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ABSTRACT

To train neural policies in environments with diverse dynamics, Imitation from
Observation (IfO) approaches aim at recovering expert state trajectories. Their
success is built upon the assumption that the stationary state distributions induced
by optimal policies remain similar despite dynamics shift. However, such an
assumption does not hold in many real world scenarios, especially when certain
states become inaccessible during environment dynamics change. In this paper,
we propose the concept of anchor states which appear in all optimal trajectories
under dynamics shift, thereby maintaining consistent state accessibility. Instead of
direct imitation, we incorporate anchor state distributions into policy regularization
to mitigate the issue of inaccessible states, leading to the ASOR algorithm. By
formally characterizing the difference of state accessibility under dynamics shift,
we show that the anchor state-based regularization approach provides strong lower-
bound performance guarantees for efficient policy optimization. We perform
extensive experiments across various online and offline RL benchmarks, including
Gridworld, MuJoCo, MetaDrive, D4RL, and a fall-guys like game environment,
featuring multiple sources of dynamics shift. Experimental results indicate ASOR
can be effectively integrated with several state-of-the-art cross-domain policy
transfer algorithms, substantially enhancing their performance.

1 INTRODUCTION

Recent data-driven Reinforcement Learning (RL) (Sutton & Barto, 1998) approaches facilitate
efficient and large-scale policy optimization using either a static dataset (Wu et al., 2019; Fujimoto
et al., 2019) or a trajectory buffer updated during training (Lillicrap et al., 2016; Haarnoja et al., 2018).
However, these methods generally assume that the data is sampled from a single static environment
with constant state transition probabilities. This is usually not the case in real-world applications
where environment dynamics can vary a lot, i.e., in environments with dynamics shift. For instance,
the recommender agent on a short-video platform needs to adapt to time-varying and heterogeneous
user preferences (Xue et al., 2022; 2023b). An embodied robotic agent may operate in environments
with distinct morphologies and joint torque (Liu et al., 2022). In such tasks, achieving effective RL
policies necessitates extensive training data with sufficient dynamics coverage (Liu et al., 2022; Li
et al., 2023), and the training process is most likely to be unstable (Luo et al., 2022; Xue et al., 2023a).
Therefore, a critical question arises: how can RL policies be efficiently optimized using data collected
under dynamics shift?

In recent years, considerable research efforts have been devoted to cross-dynamics policy training.
To mitigate the problem of inefficient data usage, Imitation from Observation (IfO) algorithms (Wu
et al., 2019; Torabi et al., 2018b; Jiang et al., 2020) aim at recovering state trajectories of expert
demonstrations. Assuming the optimal state trajectories to be similar across different dynamics, IfO
can learn from data with dynamics shift (Gangwani & Peng, 2020; Desai et al., 2020; Radosavovic
et al., 2021) because expert state trajectories in one domain can be informative in other domains.
However, such assumption will not hold in many real world scenarios, especially under the variation
of state accessibility, where certain states are no longer accessible during environment dynamics
change. For example, an autonomous vehicle might drive through intersections safely at high speed
under low traffic densities, but will face the risk of crashing into other vehicles under high traffic
densities. Therefore, states representing “safe driving at high speed” are inaccessible in certain
dynamics, leading to distinct stationary state distributions. In such cases, expert trajectories with
dynamics shift can be misleading.
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should be excluded during training. We define anchor states which appear in all optimal trajectories,
maintaining the same accessibility across different dynamics. To learn from anchor state distributions,
IfO approaches directly perform distribution matching, but they cannot be naturally integrated with
datasets including reward signals and require the demonstrations to be optimal. Instead, we employ
anchor states for policy regularization based on the standard RL objective. The resulting constrained
policy optimization (CPO) (Achiam et al., 2017) problem requires the policy not only to optimize the
expected policy return, but also to generate a stationary state distribution close to the anchor state
distribution. By formally characterizing the difference of state accessibility under dynamics shift,
we manage to derive strong lower-bound performance guarantees for such a policy regularization
procedure. The analysis is built on a weaker assumption than previous works. In practice, non-anchor
states tend to have unreliable demonstrations, so policies are also encouraged to generate distinct
state distributions on these states. Simplifying the CPO problem with Lagrangian multipliers, the
policy regularization can be realized by a simple reward augmentation with state density ratios.

Summarizing these ideas, we propose ASOR (Anchor State Oriented Regularization), a reward
augmentation algorithm which can be a general add-on module to existing cross-dynamics RL algo-
rithms (Chen et al., 2021; Luo et al., 2022). In empirical evaluations, we consider the toy environment
Minigrid (Chevalier-Boisvert et al., 2023), simulated robotics environment MuJoCo (Todorov et al.,
2012), simulated autonomous-driving environment MetaDrive (Li et al., 2023), and a large-scale fall
guys-like game environment. The tasks include both online and offline RL setting and involve multi-
ple sources of dynamics shift including obstacle layout, traffic density, body mass, joint damping, and
wind speed. Our contributions in this paper can be summarized as follows: 1) By restricting policy
regularization only to anchor states, we alleviate the issue of evolving optimal state distributions and
propose the ASOR algorithm. 2) We derive strong lower-bound performance guarantees for anchor
state-based policy regularization. 3) We apply ASOR to extensive benchmark environments with
both online and offline RL and various sources of environment dynamics shift, where ASOR exhibits
superior performance when combined with multiple state-of-the-art algorithms.

2 BACKGROUD

2.1 PRELIMINARIES

To model a set of decision-making tasks with different environment dynamics, we consider the Hidden
Parameter Markov Decision Process (HiP-MDP) (Doshi-Velez & Konidaris, 2016) defined by a tuple
(S,A,Θ, T, r, γ, ρ0), where S is the state space and A is the bounded action space with actions
a ∈ [−1, 1]. Θ is the space of hidden parameters. Tθ(s

′|s, a) is the transition function conditioned
on (s, a), as well as a hidden parameter θ sampled from Θ. r(s, a, s′) is the environment reward
function. By taking all s, a, s′ into account, the reward function inherently includes the transition
information and does not change in different dynamics. We also assume r(s, a, s′) w.r.t. the action a
is λ-Lipschitz. Discussions on these Lipschitz properties can be found in Appendix A.3. s′ is termed
as accessible from s under dynamics T 1 if

∑
a∈A T (s′|s, a) > 0. γ ∈ (0, 1) is the discount factor

and ρ0(s) is the initial state distribution.

Policy optimization under dynamics shift aims at finding the optimal policy that maximizes the
expected return under all possible θ ∈ Θ: π∗ = argmaxπ η(π) = EθEπ,Tθ

[
∑∞

t=0 γ
tr(st, at, st+1)],

where the expectation is under s0 ∼ ρ0, at ∼ π(·|st), and st+1 ∼ Tθ(·|st, at). The
Q-value Qπ

T (s, a) denotes the expected return after taking action a at state s: Qπ
T (s, a)=

Eπ,T [
∑∞

t=0 γ
tr(st, at, st+1)|s0 = s, a0 = a]. The value function is defined as V π

T (s) =
Ea∼π(·|s)Q

π
T (s, a). The optimal policy π∗ under T is defined as π∗

T = argmaxπ Es∼ρ0
V π
T (s).

We also intensely use the stationary state distribution (also referred to as the state occupation function)
dπT (s) = (1−γ)

∑∞
t=0 γ

tp (st = s | π, T ). The stationary state distribution under the optimal policy
is denoted as d∗T (s), which is the shorthand for dπ

∗
T

T (s). d∗T (s) will be briefly termed as optimal state
distribution in the rest of this paper.

2.2 RELATED WORK

Cross-domain Policy Transfer Cross-domain policy transfer (Niu et al., 2024) focuses on training
policies in source domains and testing them in the target domain. In this paper, we focus on a

1T without subscript θ refers to the transition function under any of the hidden parameter θ.
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related problem of efficient training in multiple source domains. The resulting algorithm can be
combined with any of the following cross-domain policy transfer algorithms to improve the test-time
performance. In online RL, VariBAD (Zintgraf et al., 2020) trains a context encoder with variational
inference and trajectory likelihood maximization. CaDM (Lee et al., 2020) and ESCP (Luo et al.,
2022) construct auxiliary tasks including next state prediction and contrastive learning to train the
encoders. Instead of relying on context encoders, DARC (Eysenbach et al., 2021) makes domain
adaptation by assigning higher rewards on samples that are more likely to happen in the target
environment. Encoder-based (Chen et al., 2021) and reward-based (Liu et al., 2022) policy transfer
algorithms are also effective in offline policy adaptation and have been extended to offline-to-online
tasks (Niu et al., 2022; 2023). VGDF (Xu et al., 2023) use ensembled value estimations to perform
prioritized Q-value updates, which can be applied in both online and offline settings. SRPO (Xue
et al., 2023a) focus on a similar setting of efficient data usage with this paper, but is based on a strong
assumption of universal identical state accessibility. We demonstrate that such an assumption will
not hold in many tasks and a more delicate characterization of state accessibility will lead to better
theoretical and empirical results.

Imitation Learning from Observations Imitation Learning from Observation (IfO) approaches
obviate the need of imitating expert actions and is suitable for tasks where action demonstrations may
be unavailable. BCO (Wu et al., 2019) and GAIfO (Torabi et al., 2018b) are two natural modifications
of traditional Imitation Learning (IL) methods (Ho & Ermon, 2016) with the idea of IfO. IfO has
also been found promising when the demonstrations are collected from several environments with
different dynamics. Usually an inverse dynamics model is first trained with samples from the
target environment by supervised learning (Wu et al., 2019; Radosavovic et al., 2021), variational
inference (Liu et al., 2020), or distribution matching (Desai et al., 2020). It is then used to recover
the adapted actions in samples from the source environment. The recovered samples can be used to
update policies with action discrepancy loss (Gangwani & Peng, 2020; Radosavovic et al., 2021; Liu
et al., 2020). To our best knowledge, only HIDIL (Jiang et al., 2020) considered state distribution
mismatch across different dynamics, where policies are allowed to take extra steps to reach the next
state specified in the expert demonstration. We consider in this paper a more general setting where
states in expert demonstrations may even be inaccessible.

3 ANCHOR STATE ORIENTED POLICY REGULARIZATION

In this section, we first provide a motivating example in Sec. 3.1 to demonstrate that the assumption of
identical state distribution under dynamics shift may not hold in certain scenarios. Then in Sec. 3.2 we
propose the approach of anchor state oriented policy regularization that do not rely on this assumption.
The approach involves reward augmentations with logarithms of density ratios, but the density ratios
are intractable to compute. We therefore propose a data-based method to estimate the ratios in
Sec. 3.3 and conclude the section with the practical algorithm procedure in Sec. 3.4.

3.1 MOTIVATING EXAMPLE

Figure 1: Lava world example
with dynamics shift.

Previous state-only policy transfer algorithms are based on the as-
sumption that the optimal state distribution d∗(s) remains the same
under different environment dynamics, either implicitly (Desai et al.,
2020; Jiang et al., 2020) or explicitly (Xue et al., 2023a). Fig. 1
demonstrates an example lava world task with dynamics shift where
such assumption does not hold. We consider a 3-dimensional state
space including agent row, agent column, and a 0-1 variable indi-
cating whether there is an accessible lava block near the agent. The
agent starts from the blue grid and targets at the green grid with
positive reward. It also receives a small negative reward on each
step. The red grid stands for the dangerous lava area which ends the
trajectory on agent entering. One lava block is fixed at Row 1, while
the other may appear at Row 2, 3, 4, and 5. Fig. 1 demonstrates
two examples where the movable lava block is at Row 2 and Row
4. Taking state (1,3,0) as an example, the same action of “moving
down” gives rise to different next state distributions due to distinct
lava positions, leading to environment dynamics shift.

The state trajectories of the optimal policies on two example lava environments are plotted with
black lines. The optimal state distributions are different under distinct environment dynamics. For
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example, state (3,3,0) has non-zero probability under d∗(s) in Fig. 1 (above), but cannot be visited by
the optimal policy in Fig. 1 (bottom). Existing state-only policy transfer algorithms will therefore
not be suitable for such seemingly simple task, which is also demonstrated by the empirical results
in Sec. 5.1. The main cause of this distribution difference is the break of accessibility. State (4,2)
is accessible from (3,2) in Fig. 1 (lower), but is inaccessible in Fig. 1 (upper). The inaccessible
states will certainly have zero visitation probability and make the optimal state distribution different.
Unfortunately, such break of accessibility can happen in various real-world tasks. We discuss more
tasks with distinct optimal state distributions in Appendix B.

3.2 ANCHOR STATE ORIENTED POLICY REGULARIZATION

Motivated by examples in Sec. 3.1, we propose to ignore inaccessible states and focus on states that
are accessible under all possible dynamics. We term the latter as anchor states with the following
formal definition.

Definition 3.1 (Anchor state). In an HiP-MDP (S,A,Θ, T, r, γ, ρ0), state s ∈ S is called an anchor
state if for all θ ∈ Θ, we have d∗Tθ

(s) > 0. We denote S+ ⊆ S as the set of anchor states and
S− := S − S+ as the set of non-anchor states. The anchor state distribution is defined as dπ,+T (s) =
(1 − γ)

∑∞
t=0 γ

tp (st = s, st ∈ S+|π, T ) /Z(π), where Z(π) =
∑∞

t=0 γ
tp (st ∈ S+|π, T ) is the

normalizing term.

In the lava world example in Fig. 1, anchor states are marked with yellow stars. The stationary state
distribution on non-anchor states dπ,−T (s) can be defined similarly. To learn from the anchor state
distributions, we propose to regularize the training policy to generate a stationary state distribution
that is close to the optimal anchor state distribution d∗,+T (s). With respect to the non-anchor states,
the optimal stationary state distributions tend to be different across different dynamics. So instead of
making policy regularization, we encourage the policy to generate new distributions on non-anchor
states. The resulting constrained policy optimization problem is formulated as follows:

max
π

Eθ,τπ

[ ∞∑
t=0

γtr (st, at, st+1)

]
s.t. max

T
DKL

(
dπT (·)∥d

∗,+
T0

(·)
)
−DKL

(
dπT (·)∥d

∗,−
T0

(·)
)
< ε,

(1)
where T0 is an arbitrary environment dynamics. Eq. (1) can be transformed into an unconstrained
optimization problem with the following Lagrangian:

L = −Eθ,τπ,T

[ ∞∑
t=0

γt

(
r(st, at, st+1) + λ log

d∗,+T0
(st)

dπT (st)
− λ log

d∗,−T0
(st)

dπT (st)

)]
− λε

1− γ
, (2)

where λ > 0 is the Lagrangian Multiplier. The only difference between Eq. (2) and standard
RL’s optimization objective is that the logarithms of state probability ratios are augmented to the
environment reward r(st, at, st+1). Therefore, the proposed approach can be easily applied to a wide
range of RL algorithms with reward augmentation, as demonstrated by the empirical results in Sec. 5.

3.3 ESTIMATING DENSITY RATIOS WITH STATE UNCERTAINTY AND VALUE FUNCTION

One remaining challenge in optimizing Eq. (2) is that the density ratios contain intractable station-
ary state distributions and cannot be directly computed. In the following subsection, we discuss
approaches for computing the density ratio d∗,+T0

(st)/d
π
T (st), and d∗,−T0

(st)/d
π
T (st) can be similarly

obtained. Motivated by recent advances in computing likelihood-free importance weights (Nguyen
et al., 2010), we propose a data-based approach for estimating the density ratio. The following
lemma indicates that the density ratio can be obtained through maximizing the discrepancy of two
expectations that can be estimated by sampling from two datasets.

Lemma 3.2 (Nguyen et al. (2010)). Assume that function f has first order derivatives f ′ at
[0,+∞) . The f-divergence between two probabilistic measures P,Q ∈ P(S) is defined as
Df (P∥Q) =

∫
S f(dP (s)/dQ(s))dQ(s). Then for all P,Q ∈ P(S) and ω : S → R+,

Df (P∥Q) ≥ EP [f ′(ω(s))]− EQ [f∗ (f ′(ω(s)))] (∗), where f∗ denotes the convex conjugate of f
and the equality is achieved if and only if ω = dP/dQ.

According to Lem. 3.2, if P is the optimal anchor state distribution d∗,+T0
(st), Q is the stationary state

distribution of policy dπT (st), and the R.H.S. of Eq.(∗) is maximized, dP/dQ is exactly the density
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Algorithm 1 The workflow of ASOR on top of ESCP (Luo et al., 2022).

1: Input: Training MDPs {M0, · · · ,Mn−1}; Context encoder ϕ; Policy network π; Value
network V ; Density Ratio Network ω+, ω−; Rollout horizon H; State partition ratio ρ1, ρ2;
Regularization coefficient λ; Replay Buffer R.

2: for step = 0, 1, 2, . . . do
3: Sample MDP Mi from {M0,M1, · · · ,Mn−1} uniformly.
4: for t = 1, 2, . . . ,H do
5: Sample zt from ϕ (z | st, at−1, zt−1) and then sample at from π (a | st, zt), as in ESCP.
6: Rollout and get transition data (st+1, rt, dt+1, st, at, zt) from Mi; Add the data to the

replay buffer R.
7: Sample a batch Dbatch; Add ρ1ρ2|Dbatch| states with top ρ1 portion of high values and ρ2

portion of high proxy visitation counts to D+
P ; Add other states to D+

Q. Add ρ1(1−ρ2)|Dbatch|
states with high values and low visitation counts to D−

P ; Add other states to D−
Q.

8: Train ω+ and ω− to optimize the R.H.S. of Eq.(∗) in Lem. 3.2 with D+
P , D+

Q, and D−
P , D−

Q,
respectively.

9: For one-step transition in Dbatch, update rt with rt + λ logω+(st)− λ logω−(st).
10: Use the updated Dbatch to update ϕ, π, and V .

ratio we would like to obtain. Therefore, the density ratios can be estimated through optimizing
the R.H.S. of Eq.(*) with respect to ω(s), which can be represented by a neural network. Such an
optimization process requires access to expectations on d∗,+T0

(·) and dπT (·) that can be approximated
by learning with data that are likely to be sampled from them.

While dπT (·) can be related to data newly collected in the replay buffer (Liu et al., 2021; Sinha et al.,
2022), sampling from d∗,+T0

(·) is still challenging. We introduce the binary observation state Ot with
Ot = 1 denoting st is the optimal state at timestep t (Levine, 2018). d∗,+T0

(st) can therefore be written
as dπ,+T0

(s|O0:∞), which is the distribution of the states generated by a certain π, given these states
are optimal. With the Bayes’ rule, we have

d∗,+T0
(st)

dπT (s)
=

dπ,+T0
(s|O0:∞)

dπT (s)
=

p(O0:∞|s, π, T0)d
π,+
T0

(s)

p(O0:∞|π, T0)
· 1

dπT (s)

=
p(O0:∞|s, π, T0)d

π
T (s)

p(O0:∞|π, T0)
· 1

dπT (s)
·
dπ,+T0

(s)

dπT (s)
=

d∗T0
(st)

dπT (s)
·
dπ,+T0

(s)

dπT (s)
,

(3)

where the last equation is also obtained with the Bayes’ rule. According to Xue et al. (2023a), state
s will be more likely to be sampled from d∗T0

(·) than from dπT (·) if it has a higher state value V (s)

than average. Meanwhile, dπ,+T0
(s) will be higher if s falls in the set of anchor states S+ and is most

likely to be visited by all optimal policies under dynamics shift. Therefore, any of the pseudo-count
approaches of visitation frequency can be used to measure whether s is likely to be sampled from
dπ,+T0

(s). In simulated environments with small observation space (Sec. 5.1, 5.2, 5.3), disagreement in
next state predictions of ensembled environment models has shown to be a good proxy of visitation
frequency (Yu et al., 2020). In large-scale real-world tasks (Sec. 5.4), next state predictions can be
unreliable, so we adopt Random Network Distillation (RND) (Burda et al., 2019) and use the error of
predicting a random mapping as the proxy visitation measure.

3.4 PRACTICAL ALGORITHM

Summarizing previous derivations, we obtain a practical reward augmentation algorithm termed
as ASOR (Anchor State Oriented Regularization) for policy optimization under dynamics shift.
We select the ESCP (Luo et al., 2022) algorithm, which is one of the SOTA algorithms in online
cross-dynamics policy training, as the base algorithm. The detailed procedure of ESCP+ASOR is
shown in Alg. 1. After the environment rollout and obtaining the replay buffer (line 6), we sample a
batch of data from the buffer, obtain a portion of ρ1ρ2 states with higher values and proxy visitation
counts, and add them to the dataset D+

P . Other states are added to D+
Q. A portion of ρ1(1 − ρ2)

states with higher values and lower proxy visitation counts are added to the dataset D−
P . Other states

5
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are added to D−
Q (line 7). We set ρ1 = ρ2 = 0.5 in offline experiments with medium-expert level

of data. ρ1 = ρ2 = 0.3 is set in all other experiments. Then density ratio networks ω+ and ω−

are trained (line 8). While there are multiple choices of f in Lem. 3.2 (Nowozin et al., 2016), we
set it to f(u) = u log u − (u + 1) log(u + 1) in accordance with GAN’s setup (Goodfellow et al.,
2014) for convenient implementation. Density ratio networks estimate the logarithm of the state
density ratios λ logω+(s) − λ logω−(s), which are added to the reward rt (line 9). λ is regarded
as a hyperparameter with values 0.1 or 0.3. The effect of ρ1, ρ2, and λ is investigated in Sec. 5.2.
The procedure of the offline algorithm MAPLE (Lee et al., 2020)+ASOR is similar to ESCP+ASOR,
where the datasets D+

P , D+
Q, D−

P , D−
Q are built with data from the offline dataset, instead of the replay

buffer.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical justifications for the policy regularization approach in Sec. 3.
The notations are introduced in Sec. 2.1 and proofs can be found in Appendix A.2. Thm. 4.2 shows
that regularized with the optimal anchor state distribution, the learning policy can obtain a stronger
performance lower-bound than previous analysis (Xu et al., 2023; Yu et al., 2020). The theorem also
features a weaker assumption on MDP accessibility than that in SRPO (Xue et al., 2023a). Moreover,
Thm. 4.4 provides finite-sample analysis for the policy regularization. We start with the definition
of M -Rs accessible MDPs, which formally characterizes the “similar structure” required by MDPs
with different dynamics to have closely related optimal state distribution.
Definition 4.1. Consider MDPs M1 = (S,A, T1, r, γ, ρ0) and M2 = (S,A, T2, r, γ, ρ0). If
for all k ∈ R+, states s0, s1, · · · , sk ∈ S+, and actions a0, a1, · · · , ak−1 ∈ A such that∏k

n=1 T1(sn|sn−1, an−1) > 0, there exists N ∈ R+, states s′0, s
′
1, · · · , s′N+k−1, and actions

a′0, a
′
1, · · · , a′N+k−2 such that N ⩽ M , s0 = s′0, sk = s′N+k−1,

∏N+k−1
n=1 T2(s

′
n|s′n−1, a

′
n−1) > 0,

and
∣∣∣∑N+k−2

n=1 γn−1r(s′n, a
′
n, s

′
n+1)−

∑k−1
n=1 γ

n−1r(sn, an, sn+1) + (1− γN−1)V ∗
T1
(s0)

∣∣∣ ⩽ Rs,
M2 is referred to as M -Rs accessible from M1.

In this definition, M is the number of extra steps required in M2 to reach the state sk from s0,
compared with in M1. Rs constrains the reward discrepancy in these extra steps. One special
case is when M2 and M1 are 1-0 accessible from each other, all states between (s0, sk) will have
the same state accessibility. It is identical to the property of “homomorphous MDPs” (Xue et al.,
2023a), based on which a theorem about identical optimal state distribution can be proved. Most of
the previous approaches in IfO is built upon such assumption of 1-0-accessible MDPs, which is an
over-simplification in many tasks. For example, the Minigrid environment in Sec. 3.1 and Sec. 5.1
contains 3-0.03 accessible MDPs. Instead, the following theorem is based on the milder assumption
on M -Rs accessible MDPs, where we show that the learning policy π̂ will have a performance
lower-bound given a bounded KL-divergence with the optimal anchor state distribution.
Theorem 4.2. Consider the MDP M1 = (S,A, T1, r, γ, ρ0) which is M -Rs accessible from the
MDP M2 = (S,A, T2, r, γ, ρ0). For all policy π̂, if there exists one certain dynamics T0 such that
max
T

DKL(d
π̂
T (·)∥d

∗,+
T0

(·)) ⩽ ε, we have

η(π̂) ⩾ max
T

η(π∗
T )−

2Rs + 6λ+
√
2Rmax

√
ε

1− γ
. (4)

Previous approaches (Xu et al., 2023; Janner et al., 2019; Xue et al., 2023c) also provide policy
performance lower-bounds, but these bounds have quadratic dependencies on the effective planning
horizon 1

1−γ . By anchor state-based policy regularization, we obtain a tighter discrepancy bound
with linear dependency on the effective horizon.

The following theorem analyses the performance lower-bound of π̂ if it is regularized with finite
samples from the optimal anchor state distribution. Due to the poor generalization ability of KL
distance (Arora et al., 2017; Xu et al., 2020), we characterize the regularization error in Eq. (1) with
the network distance (Arora et al., 2017).
Definition 4.3 (Neural network distance (Arora et al., 2017)). For a class of neural networks P , the
neural network distance between two state distributions, µ and ν, is defined as

dP(µ, ν) = sup
P∈P

{Es∼µ[P (s)]− Es∼ν [P (s)]} . (5)
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Figure 2: Results in the Minigrid environment. (a) Performance comparison between PPO+ASOR
and baseline algorithms. (b) The average reward on the environment with different position of the
second lava row. PPO and PPO+SRPO has very low rewards when the bottom lava is on row 5; (c)
The state uncertainty estimated by ASOR on different rows of the lava environment.

For better characterization of the reward function with the network set P , we introduce the linear
span of P (Xu et al., 2020) as span(P) = {c0 +

∑n
i=1 ciPi : c0, ci ∈ R, Pi ∈ P, n ∈ N}, leading

to the following theorem.
Theorem 4.4. Consider the MDP M1 = (S,A, T1, r, γ, ρ0) which is M -Rs accessible from the
MDP M2 = (S,A, T2, r, γ, ρ0) and the network set P bounded by ∆, i.e., |P (s)| ⩽ ∆. Given
{s(i)}mi=1 sampled from d+,∗

T0
, if the reward function rπ̂,T (s) = Ea∼π̂,s′∼T r(s, a, s

′) lies in the linear
span of P , for policy π̂ regularized by d̂+,∗

T0
with the constraint max

T
dP(d̂

π̂
T , d̂

+,∗
T0

) < εP , we have

η(π̂) ⩾ max
T

ηT (π
∗
T )−

2Rs + 8λ

1− γ
− 2∥r∥P

1− γ

(
R̂(m)

d+,∗
T2

(P) + R̂(m)

dπ̂
T1

(P) + 6∆

√
log(2/δ)

m
+

εP
2

)
(6)

with probability at least 1− δ, where dP is the network distance (Arora et al., 2017), d̂π̂T and d̂+,∗
T0

are the empirical version of distributions dπ̂T and d+,∗
T0

on {s(i)}mi=1, R̂ is the empirical Rademacher
complexity, and ∥r∥P = inf {

∑n
i=1 |ci| : r =

∑n
i=1 ciPi + c0,∀n ∈ N, c0, ci ∈ R, Pi ∈ P}.

Thm. 4.4 shows that with finite samples, the anchor-based policy regularization still leads to a tight
performance lower-bound with linear horizon dependency. The lower-bound is stronger than the
sample complexity analysis of Behavior Cloning with quadratic horizon dependency (Xu et al., 2020)
and has the same horizon dependency with GAIL (Ho & Ermon, 2016). Meanwhile, ASOR has a
more stable regularization process than GAIL due to the non-adversarial way of generating DP and
DQ, as demonstrated in Fig. 4 (right).

5 EXPERIMENTS

In this section, we conduct experiments to investigate the following questions: (1) Can ASOR
efficiently learn from data with dynamics shift and outperform current state-of-the-art algorithms? (2)
Is ASOR general enough when applied to different styles of training environments, various sources of
environment dynamics shift, and when combined with distinct algorithm setup? (3) How does each
component of ASOR (e.g., the reward augmentation and the pseudo-count of state visitations) and
its hyperparameters perform in practice? To answer questions (1)(2), we construct cross-dynamics
training environments based on tasks including Minigrid (Chevalier-Boisvert et al., 2023), D4RL (Fu
et al., 2020), MuJoCo (Todorov et al., 2012), and a Fall Guys-like Battle Royal Game. Dynamics
shift in these environments comes from changes in navigation maps, evolvements of environment
parameters, and different layouts of obstacles. To train RL policies in these environments, ASOR
is implemented on top of algorithms including PPO (Schulman et al., 2017), MAPLE (Chen et al.,
2021), and ESCP (Luo et al., 2022), which are all state-of-the-art approaches in the corresponding
field. To answer question (3), we visualize how the density ratio estimator ω+, ω− and the pseudo
state count behave in different environments. Moreover, ablation studies are conducted to examine
the role of the density ratio estimator and the influence of hyperparameters. Detailed descriptions of
baseline algorithms are in Appendix C.1.

5.1 RESULTS IN MINIGRID ENVIRONMENT

For experiments in the Minigrid environment (Chevalier-Boisvert et al., 2023), the row number of
the bottom lava is randomly sampled from {2, 3, 4, 5}, leading to dynamics shift. By including
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Table 1: Results of offline experiments on MuJoCo tasks. Numbers before ± are scores normalized
according to D4RL (Fu et al., 2020) and averaged across trials with four different seeds. Numbers
after ± are normalized standard deviations. ME, M, MR and R correspond to the medium-expert,
expert, medium-replay and random dataset, respectively.

BCO SOIL CQL MOPO MAPLE MAPLE
+DARA

MAPLE
+SRPO

MAPLE
+ASOR

Walker2d-ME 0.25±0.04 0.14±0.08 0.63±0.13 0.06±0.05 0.14±0.08 0.31±0.02 0.22±0.07 0.29±0.12
Walker2d-M 0.17±0.07 0.16±0.01 0.75±0.02 0.15±0.22 0.41±0.19 0.46±0.10 0.32±0.17 0.49±0.04
Walker2d-MR 0.01±0.00 0.04±0.01 0.06±0.00 -0.00±0.00 0.13±0.01 0.12±0.00 0.13±0.01 0.14±0.01
Walker2d-R 0.00±0.00 0.00±0.00 0.00±0.00 -0.00±0.00 0.22±0.00 0.16±0.01 0.22±0.00 0.22±0.00
Hopper-ME 0.08±0.02 0.01±0.00 0.20±0.07 0.01±0.00 0.45±0.07 0.49±0.01 0.43±0.06 0.51±0.06
Hopper-M 0.00±0.00 0.08±0.00 0.29±0.06 0.01±0.00 0.38±0.09 0.26±0.02 0.48±0.04 0.71±0.14
Hopper-MR 0.00±0.00 0.00±0.00 0.08±0.00 0.01±0.01 0.55±0.17 0.75±0.10 0.73±0.16 0.76±0.08
Hopper-R 0.00±0.00 0.00±0.00 0.10±0.00 0.01±0.00 0.12±0.00 0.12±0.00 0.25±0.08 0.32±0.00
HalfCheetah-ME 0.43±0.00 0.00±0.00 0.03±0.04 -0.03±0.00 0.53±0.07 0.39±0.00 0.58±0.04 0.61±0.02
HalfCheetah-M 0.14±0.02 0.39±0.00 0.42±0.01 0.36±0.27 0.61±0.01 0.66±0.03 0.62±0.00 0.62±0.01
HalfCheetah-MR 0.16±0.01 0.25±0.00 0.46±0.00 -0.03±0.00 0.52±0.01 0.53±0.02 0.54±0.00 0.56±0.01
HalfCheetah-R 0.14±0.01 0.35±0.01 -0.01±0.01 -0.03±0.00 0.20±0.02 0.19±0.01 0.22±0.00 0.21±0.00

Average 0.11 0.11 0.25 0.04 0.36 0.37 0.40 0.45

Table 2: Results of ablation studies in Offline MuJoCo tasks. The scores are averaged on each
environment with different expert levels.

Fixed
λ = 0.1

Fixed
λ = 0.3

Random
partition

Fixed
ρ1 = 0

Fixed
ρ2 = 0

Fixed
ρ1,ρ2 = 0.5

Fixed
ρ1,ρ2 = 0.3

MAPLE
+ASOR

Walker2d 0.22 0.25 0.26 0.22 0.29 0.30 0.26 0.28
Hopper 0.31 0.54 0.30 0.47 0.38 0.46 0.54 0.58
HalfCheetah 0.48 0.49 0.47 0.49 0.50 0.49 0.50 0.50

Average 0.34 0.43 0.34 0.40 0.39 0.42 0.43 0.45

lava indicator as part of the state input, the policy is fully aware of environment dynamics changes
and the need of context encoders (Luo et al., 2022; Lee et al., 2020) is excluded. The categorical
action space includes moving towards four directions. The reward function for each environment
step is -0.02 and reaching the green goal grid will lead to an additional reward of 1. The episode
terminates when the red lava or the green goal grid is reached. For baseline algorithms we select
online RL algorithms PPO (Schulman et al., 2017) and PPO+SRPO (Xue et al., 2023a), as well as
IfO algorithms SOIL (Gangwani & Peng, 2020) and GAIfO (Torabi et al., 2018b).

We demonstrate the experiment results in Fig. 2 (a). Our ASOR algorithm can increase the perfor-
mance of PPO by a large margin, while SRPO can only make little improvement. This is because the
optimal state distribution in different lava world environments will not be the same. SRPO will still
blindly consider all relevant states for policy regularization, leading to suboptimal policies. Fig. 2
(b) demonstrates the average reward with each possible position of the bottom lava block. PPO and
PPO+SRPO have low performance when the bottom lava block is at Row 5. They mistakenly regard
grids at (5,4) and (5,5) as optimal, but ASOR will recognize these grids as non-anchor states. We also
demonstrate in Fig. 2 (c) the disagreement in next state predictions used to compute pseudo count.
States far from the starting point have higher prediction disagreements and lower pseudo counts.

5.2 RESULTS IN OFFLINE RL BENCHMARKS

For offline RL benchmarks, we collect the static dataset from environments with three different
environment dynamics in the format of D4RL (Fu et al., 2020). Specifically, data from the original
MuJoCo environments, environments with 3 times larger body mass, and environments with 10 times
higher medium density are included. For baseline algorithms, we inlude IfO algorithms BCO (Torabi
et al., 2018a) and SOIL (Radosavovic et al., 2021), standard offline RL algorithms CQL (Kumar et al.,
2020) and MOPO (Yu et al., 2020), offline cross-domain policy transfer algorithms MAPLE (Chen
et al., 2021), MAPLE+DARA (Liu et al., 2022), and MAPLE+SRPO (Xue et al., 2023a).

The comparative results are exhibited in Tab. 1. IfO approaches have the worst performance be-
cause they ignore the reward information (BCO) or cannot safely exploit the offline dataset (SOIL).
Without the ability of cross-domain policy learning, CQL and MOPO cannot learn from data
with dynamics shift and show inferior performances. Cross-domain policy transfer algorithms
MAPLE, MAPLE+DARA, and MAPLE+SRPO show reasonable performance enhancement, while
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Figure 3: Results of online experiments on MuJoCo and MetaDrive tasks. “NS” refers to tasks with
non-stationary environment dynamics.

Augmented Reward 0.29 3.11 -88.95 -336.37

Environment Reward 4.06 4.05 4.51 4.73

Figure 4: Left: Comparisons of the logarithm of density ratio, i.e., the augmented reward, and the
environment reward on different states in the Walker-2d environment. The augmented reward can
better reflect the state optimality. Right: Curves for average extra loss and augmented reward in the
fall-guys like game environment.

our MAPLE+ASOR algorithm leads to the highest performance. This highlights the effectiveness of
policy regularization on anchor states. We discuss the conceptual advantages of ASOR compared
with DARA and SRPO in Appendix A.4.

The results of ablation studies are shown in Tab. 2. They show that a larger value of reward
augmentation coefficient λ can give rise to performance increase. Meanwhile, using fixed values of λ,
ρ1 and ρ2 will not lead to a large drop of performance scores, so ASOR is robust to hyperparameter
changes. ASOR’s will have degraded performance if training datasets DP and DQ are improperly
constructed, e.g., with random data partition, or without considering state values and visitation counts,
i.e., with fixed ρ1 = 0 or fixed ρ2 = 0.

5.3 RESULTS IN ONLINE CONTINUOUS CONTROL TASKS

In online continuous control tasks, we explore other dimensions of dynamics shift, namely environ-
ment non-stationary and the continuous change of environment parameters. Such tasks are far more
complicated than offline tasks with 3 different dynamics, but are within the capability of current
approaches thanks to the existence of online interactive training environments. We consider the
HalfCheetah, Walker2d, and Ant environments in the MuJoCo simulator (Todorov et al., 2012)
and the autonomous driving environment in the MetaDrive simulator (Li et al., 2023). Sources of
dynamics change include wind, joint damping, and traffic densities. For baselines we include the
IfO algorithm GARAT (Desai et al., 2020), standard online RL algorithm SAC (Haarnoja et al.,
2018), online cross-domain policy transfer algorithm OSI (Yu et al., 2017), ESCP (Luo et al., 2022),
CaDM (Lee et al., 2020), and SRPO (Xue et al., 2023a).

Comparative results in online continuous control tasks are shown in Fig. 3, where our ESCP+ASOR
algorithm has the best performance in all environments. Specifically, it only makes marginal improve-
ments in the HalfCheetah environment, in contrast to large enhancement in other environments. This
is because the agent will not “fall over” in the HalfCheetah environment, and the state accessibility
will not change a lot under dynamics shift, undermining the effect of the anchor state-based policy
regularization. We also compare in Fig. 4 (left) the augmented reward with the environment reward
on different states in Walker-2d. On states where the agent is about to fall over, the augmented
reward drops significantly while the environment reward does not change much, demonstrating the
effectiveness of the reward augmentation.

5.4 RESULTS IN A LARGE-SCALE FALL GUYS-LIKE BATTLE ROYAL GAME ENVIRONMENT

9
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Table 3: Experiment results in the fall guys-like game environment. Metrics with the up arrow (↑) are
expected to have larger values and vice versa. Metrics with (∼) have no specific tendencies.

Total Reward
(↑)

Goal Reward
(↑)

Success Rate
(↑)

Trapped Rate
(↓)

Unnecessary
Jump Rate (↓)

Distance from
Cliff (∼)

Policy
Entropy (∼)

PPO 0.329±0.308 1.154±0.085 0.361±0.009 0.012±0.009 0.064±0.003 0.152±0.025 5.725±0.185
PPO+SRPO 0.337±0.257 1.513±0.076 0.376±0.006 0.038±0.015 0.040±0.003 0.148±0.018 5.859±0.098
PPO+ASOR 0.554±0.336 1.781±0.053 0.387±0.005 0.005±0.005 0.029±0.003 0.143±0.021 6.358±0.122

(a) Vertical and low (b) Vertical and high (b) Upper left and high

Figure 5: Demonstrations of dynamics shift caused by differ-
ent trampoline effect. Colors and textures are only for visual
enhancement and are not part of the agent’s observations.

In the large-scale fall guys-like
game environment, we focus on
highly dynamic and competitive
race scenarios, characterized by
a myriad of ever-changing obsta-
cles, shifting floor layouts, and
functional items. The elements
within the game exhibit both func-
tional and attribute changes, result-
ing in dynamics shift and evolving
state accessibility. As shown in
Fig. 5, the effects of trampolines
(e.g., height and orientation) vary across different maps and the agent’s interaction with the trampo-
line will therefore result in different environment transitions depending on the specific configuration.
The resulting dynamics shift has high stochasticity and cannot be effectively modelled by context
encoder-based algorithms (Luo et al., 2022; Lee et al., 2020). We train the agent on 10 distinct
maps, each presenting unique challenges and configurations. The training step is set to 6M. Metrics
except policy entropy were averaged over the final 1M steps and the policy entropy is averaged in
the initial 1M steps. More experiment details are listed in Appendix C.2, including additional map
demonstrations, MDP setups, and the network structure.

As demonstrated in Tab. 3, PPO+ASOR achieves the highest scores in all five performance-related
metrics. To be specific, the high total reward, unweighed goal reward, and success rate demonstrate
the overall effectiveness of ASOR when applied to complex large-scale tasks. Low trapped rate,
small distance from cliff, and high policy entropy demonstrate the strong exploration ability of
ASOR since it is better at getting rid of low-reward regions and has higher policy stochasticity. The
low unnecessary jump rate demonstrates the effectiveness of policy regularization only on anchor
states. Jumping states may appear in the optimal trajectories in maps with diverse altitudes, but
are unnecessary and hinder the fast goal reaching in other maps. Jumping states are regarded as
non-anchor states in ASOR, where policy optimization will not be misled. Fig. 4 (right) shows the
curve of the augmented reward and the extra loss, including the density ratio training loss and the
RND training loss. The loss curve drops smoothly and the average augmented reward remains stable,
which means that the density ratio estimation networks are easy to train and has stable performance.

6 CONCLUSION

In this paper, we focus on the problem of efficient policy optimization using data with dynamics
shift. We demonstrate that existing IfO approaches are built upon the assumption of identical optimal
state distribution, which can be unreliable because some states are no longer accessible when the
environment dynamics changes. We remove this assumption and make policy regularization only on
anchor states which can be reached by all optimal policies. By formally characterizing the difference
of state accessibility under dynamics shift, we show that the anchor state-based regularization
approach provides strong lower-bound performance guarantees for efficient policy optimization in the
case of both perfect regularization and regularization on finite samples. In practice, the regularized
policy optimization problem is transformed to the ASOR algorithm that can serve as an add-on reward
augmentation module to existing RL approaches. Extensive experiments across various online and
offline RL benchmarks o indicate ASOR can be effectively integrated with several state-of-the-art
cross-domain policy transfer algorithms, substantially enhancing their performance.

Limitations This paper focuses on the setting of HiP-MDP with evolving environment dynamics
and a static reward function. The resulting ASOR algorithm will not be applicable to tasks with
multiple reward functions. Meanwhile, the theoretical results will be weaker on some adversarial
HiP-MDPs with large Rs. Details will be discussed in Appendix A.3.
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A ADDITIONAL DERIVATIONS AND PROOFS

A.1 DERIVATIONS OF THE LAGRANGIAN

For expression convenience, we denote dπT (·) with dπ(·), d∗,+T0
(·) with δ+, and d∗,−T0

(·) with δ−. We
also omit the maximization over T in Eq. (1) as it can be obtained by following all policy constrains
in different dynamics. We start from the optimization problem

max
π

Est,at,st+1∼τπ

[ ∞∑
t=0

γtr (st, at, st+1)

]
s.t. DKL

(
dπ(·)∥δ+(·)

)
−DKL

(
dπ(·)∥δ−(·)

)
< ε.

(7)
The KL-Divergence term can be transformed as:

DKL

(
dπ(·)∥δ+(·)

)
= −Es∼dπ(s)

[
log δ+(s)− log dπ(s)

]
= −

∫
dπ(s)

[
log δ+(s)− log dπ(s)

]
ds

= −
∫

(1− γ)

∞∑
t=0

γtp (st = s)
[
log δ+(s)− log dπ(s)

]
ds

= −(1− γ)

∞∑
t=0

∫
γtp (st = s)

[
log δ+(s)− log dπ(s)

]
ds

= −(1− γ)

∞∑
t=0

Est∼τπ

[
γt
(
log δ+(st)− log dπ(st)

)]
= −(1− γ)Est∼τπ

∞∑
t=0

γt
(
log δ+(st)− log dπ(st)

)
.

(8)

So the constraint can be written as

−Est∼τπ

∞∑
t=0

γt · log δ+(st)

dπ(st)
+ Est∼τπ

∞∑
t=0

γt · log δ−(st)

dπ(st)
− ε

1− γ
< 0. (9)

The optimization problem can be written as the following standard form

min
π

Est,at,st+1∼τπ

∞∑
t=0

−γtr (st, at, st+1)

s.t. − Est∼τπ

∞∑
t=0

γt · log δ+(st)

dπ(st)
+ Est∼τπ

∞∑
t=0

γt · log δ−(st)

dπ(st)
− ε

1− γ
< 0.

(10)

So the Lagrangian L is

L = −Est,at,st+1∼τπ

[ ∞∑
t=0

γt

(
r(st, at, st+1) + λ log

δ+(st)

dπ(st)
− λ log

δ−(st)

dπ(st)

)]
− λε

1− γ
. (11)

A.2 PROOFS OF THEOREMS IN SEC. 4

Lemma A.1 (Value Discrepancy). Considering MDPs M1 = (S,A, T1, r, γ, ρ0) and M2 =
(S,A, T2, r, γ, ρ0) which are M -Rs accessible from each other, for all s ∈ S we have

|V ∗
T1
(s)− V ∗

T2
(s)| ⩽ Rs + 2λ

1− γ
, (12)

where λ is the action coefficient in the reward function. Detailed definition are in Sec. 2.1.

Proof. Without the loss of generality, we consider the state s with V ∗
T1
(s) ⩾ V ∗

T2
(s). Under the

optimal policy π∗
1(s), the next state of s in M1 will be s′ = T (s, a∗). As M2 is M -Rs accessible
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from M1, there exists N ⩽ M such that in M2, s′ can be reached from s with action sequence
a1, a2, · · · , aN . We then borrow the idea of iteratively computing |V ∗

T1
(s) − V ∗

T2
(s)| from Xue et

al. (Xue et al., 2023a). According to the optimistic Bellman equation

V ∗
T (s) = max

a
r(s, a, s′) + γV ∗

T (T (s, a)), (13)

we have∣∣V ∗
T1
(s)− V ∗

T2
(s)
∣∣

= V ∗
T1
(s)− V ∗

T2
(s)

⩽ r(s, a∗, s′) + γV ∗
T1
(s′)−

N−1∑
i=0

γir(si, ai, si+1)− γNV ∗
T2
(s′)

(s0
.
= s, sN

.
= s′ for brevity)

= r(s, a∗, s′)− γN−1r(sN−1, aN−1, s
′) + γ(1− γN−1)V ∗

T2
(s′)

+

N−2∑
n=0

γnr(sn, an, sn+1) + γ[V ∗
T1
(s′)− V ∗

T2
(s′)]

⩽ (1− γN−1)(r(s, a∗, s′) + γV ∗
T2
(s′)) + 2λ+

N−2∑
n=0

γnr(sn, an, sn+1) + γ[V ∗
T1
(s′)− V ∗

T2
(s′)]

⩽ (1− γN−1)(r(s, a∗, s′) + γV ∗
T1
(s′)) + 2λ+

N−2∑
n=0

γnr(sn, an, sn+1) + γ[V ∗
T1
(s′)− V ∗

T2
(s′)]

⩽ Rs + 2λ+ γ[V ∗
T1
(s′)− V ∗

T2
(s′)].

(14)
Iteratively computing

∣∣V ∗
T1
(s)− V ∗

T2
(s)
∣∣, we have∣∣V ∗

T1
(s′)− V ∗

T2
(s′)
∣∣ ⩽ Rs + 2λ

1− γ
. (15)

Theorem A.2 (Thm. 4.2 in the main paper.). Consider the MDP M1 = (S,A, T1, r, γ, ρ0) which
is M -Rs accessible from the MDP M2 = (S,A, T2, r, γ, ρ0). For all policy π̂, if there exists one
certain dynamics T0 such that max

T
DKL(d

π̂
T (·)∥d

∗,+
T0

(·)) ⩽ ε, we have

η(π̂) ⩾ max
T

η(π∗
T )−

2Rs + 6λ+
√
2Rmax

√
ε

1− γ
. (16)

Proof. |ηT1
(π∗

T1
)− ηT2

(π∗
T2
)| can be bounded with Thm. A.1:

|ηT1
(π∗

T1
)− ηT2

(π∗
T2
)| =

∣∣Es∈ρ0
V ∗
T1
(s)− Es∈ρ0

V ∗
T2
(s)
∣∣ ⩽ Rs + 2λ

1− γ
. (17)

With a slight abuse of notation, we define the transition distribution dπT (s, a, s
′) =

dπT (s)π(a|s)T (s′|s, a) and the anchor-state transition distribution dπ,+T2
(s, a, s′) =

dπ,+T (s)π̂(a|s)T (s′|s, a). Consider π̃ such that dπ̃T (s) = d∗,+T0
(s) for all s ∈ S. The accumulated

return of policy π̃ under transition T1 can be written as ηT1(π̂) = (1− γ)−1Es,a,s′∼dπ̃
T1

[r(s, a, s′)].
We also consider the accumulated return of the optimal policy under transition T2 including only
anchor states: η+T2

(π∗,+
T2

) = (1 − γ)−1Es,a,s′∼d∗,+
T2

[r(s, a, s′)], where π∗,+
T2

is the optimal policy
making transitions among anchor states. Consider the Lipschitz property of the reward function:

|r(s, a1, s′)− r(s, a2, s
′)| ⩽ λ∥a1 − a2∥1. (18)

Taking expectation w.r.t. dπ̃T1
(·) on both sides, we get

Es∼dπ̃
T1
|r(s, a1, s′)− r(s, a2, s

′)| ⩽ Es∼dπ̃
T1
λ∥a1 − a2∥1. (19)
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Letting µ(A1, A2|s) be any joint distribution with marginals π̂ and π∗,+
T2

conditioned on s ∈ S+.
Taking expectation w.r.t. µ on both sides, we get∣∣∣Edπ̂

T1

r(s, a, s′)− Ed∗,+
T2

r(s, a, s′)
∣∣∣ ⩽ Es∼d∗

T ′Ea1,a2∼µ|r(s, a1, s′)− r(s, a2, s
′)|

⩽ λEs∼dπ̂
T1

Eµ∥a1 − a2∥1
⩽ max

s
λEµ∥a1 − a2∥1

⩽ 2λ

(20)

According to the definitions of ηT1(π̃) and η+T2
(π+,∗

T2
), the L.H.S. of Eq. (20) is exactly the difference

of the two accumulated returns. Therefore, we get∣∣ηT1
(π̃)− η+T2

(π∗,+
T2

)
∣∣ ⩽ 2λ

1− γ
. (21)

Then we will compute the discrepancy between η+T2
and ηT2

. ηT2
can be computed with

ηT2(π
∗
T2
) = Es∼ρ0V

π∗
T2

T2
(s)

= Eτ

N−1∑
n=0

γnr(sn, an, sn+1) + γNV
π∗
T2

T2
(sN ),

(22)

where sN is the anchor state accessible from s0 with π∗,+
T2

. According to the definition of M -Rs

accessible MDPs,

ηT2
(π∗

T2
) = Eτ

N−1∑
n=0

γnrn + γNV
π∗
T2

T2
(sN )−Rs +Rs

⩽ Eτ

N−1∑
n=0

γnrn −
N−2∑
n=0

γnrn − (γN−1 − 1)r(s0, π
+,∗
T2

(s0), sN )

+ γNV
π∗
T2

T2
(sN )− (γN − γ)V

π+,∗
T2

T2
(sN ) +Rs

⩽ Eτr(s0, π
+,∗
T2

(s0), sN ) + γV
π+,∗
T2

T2
(sN ) + γN (V

π∗
T2

T2
(sN )− V

π+,∗
T2

T2
(sN )) +Rs + 2λ

= η+T2
(π+,∗

T2
) + γN (V

π∗
T2

T2
(sN )− V

π+,∗
T2

T2
(sN )) +Rs + 2λ,

(23)
where rn is the short for r(sn, an, sn+1). Iteratively scaling the value discrepancy between π∗

T2
and

π+,∗
T2

, we get ∣∣ηT2
(π∗

T2
)− η+T2

(π+,∗
T2

)
∣∣ ⩽ Rs + 2λ

1− γM
⩽

Rs + 2λ

1− γ
. (24)

According to results in imitation learning (Lem. 6 in Xu et al. (2020)), we have

|ηT1(π̃)− ηT1(π̂)| ⩽
√
2Rmax

√
ε

1− γ
(25)

Combining Eq. (17)(21)(23)(25), we have∣∣ηT1(π̃)− ηT1(π
∗
T1
)
∣∣ ⩽ |ηT1(π̂)− ηT1(π̃)|+

∣∣ηT1(π̃)− η+T2
(π+,∗

T2
)
∣∣

+
∣∣η+T2

(π+,∗
T2

)− ηT2(π
∗
T2
)
∣∣+ ∣∣ηT2(π

∗
T2
)− ηT1(π

∗
T1
)
∣∣

⩽
2Rs + 6λ+

√
2Rmax

√
ε

1− γ
.

(26)

Taking expectation with respect to all T in the HiP-MDP concludes the proof.

Lemma A.3 (Lemma 2 in Xu et. al (Xu et al., 2020)). Consider a network class set P with ∆-
bounded value functions, i.e., |P (s)| ≤ ∆, for all s ∈ S, P ∈ P . Given an expert policy πE and
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an imitated policy πI with dP

(
d̂πE , d̂π1

)
− infπ∈Π dP

(
d̂πE , d̂π

)
≤ εP , then ∀δ ∈ (0, 1), with

probability at least 1− δ, we have

dP (dπE , dπI) ≤ inf
π∈Π

dP

(
d̂πE , d̂π

)
+ 2R̂(m)

dπE (P) + 2R̂(m)
dπI (P) + 12∆

√
log(2/δ)

m
+ εP . (27)

Proof. See Appendix B.3 of Xu et al. (2020).

Theorem A.4. Consider the MDP M1 = (S,A, T1, r, γ, ρ0) which is M -Rs accessible from the
MDP M2 = (S,A, T2, r, γ, ρ0) and the network set P bounded by ∆, i.e., |P (s)| ⩽ ∆. Given
{s(i)}mi=1 sampled from d+,∗

T2
, if π+,∗

T2
∈ P and the reward function rπ̂,T1

(s) = Ea∼π̂,s′∼T1
r(s, a, s′)

lies in the linear span of P , for policy π̂ regularized by d̂+,∗
T2

according to Eq. (1) with dP(d̂π̂T1
, d̂+,∗

T2
) <

εP , we have

ηT1
(π̂) ⩾ ηT1

(π∗
T1
)− 2Rs + 8λ

1− γ
− 2∥r∥P

1− γ

(
R̂(m)

d+,∗
T2

(P) + R̂(m)

dπ̂
T1

(P) + 6∆

√
log(2/δ)

m
+

ε

2

)
(28)

with probability at least 1− δ.

Proof. As M1 is M -Rs accessible accessible from M2, there exists policy π̃ such that dπ̃T1
(s) =

d∗,+T2
(s) for all s ∈ S+. With Thm. A.2, we have

ηT1
(π̃) ⩾ ηT1

(π∗
T1
)− 2Rs + 6λ

1− γ
(29)

Then we compute the performance discrepancy ηT1
(π̂)− ηT1

(π̃) given that dP(d̂π̂T1
, d̂π̃T1

) < εP . The
following derivations borrow the main idea from Xu et al. (Xu et al., 2020) and turn the state-action
occupancy measure ρ into the state-only occupancy measure d. We start with the network distance of
the ground truth state occupancy measures. According to Lem. A.3, we have

dP(d
π̂
T1
, dπ̃T1

) ⩽ 2R̂(m)

d+,∗
T2

(P) + 2R̂(m)

dπ̂
T1

(P) + 12∆

√
log(2/δ)

m
+ εP (30)

with probability at least 1− δ. Meanwhile,

|ηT1
(π̂)− ηT1

(π̃)|

⩽
1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1
(s)]− Es∼dπ̃

T1
[rπ̃,T1

(s)]

∣∣∣∣
⩽

1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1(s)]− Es∼dπ̃
T1

[rπ̂,T1(s)]

∣∣∣∣+ 1

1− γ

∣∣∣∣Es∼dπ̃
T1

[rπ̂,T1(s)]− Es∼dπ̃
T1

[rπ̃,T1(s)]

∣∣∣∣
⩽

1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1
(s)]− Es∼dπ̃

T1
[rπ̂,T1

(s)]

∣∣∣∣+ 2λ

1− γ
.

(31)
As we assume that the reward function rπ̂,T1(s) lies in the linear span of P , there exists n ∈
N, {ci ∈ R}ni=1 and {Pi ∈ P}ni=1, such that r = c0 +

∑n
i=1 ciPi. So we obtain that

|ηT1(π̂)− ηT1(π̃)| ⩽
1

1− γ

∣∣∣∣Es∼dπ̂
T1

[rπ̂,T1(s)]− Es∼dπ̃
T1

[rπ̂,T1(s)]

∣∣∣∣+ 2λ

1− γ

⩽
1

1− γ

∣∣∣∣∣
n∑

i=1

ciEs∼dπ̂
T1

[Pi(s, a)]−
n∑

i=1

ciEs∼dπ̃
T1

[Pi(s, a)]

∣∣∣∣∣+ 2λ

1− γ

⩽
1

1− γ

n∑
i=1

|ci|
∣∣∣Es∼dπ̂

T1

[Pi(s, a)]− Es∼dπ̃
T1

[Pi(s, a)]
∣∣∣+ 2λ

1− γ

⩽
1

1− γ

(
n∑

i=1

|ci|

)
dP
(
dπ̂T1

, dπ̃T1

)
+

2λ

1− γ

⩽
1

1− γ
∥r∥PdP

(
dπ̂T1

, dπ̃T1

)
+

2λ

1− γ
.

(32)
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Table 4: Comparison between the Lipschitz coefficient λ and the maximum reward Rmax in practical
environments.

Environment Action-related Reward λ Rmax

CartPole-v0 0 0 1.00
InvertedPendulum-v2 0 0 1.00
Lava World 0 0 1.00
MetaDrive 0 0 ⩾ 1
Fall-guys Like Game 0 0 ⩾ 1

Swimmer-v2 −0.0001∥a∥22 0.0001 0.36
HalfCheetah-v2 −0.1∥a∥22 0.1 4.80
Hopper-v2 −0.001∥a∥22 0.001 3.80
Walker2d-v2 −0.001∥a∥22 0.001 ⩾ 4
Ant-v2 −0.5∥a∥22 0.5 6.00
Humanoid-v2 −0.1∥a∥22 0.1 ⩾ 8

Combining Eq. (30) and Eq. (32), we have

ηT1
(π̂) ⩾ ηT1

(π̃)− 2∥r∥P
1− γ

(
R̂(m)

d+,∗
T2

(P) + R̂(m)

dπ̂
T1

(P) + 6∆

√
log(2/δ)

m
+

ε

2

)
+

2λ

1− γ
(33)

with probability at least 1− δ. Combining Eq. (33) and Eq. (29), we have

ηT1
(π̂) ⩾ ηT1

(π∗
T1
)− 2Rs + 8λ

1− γ
− 2∥r∥P

1− γ

(
R̂(m)

d+,∗
T2

(P) + R̂(m)

dπ̂
T1

(P) + 6∆

√
log(2/δ)

m
+

ε

2

)
(34)

with probability at least 1− δ. Taking expectation with respect to all T in the HiP-MDP concludes
the proof.

A.3 DISCUSSIONS ON THE THEOREMS

Lipschitz Assumption The Lipschitz assumption in Sec. 2.1 requires that if s and s′ keep un-
changed, the deviation of the reward r will not be larger than λ times the deviation of the action
a:

|r(s, a1, s′)− r(s, a2, s
′)| ⩽ λ∥a1 − a2∥1. (35)

Therefore, the Lipschitz coefficient λ is only depends action-related terms in the reward function. In
Tab. 4, we list the action-related terms of the reward functions for various RL evaluation environments,
along with the corresponding values of λ derived from these terms. As indicated in the table, the
action-related terms in reward functions exhibit reasonably small coefficients in all environments
compared with the maximum environment reward Rmax. Therefore, the Lipschitz coefficient λ will
not dominate the error term in Thm. 4.2 and Thm. 4.4.

Failure Cases Apart from the Lipschitz assumptions that can easily be realized, Thm. 4.2 and
Thm. 4.4 depend on the formulation of M -Rs accessible MDPs. Potential failure cases will therefore
include tasks with high Rs, so that the performance lower bounds become weak. This will happen
if states with lowest rewards exist in the optimal trajectory of some, and not all dynamics. In the
example of lava world in Fig. 1, if a reward of -100 is assigned to grid (3,4), Rs will be as large as
100, leading to a weak performance lower bound when the bottom lava block is at Row 2 with a best
episode return of 1. Nevertheless, issues with theoretical analyses will not negatively influence the
practical performance of ASOR.

A.4 COMPARISONS WITH PREVIOUS APPROACHES

Intuitively, the practical algorithm procedure of ASOR share some insights with some offline RL
algorithms including AWAC (Nachum et al., 2019), CQL (Kumar et al., 2020) and MOPO (Yu et al.,
2020). For example, ASOR prefers states with high values similar to AWAC and states with high
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Figure 6: MetaDrive environments with different traffic densities.

visitation counts similar to CQL and MOPO. The advances of ASOR include: 1) By restricting the
considered states to anchor states, ASOR can be applied in offline datasets collected under dynamics
shift, where the aforementioned offline RL algorithms can only learn from the dataset with static
dynamics. Thm. 4.2 and Thm. 4.4 demonstrate the effectiveness of such procedure. 2) ASOR
modifies the original policy optimization process by reward augmentation. This enables the easy
combination of ASOR with other cross-domain algorithms to enhance their performance.

ASOR also share the approach of classifier-based reward augmentation with DARA (Liu et al., 2022)
and SRPO (Xue et al., 2023a). The classifier input in DARA is (s, a, s′) from the source and target
environments. Compared with ASOR, the classifier in DARA exhibits higher complexity and is
harder to train. It also requires the access to the information of target environments. Therefore,
DARA has poor performance as demonstrated in Sec. 5.2 and cannot be applied to tasks with no
prior knowledge on the target environments. The algorithm and theories of SRPO are based on the
assumption of the same state accessibility, which is an over-simplification of some environments,
as demonstrated in Sec. 3.1 and Sec. B. Comparative results in Sec. 5 demonstrate the inferior
performance of SRPO compared with ASOR, in correspondence with the flaw in the assumption.
Also, the theoretical analysis in the SRPO paper is built on the assumption called “homomorphous
MDPs” which is stronger than the M -Rs accessible MDPs used in this paper and is a special case of
the latter.

B EXAMPLES OF DISTINCT STATE DISTRIBUTIONS

We claim in the main paper that previous assumption of similar state distributions under distribution
shift will not hold in many scenarios. Apart from the motivating example of lava world in Sec. 3.1,
we demonstrate more examples in the MetaDrive (Li et al., 2023) and the fall-guys like game
environment. Examples of MetaDrive environments with different traffic densities are shown in
Fig. 6. The dynamics shift lies in that the ego vehicle will have different probabilities to detect other
vehicles nearby. In environments with low traffic densities, there is enough space for some vehicles
with optimal policies to drive in high speeds. But in environments packed with surrounding vehicles,
fast driving will surely lead to collisions. So the vehicles can only drive in low speeds. As the vehicle
speed is included in the agent’s state space, difference in traffic densities will lead to distinct optimal
state distributions.

Visualizations of the fall-guys like game environment used in Sec. 5.4 are shown in Fig. 7, where
map components including the conveyor belt speed, the balloon reaction, the floor reaction, and the
hammer distance will work together, giving rise to dynamics shift. Taking the variation of hammer
distance (Fig. 7 (d)) as an example, in the left environment the optimal trajectory will contain states
where the hammer is near the agent. But in the right environment, there are trajectories that keep the
hammer far away to avoid being hit out of the playground. Blindly imitating optimal states collected
in the left environment will lead to suboptimal performance in the right environment.
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C EXPERIMENT DETAILS

C.1 BASELINE ALGORITHMS

In experiments with four different tasks, we compare ASOR with the following baseline algorithms:

• PPO (Schulman et al., 2017): The widely used, off-the-shelf online RL algorithm with
on-policy policy update.

• SAC (Haarnoja et al., 2018): The widely used off-policy RL algorithm with entropy maxi-
mization for better exploration.

• BCO (Torabi et al., 2018a): Learn a agent-specific inverse dynamics model to infer the
experts’ missing action information.

• GAIfO (Torabi et al., 2018b): A state-only version of the GAIL algorithm.

• GARAT (Desai et al., 2020): Use the action transformer trained with GAIL-like imitation
learning to recover the experts’ next states in the original environment.

• SOIL (Gangwani & Peng, 2020): An algorithm combining state-only imitation learning with
policy gradients. The overall gradient consists of a policy gradient term and an auxiliary
imitation term.

• CQL (Kumar et al., 2020): The widely used offline RL algorithm with conservative Q-
learning.

• MOPO (Yu et al., 2020): A model-based offline RL algorithm subtracting disagreements in
next-state prediction from environment rewards.

• MAPLE (Chen et al., 2021): The offline RL algorithm based on MOPO with an additional
context encoder module for cross-dynamics policy adaptation.

• OSI (Yu et al., 2017): An algorithm using context encoders for online system identification.

• CaDM (Lee et al., 2020): The online RL algorithm with context encoders for cross-dynamics
policy adaptation.

• DARA (Liu et al., 2022): Make reward augmentations with importance weights between
source and target dynamics.

• SRPO (Xue et al., 2023a): Make reward augmentations with the assumption of similar
optimal state distributions under dynamics shift.

C.2 ADDITIONAL SETUP OF THE FALL-GUYS LIKE GAME ENVIRONMENT

Additional Environment Demonstrations Next, we present additional examples of dynamic shifts
within the fall-guys like game environment to demonstrate the diverse and variable nature of in-game
elements. As shown in Fig. 7, the game environment features a range of dynamic shifts which
contribute to the complexity and unpredictability of the gameplay. Specifically, we observe the
following scenarios: Fig. 7 (a): The speed of conveyor belts changes across different game settings,
leading to varied transitions in the agent’s position and momentum when it steps onto these belts.
Fig. 7 (b): Balloons exhibit different reactions upon interaction with the agent. This variation can
significantly affect the agent’s subsequent trajectory. Fig. 7 (c): The behavior of floors under the
agent’s influence varies significantly. Some floors may collapse, disappear, or shift unexpectedly,
introducing further complexity to the environment. Fig. 7 (d): The distance and direction in which
the agent is ejected when struck by hammers can vary widely. This variability depends on the
unpredictable environmental dynamic shifts, for example, the force and angle of the hammer’s swing.

MDP Setup Below, we provide definitions of state space, action space, and rewards in the fall-guys
like game environment.

State space S:

• Terrain Map (dim=(16 × 16 × 2) with granularities of [1.0, 2.0]): The relative terrain
waypoints in the agent’s surrounding area. Various granularities capture different details and
perceptual ranges effectively.
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(a) Conveyor Belt Speed

High Speed

(b) Balloon Reaction

DownUpLow Speed

(c) Floor Reaction

Disappear Up

(d) Hammer Distance

Near Far

Figure 7: More demonstrations of dynamics shifts in fall guys-like game. Colors and textures are
only for visual enhancement and are not part of the agent’s observations.

• Item Map (dim=(16 × 16 × 1) with granularities of [1.0, 2.0]): Map of nearby items or
objects. Multiple maps focus on different item types, with granularities for varying spatial
scales.

• Target Map (dim=(16 × 16 × 1) with granularities of [1.0, 4.0, 16.0]): Map of archive
points locations. Various granularities capture different details and perceptual ranges at
different spatial scales.

• Goal Map (dim=(16× 16× 1) with granularities of [1.0, 4.0, 16.0]): Map of intermediate
goal locations. Various granularities capture different details and perceptual ranges at various
spatial scales.

• Agent Info (dim=32): Details about agent’s own state, including position, rotation, velocity,
animation state, and forward direction.

• Destination Info (dim=9): Details about the destination, including position, rotation, and
size of the destination, providing crucial details for navigation and goal achievement.

Action space A:

• MoveX (dim=3): Move along the X-axis. The three discrete options typically represent
movement in the positive X direction, negative X direction, or no movement.

• MoveY (dim=3): Move along the Y-axis, with three discrete options for movement in the
positive Y direction, negative Y direction, or no movement.

• Jump (dim=2): Represents jump behavior. Options are to initiate a jump or not.
• Sprint (dim=2): Represents sprint behavior. Options are to start sprinting or not.
• Attack (dim=2): Executes an attack. The two discrete options are to initiate an attack or not.
• UseProp (dim=2): Utilizes a prop. The two discrete options indicate whether the prop is

used or not.
• UsePropDir (dim=8): Determines the direction for prop usage. The eight discrete options

offer various directional choices for prop utilization.
• Idle (dim=2): Represents idle behavior. Options are to remain idle or not.

Reward r:

• Arrive Target (value=1.0): Rewards the agent for successfully reaching the archive point,
with a positive reward of 1.0 upon achievement.
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• Arrive Goal (value=0.3): Rewards the agent for reaching intermediate goal locations within
the environment, with a positive reward of 0.3.

• Arrive Destination (value=1.0): Rewards the agent for reaching the final destination or
endpoint within the environment, motivating task completion.

• Goal Distance (decay rate=0.05): Offers distance-based rewards, varying based on prox-
imity to specific goal locations. Rewards diminish as the agent moves away from the goal,
with distinct values for different distance ranges.

• Fall or Wall (value=−1.0): Penalizes the agent for continuously hitting the wall or falling
off a cliff with a penalty of -1.0.

• Stay (value=−0.01): Penalizes the agent for remaining stationary for extended periods,
encouraging continuous exploration and movement.

• Time (value=−0.02): Penalizes each time step, encouraging efficient decision-making and
timely task completion.

Network Architecture The network architecture is structured as follows: The Terrain Map, Item
Map, Target Map, and Goal Map are each fed into a convolutional neural network (CNN) with ReLU
non-linearity, followed by a fully connected network (FCN). This process yields four separate 32-
dimensional vector representations for each respective map. The Destination Info and Agent Info are
independently input into attention layers, generating 32-dimensional vectors for each. Subsequently,
all 32-dimensional vectors (from the CNNs and attention layers) are concatenated into a single feature
vector. The concatenated feature vector undergoes processing by a multi-head FCN to yield various
output actions. Additionally, the concatenated feature vector is processed by another FCN to produce
a value as the value function estimator.

Training Setup We utilized the Ray RLlib framework (Liang et al., 2018), configuring 100 training
workers and 20 evaluation workers. The batch size was set to 1024, with an initial learning rate of
1× 10−3, which linearly decayed to 3× 10−4 over 250 steps. An entropy regularization coefficient
of 0.003 was employed to ensure adequate exploration during training. The training was conducted
using NVIDIA TESLA V100 GPUs and takes around 20 hours to train 6M steps.
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