt a multi-task learning framework to jointly train step recognition, next-step forecasting, and task recognition using task-specific queries, with separate MLP heads for step and task predictions. Training is conducted for 5 epochs using the AdamW optimizer with a learning rate of 0.0001, a warmup ratio of 0.05, and a batch size of 8.

Metric: For OAD tasks, we report only segment-wise and point-wise F1 scores, omitting frame-wise performance, since frame-level accuracy may not provide sufficiently informative or reliable evaluation, as shown in Pang et al. (2025). For completeness, frame-wise accuracy results are included in the supplementary material.

B.2 GAD UNIFICATION STRATEGY

The generative and discriminative classifiers can be unified either sequentially or in parallel. We investigate three unification strategies, illustrated with representative examples.

- Sequential learning with discriminative learning first. The learnable [CLS] token is first processed, serving as a conditioning context for the generative output.

- Sequential learning with generation first. The learnable [CLS] token is positioned after generation, enabling the discriminative learning to be conditioned on the generative outputs.

- Parallel learning. Discriminative learning and generative decoding are performed concurrently in two branches, sharing the same text and visual tokens, but without conditioning on one another. To fairly assess the impact of unification strategies, we align the generative task with discriminative learning in GAD by generating only the target label, as generating extra previous action could

Table 10: Discriminative and generative performance in the proposed GAD classifier, where generative modeling is for labeling task same as the discriminative learning.

Model	OOD Benchmark. (frame acc./segment F1/point F1)		
	CrossTask	EPIC-Kitchens-100	Ego4DGoalStep
Gen	81.3/46.8/31.7	32.9/16.7/13.9	32.9/8.9/3.4
Disc	81.7/48.8/34.0	34.8/23.2/19.3	33.9/10.6/4.1
GAD_gen	81.5/46.8/31.8	32.1/16.0/13.2	31.4/7.8/3.0
GAD_emb	81.6/49.1/33.9	34.8/23.6/19.6	34.0/10.8/4.1
GAD_seq-g_gen	81.2/46.3/31.3	33.3/17.1/14.2	32.5/8.9/3.3
GAD_seq-g_emb	81.2/46.3/31.3	33.3/17.1/14.2	31.5/8.7/3.4
GAD_parallel_gen	81.5/46.9/31.8	32.4/16.1/13.4	32.2/8.4/3.1
GAD_parallel_emb	81.7/49.4/34.1	34.9/23.6/19.6	34.1/10.7/4.1

interfere with current action prediction and bias performance. From the results in Tab. 10, we observe the conflicts between generation and discriminative learning in sequential learning setting. In the discriminative learning first strategy (GAD), discriminative predictions are largely unaffected and can even benefit slightly from semantic regularization through generation, whereas generation performance suffers when conditioned on the learned token. In contrast, in the generation first strategy (GAD_seq-g), generation performance remains less affected, but discriminative performance degrades, sometimes exactly matching the generative one. This happens because conditioning on generative outputs enables the discriminative classifier to learn a shortcut to aligns its representation with the generative outputs during training, causing it to effectively replicate the generative output at inference. Since generative outputs are more prone to confusion due to semantic overlap, which can in turn degrade discriminative classifier performance. Meanwhile, placing the learnable token at the end slows inference, as autoregressive generation must be completed first.

In the parallel learning strategy (GAD-parallel), discriminative and generative performance are less affected by interference. Training them simultaneously is analogous to multi-task learning with a shared backbone, allowing the model to capture cross-task knowledge while benefiting from regularization. However, this strategy needs two forward passes for each output, which reduces training efficiency.

In conclusion, given our focus on discriminative outputs, we stick with the discriminative learning first strategy, which yields strong representations, exploits generative regularization, and ensures efficient training and inference.

B.3 ENTROPY-BASED DIVERSITY SCORE FOR MISCLASSIFICATIONS

Since the generative classifier treats action labels as subword tokens, shared subwords across similar actions can lead to greater confusion. To quantify this effect, we introduce an entropy-based Diversity Score (DScore) to measure the variability of misclassified predictions. We first compute the confusion matrix $C \in \mathbb{R}^{N \times N}$ of a given classifier, where N denotes the number of classes, with rows representing ground truth labels and columns representing predictions. Then, we set the diagonal entries (true positives) of the confusion matrix to zero to focus on misclassifications. For OAD datasets, we additionally exclude misclassifications assigned to the background class to avoid diluting the results, as background is semantically unrelated to other classes and overwhelmingly represented in the datasets. Finally, we normalize each row of the modified confusion matrix C' to obtain an error distribution p for each target class, and quantify the diversity of misclassifications for each class

918 using the Shannon entropy H . The final DScore is computed as the average entropy over actions,
 919 excluding the background and classes absent at test time.
 920

$$921 \quad p_{i,j} = \frac{C'_{i,j}}{\sum_{k=0}^{N-1} C'_{i,k}}, \quad H_i = - \sum_{k=0}^{N-1} p_{i,j} \log(p_{i,j} + \epsilon) \quad \forall i, j \in [0, N-1], \quad (4)$$

923 where ϵ is a small constant ensuring valid input to the logarithm.
 924

925 Table 11 presents diversity scores on the OAD datasets, showing that the generative classifier
 926 produces more diverse misclassifications due to semantic overlap. In contrast, our GAD model can
 927 encode semantics through generation while mitigating the error diversity, leading to more consistent
 928 predictions and thus potentially reducing action over-segmentation.
 929

930 Table 11: Comparison of misclassification diversity for generative (Gen), discriminative (Disc), and
 931 generation-assisted discriminative (GAD) classifiers.
 932

Model	OOD Benchmak. DScore		
	CrossTask	EPIC-Kitchens-100	Ego4DGoalStep
Gen	0.76	1.3	1.8
Disc	0.66	0.79	1.5
GAD	0.67	0.80	1.49

938 B.4 ABLATION STUDIES

940 We conduct ablation studies on key design choices of our proposed GAD, evaluated on OAD tasks
 941 with results reported in Tab.12.
 942

- 943 • The generative output can be any text, but we focus on generating the previous action. Beyond
 944 the flexibility of free-form outputs, we aim to show that the benefits stem from generation
 945 itself rather than the auxiliary task. To this end, we reformulate previous action prediction as a
 946 separate classification task, introducing an additional classifier that uses either the representation
 947 of the existing learnable token (GAD_prev_disc) or a new learnable token appended after it
 948 (GAD_prev_disc+). Results indicate that neither approach improves learning and can even disrupt
 949 current action classification, causing a performance drop. This further highlights the advantage of
 950 using generation to encode semantics as an auxiliary task.
- 951 • We use the generative head for previous step generation. Alternatives include generating the
 952 next action or past actions within a fixed short-term window. Results show that these alternatives
 953 still outperform the discriminative baseline by capturing action relationships, but remains less
 954 effective than previous step generation. Next-step generation lacks corresponding visual inputs,
 955 while generating multiple past actions reduces performance due to increased complexity that
 956 diverts focus from discriminative learning.
- 957 • For discriminative outputs, we use the representation of the learnable [CLS] token for prediction.
 958 An alternative is to use the last visual token, which also aggregates all preceding visual information.
 959 This design fits the setting of online action detection, which requires recognizing the action in the
 960 last frame. However, results (w/o [CLS]) show that using [CLS] token performs better, likely
 961 due to its stronger generalization ability, while the last visual token tends to overfit the training
 962 data.
- 963 • The generative response is designed to include the target label along with the context information
 964 describing the previous action. Therefore, generative and discriminative learning are somehow
 965 aligned toward predicting the same target action. To evaluate the effect of separating the tasks, we
 966 remove the target label from the generative output, leaving only the context generation (GAD_sep).
 967 While GAD_sep still performs well, it underperforms the original version, suggesting that sharing
 968 the same target better aligns the discriminative and generative modules, while also providing
 969 valuable context for the action relationship learning.

970 B.5 ANALYSIS ON GAD GENERATION OUTPUT

971 We use generation as an auxiliary task and rely solely on the discriminative output during inference.
 972 Nevertheless, it is important to examine the quality of the generative outputs and their role in

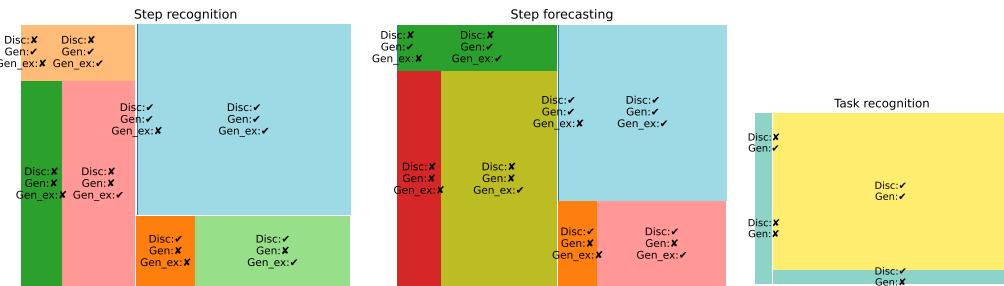
972 Table 12: Ablation studies of our GAD classifier on OAD tasks.
973
974
975
976
977
978
979
980
981
982
983
984

Model	OAD Benchmark. (frame acc./segment F1/point F1)		
	CrossTask	EPIC-Kitchens-100	Ego4DGoalStep
Disc	81.7/48.8/34.0	34.8/23.2/19.3	33.9/10.6/4.1
GAD	81.8/50.3/34.5	35.1/24.1/20.1	34.4/11.0/4.3
GAD_prev_disc	80.8/48.2/31.6	34.8/23.6/19.3	33.2/10.1/3.8
GAD_prev_disc+	80.9/49.5/32.7	34.7/23.0/19.6	33.3/10.6/4.0
GAD_next	81.6/49.8/34.3	34.6/23.7/19.8	34.1/10.8/4.2
GAD_past	81.7/49.5/34.1	34.7/23.9/19.9	33.9/10.4/4.1
w/o [CLS]	81.5/49.2/33.8	34.6/20.7/17.7	33.7/8.6/3.6
GAD_sep	81.5/50.0/33.9	34.7/24.0/20.1	34.3/10.9/4.3

985
986 enhancing the discriminative learning. To this end, we specifically analyze the generation results.
987 We conduct this analysis on the COIN benchmark, as its accuracy metric provides a clearer basis for
988 evaluation.

989 We analyze the correctness of three types of GAD output: the discriminative output (Disc), the
990 generation output for the target label (Gen), and the generation output for the task label (Gen_extra).
991 These yield eight possible output combinations for step recognition and forecasting, as illustrated in
992 Fig. 7. In the case of task recognition, the target label and task label are identical, so Gen_extra is not
993 applicable, leading to four possible output combinations.

994 By examining the distribution of output correctness combinations, we make several observations.
995 First, the three types of outputs are generally consistent, with most cases fully correct. Second, step
996 generation is more challenging than task, as tasks exhibit clearer separation with lower semantic
997 overlap. As such, cases where the task generation is incorrect while the step generation is correct are
998 uncommon. Third, there are instances where both generative outputs are flawed, yet the discriminative
999 output remains accurate, highlighting the benefit of placing the discriminative learning ahead of
1000 generation to avoid the impact of erroneous generated content. Although the discriminative learning
1001 is not conditioned on generation, it is still influenced by generative outputs, which regularize it
1002 to be generation-aware. Finally, some cases show the generative outputs are accurate while the
1003 discriminative output does not, highlighting complementarity between the two and suggesting
1004 potential gains through ensembling.



1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Figure 7: Quantitative analysis of discriminative outputs (Disc) and generative outputs (Gen & Gen_ex). Larger areas indicate higher occurrence. Checks and crosses denote correct and incorrect outputs, respectively.

B.6 QUALITATIVE RESULTS

We provide additional qualitative results on the OAD task and COIN benchmark in Fig. 8. We observe that even when the previous step generation is occasionally incorrect, the relationship between the generated previous step and the current step remains meaningful, e.g. ‘close cupboard’ following ‘open cupboard’. This demonstrates that the model can capture action relationships through generation. Similarly to the COIN benchmark, we also observe that the generative and discriminative

1026
1027
1028 Table 13: Comparison with SOTA on OAD tasks.
1029
1030

Model	OAD Benchmark. (frame acc./segment F1/point F1)			
	THUMOS'14	CrossTask	EPIC-Kitchens-100	Ego4DGoalStep
Testra (Zhao & Krähenbühl, 2022)	76.9/43.0/32.0	81.2/48.4/33.8	34.7/16.5/14.7	31.7/8.7/3.5
MAT (Wang et al., 2023)	78.4/49.4/34.2	81.4/49.7/34.2	35.0/17.5/15.5	32.9/9.5/3.8
CMeRT (Pang et al., 2025)	78.2/48.9/34.6	81.3/50.1/34.3	35.2/17.7/15.8	32.8/9.7/3.9
Gen (Llama3.2-1B-Instruct)	78.6/56.9/38.8	81.3/46.8/31.7	32.9/16.7/13.9	32.8/8.9/3.4
Disc (Llama3.2-1B-Instruct)	78.5/57.8/40.1	81.7/48.8/34.0	34.8/23.2/19.3	33.9/10.6/4.1
GAD (Llama3.2-1B-Instruct)	78.8/58.1/40.2	81.8/50.3/34.5	35.1/24.1/20.1	34.4/11.0/4.3

1033
1034
1035
1036 Table 14: Comparison with SOTA on OAD tasks.

Model	OAD Benchmark (segment-F1 / point-F1)		
	CrossTask	EPIC-Kitchens-100	Ego4DGoalStep
Gen	46.8 / 31.7	16.7 / 13.9	8.9 / 3.4
Testra [1]	48.4 / 33.8	16.5 / 14.7	8.7 / 3.5
MAT [2]	49.7 / 34.2	17.5 / 15.5	9.5 / 3.8
CMeRT [3]	50.1 / 34.3	17.7 / 15.8	9.7 / 3.9
Disc	48.8 / 34.0	23.2 / 19.3	10.6 / 4.1
Gen_rand	46.9 / 31.8	16.8 / 14.0	8.8 / 3.5
Gen_desync	48.7 / 34.1	23.0 / 19.0	10.4 / 3.9
Gen_extend	48.9 / 33.9	23.3 / 19.2	10.5 / 4.0
GAD	50.3 / 34.5	24.1 / 20.1	11.0 / 4.3

1053
1054 outputs are not always consistent, highlighting their complementary nature and motivating further
1055 analysis of their ensemble performance.1056
1057

B.7 SOTA COMPARISON ON OAD TASKS

1058
1059 We include additional frame-wise accuracy results for a more comprehensive assessment. The results
1060 show significant improvements of our GAD classifier in segment- and point-wise performance while
1061 maintaining competitive frame-level accuracy.1062
1063

C ZERO-SHOT ACTION UNDERSTANDING

1064
1065 We evaluate two MLLMs zero-shot, Qwen2.5-VL-7B (Bai et al., 2025) and VideoLLM-online (Chen
1066 et al., 2024a), on the COIN dataset (750 actions). For Videollm-Online model, a procedural video
1067 understanding MLLM, we use it for open-ended generation. For Qwen2.5-VL, action prediction is
1068 treated either as an open-ended generation task, or by providing action labels as candidate options in
1069 the prompt. Post-processing is always applied to match the generation to action categories using the
1070 CLIP text encoder and cosine similarity.1071
1072 As shown in Table 15, Qwen2.5 performs best but still significantly trails our fine-tuned method.
1073 These results suggest that action understanding with large, semantically similar actions is challenging,
1074 making fine-tuning essential. In addition, providing action categories in the prompt worsens the
1075 performance, suggesting that including a large candidate set in the prompt can hinder MLLMs’ ability
1076 to correctly interpret instructions.1077
1078

D GENERALIZATION-PERFORMANCE TRADE-OFF

1079 We prove the necessity of fine-tuning in Sec. C. However, extending fine-tuning boosts performance,
but increases memorization and reduces generalization. To quantify memorization, we define the

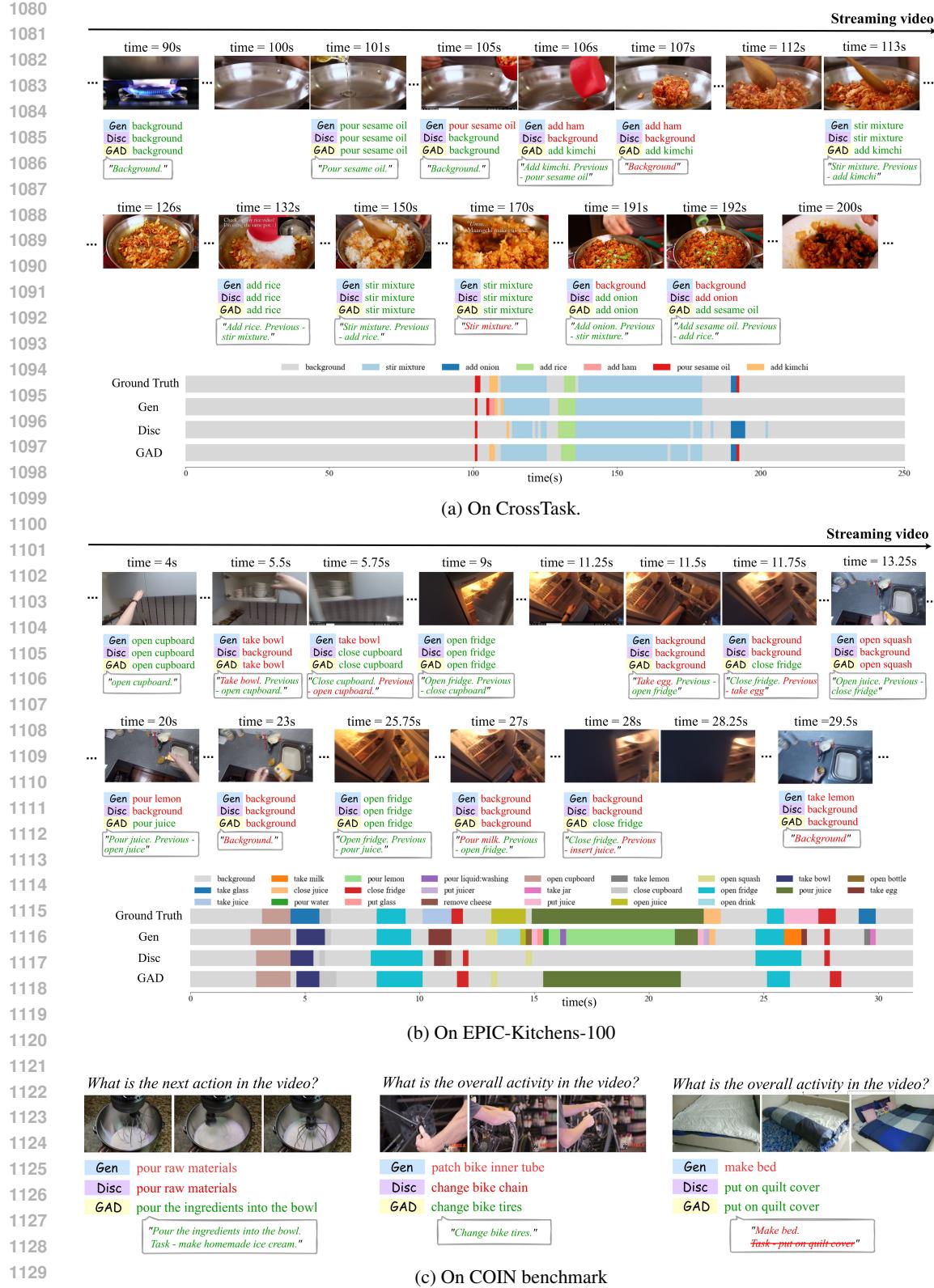


Figure 8: Qualitative results on the OAD and step recognition tasks. Gen - generative classifier, Disc- discriminative classifier. Text in red denotes false predictions, while in green represents correct predictions. Callouts display the generation outputs produced by our GAD. Bar charts in the bottom show predictions for streaming videos.

Table 15: Zero-shot performance of existing MLLMs on COIN dataset.

Model	Step	Next
GAD (fine-tuned)	67.3	51.6
Videollm-online-8B (open-ended)	4.8	3.5
Qwen2.5-VL-7B (open-ended)	16.1	8.9
Qwen2.5-VL-7B (categories in prompt)	11.9	6.5

memorization rate as the proportion of generated outputs that match training action categories during inference. As shown in Table 16, achieving optimal performance on COIN task recognition (Tang et al., 2019) requires 4 epochs of fine-tuning, yet the memorization rate evaluated on the unseen Breakfast dataset (Kuehne et al., 2014) exceeds 98% after just one epoch, and the zero-shot performance on unseen dataset Breakfast decreases over the course of training. This shows the inherent trade-off between optimal performance and generalization ability.

In fact, the generative head in our GAD model enables leveraging self-curated instruction-tuning data to preserve generalization—for example, by augmenting action labels. However, this comes at the cost of some closed-set performance. We leave a more thorough exploration of these generalization capabilities to future work.

Table 16: Performance-generalization trade-off on our generative baseline.

	Epoch 0	Epoch 1	Epoch 2	Epoch 3	Epoch 4	Epoch 5
Memorization_ratio (on Breakfast)	0.0	98.1	99.6	99.8	99.9	99.9
Accuracy on COIN (test set)	8.3	77.0	85.3	91.3	92.8	92.7
Accuracy on Breakfast (unseen)	6.3	4.5	3.5	3.6	3.6	3.6

E ERROR ANALYSIS: GENERATIVE VS. DISCRIMINATIVE

We provide extra analysis why the generative baseline produce more diverse misclassifications than the discriminative one. In Figure 9, we compare the confusion matrix comparison on CrossTask for actions shared verb ‘add’. The generative baseline exhibits greater difficulty handling semantic overlap among these actions.

Figure 9: Confusion matrix comparison on CrossTask for actions shared verb ‘add’. Generative classifier incurs more diverse misclassifications.

