
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ASOR: ANCHOR STATE ORIENTED REGULARIZATION
FOR POLICY OPTIMIZATION UNDER DYNAMICS SHIFT

Anonymous authors
Paper under double-blind review

ABSTRACT

To train neural policies in environments with diverse dynamics, Imitation from
Observation (IfO) approaches aim at recovering expert state trajectories. Their
success is built upon the assumption that the stationary state distributions induced
by optimal policies remain similar despite dynamics shift. However, such an
assumption does not hold in many real world scenarios, especially when certain
states become inaccessible during environment dynamics change. In this paper,
we propose the concept of anchor states which appear in all optimal trajectories
under dynamics shift, thereby maintaining consistent state accessibility. Instead of
direct imitation, we incorporate anchor state distributions into policy regularization
to mitigate the issue of inaccessible states, leading to the ASOR algorithm. By
formally characterizing the difference of state accessibility under dynamics shift,
we show that the anchor state-based regularization approach provides strong lower-
bound performance guarantees for efficient policy optimization. We perform
extensive experiments across various online and offline RL benchmarks, including
Gridworld, MuJoCo, MetaDrive, D4RL, and a fall-guys like game environment,
featuring multiple sources of dynamics shift. Experimental results indicate ASOR
can be effectively integrated with several state-of-the-art cross-domain policy
transfer algorithms, substantially enhancing their performance.

1 INTRODUCTION

Recent data-driven Reinforcement Learning (RL) (Sutton & Barto, 1998) approaches facilitate
efficient and large-scale policy optimization using either a static dataset (Wu et al., 2019; Fujimoto
et al., 2019) or a trajectory buffer updated during training (Lillicrap et al., 2016; Haarnoja et al., 2018).
However, these methods generally assume that the data is sampled from a single static environment
with constant state transition probabilities. This is usually not the case in real-world applications
where environment dynamics can vary a lot, i.e., in environments with dynamics shift. For instance,
the recommender agent on a short-video platform needs to adapt to time-varying and heterogeneous
user preferences (Xue et al., 2022; 2023b). An embodied robotic agent may operate in environments
with distinct morphologies and joint torque (Liu et al., 2022). In such tasks, achieving effective RL
policies necessitates extensive training data with sufficient dynamics coverage (Liu et al., 2022; Li
et al., 2023), and the training process is most likely to be unstable (Luo et al., 2022; Xue et al., 2023a).
Therefore, a critical question arises: how can RL policies be efficiently optimized using data collected
under dynamics shift?

In recent years, considerable research efforts have been devoted to cross-dynamics policy training.
To mitigate the problem of inefficient data usage, Imitation from Observation (IfO) algorithms (Wu
et al., 2019; Torabi et al., 2018b; Jiang et al., 2020) aim at recovering state trajectories of expert
demonstrations. Assuming the optimal state trajectories to be similar across different dynamics, IfO
can learn from data with dynamics shift (Gangwani & Peng, 2020; Desai et al., 2020; Radosavovic
et al., 2021) because expert state trajectories in one domain can be informative in other domains.
However, such assumption will not hold in many real world scenarios, especially under the variation
of state accessibility, where certain states are no longer accessible during environment dynamics
change. For example, an autonomous vehicle might drive through intersections safely at high speed
under low traffic densities, but will face the risk of crashing into other vehicles under high traffic
densities. Therefore, states representing “safe driving at high speed” are inaccessible in certain
dynamics, leading to distinct stationary state distributions. In such cases, expert trajectories with
dynamics shift can be misleading.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Walker2dHopperHalfCheetahEnvrironment0.40.60.81.01.2Normalized ValuesState Values With Different D OutputHighLowRandomMediumExpertPolicy Type0.20.40.60.81.0Normalized Value GapsValue Gaps of Different PoliciesWalker2dHopperHalfCheetahState with Different Value GapsTo deal with the issue of different state distributions, reference states with evolving accessibility
should be excluded during training. We define anchor states which appear in all optimal trajectories,
maintaining the same accessibility across different dynamics. To learn from anchor state distributions,
IfO approaches directly perform distribution matching, but they cannot be naturally integrated with
datasets including reward signals and require the demonstrations to be optimal. Instead, we employ
anchor states for policy regularization based on the standard RL objective. The resulting constrained
policy optimization (CPO) (Achiam et al., 2017) problem requires the policy not only to optimize the
expected policy return, but also to generate a stationary state distribution close to the anchor state
distribution. By formally characterizing the difference of state accessibility under dynamics shift,
we manage to derive strong lower-bound performance guarantees for such a policy regularization
procedure. The analysis is built on a weaker assumption than previous works. In practice, non-anchor
states tend to have unreliable demonstrations, so policies are also encouraged to generate distinct
state distributions on these states. Simplifying the CPO problem with Lagrangian multipliers, the
policy regularization can be realized by a simple reward augmentation with state density ratios.

Summarizing these ideas, we propose ASOR (Anchor State Oriented Regularization), a reward
augmentation algorithm which can be a general add-on module to existing cross-dynamics RL algo-
rithms (Chen et al., 2021; Luo et al., 2022). In empirical evaluations, we consider the toy environment
Minigrid (Chevalier-Boisvert et al., 2023), simulated robotics environment MuJoCo (Todorov et al.,
2012), simulated autonomous-driving environment MetaDrive (Li et al., 2023), and a large-scale fall
guys-like game environment. The tasks include both online and offline RL setting and involve multi-
ple sources of dynamics shift including obstacle layout, traffic density, body mass, joint damping, and
wind speed. Our contributions in this paper can be summarized as follows: 1) By restricting policy
regularization only to anchor states, we alleviate the issue of evolving optimal state distributions and
propose the ASOR algorithm. 2) We derive strong lower-bound performance guarantees for anchor
state-based policy regularization. 3) We apply ASOR to extensive benchmark environments with
both online and offline RL and various sources of environment dynamics shift, where ASOR exhibits
superior performance when combined with multiple state-of-the-art algorithms.

2 BACKGROUD

2.1 PRELIMINARIES

To model a set of decision-making tasks with different environment dynamics, we consider the Hidden
Parameter Markov Decision Process (HiP-MDP) (Doshi-Velez & Konidaris, 2016) defined by a tuple
(S,A,Θ, T, r, γ, ρ0), where S is the state space and A is the bounded action space with actions
a ∈ [−1, 1]. Θ is the space of hidden parameters. Tθ(s

′|s, a) is the transition function conditioned
on (s, a), as well as a hidden parameter θ sampled from Θ. r(s, a, s′) is the environment reward
function. By taking all s, a, s′ into account, the reward function inherently includes the transition
information and does not change in different dynamics. We also assume r(s, a, s′) w.r.t. the action a
is λ-Lipschitz. Discussions on these Lipschitz properties can be found in Appendix A.3. s′ is termed
as accessible from s under dynamics T 1 if

∑
a∈A T (s′|s, a) > 0. γ ∈ (0, 1) is the discount factor

and ρ0(s) is the initial state distribution.

Policy optimization under dynamics shift aims at finding the optimal policy that maximizes the
expected return under all possible θ ∈ Θ: π∗ = argmaxπ η(π) = EθEπ,Tθ

[
∑∞

t=0 γ
tr(st, at, st+1)],

where the expectation is under s0 ∼ ρ0, at ∼ π(·|st), and st+1 ∼ Tθ(·|st, at). The
Q-value Qπ

T (s, a) denotes the expected return after taking action a at state s: Qπ
T (s, a)=

Eπ,T [
∑∞

t=0 γ
tr(st, at, st+1)|s0 = s, a0 = a]. The value function is defined as V π

T (s) =
Ea∼π(·|s)Q

π
T (s, a). The optimal policy π∗ under T is defined as π∗

T = argmaxπ Es∼ρ0
V π
T (s).

We also intensely use the stationary state distribution (also referred to as the state occupation function)
dπT (s) = (1−γ)

∑∞
t=0 γ

tp (st = s | π, T). The stationary state distribution under the optimal policy
is denoted as d∗T (s), which is the shorthand for dπ

∗
T

T (s). d∗T (s) will be briefly termed as optimal state
distribution in the rest of this paper.

2.2 RELATED WORK

Cross-domain Policy Transfer Cross-domain policy transfer (Niu et al., 2024) focuses on training
policies in source domains and testing them in the target domain. In this paper, we focus on a

1T without subscript θ refers to the transition function under any of the hidden parameter θ.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Walker2dHopperHalfCheetahEnvrironment0.40.60.81.01.2Normalized ValuesState Values With Different D OutputHighLowRandomMediumExpertPolicy Type0.20.40.60.81.0Normalized Value GapsValue Gaps of Different PoliciesWalker2dHopperHalfCheetahState with Different Value Gaps

related problem of efficient training in multiple source domains. The resulting algorithm can be
combined with any of the following cross-domain policy transfer algorithms to improve the test-time
performance. In online RL, VariBAD (Zintgraf et al., 2020) trains a context encoder with variational
inference and trajectory likelihood maximization. CaDM (Lee et al., 2020) and ESCP (Luo et al.,
2022) construct auxiliary tasks including next state prediction and contrastive learning to train the
encoders. Instead of relying on context encoders, DARC (Eysenbach et al., 2021) makes domain
adaptation by assigning higher rewards on samples that are more likely to happen in the target
environment. Encoder-based (Chen et al., 2021) and reward-based (Liu et al., 2022) policy transfer
algorithms are also effective in offline policy adaptation and have been extended to offline-to-online
tasks (Niu et al., 2022; 2023). VGDF (Xu et al., 2023) use ensembled value estimations to perform
prioritized Q-value updates, which can be applied in both online and offline settings. SRPO (Xue
et al., 2023a) focus on a similar setting of efficient data usage with this paper, but is based on a strong
assumption of universal identical state accessibility. We demonstrate that such an assumption will
not hold in many tasks and a more delicate characterization of state accessibility will lead to better
theoretical and empirical results.

Imitation Learning from Observations Imitation Learning from Observation (IfO) approaches
obviate the need of imitating expert actions and is suitable for tasks where action demonstrations may
be unavailable. BCO (Wu et al., 2019) and GAIfO (Torabi et al., 2018b) are two natural modifications
of traditional Imitation Learning (IL) methods (Ho & Ermon, 2016) with the idea of IfO. IfO has
also been found promising when the demonstrations are collected from several environments with
different dynamics. Usually an inverse dynamics model is first trained with samples from the
target environment by supervised learning (Wu et al., 2019; Radosavovic et al., 2021), variational
inference (Liu et al., 2020), or distribution matching (Desai et al., 2020). It is then used to recover
the adapted actions in samples from the source environment. The recovered samples can be used to
update policies with action discrepancy loss (Gangwani & Peng, 2020; Radosavovic et al., 2021; Liu
et al., 2020). To our best knowledge, only HIDIL (Jiang et al., 2020) considered state distribution
mismatch across different dynamics, where policies are allowed to take extra steps to reach the next
state specified in the expert demonstration. We consider in this paper a more general setting where
states in expert demonstrations may even be inaccessible.

3 ANCHOR STATE ORIENTED POLICY REGULARIZATION

In this section, we first provide a motivating example in Sec. 3.1 to demonstrate that the assumption of
identical state distribution under dynamics shift may not hold in certain scenarios. Then in Sec. 3.2 we
propose the approach of anchor state oriented policy regularization that do not rely on this assumption.
The approach involves reward augmentations with logarithms of density ratios, but the density ratios
are intractable to compute. We therefore propose a data-based method to estimate the ratios in
Sec. 3.3 and conclude the section with the practical algorithm procedure in Sec. 3.4.

3.1 MOTIVATING EXAMPLE

Figure 1: Lava world example
with dynamics shift.

Previous state-only policy transfer algorithms are based on the as-
sumption that the optimal state distribution d∗(s) remains the same
under different environment dynamics, either implicitly (Desai et al.,
2020; Jiang et al., 2020) or explicitly (Xue et al., 2023a). Fig. 1
demonstrates an example lava world task with dynamics shift where
such assumption does not hold. We consider a 3-dimensional state
space including agent row, agent column, and a 0-1 variable indi-
cating whether there is an accessible lava block near the agent. The
agent starts from the blue grid and targets at the green grid with
positive reward. It also receives a small negative reward on each
step. The red grid stands for the dangerous lava area which ends the
trajectory on agent entering. One lava block is fixed at Row 1, while
the other may appear at Row 2, 3, 4, and 5. Fig. 1 demonstrates
two examples where the movable lava block is at Row 2 and Row
4. Taking state (1,3,0) as an example, the same action of “moving
down” gives rise to different next state distributions due to distinct
lava positions, leading to environment dynamics shift.

The state trajectories of the optimal policies on two example lava environments are plotted with
black lines. The optimal state distributions are different under distinct environment dynamics. For

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

example, state (3,3,0) has non-zero probability under d∗(s) in Fig. 1 (above), but cannot be visited by
the optimal policy in Fig. 1 (bottom). Existing state-only policy transfer algorithms will therefore
not be suitable for such seemingly simple task, which is also demonstrated by the empirical results
in Sec. 5.1. The main cause of this distribution difference is the break of accessibility. State (4,2)
is accessible from (3,2) in Fig. 1 (lower), but is inaccessible in Fig. 1 (upper). The inaccessible
states will certainly have zero visitation probability and make the optimal state distribution different.
Unfortunately, such break of accessibility can happen in various real-world tasks. We discuss more
tasks with distinct optimal state distributions in Appendix B.

3.2 ANCHOR STATE ORIENTED POLICY REGULARIZATION

Motivated by examples in Sec. 3.1, we propose to ignore inaccessible states and focus on states that
are accessible under all possible dynamics. We term the latter as anchor states with the following
formal definition.

Definition 3.1 (Anchor state). In an HiP-MDP (S,A,Θ, T, r, γ, ρ0), state s ∈ S is called an anchor
state if for all θ ∈ Θ, we have d∗Tθ

(s) > 0. We denote S+ ⊆ S as the set of anchor states and
S− := S − S+ as the set of non-anchor states. The anchor state distribution is defined as dπ,+T (s) =
(1 − γ)

∑∞
t=0 γ

tp (st = s, st ∈ S+|π, T) /Z(π), where Z(π) =
∑∞

t=0 γ
tp (st ∈ S+|π, T) is the

normalizing term.

In the lava world example in Fig. 1, anchor states are marked with yellow stars. The stationary state
distribution on non-anchor states dπ,−T (s) can be defined similarly. To learn from the anchor state
distributions, we propose to regularize the training policy to generate a stationary state distribution
that is close to the optimal anchor state distribution d∗,+T (s). With respect to the non-anchor states,
the optimal stationary state distributions tend to be different across different dynamics. So instead of
making policy regularization, we encourage the policy to generate new distributions on non-anchor
states. The resulting constrained policy optimization problem is formulated as follows:

max
π

Eθ,τπ

[∞∑
t=0

γtr (st, at, st+1)

]
s.t. max

T
DKL

(
dπT (·)∥d

∗,+
T0

(·)
)
−DKL

(
dπT (·)∥d

∗,−
T0

(·)
)
< ε,

(1)
where T0 is an arbitrary environment dynamics. Eq. (1) can be transformed into an unconstrained
optimization problem with the following Lagrangian:

L = −Eθ,τπ,T

[∞∑
t=0

γt

(
r(st, at, st+1) + λ log

d∗,+T0
(st)

dπT (st)
− λ log

d∗,−T0
(st)

dπT (st)

)]
− λε

1− γ
, (2)

where λ > 0 is the Lagrangian Multiplier. The only difference between Eq. (2) and standard
RL’s optimization objective is that the logarithms of state probability ratios are augmented to the
environment reward r(st, at, st+1). Therefore, the proposed approach can be easily applied to a wide
range of RL algorithms with reward augmentation, as demonstrated by the empirical results in Sec. 5.

3.3 ESTIMATING DENSITY RATIOS WITH STATE UNCERTAINTY AND VALUE FUNCTION

One remaining challenge in optimizing Eq. (2) is that the density ratios contain intractable station-
ary state distributions and cannot be directly computed. In the following subsection, we discuss
approaches for computing the density ratio d∗,+T0

(st)/d
π
T (st), and d∗,−T0

(st)/d
π
T (st) can be similarly

obtained. Motivated by recent advances in computing likelihood-free importance weights (Nguyen
et al., 2010), we propose a data-based approach for estimating the density ratio. The following
lemma indicates that the density ratio can be obtained through maximizing the discrepancy of two
expectations that can be estimated by sampling from two datasets.

Lemma 3.2 (Nguyen et al. (2010)). Assume that function f has first order derivatives f ′ at
[0,+∞) . The f-divergence between two probabilistic measures P,Q ∈ P(S) is defined as
Df (P∥Q) =

∫
S f(dP (s)/dQ(s))dQ(s). Then for all P,Q ∈ P(S) and ω : S → R+,

Df (P∥Q) ≥ EP [f ′(ω(s))]− EQ [f∗ (f ′(ω(s)))] (∗), where f∗ denotes the convex conjugate of f
and the equality is achieved if and only if ω = dP/dQ.

According to Lem. 3.2, if P is the optimal anchor state distribution d∗,+T0
(st), Q is the stationary state

distribution of policy dπT (st), and the R.H.S. of Eq.(∗) is maximized, dP/dQ is exactly the density

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 The workflow of ASOR on top of ESCP (Luo et al., 2022).

1: Input: Training MDPs {M0, · · · ,Mn−1}; Context encoder ϕ; Policy network π; Value
network V ; Density Ratio Network ω+, ω−; Rollout horizon H; State partition ratio ρ1, ρ2;
Regularization coefficient λ; Replay Buffer R.

2: for step = 0, 1, 2, . . . do
3: Sample MDP Mi from {M0,M1, · · · ,Mn−1} uniformly.
4: for t = 1, 2, . . . ,H do
5: Sample zt from ϕ (z | st, at−1, zt−1) and then sample at from π (a | st, zt), as in ESCP.
6: Rollout and get transition data (st+1, rt, dt+1, st, at, zt) from Mi; Add the data to the

replay buffer R.
7: Sample a batch Dbatch; Add ρ1ρ2|Dbatch| states with top ρ1 portion of high values and ρ2

portion of high proxy visitation counts to D+
P ; Add other states to D+

Q. Add ρ1(1−ρ2)|Dbatch|
states with high values and low visitation counts to D−

P ; Add other states to D−
Q.

8: Train ω+ and ω− to optimize the R.H.S. of Eq.(∗) in Lem. 3.2 with D+
P , D+

Q, and D−
P , D−

Q,
respectively.

9: For one-step transition in Dbatch, update rt with rt + λ logω+(st)− λ logω−(st).
10: Use the updated Dbatch to update ϕ, π, and V .

ratio we would like to obtain. Therefore, the density ratios can be estimated through optimizing
the R.H.S. of Eq.(*) with respect to ω(s), which can be represented by a neural network. Such an
optimization process requires access to expectations on d∗,+T0

(·) and dπT (·) that can be approximated
by learning with data that are likely to be sampled from them.

While dπT (·) can be related to data newly collected in the replay buffer (Liu et al., 2021; Sinha et al.,
2022), sampling from d∗,+T0

(·) is still challenging. We introduce the binary observation state Ot with
Ot = 1 denoting st is the optimal state at timestep t (Levine, 2018). d∗,+T0

(st) can therefore be written
as dπ,+T0

(s|O0:∞), which is the distribution of the states generated by a certain π, given these states
are optimal. With the Bayes’ rule, we have

d∗,+T0
(st)

dπT (s)
=

dπ,+T0
(s|O0:∞)

dπT (s)
=

p(O0:∞|s, π, T0)d
π,+
T0

(s)

p(O0:∞|π, T0)
· 1

dπT (s)

=
p(O0:∞|s, π, T0)d

π
T (s)

p(O0:∞|π, T0)
· 1

dπT (s)
·
dπ,+T0

(s)

dπT (s)
=

d∗T0
(st)

dπT (s)
·
dπ,+T0

(s)

dπT (s)
,

(3)

where the last equation is also obtained with the Bayes’ rule. According to Xue et al. (2023a), state
s will be more likely to be sampled from d∗T0

(·) than from dπT (·) if it has a higher state value V (s)

than average. Meanwhile, dπ,+T0
(s) will be higher if s falls in the set of anchor states S+ and is most

likely to be visited by all optimal policies under dynamics shift. Therefore, any of the pseudo-count
approaches of visitation frequency can be used to measure whether s is likely to be sampled from
dπ,+T0

(s). In simulated environments with small observation space (Sec. 5.1, 5.2, 5.3), disagreement in
next state predictions of ensembled environment models has shown to be a good proxy of visitation
frequency (Yu et al., 2020). In large-scale real-world tasks (Sec. 5.4), next state predictions can be
unreliable, so we adopt Random Network Distillation (RND) (Burda et al., 2019) and use the error of
predicting a random mapping as the proxy visitation measure.

3.4 PRACTICAL ALGORITHM

Summarizing previous derivations, we obtain a practical reward augmentation algorithm termed
as ASOR (Anchor State Oriented Regularization) for policy optimization under dynamics shift.
We select the ESCP (Luo et al., 2022) algorithm, which is one of the SOTA algorithms in online
cross-dynamics policy training, as the base algorithm. The detailed procedure of ESCP+ASOR is
shown in Alg. 1. After the environment rollout and obtaining the replay buffer (line 6), we sample a
batch of data from the buffer, obtain a portion of ρ1ρ2 states with higher values and proxy visitation
counts, and add them to the dataset D+

P . Other states are added to D+
Q. A portion of ρ1(1 − ρ2)

states with higher values and lower proxy visitation counts are added to the dataset D−
P . Other states

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

are added to D−
Q (line 7). We set ρ1 = ρ2 = 0.5 in offline experiments with medium-expert level

of data. ρ1 = ρ2 = 0.3 is set in all other experiments. Then density ratio networks ω+ and ω−

are trained (line 8). While there are multiple choices of f in Lem. 3.2 (Nowozin et al., 2016), we
set it to f(u) = u log u − (u + 1) log(u + 1) in accordance with GAN’s setup (Goodfellow et al.,
2014) for convenient implementation. Density ratio networks estimate the logarithm of the state
density ratios λ logω+(s) − λ logω−(s), which are added to the reward rt (line 9). λ is regarded
as a hyperparameter with values 0.1 or 0.3. The effect of ρ1, ρ2, and λ is investigated in Sec. 5.2.
The procedure of the offline algorithm MAPLE (Lee et al., 2020)+ASOR is similar to ESCP+ASOR,
where the datasets D+

P , D+
Q, D−

P , D−
Q are built with data from the offline dataset, instead of the replay

buffer.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical justifications for the policy regularization approach in Sec. 3.
The notations are introduced in Sec. 2.1 and proofs can be found in Appendix A.2. Thm. 4.2 shows
that regularized with the optimal anchor state distribution, the learning policy can obtain a stronger
performance lower-bound than previous analysis (Xu et al., 2023; Yu et al., 2020). The theorem also
features a weaker assumption on MDP accessibility than that in SRPO (Xue et al., 2023a). Moreover,
Thm. 4.4 provides finite-sample analysis for the policy regularization. We start with the definition
of M -Rs accessible MDPs, which formally characterizes the “similar structure” required by MDPs
with different dynamics to have closely related optimal state distribution.
Definition 4.1. Consider MDPs M1 = (S,A, T1, r, γ, ρ0) and M2 = (S,A, T2, r, γ, ρ0). If
for all k ∈ R+, states s0, s1, · · · , sk ∈ S+, and actions a0, a1, · · · , ak−1 ∈ A such that∏k

n=1 T1(sn|sn−1, an−1) > 0, there exists N ∈ R+, states s′0, s
′
1, · · · , s′N+k−1, and actions

a′0, a
′
1, · · · , a′N+k−2 such that N ⩽ M , s0 = s′0, sk = s′N+k−1,

∏N+k−1
n=1 T2(s

′
n|s′n−1, a

′
n−1) > 0,

and
∣∣∣∑N+k−2

n=1 γn−1r(s′n, a
′
n, s

′
n+1)−

∑k−1
n=1 γ

n−1r(sn, an, sn+1) + (1− γN−1)V ∗
T1
(s0)

∣∣∣ ⩽ Rs,
M2 is referred to as M -Rs accessible from M1.

In this definition, M is the number of extra steps required in M2 to reach the state sk from s0,
compared with in M1. Rs constrains the reward discrepancy in these extra steps. One special
case is when M2 and M1 are 1-0 accessible from each other, all states between (s0, sk) will have
the same state accessibility. It is identical to the property of “homomorphous MDPs” (Xue et al.,
2023a), based on which a theorem about identical optimal state distribution can be proved. Most of
the previous approaches in IfO is built upon such assumption of 1-0-accessible MDPs, which is an
over-simplification in many tasks. For example, the Minigrid environment in Sec. 3.1 and Sec. 5.1
contains 3-0.03 accessible MDPs. Instead, the following theorem is based on the milder assumption
on M -Rs accessible MDPs, where we show that the learning policy π̂ will have a performance
lower-bound given a bounded KL-divergence with the optimal anchor state distribution.
Theorem 4.2. Consider the MDP M1 = (S,A, T1, r, γ, ρ0) which is M -Rs accessible from the
MDP M2 = (S,A, T2, r, γ, ρ0). For all policy π̂, if there exists one certain dynamics T0 such that
max
T

DKL(d
π̂
T (·)∥d

∗,+
T0

(·)) ⩽ ε, we have

η(π̂) ⩾ max
T

η(π∗
T)−

2Rs + 6λ+
√
2Rmax

√
ε

1− γ
. (4)

Previous approaches (Xu et al., 2023; Janner et al., 2019; Xue et al., 2023c) also provide policy
performance lower-bounds, but these bounds have quadratic dependencies on the effective planning
horizon 1

1−γ . By anchor state-based policy regularization, we obtain a tighter discrepancy bound
with linear dependency on the effective horizon.

The following theorem analyses the performance lower-bound of π̂ if it is regularized with finite
samples from the optimal anchor state distribution. Due to the poor generalization ability of KL
distance (Arora et al., 2017; Xu et al., 2020), we characterize the regularization error in Eq. (1) with
the network distance (Arora et al., 2017).
Definition 4.3 (Neural network distance (Arora et al., 2017)). For a class of neural networks P , the
neural network distance between two state distributions, µ and ν, is defined as

dP(µ, ν) = sup
P∈P

{Es∼µ[P (s)]− Es∼ν [P (s)]} . (5)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000
(a) Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

Re
wa

rd

Training Performance

PPO PPO+SRPO SOIL GAIfO PPO+ASOR (Ours)

2 3 4 5
(b) Lava Row

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e

Re
wa

rd

Reward with Different Lava Rows

1 2 3 4 5
(c) Row

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Un
ce

rta
in

ty

Estimated Uncertainty on Different Rows

Column 2 Column 6

Figure 2: Results in the Minigrid environment. (a) Performance comparison between PPO+ASOR
and baseline algorithms. (b) The average reward on the environment with different position of the
second lava row. PPO and PPO+SRPO has very low rewards when the bottom lava is on row 5; (c)
The state uncertainty estimated by ASOR on different rows of the lava environment.

For better characterization of the reward function with the network set P , we introduce the linear
span of P (Xu et al., 2020) as span(P) = {c0 +

∑n
i=1 ciPi : c0, ci ∈ R, Pi ∈ P, n ∈ N}, leading

to the following theorem.
Theorem 4.4. Consider the MDP M1 = (S,A, T1, r, γ, ρ0) which is M -Rs accessible from the
MDP M2 = (S,A, T2, r, γ, ρ0) and the network set P bounded by ∆, i.e., |P (s)| ⩽ ∆. Given
{s(i)}mi=1 sampled from d+,∗

T0
, if the reward function rπ̂,T (s) = Ea∼π̂,s′∼T r(s, a, s

′) lies in the linear
span of P , for policy π̂ regularized by d̂+,∗

T0
with the constraint max

T
dP(d̂

π̂
T , d̂

+,∗
T0

) < εP , we have

η(π̂) ⩾ max
T

ηT (π
∗
T)−

2Rs + 8λ

1− γ
− 2∥r∥P

1− γ

(
R̂(m)

d+,∗
T2

(P) + R̂(m)

dπ̂
T1

(P) + 6∆

√
log(2/δ)

m
+

εP
2

)
(6)

with probability at least 1− δ, where dP is the network distance (Arora et al., 2017), d̂π̂T and d̂+,∗
T0

are the empirical version of distributions dπ̂T and d+,∗
T0

on {s(i)}mi=1, R̂ is the empirical Rademacher
complexity, and ∥r∥P = inf {

∑n
i=1 |ci| : r =

∑n
i=1 ciPi + c0,∀n ∈ N, c0, ci ∈ R, Pi ∈ P}.

Thm. 4.4 shows that with finite samples, the anchor-based policy regularization still leads to a tight
performance lower-bound with linear horizon dependency. The lower-bound is stronger than the
sample complexity analysis of Behavior Cloning with quadratic horizon dependency (Xu et al., 2020)
and has the same horizon dependency with GAIL (Ho & Ermon, 2016). Meanwhile, ASOR has a
more stable regularization process than GAIL due to the non-adversarial way of generating DP and
DQ, as demonstrated in Fig. 4 (right).

5 EXPERIMENTS

In this section, we conduct experiments to investigate the following questions: (1) Can ASOR
efficiently learn from data with dynamics shift and outperform current state-of-the-art algorithms? (2)
Is ASOR general enough when applied to different styles of training environments, various sources of
environment dynamics shift, and when combined with distinct algorithm setup? (3) How does each
component of ASOR (e.g., the reward augmentation and the pseudo-count of state visitations) and
its hyperparameters perform in practice? To answer questions (1)(2), we construct cross-dynamics
training environments based on tasks including Minigrid (Chevalier-Boisvert et al., 2023), D4RL (Fu
et al., 2020), MuJoCo (Todorov et al., 2012), and a Fall Guys-like Battle Royal Game. Dynamics
shift in these environments comes from changes in navigation maps, evolvements of environment
parameters, and different layouts of obstacles. To train RL policies in these environments, ASOR
is implemented on top of algorithms including PPO (Schulman et al., 2017), MAPLE (Chen et al.,
2021), and ESCP (Luo et al., 2022), which are all state-of-the-art approaches in the corresponding
field. To answer question (3), we visualize how the density ratio estimator ω+, ω− and the pseudo
state count behave in different environments. Moreover, ablation studies are conducted to examine
the role of the density ratio estimator and the influence of hyperparameters. Detailed descriptions of
baseline algorithms are in Appendix C.1.

5.1 RESULTS IN MINIGRID ENVIRONMENT

For experiments in the Minigrid environment (Chevalier-Boisvert et al., 2023), the row number of
the bottom lava is randomly sampled from {2, 3, 4, 5}, leading to dynamics shift. By including

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Results of offline experiments on MuJoCo tasks. Numbers before ± are scores normalized
according to D4RL (Fu et al., 2020) and averaged across trials with four different seeds. Numbers
after ± are normalized standard deviations. ME, M, MR and R correspond to the medium-expert,
expert, medium-replay and random dataset, respectively.

BCO SOIL CQL MOPO MAPLE MAPLE
+DARA

MAPLE
+SRPO

MAPLE
+ASOR

Walker2d-ME 0.25±0.04 0.14±0.08 0.63±0.13 0.06±0.05 0.14±0.08 0.31±0.02 0.22±0.07 0.29±0.12
Walker2d-M 0.17±0.07 0.16±0.01 0.75±0.02 0.15±0.22 0.41±0.19 0.46±0.10 0.32±0.17 0.49±0.04
Walker2d-MR 0.01±0.00 0.04±0.01 0.06±0.00 -0.00±0.00 0.13±0.01 0.12±0.00 0.13±0.01 0.14±0.01
Walker2d-R 0.00±0.00 0.00±0.00 0.00±0.00 -0.00±0.00 0.22±0.00 0.16±0.01 0.22±0.00 0.22±0.00
Hopper-ME 0.08±0.02 0.01±0.00 0.20±0.07 0.01±0.00 0.45±0.07 0.49±0.01 0.43±0.06 0.51±0.06
Hopper-M 0.00±0.00 0.08±0.00 0.29±0.06 0.01±0.00 0.38±0.09 0.26±0.02 0.48±0.04 0.71±0.14
Hopper-MR 0.00±0.00 0.00±0.00 0.08±0.00 0.01±0.01 0.55±0.17 0.75±0.10 0.73±0.16 0.76±0.08
Hopper-R 0.00±0.00 0.00±0.00 0.10±0.00 0.01±0.00 0.12±0.00 0.12±0.00 0.25±0.08 0.32±0.00
HalfCheetah-ME 0.43±0.00 0.00±0.00 0.03±0.04 -0.03±0.00 0.53±0.07 0.39±0.00 0.58±0.04 0.61±0.02
HalfCheetah-M 0.14±0.02 0.39±0.00 0.42±0.01 0.36±0.27 0.61±0.01 0.66±0.03 0.62±0.00 0.62±0.01
HalfCheetah-MR 0.16±0.01 0.25±0.00 0.46±0.00 -0.03±0.00 0.52±0.01 0.53±0.02 0.54±0.00 0.56±0.01
HalfCheetah-R 0.14±0.01 0.35±0.01 -0.01±0.01 -0.03±0.00 0.20±0.02 0.19±0.01 0.22±0.00 0.21±0.00

Average 0.11 0.11 0.25 0.04 0.36 0.37 0.40 0.45

Table 2: Results of ablation studies in Offline MuJoCo tasks. The scores are averaged on each
environment with different expert levels.

Fixed
λ = 0.1

Fixed
λ = 0.3

Random
partition

Fixed
ρ1 = 0

Fixed
ρ2 = 0

Fixed
ρ1,ρ2 = 0.5

Fixed
ρ1,ρ2 = 0.3

MAPLE
+ASOR

Walker2d 0.22 0.25 0.26 0.22 0.29 0.30 0.26 0.28
Hopper 0.31 0.54 0.30 0.47 0.38 0.46 0.54 0.58
HalfCheetah 0.48 0.49 0.47 0.49 0.50 0.49 0.50 0.50

Average 0.34 0.43 0.34 0.40 0.39 0.42 0.43 0.45

lava indicator as part of the state input, the policy is fully aware of environment dynamics changes
and the need of context encoders (Luo et al., 2022; Lee et al., 2020) is excluded. The categorical
action space includes moving towards four directions. The reward function for each environment
step is -0.02 and reaching the green goal grid will lead to an additional reward of 1. The episode
terminates when the red lava or the green goal grid is reached. For baseline algorithms we select
online RL algorithms PPO (Schulman et al., 2017) and PPO+SRPO (Xue et al., 2023a), as well as
IfO algorithms SOIL (Gangwani & Peng, 2020) and GAIfO (Torabi et al., 2018b).

We demonstrate the experiment results in Fig. 2 (a). Our ASOR algorithm can increase the perfor-
mance of PPO by a large margin, while SRPO can only make little improvement. This is because the
optimal state distribution in different lava world environments will not be the same. SRPO will still
blindly consider all relevant states for policy regularization, leading to suboptimal policies. Fig. 2
(b) demonstrates the average reward with each possible position of the bottom lava block. PPO and
PPO+SRPO have low performance when the bottom lava block is at Row 5. They mistakenly regard
grids at (5,4) and (5,5) as optimal, but ASOR will recognize these grids as non-anchor states. We also
demonstrate in Fig. 2 (c) the disagreement in next state predictions used to compute pseudo count.
States far from the starting point have higher prediction disagreements and lower pseudo counts.

5.2 RESULTS IN OFFLINE RL BENCHMARKS

For offline RL benchmarks, we collect the static dataset from environments with three different
environment dynamics in the format of D4RL (Fu et al., 2020). Specifically, data from the original
MuJoCo environments, environments with 3 times larger body mass, and environments with 10 times
higher medium density are included. For baseline algorithms, we inlude IfO algorithms BCO (Torabi
et al., 2018a) and SOIL (Radosavovic et al., 2021), standard offline RL algorithms CQL (Kumar et al.,
2020) and MOPO (Yu et al., 2020), offline cross-domain policy transfer algorithms MAPLE (Chen
et al., 2021), MAPLE+DARA (Liu et al., 2022), and MAPLE+SRPO (Xue et al., 2023a).

The comparative results are exhibited in Tab. 1. IfO approaches have the worst performance be-
cause they ignore the reward information (BCO) or cannot safely exploit the offline dataset (SOIL).
Without the ability of cross-domain policy learning, CQL and MOPO cannot learn from data
with dynamics shift and show inferior performances. Cross-domain policy transfer algorithms
MAPLE, MAPLE+DARA, and MAPLE+SRPO show reasonable performance enhancement, while

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
3000

4000

5000

6000

7000

8000

9000
HalfCheetah

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000
Walker2d

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000
Ant

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000
Episodes

3000

4000

5000

6000

7000

8000

9000
HalfCheetah-NS

0 200 400 600 800 1000
Episodes

0

1000

2000

3000

4000

5000

6000
Walker2d-NS

0 200 400 600 800 1000
Episodes

0

1000

2000

3000

4000

5000
Ant-NS

0 200 400 600 800 1000
Episodes

0

100

200

300

400

500
MetaDrive-NS

SAC GARAT CaDM OSI ESCP ESCP+SRPO ESCP+ASOR

Figure 3: Results of online experiments on MuJoCo and MetaDrive tasks. “NS” refers to tasks with
non-stationary environment dynamics.

Augmented Reward 0.29 3.11 -88.95 -336.37

Environment Reward 4.06 4.05 4.51 4.73

Figure 4: Left: Comparisons of the logarithm of density ratio, i.e., the augmented reward, and the
environment reward on different states in the Walker-2d environment. The augmented reward can
better reflect the state optimality. Right: Curves for average extra loss and augmented reward in the
fall-guys like game environment.

our MAPLE+ASOR algorithm leads to the highest performance. This highlights the effectiveness of
policy regularization on anchor states. We discuss the conceptual advantages of ASOR compared
with DARA and SRPO in Appendix A.4.

The results of ablation studies are shown in Tab. 2. They show that a larger value of reward
augmentation coefficient λ can give rise to performance increase. Meanwhile, using fixed values of λ,
ρ1 and ρ2 will not lead to a large drop of performance scores, so ASOR is robust to hyperparameter
changes. ASOR’s will have degraded performance if training datasets DP and DQ are improperly
constructed, e.g., with random data partition, or without considering state values and visitation counts,
i.e., with fixed ρ1 = 0 or fixed ρ2 = 0.

5.3 RESULTS IN ONLINE CONTINUOUS CONTROL TASKS

In online continuous control tasks, we explore other dimensions of dynamics shift, namely environ-
ment non-stationary and the continuous change of environment parameters. Such tasks are far more
complicated than offline tasks with 3 different dynamics, but are within the capability of current
approaches thanks to the existence of online interactive training environments. We consider the
HalfCheetah, Walker2d, and Ant environments in the MuJoCo simulator (Todorov et al., 2012)
and the autonomous driving environment in the MetaDrive simulator (Li et al., 2023). Sources of
dynamics change include wind, joint damping, and traffic densities. For baselines we include the
IfO algorithm GARAT (Desai et al., 2020), standard online RL algorithm SAC (Haarnoja et al.,
2018), online cross-domain policy transfer algorithm OSI (Yu et al., 2017), ESCP (Luo et al., 2022),
CaDM (Lee et al., 2020), and SRPO (Xue et al., 2023a).

Comparative results in online continuous control tasks are shown in Fig. 3, where our ESCP+ASOR
algorithm has the best performance in all environments. Specifically, it only makes marginal improve-
ments in the HalfCheetah environment, in contrast to large enhancement in other environments. This
is because the agent will not “fall over” in the HalfCheetah environment, and the state accessibility
will not change a lot under dynamics shift, undermining the effect of the anchor state-based policy
regularization. We also compare in Fig. 4 (left) the augmented reward with the environment reward
on different states in Walker-2d. On states where the agent is about to fall over, the augmented
reward drops significantly while the environment reward does not change much, demonstrating the
effectiveness of the reward augmentation.

5.4 RESULTS IN A LARGE-SCALE FALL GUYS-LIKE BATTLE ROYAL GAME ENVIRONMENT

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Experiment results in the fall guys-like game environment. Metrics with the up arrow (↑) are
expected to have larger values and vice versa. Metrics with (∼) have no specific tendencies.

Total Reward
(↑)

Goal Reward
(↑)

Success Rate
(↑)

Trapped Rate
(↓)

Unnecessary
Jump Rate (↓)

Distance from
Cliff (∼)

Policy
Entropy (∼)

PPO 0.329±0.308 1.154±0.085 0.361±0.009 0.012±0.009 0.064±0.003 0.152±0.025 5.725±0.185
PPO+SRPO 0.337±0.257 1.513±0.076 0.376±0.006 0.038±0.015 0.040±0.003 0.148±0.018 5.859±0.098
PPO+ASOR 0.554±0.336 1.781±0.053 0.387±0.005 0.005±0.005 0.029±0.003 0.143±0.021 6.358±0.122

(a) Vertical and low (b) Vertical and high (b) Upper left and high

Figure 5: Demonstrations of dynamics shift caused by differ-
ent trampoline effect. Colors and textures are only for visual
enhancement and are not part of the agent’s observations.

In the large-scale fall guys-like
game environment, we focus on
highly dynamic and competitive
race scenarios, characterized by
a myriad of ever-changing obsta-
cles, shifting floor layouts, and
functional items. The elements
within the game exhibit both func-
tional and attribute changes, result-
ing in dynamics shift and evolving
state accessibility. As shown in
Fig. 5, the effects of trampolines
(e.g., height and orientation) vary across different maps and the agent’s interaction with the trampo-
line will therefore result in different environment transitions depending on the specific configuration.
The resulting dynamics shift has high stochasticity and cannot be effectively modelled by context
encoder-based algorithms (Luo et al., 2022; Lee et al., 2020). We train the agent on 10 distinct
maps, each presenting unique challenges and configurations. The training step is set to 6M. Metrics
except policy entropy were averaged over the final 1M steps and the policy entropy is averaged in
the initial 1M steps. More experiment details are listed in Appendix C.2, including additional map
demonstrations, MDP setups, and the network structure.

As demonstrated in Tab. 3, PPO+ASOR achieves the highest scores in all five performance-related
metrics. To be specific, the high total reward, unweighed goal reward, and success rate demonstrate
the overall effectiveness of ASOR when applied to complex large-scale tasks. Low trapped rate,
small distance from cliff, and high policy entropy demonstrate the strong exploration ability of
ASOR since it is better at getting rid of low-reward regions and has higher policy stochasticity. The
low unnecessary jump rate demonstrates the effectiveness of policy regularization only on anchor
states. Jumping states may appear in the optimal trajectories in maps with diverse altitudes, but
are unnecessary and hinder the fast goal reaching in other maps. Jumping states are regarded as
non-anchor states in ASOR, where policy optimization will not be misled. Fig. 4 (right) shows the
curve of the augmented reward and the extra loss, including the density ratio training loss and the
RND training loss. The loss curve drops smoothly and the average augmented reward remains stable,
which means that the density ratio estimation networks are easy to train and has stable performance.

6 CONCLUSION

In this paper, we focus on the problem of efficient policy optimization using data with dynamics
shift. We demonstrate that existing IfO approaches are built upon the assumption of identical optimal
state distribution, which can be unreliable because some states are no longer accessible when the
environment dynamics changes. We remove this assumption and make policy regularization only on
anchor states which can be reached by all optimal policies. By formally characterizing the difference
of state accessibility under dynamics shift, we show that the anchor state-based regularization
approach provides strong lower-bound performance guarantees for efficient policy optimization in the
case of both perfect regularization and regularization on finite samples. In practice, the regularized
policy optimization problem is transformed to the ASOR algorithm that can serve as an add-on reward
augmentation module to existing RL approaches. Extensive experiments across various online and
offline RL benchmarks o indicate ASOR can be effectively integrated with several state-of-the-art
cross-domain policy transfer algorithms, substantially enhancing their performance.

Limitations This paper focuses on the setting of HiP-MDP with evolving environment dynamics
and a static reward function. The resulting ASOR algorithm will not be applicable to tasks with
multiple reward functions. Meanwhile, the theoretical results will be weaker on some adversarial
HiP-MDPs with large Rs. Details will be discussed in Appendix A.3.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
ICML, 2017.

Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, and Yi Zhang. Generalization and equilibrium
in generative adversarial nets (GANs). In ICML, 2017.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network
distillation. In ICLR, 2019.

Xiong-Hui Chen, Yang Yu, Qingyang Li, Fan-Ming Luo, Zhiwei (Tony) Qin, Wenjie Shang, and
Jieping Ye. Offline model-based adaptable policy learning. In NeurIPS, 2021.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831,
2023.

Siddharth Desai, Ishan Durugkar, Haresh Karnan, Garrett Warnell, Josiah Hanna, and Peter Stone.
An imitation from observation approach to transfer learning with dynamics mismatch. In NeurIPS,
2020.

Finale Doshi-Velez and George Dimitri Konidaris. Hidden parameter markov decision processes: A
semiparametric regression approach for discovering latent task parametrizations. In IJCAI, 2016.

Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey Levine, and Ruslan Salakhutdinov.
Off-dynamics reinforcement learning: Training for transfer with domain classifiers. In ICLR, 2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. CoRR, abs/2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In ICML, 2019.

Tanmay Gangwani and Jian Peng. State-only imitation with transition dynamics mismatch. In ICLR,
2020.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. CoRR, abs/1406.2661,
2014.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NIPS, 2016.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In NeurIPS, 2019.

Shengyi Jiang, Jing-Cheng Pang, and Yang Yu. Offline imitation learning with a misspecified
simulator. In NeurIPS, 2020.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. In NeurIPS, 2020.

Kimin Lee, Younggyo Seo, Seunghyun Lee, Honglak Lee, and Jinwoo Shin. Context-aware dynamics
model for generalization in model-based reinforcement learning. In ICML, 2020.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
CoRR, abs/1805.00909, 2018.

Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. Metadrive:
Composing diverse driving scenarios for generalizable reinforcement learning. IEEE Trans. Pattern
Anal. Mach. Intell., 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement
learning. In ICML, 2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In ICLR,
2016.

Fangchen Liu, Zhan Ling, Tongzhou Mu, and Hao Su. State alignment-based imitation learning. In
ICLR, 2020.

Jinxin Liu, Hongyin Zhang, and Donglin Wang. DARA: Dynamics-aware reward augmentation in
offline reinforcement learning. In ICLR, 2022.

Xu-Hui Liu, Zhenghai Xue, Jing-Cheng Pang, Shengyi Jiang, Feng Xu, and Yang Yu. Regret
minimization experience replay in off-policy reinforcement learning. In NeurIPS, 2021.

Fan-Ming Luo, Shengyi Jiang, Yang Yu, Zongzhang Zhang, and Yi-Feng Zhang. Adapt to environ-
ment sudden changes by learning a context sensitive policy. In AAAI, 2022.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. DualDICE: Behavior-agnostic estimation of
discounted stationary distribution corrections. In NeurIPS, 2019.

XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. Estimating divergence functionals
and the likelihood ratio by convex risk minimization. IEEE Trans. Inf. Theory, 56(11):5847–5861,
2010.

Haoyi Niu, Shubham Sharma, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming Hu, and Xianyuan Zhan.
When to trust your simulator: Dynamics-aware hybrid offline-and-online reinforcement learning.
CoRR, abs/2206.13464, 2022.

Haoyi Niu, Tianying Ji, Bingqi Liu, Haocheng Zhao, Xiangyu Zhu, Jianying Zheng, Pengfei Huang,
Guyue Zhou, Jianming Hu, and Xianyuan Zhan. H2O+: an improved framework for hybrid
offline-and-online RL with dynamics gaps. CoRR, abs/2309.12716, 2023.

Haoyi Niu, Jianming Hu, Guyue Zhou, and Xianyuan Zhan. A comprehensive survey of cross-domain
policy transfer for embodied agents. CoRR, abs/2402.04580, 2024.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers
using variational divergence minimization. In NIPS, 2016.

Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation learning for
dexterous manipulation. In IROS, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Samarth Sinha, Jiaming Song, Animesh Garg, and Stefano Ermon. Experience replay with likelihood-
free importance weights. In L4DC, 2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. IEEE Trans.
Neural Networks, 1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IROS, 2012.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In IJCAI,
2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
CoRR, abs/1807.06158, 2018b.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
CoRR, abs/1911.11361, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kang Xu, Chenjia Bai, Xiaoteng Ma, Dong Wang, Bin Zhao, Zhen Wang, Xuelong Li, and Wei Li.
Cross-domain policy adaptation via value-guided data filtering. In NeurIPS, 2023.

Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. In NeurIPS,
2020.

Wanqi Xue, Qingpeng Cai, Zhenghai Xue, Shuo Sun, Shuchang Liu, Dong Zheng, Peng Jiang,
and Bo An. PrefRec: Preference-based recommender systems for reinforcing long-term user
engagement. CoRR, abs/2212.02779, 2022.

Zhenghai Xue, Qingpeng Cai, Shuchang Liu, Dong Zheng, Peng Jiang, Kun Gai, and Bo An. State
regularized policy optimization on data with dynamics shift. In NeurIPS, 2023a.

Zhenghai Xue, Qingpeng Cai, Tianyou Zuo, Bin Yang, Lantao Hu, Peng Jiang, and Bo An.
AdaRec: Adaptive sequential recommendation for reinforcing long-term user engagement. CoRR,
abs/2310.03984, 2023b.

Zhenghai Xue, Zhenghao Peng, Quanyi Li, Zhihan Liu, and Bolei Zhou. Guarded policy optimization
with imperfect online demonstrations. In ICLR, 2023c.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y. Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. MOPO: Model-based offline policy optimization. In NeurIPS, 2020.

Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. Preparing for the unknown: Learning a universal
policy with online system identification. In RSS, 2017.

Luisa M. Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. VariBAD: A very good method for bayes-adaptive deep RL via meta-
learning. In ICLR, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL DERIVATIONS AND PROOFS

A.1 DERIVATIONS OF THE LAGRANGIAN

For expression convenience, we denote dπT (·) with dπ(·), d∗,+T0
(·) with δ+, and d∗,−T0

(·) with δ−. We
also omit the maximization over T in Eq. (1) as it can be obtained by following all policy constrains
in different dynamics. We start from the optimization problem

max
π

Est,at,st+1∼τπ

[∞∑
t=0

γtr (st, at, st+1)

]
s.t. DKL

(
dπ(·)∥δ+(·)

)
−DKL

(
dπ(·)∥δ−(·)

)
< ε.

(7)
The KL-Divergence term can be transformed as:

DKL

(
dπ(·)∥δ+(·)

)
= −Es∼dπ(s)

[
log δ+(s)− log dπ(s)

]
= −

∫
dπ(s)

[
log δ+(s)− log dπ(s)

]
ds

= −
∫

(1− γ)

∞∑
t=0

γtp (st = s)
[
log δ+(s)− log dπ(s)

]
ds

= −(1− γ)

∞∑
t=0

∫
γtp (st = s)

[
log δ+(s)− log dπ(s)

]
ds

= −(1− γ)

∞∑
t=0

Est∼τπ

[
γt
(
log δ+(st)− log dπ(st)

)]
= −(1− γ)Est∼τπ

∞∑
t=0

γt
(
log δ+(st)− log dπ(st)

)
.

(8)

So the constraint can be written as

−Est∼τπ

∞∑
t=0

γt · log δ+(st)

dπ(st)
+ Est∼τπ

∞∑
t=0

γt · log δ−(st)

dπ(st)
− ε

1− γ
< 0. (9)

The optimization problem can be written as the following standard form

min
π

Est,at,st+1∼τπ

∞∑
t=0

−γtr (st, at, st+1)

s.t. − Est∼τπ

∞∑
t=0

γt · log δ+(st)

dπ(st)
+ Est∼τπ

∞∑
t=0

γt · log δ−(st)

dπ(st)
− ε

1− γ
< 0.

(10)

So the Lagrangian L is

L = −Est,at,st+1∼τπ

[∞∑
t=0

γt

(
r(st, at, st+1) + λ log

δ+(st)

dπ(st)
− λ log

δ−(st)

dπ(st)

)]
− λε

1− γ
. (11)

A.2 PROOFS OF THEOREMS IN SEC. 4

Lemma A.1 (Value Discrepancy). Considering MDPs M1 = (S,A, T1, r, γ, ρ0) and M2 =
(S,A, T2, r, γ, ρ0) which are M -Rs accessible from each other, for all s ∈ S we have

|V ∗
T1
(s)− V ∗

T2
(s)| ⩽ Rs + 2λ

1− γ
, (12)

where λ is the action coefficient in the reward function. Detailed definition are in Sec. 2.1.

Proof. Without the loss of generality, we consider the state s with V ∗
T1
(s) ⩾ V ∗

T2
(s). Under the

optimal policy π∗
1(s), the next state of s in M1 will be s′ = T (s, a∗). As M2 is M -Rs accessible

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

from M1, there exists N ⩽ M such that in M2, s′ can be reached from s with action sequence
a1, a2, · · · , aN . We then borrow the idea of iteratively computing |V ∗

T1
(s) − V ∗

T2
(s)| from Xue et

al. (Xue et al., 2023a). According to the optimistic Bellman equation

V ∗
T (s) = max

a
r(s, a, s′) + γV ∗

T (T (s, a)), (13)

we have∣∣V ∗
T1
(s)− V ∗

T2
(s)
∣∣

= V ∗
T1
(s)− V ∗

T2
(s)

⩽ r(s, a∗, s′) + γV ∗
T1
(s′)−

N−1∑
i=0

γir(si, ai, si+1)− γNV ∗
T2
(s′)

(s0
.
= s, sN

.
= s′ for brevity)

= r(s, a∗, s′)− γN−1r(sN−1, aN−1, s
′) + γ(1− γN−1)V ∗

T2
(s′)

+

N−2∑
n=0

γnr(sn, an, sn+1) + γ[V ∗
T1
(s′)− V ∗

T2
(s′)]

⩽ (1− γN−1)(r(s, a∗, s′) + γV ∗
T2
(s′)) + 2λ+

N−2∑
n=0

γnr(sn, an, sn+1) + γ[V ∗
T1
(s′)− V ∗

T2
(s′)]

⩽ (1− γN−1)(r(s, a∗, s′) + γV ∗
T1
(s′)) + 2λ+

N−2∑
n=0

γnr(sn, an, sn+1) + γ[V ∗
T1
(s′)− V ∗

T2
(s′)]

⩽ Rs + 2λ+ γ[V ∗
T1
(s′)− V ∗

T2
(s′)].

(14)
Iteratively computing

∣∣V ∗
T1
(s)− V ∗

T2
(s)
∣∣, we have∣∣V ∗

T1
(s′)− V ∗

T2
(s′)
∣∣ ⩽ Rs + 2λ

1− γ
. (15)

Theorem A.2 (Thm. 4.2 in the main paper.). Consider the MDP M1 = (S,A, T1, r, γ, ρ0) which
is M -Rs accessible from the MDP M2 = (S,A, T2, r, γ, ρ0). For all policy π̂, if there exists one
certain dynamics T0 such that max

T
DKL(d

π̂
T (·)∥d

∗,+
T0

(·)) ⩽ ε, we have

η(π̂) ⩾ max
T

η(π∗
T)−

2Rs + 6λ+
√
2Rmax

√
ε

1− γ
. (16)

Proof. |ηT1
(π∗

T1
)− ηT2

(π∗
T2
)| can be bounded with Thm. A.1:

|ηT1
(π∗

T1
)− ηT2

(π∗
T2
)| =

∣∣Es∈ρ0
V ∗
T1
(s)− Es∈ρ0

V ∗
T2
(s)
∣∣ ⩽ Rs + 2λ

1− γ
. (17)

With a slight abuse of notation, we define the transition distribution dπT (s, a, s
′) =

dπT (s)π(a|s)T (s′|s, a) and the anchor-state transition distribution dπ,+T2
(s, a, s′) =

dπ,+T (s)π̂(a|s)T (s′|s, a). Consider π̃ such that dπ̃T (s) = d∗,+T0
(s) for all s ∈ S. The accumulated

return of policy π̃ under transition T1 can be written as ηT1(π̂) = (1− γ)−1Es,a,s′∼dπ̃
T1

[r(s, a, s′)].
We also consider the accumulated return of the optimal policy under transition T2 including only
anchor states: η+T2

(π∗,+
T2

) = (1 − γ)−1Es,a,s′∼d∗,+
T2

[r(s, a, s′)], where π∗,+
T2

is the optimal policy
making transitions among anchor states. Consider the Lipschitz property of the reward function:

|r(s, a1, s′)− r(s, a2, s
′)| ⩽ λ∥a1 − a2∥1. (18)

Taking expectation w.r.t. dπ̃T1
(·) on both sides, we get

Es∼dπ̃
T1
|r(s, a1, s′)− r(s, a2, s

′)| ⩽ Es∼dπ̃
T1
λ∥a1 − a2∥1. (19)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Letting µ(A1, A2|s) be any joint distribution with marginals π̂ and π∗,+
T2

conditioned on s ∈ S+.
Taking expectation w.r.t. µ on both sides, we get∣∣∣Edπ̂

T1

r(s, a, s′)− Ed∗,+
T2

r(s, a, s′)
∣∣∣ ⩽ Es∼d∗

T ′Ea1,a2∼µ|r(s, a1, s′)− r(s, a2, s
′)|

⩽ λEs∼dπ̂
T1

Eµ∥a1 − a2∥1
⩽ max

s
λEµ∥a1 − a2∥1

⩽ 2λ

(20)

According to the definitions of ηT1(π̃) and η+T2
(π+,∗

T2
), the L.H.S. of Eq. (20) is exactly the difference

of the two accumulated returns. Therefore, we get∣∣ηT1
(π̃)− η+T2

(π∗,+
T2

)
∣∣ ⩽ 2λ

1− γ
. (21)

Then we will compute the discrepancy between η+T2
and ηT2

. ηT2
can be computed with

ηT2(π
∗
T2
) = Es∼ρ0V

π∗
T2

T2
(s)

= Eτ

N−1∑
n=0

γnr(sn, an, sn+1) + γNV
π∗
T2

T2
(sN),

(22)

where sN is the anchor state accessible from s0 with π∗,+
T2

. According to the definition of M -Rs

accessible MDPs,

ηT2
(π∗

T2
) = Eτ

N−1∑
n=0

γnrn + γNV
π∗
T2

T2
(sN)−Rs +Rs

⩽ Eτ

N−1∑
n=0

γnrn −
N−2∑
n=0

γnrn − (γN−1 − 1)r(s0, π
+,∗
T2

(s0), sN)

+ γNV
π∗
T2

T2
(sN)− (γN − γ)V

π+,∗
T2

T2
(sN) +Rs

⩽ Eτr(s0, π
+,∗
T2

(s0), sN) + γV
π+,∗
T2

T2
(sN) + γN (V

π∗
T2

T2
(sN)− V

π+,∗
T2

T2
(sN)) +Rs + 2λ

= η+T2
(π+,∗

T2
) + γN (V

π∗
T2

T2
(sN)− V

π+,∗
T2

T2
(sN)) +Rs + 2λ,

(23)
where rn is the short for r(sn, an, sn+1). Iteratively scaling the value discrepancy between π∗

T2
and

π+,∗
T2

, we get ∣∣ηT2
(π∗

T2
)− η+T2

(π+,∗
T2

)
∣∣ ⩽ Rs + 2λ

1− γM
⩽

Rs + 2λ

1− γ
. (24)

According to results in imitation learning (Lem. 6 in Xu et al. (2020)), we have

|ηT1(π̃)− ηT1(π̂)| ⩽
√
2Rmax

√
ε

1− γ
(25)

Combining Eq. (17)(21)(23)(25), we have∣∣ηT1(π̃)− ηT1(π
∗
T1
)
∣∣ ⩽ |ηT1(π̂)− ηT1(π̃)|+

∣∣ηT1(π̃)− η+T2
(π+,∗

T2
)
∣∣

+
∣∣η+T2

(π+,∗
T2

)− ηT2(π
∗
T2
)
∣∣+ ∣∣ηT2(π

∗
T2
)− ηT1(π

∗
T1
)
∣∣

⩽
2Rs + 6λ+

√
2Rmax

√
ε

1− γ
.

(26)

Taking expectation with respect to all T in the HiP-MDP concludes the proof.

Lemma A.3 (Lemma 2 in Xu et. al (Xu et al., 2020)). Consider a network class set P with ∆-
bounded value functions, i.e., |P (s)| ≤ ∆, for all s ∈ S, P ∈ P . Given an expert policy πE and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

an imitated policy πI with dP

(
d̂πE , d̂π1

)
− infπ∈Π dP

(
d̂πE , d̂π

)
≤ εP , then ∀δ ∈ (0, 1), with

probability at least 1− δ, we have

dP (dπE , dπI) ≤ inf
π∈Π

dP

(
d̂πE , d̂π

)
+ 2R̂(m)

dπE (P) + 2R̂(m)
dπI (P) + 12∆

√
log(2/δ)

m
+ εP . (27)

Proof. See Appendix B.3 of Xu et al. (2020).

Theorem A.4. Consider the MDP M1 = (S,A, T1, r, γ, ρ0) which is M -Rs accessible from the
MDP M2 = (S,A, T2, r, γ, ρ0) and the network set P bounded by ∆, i.e., |P (s)| ⩽ ∆. Given
{s(i)}mi=1 sampled from d+,∗

T2
, if π+,∗

T2
∈ P and the reward function rπ̂,T1

(s) = Ea∼π̂,s′∼T1
r(s, a, s′)

lies in the linear span of P , for policy π̂ regularized by d̂+,∗
T2

according to Eq. (1) with dP(d̂π̂T1
, d̂+,∗

T2
) <

εP , we have

ηT1
(π̂) ⩾ ηT1

(π∗
T1
)− 2Rs + 8λ

1− γ
− 2∥r∥P

1− γ

(
R̂(m)

d+,∗
T2

(P) + R̂(m)

dπ̂
T1

(P) + 6∆

√
log(2/δ)

m
+

ε

2

)
(28)

with probability at least 1− δ.

Proof. As M1 is M -Rs accessible accessible from M2, there exists policy π̃ such that dπ̃T1
(s) =

d∗,+T2
(s) for all s ∈ S+. With Thm. A.2, we have

ηT1
(π̃) ⩾ ηT1

(π∗
T1
)− 2Rs + 6λ

1− γ
(29)

Then we compute the performance discrepancy ηT1
(π̂)− ηT1

(π̃) given that dP(d̂π̂T1
, d̂π̃T1

) < εP . The
following derivations borrow the main idea from Xu et al. (Xu et al., 2020) and turn the state-action
occupancy measure ρ into the state-only occupancy measure d. We start with the network distance of
the ground truth state occupancy measures. According to Lem. A.3, we have

dP(d
π̂
T1
, dπ̃T1

) ⩽ 2R̂(m)

d+,∗
T2

(P) + 2R̂(m)

dπ̂
T1

(P) + 12∆

√
log(2/δ)

m
+ εP (30)

with probability at least 1− δ. Meanwhile,

|ηT1
(π̂)− ηT1

(π̃)|

⩽
1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1
(s)]− Es∼dπ̃

T1
[rπ̃,T1

(s)]

∣∣∣∣
⩽

1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1(s)]− Es∼dπ̃
T1

[rπ̂,T1(s)]

∣∣∣∣+ 1

1− γ

∣∣∣∣Es∼dπ̃
T1

[rπ̂,T1(s)]− Es∼dπ̃
T1

[rπ̃,T1(s)]

∣∣∣∣
⩽

1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1
(s)]− Es∼dπ̃

T1
[rπ̂,T1

(s)]

∣∣∣∣+ 2λ

1− γ
.

(31)
As we assume that the reward function rπ̂,T1(s) lies in the linear span of P , there exists n ∈
N, {ci ∈ R}ni=1 and {Pi ∈ P}ni=1, such that r = c0 +

∑n
i=1 ciPi. So we obtain that

|ηT1(π̂)− ηT1(π̃)| ⩽
1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1(s)]− Es∼dπ̃
T1

[rπ̂,T1(s)]

∣∣∣∣+ 2λ

1− γ

⩽
1

1− γ

∣∣∣∣∣
n∑

i=1

ciEs∼dπ̂
T1

[Pi(s, a)]−
n∑

i=1

ciEs∼dπ̃
T1

[Pi(s, a)]

∣∣∣∣∣+ 2λ

1− γ

⩽
1

1− γ

n∑
i=1

|ci|
∣∣∣Es∼dπ̂

T1

[Pi(s, a)]− Es∼dπ̃
T1

[Pi(s, a)]
∣∣∣+ 2λ

1− γ

⩽
1

1− γ

(
n∑

i=1

|ci|

)
dP
(
dπ̂T1

, dπ̃T1

)
+

2λ

1− γ

⩽
1

1− γ
∥r∥PdP

(
dπ̂T1

, dπ̃T1

)
+

2λ

1− γ
.

(32)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Comparison between the Lipschitz coefficient λ and the maximum reward Rmax in practical
environments.

Environment Action-related Reward λ Rmax

CartPole-v0 0 0 1.00
InvertedPendulum-v2 0 0 1.00
Lava World 0 0 1.00
MetaDrive 0 0 ⩾ 1
Fall-guys Like Game 0 0 ⩾ 1

Swimmer-v2 −0.0001∥a∥22 0.0001 0.36
HalfCheetah-v2 −0.1∥a∥22 0.1 4.80
Hopper-v2 −0.001∥a∥22 0.001 3.80
Walker2d-v2 −0.001∥a∥22 0.001 ⩾ 4
Ant-v2 −0.5∥a∥22 0.5 6.00
Humanoid-v2 −0.1∥a∥22 0.1 ⩾ 8

Combining Eq. (30) and Eq. (32), we have

ηT1
(π̂) ⩾ ηT1

(π̃)− 2∥r∥P
1− γ

(
R̂(m)

d+,∗
T2

(P) + R̂(m)

dπ̂
T1

(P) + 6∆

√
log(2/δ)

m
+

ε

2

)
+

2λ

1− γ
(33)

with probability at least 1− δ. Combining Eq. (33) and Eq. (29), we have

ηT1
(π̂) ⩾ ηT1

(π∗
T1
)− 2Rs + 8λ

1− γ
− 2∥r∥P

1− γ

(
R̂(m)

d+,∗
T2

(P) + R̂(m)

dπ̂
T1

(P) + 6∆

√
log(2/δ)

m
+

ε

2

)
(34)

with probability at least 1− δ. Taking expectation with respect to all T in the HiP-MDP concludes
the proof.

A.3 DISCUSSIONS ON THE THEOREMS

Lipschitz Assumption The Lipschitz assumption in Sec. 2.1 requires that if s and s′ keep un-
changed, the deviation of the reward r will not be larger than λ times the deviation of the action
a:

|r(s, a1, s′)− r(s, a2, s
′)| ⩽ λ∥a1 − a2∥1. (35)

Therefore, the Lipschitz coefficient λ is only depends action-related terms in the reward function. In
Tab. 4, we list the action-related terms of the reward functions for various RL evaluation environments,
along with the corresponding values of λ derived from these terms. As indicated in the table, the
action-related terms in reward functions exhibit reasonably small coefficients in all environments
compared with the maximum environment reward Rmax. Therefore, the Lipschitz coefficient λ will
not dominate the error term in Thm. 4.2 and Thm. 4.4.

Failure Cases Apart from the Lipschitz assumptions that can easily be realized, Thm. 4.2 and
Thm. 4.4 depend on the formulation of M -Rs accessible MDPs. Potential failure cases will therefore
include tasks with high Rs, so that the performance lower bounds become weak. This will happen
if states with lowest rewards exist in the optimal trajectory of some, and not all dynamics. In the
example of lava world in Fig. 1, if a reward of -100 is assigned to grid (3,4), Rs will be as large as
100, leading to a weak performance lower bound when the bottom lava block is at Row 2 with a best
episode return of 1. Nevertheless, issues with theoretical analyses will not negatively influence the
practical performance of ASOR.

A.4 COMPARISONS WITH PREVIOUS APPROACHES

Intuitively, the practical algorithm procedure of ASOR share some insights with some offline RL
algorithms including AWAC (Nachum et al., 2019), CQL (Kumar et al., 2020) and MOPO (Yu et al.,
2020). For example, ASOR prefers states with high values similar to AWAC and states with high

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 6: MetaDrive environments with different traffic densities.

visitation counts similar to CQL and MOPO. The advances of ASOR include: 1) By restricting the
considered states to anchor states, ASOR can be applied in offline datasets collected under dynamics
shift, where the aforementioned offline RL algorithms can only learn from the dataset with static
dynamics. Thm. 4.2 and Thm. 4.4 demonstrate the effectiveness of such procedure. 2) ASOR
modifies the original policy optimization process by reward augmentation. This enables the easy
combination of ASOR with other cross-domain algorithms to enhance their performance.

ASOR also share the approach of classifier-based reward augmentation with DARA (Liu et al., 2022)
and SRPO (Xue et al., 2023a). The classifier input in DARA is (s, a, s′) from the source and target
environments. Compared with ASOR, the classifier in DARA exhibits higher complexity and is
harder to train. It also requires the access to the information of target environments. Therefore,
DARA has poor performance as demonstrated in Sec. 5.2 and cannot be applied to tasks with no
prior knowledge on the target environments. The algorithm and theories of SRPO are based on the
assumption of the same state accessibility, which is an over-simplification of some environments,
as demonstrated in Sec. 3.1 and Sec. B. Comparative results in Sec. 5 demonstrate the inferior
performance of SRPO compared with ASOR, in correspondence with the flaw in the assumption.
Also, the theoretical analysis in the SRPO paper is built on the assumption called “homomorphous
MDPs” which is stronger than the M -Rs accessible MDPs used in this paper and is a special case of
the latter.

B EXAMPLES OF DISTINCT STATE DISTRIBUTIONS

We claim in the main paper that previous assumption of similar state distributions under distribution
shift will not hold in many scenarios. Apart from the motivating example of lava world in Sec. 3.1,
we demonstrate more examples in the MetaDrive (Li et al., 2023) and the fall-guys like game
environment. Examples of MetaDrive environments with different traffic densities are shown in
Fig. 6. The dynamics shift lies in that the ego vehicle will have different probabilities to detect other
vehicles nearby. In environments with low traffic densities, there is enough space for some vehicles
with optimal policies to drive in high speeds. But in environments packed with surrounding vehicles,
fast driving will surely lead to collisions. So the vehicles can only drive in low speeds. As the vehicle
speed is included in the agent’s state space, difference in traffic densities will lead to distinct optimal
state distributions.

Visualizations of the fall-guys like game environment used in Sec. 5.4 are shown in Fig. 7, where
map components including the conveyor belt speed, the balloon reaction, the floor reaction, and the
hammer distance will work together, giving rise to dynamics shift. Taking the variation of hammer
distance (Fig. 7 (d)) as an example, in the left environment the optimal trajectory will contain states
where the hammer is near the agent. But in the right environment, there are trajectories that keep the
hammer far away to avoid being hit out of the playground. Blindly imitating optimal states collected
in the left environment will lead to suboptimal performance in the right environment.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C EXPERIMENT DETAILS

C.1 BASELINE ALGORITHMS

In experiments with four different tasks, we compare ASOR with the following baseline algorithms:

• PPO (Schulman et al., 2017): The widely used, off-the-shelf online RL algorithm with
on-policy policy update.

• SAC (Haarnoja et al., 2018): The widely used off-policy RL algorithm with entropy maxi-
mization for better exploration.

• BCO (Torabi et al., 2018a): Learn a agent-specific inverse dynamics model to infer the
experts’ missing action information.

• GAIfO (Torabi et al., 2018b): A state-only version of the GAIL algorithm.

• GARAT (Desai et al., 2020): Use the action transformer trained with GAIL-like imitation
learning to recover the experts’ next states in the original environment.

• SOIL (Gangwani & Peng, 2020): An algorithm combining state-only imitation learning with
policy gradients. The overall gradient consists of a policy gradient term and an auxiliary
imitation term.

• CQL (Kumar et al., 2020): The widely used offline RL algorithm with conservative Q-
learning.

• MOPO (Yu et al., 2020): A model-based offline RL algorithm subtracting disagreements in
next-state prediction from environment rewards.

• MAPLE (Chen et al., 2021): The offline RL algorithm based on MOPO with an additional
context encoder module for cross-dynamics policy adaptation.

• OSI (Yu et al., 2017): An algorithm using context encoders for online system identification.

• CaDM (Lee et al., 2020): The online RL algorithm with context encoders for cross-dynamics
policy adaptation.

• DARA (Liu et al., 2022): Make reward augmentations with importance weights between
source and target dynamics.

• SRPO (Xue et al., 2023a): Make reward augmentations with the assumption of similar
optimal state distributions under dynamics shift.

C.2 ADDITIONAL SETUP OF THE FALL-GUYS LIKE GAME ENVIRONMENT

Additional Environment Demonstrations Next, we present additional examples of dynamic shifts
within the fall-guys like game environment to demonstrate the diverse and variable nature of in-game
elements. As shown in Fig. 7, the game environment features a range of dynamic shifts which
contribute to the complexity and unpredictability of the gameplay. Specifically, we observe the
following scenarios: Fig. 7 (a): The speed of conveyor belts changes across different game settings,
leading to varied transitions in the agent’s position and momentum when it steps onto these belts.
Fig. 7 (b): Balloons exhibit different reactions upon interaction with the agent. This variation can
significantly affect the agent’s subsequent trajectory. Fig. 7 (c): The behavior of floors under the
agent’s influence varies significantly. Some floors may collapse, disappear, or shift unexpectedly,
introducing further complexity to the environment. Fig. 7 (d): The distance and direction in which
the agent is ejected when struck by hammers can vary widely. This variability depends on the
unpredictable environmental dynamic shifts, for example, the force and angle of the hammer’s swing.

MDP Setup Below, we provide definitions of state space, action space, and rewards in the fall-guys
like game environment.

State space S:

• Terrain Map (dim=(16 × 16 × 2) with granularities of [1.0, 2.0]): The relative terrain
waypoints in the agent’s surrounding area. Various granularities capture different details and
perceptual ranges effectively.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) Conveyor Belt Speed

High Speed

(b) Balloon Reaction

DownUpLow Speed

(c) Floor Reaction

Disappear Up

(d) Hammer Distance

Near Far

Figure 7: More demonstrations of dynamics shifts in fall guys-like game. Colors and textures are
only for visual enhancement and are not part of the agent’s observations.

• Item Map (dim=(16 × 16 × 1) with granularities of [1.0, 2.0]): Map of nearby items or
objects. Multiple maps focus on different item types, with granularities for varying spatial
scales.

• Target Map (dim=(16 × 16 × 1) with granularities of [1.0, 4.0, 16.0]): Map of archive
points locations. Various granularities capture different details and perceptual ranges at
different spatial scales.

• Goal Map (dim=(16× 16× 1) with granularities of [1.0, 4.0, 16.0]): Map of intermediate
goal locations. Various granularities capture different details and perceptual ranges at various
spatial scales.

• Agent Info (dim=32): Details about agent’s own state, including position, rotation, velocity,
animation state, and forward direction.

• Destination Info (dim=9): Details about the destination, including position, rotation, and
size of the destination, providing crucial details for navigation and goal achievement.

Action space A:

• MoveX (dim=3): Move along the X-axis. The three discrete options typically represent
movement in the positive X direction, negative X direction, or no movement.

• MoveY (dim=3): Move along the Y-axis, with three discrete options for movement in the
positive Y direction, negative Y direction, or no movement.

• Jump (dim=2): Represents jump behavior. Options are to initiate a jump or not.
• Sprint (dim=2): Represents sprint behavior. Options are to start sprinting or not.
• Attack (dim=2): Executes an attack. The two discrete options are to initiate an attack or not.
• UseProp (dim=2): Utilizes a prop. The two discrete options indicate whether the prop is

used or not.
• UsePropDir (dim=8): Determines the direction for prop usage. The eight discrete options

offer various directional choices for prop utilization.
• Idle (dim=2): Represents idle behavior. Options are to remain idle or not.

Reward r:

• Arrive Target (value=1.0): Rewards the agent for successfully reaching the archive point,
with a positive reward of 1.0 upon achievement.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• Arrive Goal (value=0.3): Rewards the agent for reaching intermediate goal locations within
the environment, with a positive reward of 0.3.

• Arrive Destination (value=1.0): Rewards the agent for reaching the final destination or
endpoint within the environment, motivating task completion.

• Goal Distance (decay rate=0.05): Offers distance-based rewards, varying based on prox-
imity to specific goal locations. Rewards diminish as the agent moves away from the goal,
with distinct values for different distance ranges.

• Fall or Wall (value=−1.0): Penalizes the agent for continuously hitting the wall or falling
off a cliff with a penalty of -1.0.

• Stay (value=−0.01): Penalizes the agent for remaining stationary for extended periods,
encouraging continuous exploration and movement.

• Time (value=−0.02): Penalizes each time step, encouraging efficient decision-making and
timely task completion.

Network Architecture The network architecture is structured as follows: The Terrain Map, Item
Map, Target Map, and Goal Map are each fed into a convolutional neural network (CNN) with ReLU
non-linearity, followed by a fully connected network (FCN). This process yields four separate 32-
dimensional vector representations for each respective map. The Destination Info and Agent Info are
independently input into attention layers, generating 32-dimensional vectors for each. Subsequently,
all 32-dimensional vectors (from the CNNs and attention layers) are concatenated into a single feature
vector. The concatenated feature vector undergoes processing by a multi-head FCN to yield various
output actions. Additionally, the concatenated feature vector is processed by another FCN to produce
a value as the value function estimator.

Training Setup We utilized the Ray RLlib framework (Liang et al., 2018), configuring 100 training
workers and 20 evaluation workers. The batch size was set to 1024, with an initial learning rate of
1× 10−3, which linearly decayed to 3× 10−4 over 250 steps. An entropy regularization coefficient
of 0.003 was employed to ensure adequate exploration during training. The training was conducted
using NVIDIA TESLA V100 GPUs and takes around 20 hours to train 6M steps.

22

	Introduction
	Backgroud
	Preliminaries
	Related Work

	Anchor State Oriented Policy Regularization
	Motivating Example
	Anchor State Oriented Policy Regularization
	Estimating Density Ratios with State Uncertainty and Value Function
	Practical Algorithm

	Theoretical Analysis
	Experiments
	Results in Minigrid Environment
	Results in Offline RL Benchmarks
	Results in Online Continuous Control Tasks
	Results in A Large-Scale Fall Guys-Like Battle Royal Game Environment

	Conclusion
	Additional Derivations and Proofs
	Derivations of the Lagrangian
	Proofs of Theorems in Sec. 4
	Discussions on the Theorems
	Comparisons with Previous Approaches

	Examples of Distinct State Distributions
	Experiment Details
	Baseline Algorithms
	Additional Setup of the Fall-guys Like Game Environment

